
Adversarial Sampling for Solving Differential
Equations with Neural Networks

Kshitij Parwani
Department of Mathematical Sciences

Indian Institute of Technology, Varanasi
kshitijparwani.mat18@iitbhu.ac.in

Pavlos Protopapas
John A. Paulson School of Engineering and Applied Sciences, Harvard University

Cambridge, Massachusetts 02138, United States
pavlos@seas.harvard.edu

Abstract

Neural network-based methods for solving differential equations have been gaining
traction. They work by improving the differential equation residuals of a neural
network on a sample of points in each iteration. However, most of them employ
standard sampling schemes like uniform or perturbing equally spaced points. We
present a novel sampling scheme which samples points adversarially to maximize
the loss of the current solution estimate. A sampler architecture is described along
with the loss terms used for training. Finally, we demonstrate that this scheme
outperforms pre-existing schemes by comparing both on a number of problems.

1 Introduction

Differential equations are ubiquitous in all engineering and science disciplines. Hence, substantial
research goes into designing novel methods and improving pre-existing methods to solve differential
equations. With the rise of deep learning, one approach which has gained traction is to use neural
networks to solve these equations in an unsupervised manner. This has been used to solve a variety of
differential equations such as ordinary differential equations (ODEs) [1, 2, 3, 4], partial differential
equations [4, 5, 6, 7] (PDEs), and eigenvalue problems [8]. This holds certain advantages as
opposed to numerical methods like finite difference such as (a) instead of obtaining solution values at
discretized points, we get a closed and differentiable solution function [1], (b) it is more effective
in solving high dimensional PDEs by faring better against the "curse of dimensionality" [5], (c)
numerical errors are not accumulated in each iteration [4], (d) initial and boundary conditions are
satisfied by construction [1, 2].

One method employed is to use a neural network (possibly in a reparametrized form to satisfy the
initial/boundary conditions) to represent a candidate solution and minimize the loss corresponding to
the differential equation over a number of iterations [1, 7]. This is done by sampling points over the
domain using some predefined scheme (for example, uniform/equally spaced) and minimizing the
loss function on these points in each iteration. However, such sampling schemes are either blind to
the equation being solved or require one to carefully design custom sampling schemes to improve
efficiency. We propose a novel method which samples points in an adversarial manner by finding
points in the domain at which the current loss is high. This is followed by the solver minimizing the
loss at these very points by updating the weights of the solver network. We demonstrate the efficiency
of this scheme on a variety of problems.

DLDE Workshop in the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Solving an ODE with adversarial sampling, three consecutive iterations of the fitting
process are shown on a small part of the input domain. It is observed that the sampler is able to steer

points towards areas of high error and improve estimates. [orange] - analytic solution, [blue] -
predicted solution, [dashed] - samples, [bottom panel] - error residuals (log scale)

2 Methodology

We first describe the vanilla method and then talk about adversarial sampling.

2.1 Vanilla Approach

Although the framework described is readily extendable to harder ODEs/PDEs (as demonstrated in
the results 2) , in this section we consider a first-order ordinary differential equation F to be solved
for x ∈ [a, b]:

F(x, y, y′) = 0 (1)

given the initial condition y(x0) = y0. Let the function learned by the neural network be yN . The
method employed to exactly impose the initial conditions is to reparameterize yN to get ŷ as [1, 7]:

ŷ(x) = y0 + (1− e−(x−x0))yN (x) (2)

For a fixed ŷ, we may exactly calculate the (partial) derivatives using automatic differentiation. In
further text, we write F(x, ŷ, ŷ′) as just F(x, ŷ). Hence for a given ŷ, we may express the loss
function at a point x as:

L(ŷ, x) =
(
F(x, ŷ)

)2
(3)

Hence, to solve the equation, we must minimize the expected loss :

argmin
y

(∫ b

a

L(y, x)dx
)

(4)

At each iteration, we minimize the empirical loss at points x = {x1, x2, . . . , xn}:

L̂(ŷ,x) =
n∑
i=1

L(ŷ, xi) (5)

The routine way to sample points x1, x2, . . . , xn is to use some pre-specified scheme like
uniform/equally-spaced sampling and to update the parameters of our neural network yN in each
iteration to improve our estimate ŷ.

2.2 Adversarial Sampling

Using a predefined sampling scheme has some clear drawbacks. First, it is agnostic to the equation
being solved as well as our current estimate ŷ. An efficient sampling scheme is expected to take into
account where our current estimate is incorrect and sample extra points from that region to converge
faster. When fitting the 1D exponential decay equation (ux = −λu), for example, sampling equally
both before and after the elbow would be inefficient. This is especially valid in cases where the
number of sampled points is limited and insufficient to cover the entire space (increasingly valid in
higher dimensions).

2

Figure 2: Architecture of the framework. The sampler network has input size zd (dimensionality of
z) and output size (n, d) (n = number of samples and d = dimensionality of each sample). The
solver network has input size d and output size of 1. It takes each xi ∈ x and produces yN (xi)

We present a sampling scheme that is dependent on the current estimate ŷ. This is done by using
a neural network to represent a variable sampling distribution implicitly similar to the generator
network of a GAN [9]. In each iteration, the sampler is trained to produce points which maximize
the loss of the solver (and a secondary loss). Thus, it competes with the solver whose weights are
updated to minimize the loss at these very points.

2.3 Architecture of the Adversarial Sampler

We use a GAN-like [9] generator to produce samples. It is a fully connected neural network that uses
a noise vector z to produce a vector of sampled points x. We use tanh activation in the last layer and
rescale the output of the sampler to ensure the points lie in the specified input domain.

2.4 Regularization

It is observed that if the sampler is purely optimized with the objective of maximizing L̂(ŷ,x)
(residual loss corresponding to the DE at samples x), it tends to collapse all samples to one single
point of high loss. This is akin to the phenomenon of mode collapse in GANs [9]. Therefore it is
essential to regularize the sampler by penalizing distributions with low entropy. For this, we use an
additional loss term Dk. Given points {x1, x2, . . . , xn}, we define dk(xi) to be the sum of distances
of xi from its k nearest neighbors. Hence for x = {x1, x2, . . . , xn} the secondary loss term is
defined as follows:

Dk(x) = −
n∑
i=1

dk(xi) (6)

This is implemented using a kd-tree [10], which is queried for each point to get its k-nearest neighbors
in order to calculate Dk. Other methods of enforcing entropy constraints were experimented with but
this proved to be faster and more effective in practice.

2.5 Training iteration

In each training iteration, we first sample points from the sampler to get x = {x1, x2, . . . , xn}. This
leads us to two losses, namely L̂solver and L̂sampler.

L̂solver = L̂(ŷ,x) (7)

L̂sampler = −L̂(ŷ,x) + λDk(x) (8)

In one single training iteration, we first calculate L̂solver and update the parameters of yN . Next we
evaluate L̂sampler and update the parameters of the sampler.

3

3 Experiments

We demonstrate the results with a number of differential equations as shown in Table 1. Table
2 contains the results, where the comparison is done by first setting a target loss and maximum
iterations. The maximum iterations are chosen in such a way so that both sampling schemes take
equal time to arrive at them. Then by fixing the number of points, we compare the average time
taken to arrive at the target loss or maximum iterations(whichever comes first). We also provide the
average loss achieved, which might be higher than the target loss in case the maximum iterations are
reached without achieving the target loss.

We evaluate the mean-squared error loss w.r.t. the analytic solution in the case of ODEs
where this is available, and in the case of PDEs we use the validation loss which is the residual loss
evaluated on a grid of (32, 32) equally spaced points. All average data is reported over 10 trials.

List of Differential Equations evaluated

Equation Name Differential Equation Domain Initial/Boundary Conditions

Exponential decay
(γ = −5)

ux = eγx [0, 30] u|x=0 = 0.1

Logistic Equation
(γ = −1,M = 1)

ux = γu(M − u) [0, 10] u|x=0 = 0.7

Radial part of H-atom
(n = 1, l = 0)

uxx = 2
(

1
2n2 − 1

x+
l(l+1)
2x2

)
u [0, 30] u|x=0 = 0, u|x=∞ = 0

Radial part of H-atom
(n = 2, l = 0)

uxx = 2
(

1
2n2 − 1

x+
l(l+1)
2x2

)
u [0, 30] u|x=0 = 0, u|x=∞ = 0

Laplace Equation uxx + uyy = 0 [0, 1]× [0, 1] u|x=0 = sin(y), u|x=1 = 0
u|y=0 = 0, u|y=1 = 0

Table 1: Table summarizing the problems.

Results
Equation Name Num

points
Loss
type

Target
loss

Avg time
(NL)

Avg time
(Adv)

Avg loss
(NL)

Avg loss
(Adv)

Exponential decay
(λ = −5)

30 MSE 10−6 8.547s 4.179s 1.866×10−6 9.740×10−7

Logistic Equation
(γ = −1,M = 1)

20 MSE 10−6 16.215s 3.486s 7.018×10−3 8.795×10−7

Radial part of H-atom
(n = 1, l = 0)

30 MSE 10−4 11.433s 7.995s 3.673×10−4 9.045×10−5

Radial part of H-atom
(n = 2, l = 0)

30 MSE 10−4 11.660s 7.385s 6.508×10−4 1.179×10−4

Laplace Equation 256 VAL 10−4 426.14s 360.41s 1.300×10−4 1.002×10−4

Table 2: Table summarizing the results. (NL) - Noisy Linspace, (Adv) - Adversarial Sampling. Noisy
Linspace (NL) perturbs equally-spaced points with a fixed standard deviation. It is observed to

perform the best among vanilla sampling schemes.

4 Conclusion

In this paper, we show that adversarial sampling works in practice. It is able to improve the efficiency
of fitting and leads to lower loss. It is also observed that in order to avoid collapse, we must regularize
by penalizing sampling distributions with low entropy. Future work would involve exploring this
technique to solve high-dimensional PDE(s) where it holds more promise.

4

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their valuable feedback on this
manuscript.

References
[1] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for

solving ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):
987–1000, 1998.

[2] Pola Lydia Lagari, Lefteri H Tsoukalas, Salar Safarkhani, and Isaac E Lagaris. Systematic
construction of neural forms for solving partial differential equations inside rectangular do-
mains, subject to initial, boundary and interface conditions. International Journal on Artificial
Intelligence Tools, 29(05):2050009, 2020.

[3] Cedric Flamant, Pavlos Protopapas, and David Sondak. Solving differential equations using
neural network solution bundles. arXiv preprint arXiv:2006.14372, 2020.

[4] Marios Mattheakis, David Sondak, Akshunna S Dogra, and Pavlos Protopapas. Hamiltonian
neural networks for solving differential equations. arXiv preprint arXiv:2001.11107, 2020.

[5] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

[6] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364, 2018.

[7] Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh
Agarwal, and Marco Di Giovanni. Neurodiffeq: A python package for solving differential
equations with neural networks. Journal of Open Source Software, 5(46):1931, 2020.

[8] Henry Jin, Marios Mattheakis, and Pavlos Protopapas. Unsupervised neural networks for
quantum eigenvalue problems. 2020 NeurIPS Workshop on Machine Learning and the Physical
Sciences, 2020.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[10] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

5

	Introduction
	Methodology
	Vanilla Approach
	Adversarial Sampling
	Architecture of the Adversarial Sampler
	Regularization
	Training iteration

	Experiments
	Conclusion

