SYNTHETIC THEOREM GENERATION IN LEAN

Anonymous authors
Paper under double-blind review

ABSTRACT

The application of large language models (LLMs) to theorem proving presents a
promising avenue for advancing formal mathematics. Interactive theorem provers,
such as Lean, offer a rigorous framework within which these models can as-
sist in or automate proof discovery, grounding their reasoning capabilities in a
sound, verifiable formal system. However, the potential of LLMs in this domain
is constrained by the limited availability of formal proof corpora for training. To
address this limitation, we introduce a synthetic theorem generator capable of
producing novel Lean theorems and their corresponding proofs. Our approach
employs forward reasoning to synthesize new propositions from premises drawn
from existing Lean libraries. We explore candidate reasoning steps using a search
strategy that optimizes for diversity of output, apply them in a linear fashion that
avoids irrelevant proof steps, and assess their effect by metaprogrammatically ex-
ecuting corresponding Lean tactics. These methods enable the generation of an
arbitrary number of new theorems and proofs across various mathematical do-
mains, using common Lean proof tactics while ensuring the correctness of gen-
erated theorems by construction. We demonstrate the efficacy of the generated
theorems and training data by fine-tuning models on synthetic theorems and eval-
uating them on the miniF2F-test benchmark. Our results show improvements in
theorem-proving capabilities, with accuracy increasing from 37.3% to 38.5% for
the Falcon2-11B model trained solely on Mathlib, and from 38.1% to 39.3% for
the same model trained on a mix of rich datasets. These improvements highlight
the value of our diverse synthetic data in augmenting limited existing corpora of
formal proofs, providing complementary information that enhances LLMs’ per-
formance on theorem-proving tasks even when combined with other datasets.

1 INTRODUCTION

Interactive theorem proving (ITP) provides a foundation for mechanically certifiable formal math-
ematics and software verification. While many proof assistants, such as the Lean theorem
prover (de Moura & Ullrich, |2021)), offer tools to automate portions of common proof-writing tasks,
formal proofs still frequently require considerable time, effort, and expertise. One exciting direction
of research within ITP aims to address this issue by using large language models (LLMs) to assist
in or automate the writing of formal proofs in languages like Lean (Yang et al., [2023). LLMs have
proven useful for code generation (Chen et al.,2021)), though they continue to exhibit hallucinations
in code-writing tasks by producing subtle bugs (Ji et al.,|2023)). Unlike code generated in languages
such as Python or C, however, the correctness of formal proofs can be automatically verified using
proof assistants.

The use of LLMs for ITP depends upon the availability of large quantities of formal proofs from
which to extract training data. Yet existing corpora of formalized mathematics remain relatively
scarce. Formal theorem proving is often time-intensive and requires specialized knowledge of both
the relevant mathematical domains and the tools used for formalization, limiting the rate at which
formalized mathematics is produced. As of this writing, the Lean theorem prover’s mathematical
library, Mathlib, is the primary existing corpus of Lean code, containing approximately 1.5 million
lines of code and growing by just over 300,000 lines in the past year (The mathlib Community,
2024). Despite the sizable portion of modern mathematics contained in this library, it is significantly
smaller than corpora available in other languages, which total hundreds of millions of lines (Chen
et al.,[2021).

theorem Nat.gcd_le_min

Vmn: N, m>0—=>n>0 —= gcdmn < minmn := by
—— Introduce the variables m and n and the named hypotheses hm : m > 0
and hn : n > 0

intro m n hm hn

—-— Rewrite the goal using the lemma le min_iff : x < min a b < x < a A
x < b

rewrite [le_min_ 1ff]

—-— Apply the introduction rule for conjunction

apply And.intro

—-— Show the first conjunct (gcd m n < m) using the lemma gcd_le left

- exact gcd_le_left n hm

—-— Show the second conjunct (gcd m n < n) using the lemma gcd_le_ right

- exact gcd_le_right n hn

Figure 1: A tactic proof in Lean. The theorem declaration gives the name and statement of the
theorem to prove. Each line after by invokes a tactic (e.g., intro, rewrite, apply, exact).

To obtain sufficient data for training at large scales, therefore, it is often necessary to turn to syn-
thetically generated data. Prior techniques for generating synthetic data in formal languages have
been varied. Some use random sampling or LLM-based methods to generate conjectures, for which
proofs are then generated using proof search. Other techniques procedurally generate new theorems
and their proofs simultaneously by successively applying inference rules to reason forward from
existing theorems.

We introduce a synthetic data generator for Lean based on a procedural forward-reasoning approach
and distinguished by several key features. First, our initial hypotheses are drawn from proofs in ex-
isting Lean libraries, and our inference steps use LLM-based premise selection to identify relevant
lemmas in Mathlib, resulting in theorems that reference definitions of interest in modern mathe-
matics. Second, we generate proofs by applying commonly-used Lean tactics, producing proofs
with reasoning steps similar to human-written proofs. Third, we ensure the diversity and quality of
our generator’s output by using a search procedure optimized to produce dissimilar theorems and a
linear generation strategy that precludes irrelevant proof steps.

2 BACKGROUND

Lean 4 is a dependently typed functional programming language and theorem prover based on the
Calculus of Inductive Constructions (de Moura & Ullrich, 2021). It has been used to formalize a
wide array of mathematics, notably in the community-driven Mathlib project (The mathlib Commu-
nity, |2020), which contains formalizations of over 150,000 theorems across various mathematical
fields (The mathlib Communityl, 2024).

Many proofs in Lean are written using Lean’s metaprogrammatic factic system. Instead of providing
an explicit proof term, users may specify a series of tactics that correspond to high-level reasoning
steps. These tactics generate the underlying proof term that is checked by Lean. An example of a
tactic proof in Lean is shown in Figure[T]

Theorem proving in Lean is interactive. After each tactic step, Lean displays to the user the current
goal and a list of hypotheses that have been added to the local context, including both antecedents
of the theorem statement and propositions derived therefrom. Collectively, we refer to the goal and
hypotheses as the proof state. Users can incrementally develop a proof, observing the effect of each
tactic on the proof state in real time and receiving immediate feedback if a tactic does not succeed.
Because the tactic system offers this flexibility and interactivity, and because of its ubiquity as a
mode of interaction with the proof assistant, our work aims specifically to develop training data for
tactic-based theorem proving.

3 RELATED WORK

3.1 SYNTHETIC FORMAL-PROOF GENERATION

Several techniques have previously been employed to generate synthetic data in Lean and other
formal languages. Some approaches generate theorem statements independently of their proofs.
Several such approaches use random sampling within a fixed domain—such as integer arithmetic or
propositional logic—to generate known-true theorem statements (An et al.| |2024; |Polu & Sutskever;,
2020; [Zombori et al., 2021). Others use autoformalization: theorem statements in natural language
are converted to formal statements by an LLM (Xin et al., 2024} Ying et al., [2024). In both cases,
a separate proof search procedure is required to generate the corresponding proof. Moreover, when
using techniques like autoformalization, it is possible that the proposed theorem statement is incor-
rect; |Xin et al.|(2024)) address this eventuality by searching for proofs of both the proposed theorem
statement and its negation.

Other data-generation techniques procedurally generate both new theorems and their proofs simul-
taneously through forward reasoning (Firoiu et al., [2021; [Lample et al.l 2022} Polu & Sutskever,
2020; [Trinh et al.| [2024; Wang & Deng|, 2020). These techniques iteratively apply inference rules
to existing theorems, the result of which is a theorem whose proof consists of the applied inference
rules. Most such techniques involve either random sampling or exhaustion of available proof steps,
though Wang & Deng| (2020) train neural networks to identify desirable proof steps.

3.2 LLMS FOR LEAN

LLMs have been applied to a variety of tasks related to theorem-proving in Lean. [Han et al.| (2022)
train language models, using data extracted from both tactic commands and raw proof terms, on
a range of tasks including predicting the next lemma to be applied in a proof and the types of
partial and complete proof terms, demonstrating the importance of a rich dataset from which a
variety of term- and tactic-level data can be extracted. More recently, as part of the LeanDojo
project, [Yang et al|(2023) introduced the ReProver model, a retrieval-augmented tactic generator
for Lean. ReProver incorporates a Dense Passage Retriever-based (Karpukhin et al., [2020) premise
retriever, which predicts library lemmas that may be relevant to the next step of a proof. While
ReProver uses these predictions to enhance tactic prediction, premise selection is also applicable to
the task of synthetic theorem generation; we discuss our generator’s use of ReProver in Section[4.4]
Additionally, Xin et al.| (2024)) demonstrate the capacity of synthetic data to improve the performance
of the DeepSeekMath 7B model on Lean theorem-proving tasks, though their synthetic data, unlike
ours, was produced using autoformalization of theorem statements and proof search.

4 APPROACH

4.1 FORWARD REASONING WITH LEAN TACTICS

Like the other procedural approaches we discuss in Section [3] ours is based on forward reasoning.
That is, we apply inference rules to existing hypotheses to conclude new ones. For example, from
the hypotheses * < y and y < 2z, we can use the transitivity of the < relation to conclude z < z.
Alternatively, we could apply the additivity of < to these same hypotheses to conclude z+y < y+=z.
This differs from backward reasoning, which reduces a predetermined goal to sufficient subgoals.
Reasoning backward, we begin with the goal of proving z < z and use the transitivity of < to
reduce this to proving x < y and y < 2. As these examples demonstrate, forward reasoning,
unlike backward reasoning, does not require a priori knowledge of the statement one aims to prove.
This allows a forward reasoning-based search procedure to freely explore a variety of theorems to
generate.

We opt for a forward-reasoning approach because of its efficiency, scalability, and adjustability. Un-
like approaches that separately generate conjectures and their proofs, forward reasoning combines
theorem generation and proof search into a single procedure. This avoids proof-search failures and
precludes the generation of invalid conjectures by ensuring that all generated theorem statements
are correct by construction. Additionally, unlike approaches based on auto-formalization, a forward
reasoning-based approach like ours does not require access to an input corpus of natural-language

Premise Selection Server}

Synthetic Execution Environment
Existing
Existing | modules
Library

Proof states Updated

proof states

Generator

Synthetic
modules Verified
syntax

{Output Lean Files} Parser/Elaborator

Figure 2: An overview of our synthetic theorem generator’s architecture. Starting from proof states
extracted from an existing library, forward-reasoning tactics are iteratively executed, yielding theo-
rems and corresponding tactic proofs that are exported as Lean modules.

theorems

|
|
|
|
|
|
|
|
|
|
Generated |
|
|
|
|
|
|
|
|
|
|
|

mathematics. Lastly, forward reasoning can be tailored to produce proofs of a certain length or of
a certain kind by adjusting the number and type of forward-reasoning steps taken during the search
procedure.

We differentiate our approach to forward reasoning in several respects. As previously noted, we
implement our forward reasoning-based theorem generator in Lean, which features a more complex
proof system than those in which similar generators have been previously implemented, such as
Metamathl(Wang & Deng| [2020). Additionally, we select the initial hypotheses for our forward
proofs by drawing on the hypotheses that arise in existing Lean proofs. Finally, rather than applying
individual inference rules of the underlying logic, we use Lean tactics that more closely replicate the
types of reasoning steps used in human-written proofs. An overview of our architecture is shown in

Figure[2]

Forward reasoning depends upon access to an initial collection of hypotheses from which to reason.
We obtain these by extracting the current proof state—which includes all available hypotheses at
the current point in the proof—from each step of tactic proofs in an existing library of Lean proofs,
such as Mathlib or Lean Workbook (Ying et al., 2024). Each extracted state is then used as the initial
proof state for proof synthesis, providing our pool of initial hypotheses.

We choose to sample from existing proof states in this manner for several reasons. First, because of
the breadth of libraries like Mathlib and Lean Workbook, this sampling allows us to generate a large
number of theorems across a wide array of mathematical disciplines. Second, because these libraries
comprise theorems of mathematical interest, their hypotheses are likely to entail mathematically
interesting propositions and are unlikely to be inconsistent, which would yield trivial theorems.
Finally, as we discuss in Section @ because both libraries are based on definitions in Mathlib, we
are able to employ Mathlib’s sizable collection of lemmas in our forward reasoning.

Once the generator has extracted a proof state from an existing library, it applies a sequence of
forward-reasoning tactics to derive a new hypothesis that follows from the available ones. It con-
tinues applying tactics until none succeed or a user-determined maximum proof length is reached.
Using Lean tactics allows us to produce proofs that better resemble human-written proofs, rather
than, for instance, raw proof terms that can be difficult to read and do not resemble most medium-
or large-scale proofs written by human authors.

Figure 3: A comparison of naive search and our algorithm assuming a minimum proof length of
1, maximum proof length of 2, and truncating after four theorems. Nodes in the tree correspond to
proof states, and edges to successful tactic applications. Nodes visited by a naive search are circled
in red; those visited by our procedure are shaded blue. As shown, naive post-order traversal yields
proofs with significant overlap and leaves the rightmost subtree unexplored; our procedure produces
proofs beginning with each possible initial tactic before re-visiting any subtree.

This approach is based on a method of metaprogrammatic tactic execution, simulating the process
of writing tactics as a user of Lean. When writing a proof in Lean, the current proof state is visible
in a panel in the user’s code editor; as the user enters new tactics into the open file, the proof state
updates to reflect the changes made by each tactic step. We simulate this process by syntactically
constructing tactics that correspond to candidate forward-reasoning steps, then executing these tac-
tics in a metaprogrammatic environment that replicates Lean’s in-editor tactic execution. After each
tactic step, we assess whether the invoked tactic successfully introduced a new hypothesis into the
proof context. If so, we use the new state as the initial state for a new search; otherwise, we discard
it. Because our generator is directly executing tactic code, it can produce a tactic proof equivalent
to the reasoning carried out during the generation procedure simply by concatenating the tactics
executed at each step.

Finally, once the generator has derived a final hypothesis p from the hypotheses h1, ..., h, in the
initial extracted proof state, it outputs the corresponding theorem hy — - -- — h,, — p. The proof
of this theorem, as noted above, is obtained from the forward-reasoning steps used to derive p. We
describe the process of forward proof synthesis and theorem output in the following sections.

4.2 PROOF SYNTHESIS ALGORITHM

To generate these proofs, we attempt to apply all possible tactic steps from an inventory (detailed
in Section [4.3) of allowable forward-reasoning tactics. For every successful tactic application, we
recursively apply the same search procedure to the resulting proof state. This leads to a potentially
exponential increase in candidate proofs. Accordingly, when setting the desired number of tactics to
higher values, it is often desirable to truncate the search prior to exhausting the search space.

However, using naive depth-first search, such truncation leads to highly homogeneous output the-
orems. Since we prefer to generate proofs with as many tactic applications as possible up to the
user-specified depth limit, a naive depth-first approach performs a post-order traversal of the search
tree (skipping nodes that do not meet a user-specified minimum depth). Truncating such a traversal
yields nodes in tightly clustered subtrees of the search space—that is, proofs with the same initial
subsequence of tactics that diverge only near the end of the proof. This is undesirable, as it limits
the diversity of our synthetic proofs.

Instead of DFS, therefore, we employ a search algorithm that is optimized to find nodes with distant
common ancestors—that is, proofs that diverge from one another as early as possible. Our algorithm
iteratively performs a series of depth-first searches to find nodes at the desired depth; however, we
start each search from the unexplored children of the shallowest remaining node. This allows us
to traverse unexplored subtrees whose common ancestor with any we have already explored is as
shallow as possible. Thus, our approach optimizes for finding theorems of greater length as well as
for disjointness among generated theorems. Accordingly, unlike with DFS, a truncated search using
our algorithm still yields diverse proof output, making it preferable for high-depth proof generation.

A graphical depiction of our algorithm’s optimization is shown in Figure 3] and we include the
pseudocode for our algorithm in Appendix [B]

We include several additional optimizations in our search procedure to enhance both the diversity
of our synthetic dataset and the performance of the generator. To promote a diverse dataset, we
provide an option to prevent the generation of multiple proofs of the same theorem, which, given the
limited inventory of tactics with which the generator operates, are likely to be similar to one another.
We optionally apply deduplication to hypotheses as well, preventing the generation of multiple hy-
potheses corresponding to the same proposition, which could also lead to similar theorems as well
as unnecessarily roundabout proofs. We also provide an option to prevent repeated applications of
the same library lemma, which can lead to large, repetitive theorem statements. Additionally, to
improve performance, we cache unsuccessful proof steps to avoid attempting to invoke tactics on
hypotheses of a type to which they have previously failed to apply.

As our proof synthesis procedure proves new propositions, the generator can either output each indi-
vidually as a distinct theorem or conjoin multiple propositions into a multi-part theorem statement.
In the latter case, the proofs of each conjunct appear as discrete subproofs of the larger proof of
the conjoined theorem statement. These examples compartmentalize complex proofs into distinct
subtasks, demonstrating principles of higher-level proof organization and decomposition to an LLM
trained on these data.

4.3 LINEAR TACTIC SELECTION

In order to perform this search procedure, we must have access to an inventory of tactics capable
of reasoning forward from a given set of hypotheses. While many Mathlib tactics (including those
shown in Figure [T) involve backward reasoning, a small subset are capable of operating strictly
forward. We select several of these tactics to use in our forward generation procedure. These
include:

* have, which introduces a new hypothesis using a lemma from the library;
* rewrite, which performs substitution of equal expressions in a given hypothesis;

* simp_arith, which simplifies a hypothesis using reductions, library-provided “simplifi-
cation lemmas,” and arithmetic identities; and

* Normalization tactics for expressions involving ring operations (ring_nf) and numerals
(norm_numl).

However, the tactic-execution procedure described in Sectiond.1]is relatively agnostic to the specific
tactics employed. Therefore, our generator is extensible with additional forward-reasoning tactics,
which could be explored in future work to increase both the quantity and diversity of generated
proofs.

During an iteration of our generation procedure, we attempt to apply every tactic above to each of the
hypotheses in the current proof state. Each successful tactic application generates a new proof state
to which we can apply additional tactics. If we have already applied the user-defined maximum
number of tactics in a proof, or if we have applied at least the user-defined minimum number of
tactics and no further tactics have succeeded in the current proof state, we cease our search from that
proof state and output the theorem most recently yielded by our forward reasoning.

It is necessary, however, to restrict our candidate tactics so that the resulting proof does not con-
tain unnecessary or irrelevant steps. This is because arbitrary tactic applications may yield proof
steps that have no bearing on the chain of inferences used to arrive at the final theorem statement.
For instance, a proof step might add a hypothesis to our context that we do not reference again
for the remainder of the proof. Doing so would reduce the quality of training data obtained from
our generator, as such steps are undesirable in and irrelevant to the proof of the resulting theorem
statement. Therefore, we generate our tactic steps using a linear procedure, similar to the linear res-
olution scheme employed by [Firoiu et al. (2021)), that precludes such irrelevant steps. Specifically,
we require that each tactic (after the first) make use of the hypothesis introduced or modified by
the preceding tactic (though it may additionally use others). This ensures that every tactic we apply
introduces or modifies a hypothesis that is used to arrive at our final conclusion. See Figure] for an
example.

theorem ex (a b : N) (hab : a + 2 = b + 5)
(ha : 10 < a) (ha’ a < 50) : b <47 := by
simp_arith at hab -— hab : a =b + 3
rewrite [hggf/at ha’ —— ha’” : b + 3 < 50
rewrite [hab] at ha/ —— ha 10 < b + 3
simp_arith at ha’ -— ha’” : b < 47

exact ha’

Figure 4: An irrelevant tactic step, highlighted in yellow. The hypothesis ha, which this step
rewrites, is not used in the final theorem. The actual proof, which omits the highlighted line, pro-
ceeds linearly by using the last-modified hypothesis at each successive step, as depicted by the
arrows in the figure.

Lastly, we provide an option to enable proof minimization to reduce the likelihood of generating un-
necessarily long proofs. Lean possesses several powerful backward-reasoning tactics that can some-
times elide many steps—or, occasionally, entire proofs—performed using the forward-reasoning
tactics our generator employs. Such tactics include the omega tactic, which can prove equalities
and inequalities of natural-number- and integer-valued expressions, and Aesop (Limperg & From,
2023)), a general proof-search tactic. However, because these tactics are based on backward reason-
ing, they cannot be used as part of our forward generation procedure. Instead, we apply minimization
as a post-processing step: after generating a forward proof, we attempt to replace a maximal termi-
nal subsequence of the forward-reasoning tactics used in the original proof with a “finishing” tactic
like omega or Aesop. If such a substitution succeeds, we output this shorter proof rather than the
original, strictly forward one. These minimized proofs diversify the tactics appearing in our output
proofs by demonstrating instances in which higher-level tactics can be used to quickly discharge a
goal. They also produce training data that promotes the use of powerful proof automation in place
of longer and potentially roundabout forward proofs. Nonetheless, we leave it as an optional setting
due to the increased performance cost of checking proofs for minimizability as well as the potential
for circumstances in which forward, more explicit proofs might be preferable to efficient but less
verbose ones.

4.4 PREMISE SELECTION INTEGRATION

An important step in generating forward proofs is the selection of lemmas (or premises) that can be
used to construct new hypotheses using the have tactic. We draw these premises from Lean’s math-
ematical library, Mathlib. However, given the large number of theorems in Mathlib, it is impractical
to attempt to use all or even a significant fraction of those that are available. Instead, we select a
limited pool of premises from Mathlib for use in a given round of theorem generation.

To ensure that we select a pool of premises that are relevant to the in-context data and hypotheses, we
use the LeanDojo ReProver premise-selection model. This model is capable of identifying premises
in Mathlib that are relevant for proving the current goal given the current proof state (Yang et al.,
2023). During theorem generation, each initial proof state is passed to ReProver, which produces a
list of relevant premises. These premises are then given as input to our tactic-generation procedure
alongside the initial proof state. To add diversity to our pool of premises, we also allow some
premises to be drawn at random from Mathlib, replacing a specified proportion of the model-selected
premises from ReProver. The ratio of random to model-selected premises is a parameter of our
generator, and we report its performance with various values of this parameter in Section

To improve performance, premise selection runs as a server process distinct from the main generator.
This modularity allows multiple generation jobs to run in parallel while maintaining only a single
instance of the ReProver model in memory, and it facilitates the separation of the CPU-intensive
generation pipeline from the GPU-intensive premise-selection task. Moreover, this modular archi-
tecture enables the potential substitution of other premise-selection models in place of ReProver.
For instance, a model explicitly calibrated to the task of identifying premises capable of reasoning
forward from hypotheses in a given proof state—rather than, like ReProver, selecting premises rel-
evant to closing the proof state’s goal—is an avenue for future work that could improve the quality
of premise selection in our generator.

Once we have selected an initial pool of premises, we repeatedly sample a random subset of this
pool to attempt to apply at each stage of our search. This allows us to draw on a wider range of

premises in the course of our search than would repeatedly attempting to apply the same collection
of premises at every step. When attempting to apply a premise during generation, we exhaustively
search the context for type-correct arguments to which the premise can be applied. We also attempt
to synthesize any type-class instance arguments required by the premise by invoking Lean’s built-
in type-class resolution. If a premise can be applied successfully to yield a new hypothesis, we
produce a corresponding have tactic that adds the identified hypothesis to the context. Because we
must construct these premise applications prior to generating the corresponding tactic syntax, have
is the one tactic we do not directly metaprogrammatically execute; instead, we directly inject the
synthesized hypothesis into the context.

4.5 VERIFICATION AND ENVIRONMENT RECONSTRUCTION

Once the generator has constructed a proof, the resulting theorem is written to a Lean file. The
theorem statement is the type of the final hypothesis produced by our forward reasoning. Its proof
is formed by concatenating the synthetic tactic steps applied by the generator. The resulting syntax
tree—comprising a uniquely generated theorem name, theorem statement, and proof—is converted
to raw syntax using Lean’s pretty-printer.

Because our objective is to automatically extract training data from these files, we must ensure
not only that each theorem is syntactically correct, but also that the file to which it is written is
runnable without human intervention. Because the syntax and tactic behavior we use are sensi-
tive to their execution environment (e.g., the behavior of simp_arith changes depending on the
available simplification lemmas), we must ensure that Lean reconstructs our synthetic execution
environment—which is derived in part from that of the library module from which our initial proof
state is taken—when evaluating the output file. We accomplish this using Lean’s metaprogramming
framework to inspect the environment’s imports, open modules, and namespaces, based on which
we generate corresponding commands in a prepopulated header in each output Lean file. To avoid
frequent recompilation, we reuse the same environment when generating theorems from each tactic
state extracted from the same library module.

Even with these safeguards, however, some theorems may still fail to compile. This is because Lean
has a rich and extensible notation system (Ullrich & de Moural 2020), and the presence of user-
defined or context-dependent notation further complicates the task of producing runnable code. As
one of many examples, in-context hypotheses may contain type coercions whose target types are left
implicit by the notation and cannot be inferred without the surrounding context. It is ultimately in-
feasible to account for every such possible notational complication that might arise, especially since
modules may contain arbitrary user-defined notation. Accordingly, before the generator outputs a
theorem, the candidate syntax string is evaluated as a Lean file would be: within the appropriate
environment, the declaration is parsed and elaborated to ensure that the proposed theorem and proof
are syntactically valid. Only after these checks succeed is the theorem written to the output file.

5 EXPERIMENTS

5.1 PERFORMANCE OF SYNTHETIC THEOREM GENERATION

We assessed the performance of our synthetic theorem generator by evaluating its throughput under
various configurations of our deduplication and premise-selection procedures. For these throughput
experiments, we selected input proof states from Mathlib due to its size and breadth. Our results are
shown in Tables[T|and [2] These results do not reflect the maximum throughput of our generator and
are instead intended to illustrate the relative effects of different configurations. Indeed, we are unable
to compare the absolute throughput of our generator to that of other synthetic theorem generation
approaches in Lean, such as those of Xin et al.| (2024) and [Ying et al|(2024), since those sources
do not provide data regarding the time or computing resources required for generation. The full
configuration of our experiments can be found in Appendix [A]

As Table [T] demonstrates, the use of the ReProver model improves our generator’s performance.
Theorem output increases with the proportion of premises selected using LLM-based premise selec-
tion. We also found that the length of these theorems grows similarly, indicating that LLM selection
facilitates longer chains of reasoning that may yield more complex theorems. These results are
likely due to the fact that LLM-selected premises are relevant to in-context hypotheses, meaning

% Random Premises Synthetic Theorems Average Proof Length

0 1,008,188 6.63
0.2 931,707 6.63
0.5 751,442 6.70
0.8 365,675 6.37

1 122,639 6.00

Table 1: Throughput by varying the proportion of randomly- and LLM-selected premises.

Premise Sample Size Deduplication Synthetic Theorems

20 No 3,781,425
50 Yes 4,740,263
100 Yes 4,198,273

Table 2: Throughput by varying the number of premises sampled at each generation step.

that those hypotheses are more likely to satisfy the selected premises’ antecedents to admit a new
hypothesis. In contrast, given Mathlib’s breadth, randomly selected premises are much less likely to
be applicable to the hypotheses in a given proof state.

We found that the generator’s throughput is especially sensitive to the number of premises it sam-
ples. Increasing the number of sampled premises increases the likelihood of a successful proof step
but also the computation time necessary to identify one. As shown in Table 2} using an optimal
number of sampled premises significantly increased the generator’s throughput, even with the addi-
tion of deduplication to limit redundant outputs. This result, like that above, illustrates the critical
role of successful premise applications in advancing synthetic proofs, even in the presence of other
rewriting, simplification, and normalization tactics.

5.2 IMPACT OF SYNTHETICALLY GENERATED THEOREMS

To evaluate the impact of our synthetically generated theorems on LLMs’ theorem-proving capa-
bilities, we fine-tuned the Falcon2-11B model (Malartic et al., [2024) using synthetic theorems and
measured its performance on the miniF2F benchmark (Zheng et al.| [2022). For these experiments,
we obtained input proof states to our generator from the Lean Workbook dataset (Ying et al., [2024)
due to its focus on competition-style math. We applied several rounds of processing to the original
Lean Workbook dataset to obtain our final input corpus, including deduplication, removal of invalid
theorems, and decontamination with respect to the benchmark dataset. Details of this procedure are
given in Appendix

Our experiment involved fine-tuning different baseline models with and without synthetically gen-
erated data. We established two baseline models: M1, the original Falcon2-11B model, and M2,
the Falcon2-11B model fine-tuned on a mixed dataset containing theorems and proof artifacts |Han
et al.| (2022) extracted from Mathlib, and Lean textbooks. Details of this dataset are given in Ap-
pendix [El The Mathlib dataset contains 208 million tokens, while the mixed dataset contains 2.8
billion tokens. We then further fine-tuned the models on the Mathlib dataset either without synthetic
data or with our synthetically generated dataset (approximately 1 billion tokens). The parameters
used for generating the synthetic theorems and fine-tuning the models are detailed in Appendix [A]
and Appendix [C] respectively. To generate training data from existing proofs in Mathlib and other
sources, we traversed every tactic step in the corresponding Lean files and recorded the following
data at each step:

* GoalState: the proof state prior to applying this tactic.
* Tactic: the syntax of the current tactic.

* DeclUpToTactic: the syntax, up to this tactic step, of the declaration in which this proof
occurs.

To evaluate the performance of models trained on synthetic datasets, we developed a parallel proof
search infrastructure for generating these proofs. This infrastructure enables concurrent querying of
LLMs for tactics and Lean for the next proof state. Using this setup, we query the LLMs to generate

. # of Theorems Proved
Model Bascline Model w/o Synthetic Dataset ~ w/ Synthetic Dataset

M1 Falcon2-11B 91 /244 (37.29%) 94 /244 (38.52%)
M2 Falcon2-11B fine-tuned on mixed data 93 /244 (38.11%) 96 / 244 (39.34%)

Table 3: Number of theorems from miniF2F-test successfully proved by models fine-tuned on syn-
thetic data generated from Lean Workbook.

tactics and apply them to a proof state using REPL (Leanprover-Community, [2024), a community-
developed project capable of exporting and importing intermediate proof states. The order of tactics
to search is determined by a best-first search strategy, where scores are based on the log probability
of the LLM’s generation. We host one LLM server per GPU and run one REPL process per CPU. In
our experiments, we employed 40 CPU processes for proof state generation and 8 GPU processes
for tactic generation. The proof search terminates upon generating a successful sequence of tactics
that proves the original problem or upon reaching a timeout of 10 minutes.

We assessed the theorem-proving capabilities of our model variants by using them to generate proofs
for 244 Lean theorems in the miniF2F-test dataset. The results of our experiments are shown in
Table 3] These results demonstrate that the addition of synthetically generated datasets can signif-
icantly improve the performance of baseline models trained on different corpora. Specifically, for
the model trained solely on the Mathlib dataset (M1), the synthetic data boosts theorem-solving per-
formance from 91 to 94 theorems — an improvement that exceeds model performance by adding
certain pre-existing datasets to train M2, which achieved 93 proved theorems. This indicates that
our synthetic data not only matches but surpasses the value of existing datasets.

Additionally, when starting from a model trained on a mix of Mathlib and additional datasets (M2),
fine-tuning with our synthetic data further improves performance, increasing the number of proved
theorems from 93 to 96. This result highlights two key insights: (1) our synthetic data contains
complementary information that enhances model performance even when existing data like Han
et al|(2022) and textbook are already included, and (2) even for a model that has already achieved
a strong baseline, incorporating our data leads to further gains, showing it can augment rather than
replace or stagnate existing knowledge.

6 CONCLUSION

In this work, we have introduced a synthetic theorem generator capable of producing correct-by-
construction theorems using forward reasoning in Lean. It achieves this through metaprogrammatic
execution of forward-reasoning tactics, a search strategy optimized for diverse theorems that exclude
irrelevant steps, and the integration of the ReProver LLM to select relevant premises.

We see several avenues to expand on the work we have presented. As noted in Section 4.3] our
tactic execution procedure could be extended with additional forward-reasoning tactics, enabling
the generation of proofs that use a greater variety of reasoning strategies. With a broader range
of tactics from which to choose, the generator could additionally incorporate heuristics into tactic
selection—beyond our existing premise selection—to more efficiently identify search paths likely
to yield synthetic theorems of interest. Furthermore, as discussed in Section [4.4] a purpose-built
premise-selection LLM might provide more effective suggestions of premises applicable to in-
context hypotheses. Finally, because all theorems produced by our generator are correct by con-
struction, our generator can be straightforwardly repurposed as a conjecture-generation tool simply
by removing the proofs from the generator’s output. These theorem statements could then be given
to a deterministic or LLM-based proof-search procedure to prove using backward as well as forward
reasoning, facilitating the creation of a dataset representative of a broader variety of Lean tactic
proofs.

The availability of large quantities of high-quality training data is key to advancing LLMs’ capabil-
ities in formal theorem proving. To that end, with the goal of facilitating both the creation of new
synthetic datasets and the furthering of this work, we release our synthetic theorem generator and
other software including proof search code under the Apache 2.0 license.

10

REFERENCES

Chenyang An, Zhibo Chen, Qihao Ye, Emily First, Letian Peng, Jiayun Zhang, Zihan Wang, Sorin
Lerner, and Jingbo Shang. Learn from failure: Fine-tuning 1lms with trial-and-error data for
intuitionistic propositional logic proving. arXiv preprint arXiv:2404.07382, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction — CADE 28, pp. 625-635,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

Vlad Firoiu, Eser Aygun, Ankit Anand, Zafarali Ahmed, Xavier Glorot, Laurent Orseau, Lei Zhang,
Doina Precup, and Shibl Mourad. Training a first-order theorem prover from synthetic data. In
International Conference on Learning Representations Workshop on Mathematical Reasoning in
General Artificial Intelligence, 2021.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769—-6781, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
URL https://aclanthology.org/2020.emnlp-main.550.

Guillaume Lample, Timothee Lacroix, Marie anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=J4pX8Q8cxHH.

Leanprover-Community. Lean repl. https://github.com/leanprover-community/
repl, 2024.

Jannis Limperg and Asta Halkjer From. Aesop: White-box best-first proof search for lean. In
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2023, pp. 253-266, New York, NY, USA, 2023. Association for Computing Machin-
ery. ISBN 9798400700262. doi: 10.1145/3573105.3575671. URL https://doi.org/10.
1145/3573105.3575671.

Quentin Malartic, Nilabhra Roy Chowdhury, Ruxandra Cojocaru, Mugariya Farooq, Giulia Campe-
san, Yasser Abdelaziz Dahou Djilali, Sanath Narayan, Ankit Singh, Maksim Velikanov, Basma
El Amel Boussaha, Mohammed Al-Yafeai, Hamza Alobeidli, Leen Al Qadi, Mohamed El Amine
Seddik, Kirill Fedyanin, Reda Alami, and Hakim Hacid. Falcon2-11b technical report. arXiv
preprint arXiv:2405.14333, 2024.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, pp. 367-381, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974. doi: 10.1145/
3372885.3373824. URL https://doi.org/10.1145/3372885.3373824.

11

https://openreview.net/forum?id=rpxJc9j04U
https://aclanthology.org/2020.emnlp-main.550
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=J4pX8Q8cxHH
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3372885.3373824

The mathlib Community. Mathlib statistics, 2024. https://leanprover-community.
github.io/mathlib_stats.htmll Accessed: 2024-08-02.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad ge-
ometry without human demonstrations. Nature, 625(7995):476-482, 2024. doi: 10.1038/
s41586-023-06747-5. URL https://doi.org/10.1038/s41586-023-06747-5.

Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic macro expansion for
theorem proving languages. In Automated Reasoning: 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, pp. 167-182, 2020. URL
https://doi.org/10.1007/978-3-030-51054-1_10.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 18146-18157. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/d2a27e83d429f0dcae6bb937cf440aebl-Paper.pdfl

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem prov-
ing with retrieval-augmented language models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 21573-21612. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
4441469427094£8873d0fecbOcd4elcee-Paper-Datasets_and_Benchmarks.
pdf.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems, 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9ZPegFuFTEFv.

Zsolt Zombori, Adridn Csiszarik, Henryk Michalewski, Cezary Kaliszyk, and Josef Urban. Towards
finding longer proofs. In Anupam Das and Sara Negri (eds.), Automated Reasoning with Analytic
Tableaux and Related Methods, pp. 167-186, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-86059-2.

A EXPERIMENTAL CONFIGURATION FOR SYNTHETIC THEOREM
GENERATION

The experiments listed in Table[T] were conducted using the following parameters for the generator
(any parameters not listed here or in that table were left at their default values):

Parameter Value
Depth 10
Minimum Depth 3
No Duplicate Theorems True
No Duplicate Hypotheses False
Per-Step Theorem Maximum | 100
Premises 100
Premise Sample Size 20

The experiments were run on Mathlib distributed across 20 machines, each with 72 vCPUs, with a
24-hour timeout.

12

https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/mathlib_stats.html
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1007/978-3-030-51054-1_10
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4441469427094f8873d0fecb0c4e1cee-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4441469427094f8873d0fecb0c4e1cee-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4441469427094f8873d0fecb0c4e1cee-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=9ZPegFuFTFv

The experiments listed in Table 2] were conducted using the following parameters:

Parameter | Value
Depth 10
Minimum Depth 3
Per-Step Theorem Maximum | 500
Premises 100

“Deduplication” in Table [2|refers to the “No Duplicate Theorems” and “No Duplicate Hypotheses”
options. The experiments were run on Mathlib distributed across 60 machines, each with 36 vCPUs,
with a 24-hour timeout.

The experiments discussed in Section[5.2] were run across the Lean Workbook corpus, processed as
described in Appendix [D} on a single 192-vCPU machine and with the following parameters:

Parameter Value

Depth 10

Minimum Depth 3

Per-Step Theorem Maximum 50

Premises 100

Premise Sample Size 50

No Duplicate Theorems True

No Duplicate Hypotheses True

Premise Alternation True

Minimization Enabled, maximum minimized length = 3

B PROOF SYNTHESIS ALGORITHM PSEUDOCODE

In Algorithms [I] and 2] we detail the search algorithm used in proof synthesis. The actual Lean
implementation is heavily monadic; we present here an imperative translation. We assume a function
TACTICSFOR that returns a stream of tactics potentially applicable at a provided proof state.

Algorithm 1 The generator’s search procedure.

Input: stateg, an initial proof state drawn from Mathlib
1: ¢ < empty min-heap of (proof state, tactic stream) pairs ordered by the number of tactics
applied to the state so far

2: ENQ(q, (stateg, TACTICSFOR(statey)))

3: while ¢ is nonempty and more theorems are requested do
4: statenex; < DEQ(q)

5: stack < DFS(statenex)

6: for (state, tactics) in stack do

7: ENQ(q, (state, tactics))

8: end for

9: end while

13

Algorithm 2 The DFS procedure invoked by the search routine above.

Input: a proof state state, a stream of tactics tactics, and a stack of (proof state, tactic stream)
pairs stack
Output: a stack of (proof state, tactic stream) pairs representing unexplored tactic applications

1: state’ < execute NEXT(tactics) at state
2: if state’ was successfully produced by the tactic then
3: PUSH(stack, (state, tactics))
4: if state’ is at maximal depth then
5: log the theorem generated at state’
6: else
7: return DFS(state’, TACTICSFOR(state’), stack)
8: end if
9: else
10: if state’ is deeper than the minimal depth then
11: log the theorem generated at state’
12: else if stack is nonempty then
13: (statepackirack , tACEICSpackirack) <— POP(stack)
14: return DFS(Statepackiracks backtracks Stack)
15: end if
16: end if

17: return stack

C MODEL TRAINING SETUP

M1 M2
Baseline Epoch N/A 10
Configuration Tokens 2.8B
w/o Synthetic | w/ Synthetic w/o Synthetic w/ Synthetic
Fine-tuning Epoch 5 1 N/A (Base model 1
Configuration Tokens 208M 2B is evaluated) 2B

Table 4: All training are conducted with a learning rate of 2 x 1075, a cosine learning rate scheduler,
AdamW optimizer, and 0.05 warmup ratio. The model is selected at when the evaluation loss is
minimized, with the corresponding epoch reported in the table.

We provide an overview of our training setup for both the baseline and fine-tuning configurations of
our models. Table 4| summarizes the key parameters used in our experiments, including the number
of epochs, token counts, and the presence or absence of synthetic data.

For our baseline configuration, we used two versions of the Falcon2-11B model: M1, which is the
original Falcon2-11B model without any modifications, and M2, which is the Falcon2-11B model
fine-tuned on a 2.8B-token dataset for 10 epochs.

For M1, as shown in Table[d] we conducted fine-tuning experiments both with and without synthetic
data. Without synthetic data, the model was trained for 5 epochs using 208M tokens (Mathlib).
With synthetic data, we used a larger dataset of 2B tokens, consisting of a 1B-token synthetic dataset
generated from the LeanWorkbook dataset and a 1B-token Mathlib dataset. The Mathlib dataset was
upsampled to achieve a 1:1 ratio between Mathlib-based tokens and LeanWorkbook-based synthetic
tokens. In this case, the minimum evaluation loss was reached after 1 epoch. It is important to note
that for both configurations, we selected the model checkpoint that minimized the evaluation loss,
which occurred at different epochs for each setup.

For M2, we evaluated the base model without additional fine-tuning in the scenario because Mathlib
dataset was already used in its training. When incorporating synthetic data, we fine-tuned M2 for 1
epoch using 2B tokens, mirroring the approach used for M1 with synthetic data.

It is important to note that all training sessions were conducted with consistent hyperparameters
across models and configurations. We used a learning rate of 2 x 1075, a cosine learning rate

14

scheduler, the AdamW optimizer, and a warmup ratio of 0.05. The final model selection was based
on the epoch that minimized the evaluation loss, as reported in the table.

D LEAN WORKBOOK DEDUPLICATION AND DECONTAMINATION

Before synthesizing theorems based on the proof states in the Lean Workbook dataset, we applied
the following preprocessing steps: we upgraded the dataset to the Lean version targeted by our gen-
erator, 4.9.0; we removed duplicate theorems from the dataset; we removed theorems matching those
in the miniF2F-test dataset; and we verified that theorems (and any proofs) successfully compiled.
We detail each of these steps below.

Lean version upgrade: Lean Workbook targets Lean and Mathlib version 4.8.0-rc1, while our
generator uses Lean and Mathlib 4.9.0. It was therefore necessary to update the Lean Workbook
header file to account for recent changes to Mathlib.

Deduplication: To maximize the number of inputs to our generator, we used theorems from both the
Lean Workbook and Lean Workbook Plus splits of the Lean Workbook corpus. However, since these
splits were generated using overlapping natural-language theorem statements, it was necessary to
apply deduplication to ensure that the same formal theorem did not appear multiple times. Moreover,
we discovered that duplicate theorems also appear within the same split; we removed these as well.

We detected duplicates based on equality of the Lean Expr objects representing theorems’ types.
While a relatively rigid measure of similarity, it is more robust than direct syntactic comparison, as
it detects variables that have been moved from parameter to argument position (i.e., before the colon
to after the colon) or vice versa as well as alpha-equivalent theorems with differing variable names
(since Expr values represent bound variables using de Bruijn indices).

MiniF2F decontamination: To avoid data contamination, we discarded all theorems in Lean
Workbook that are duplicates of theorems in the miniF2F-test dataset. We used the same Expr-
comparison technique as we did in our deduplication procedure: we initially recorded the types (as
Expr values) of all theorems in miniF2F-test, then verified that the type of each theorem in Lean
Workbook was not in this set before adding the theorem to our final dataset. During decontamina-
tion, we identified and removed 37 miniF2F-test theorems from the Lean Workbook dataset.

Compilation verification: We verified that each Lean Workbook theorem—including, if present,
any proofs—successfully compiled prior to adding it to our dataset. Non-compiling theorems were
discarded. Manual inspection revealed that a common cause of compilation errors was invalid
syntax, usually due to the omission of leading portions of theorem statements. For instance, the
following non-compiling theorem

theorem lean_workbook_40296 : R) : (exp x + exp (-x)) / 2 < exp (x"2 /
2) := Dby sorry

was likely intended to be written as follows:

theorem lean_workbook_40296 (x : R) : (exp x + exp (-x)) / 2 < exp (x"2
/ 2) := Dby sorry
E DATA MIX

Our training dataset comprises a diverse mix of Lean4-related content, totaling 2.768B tokens. This
dataset includes the following components:

* Code: We incorporated Lean4 code from three primary repositories: Lean4, Mathlib4,
Batteries.

* Proof Artifacts: This largest component of our dataset consists of nine distinct tasks de-
signed to capture various aspects of theorem proving in Lean4: a) next-lemma: predicting
the next tactic given a proof state, b) premises: identifying global declarations needed to
prove a given goal, c) local-premises: determining local premises required for goal proof,
d) local-lemmas: predicting local lemmas used in goal proof, e) types: inferring the Type

15

of a given Term based on the context, f) proof-terms: generating the entire proof term for a
given goal, g) theorem-names: predicting the Type of a given theorem name, h) docs: gen-
erating Doc strings for given Declarations and Types, i) Next Tactic and Goal: predicting
the next tactic to apply given a proof state.

» Textbooks: We included content from six key Leand-related textbooks: Functional Pro-
gramming in Lean, Theorem Proving in Lean4, Mathematics in Lean, Glimpse of Lean,
Lean4 Reference Manual, Type Checking in Lean4.

16

	Introduction
	Background
	Related Work
	Synthetic Formal-Proof Generation
	LLMs for Lean

	Approach
	Forward Reasoning with Lean Tactics
	Proof Synthesis Algorithm
	Linear Tactic Selection
	Premise Selection Integration
	Verification and Environment Reconstruction

	Experiments
	Performance of Synthetic Theorem Generation
	Impact of Synthetically Generated Theorems

	Conclusion
	Experimental Configuration for Synthetic Theorem Generation
	Proof Synthesis Algorithm Pseudocode
	Model Training Setup
	Lean Workbook Deduplication and Decontamination
	Data Mix

