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ABSTRACT

Image manipulation localization (IML) aims to identify tampered regions in edited
images, which may range from object-level composites to subtle traces. Recent
studies have began to explore the integration of multi-source cues, such as RGB,
high frequency and noises, in pursuit of more precise localization. Despite this
progress, the potential of cross-modal interactions and hierarchical perceptions de-
serves deeper investigation and exploitation. Inspired by how humans detect forg-
eries through dynamic zooming to capture holistic-local and semantic-detail cues,
we propose BriQ (Bridge-Modality Query), a query-based framework that learns
forged-aware representations to perceive multi-scale information. Meanwhile, we
incorporate a structured attention to effectively model cross-modal interactions.
To further enhance discriminative capability, we introduce query-to-regions con-
trastive learning (Q2R), which encourages representations to capture the essential
contrast between tampered and authentic regions and aggregate forgery-related
features, thereby significantly improving IML task performance. Extensive exper-
iments conducted on multiple benchmark datasets validate BriQ’s state-of-the-art
effectiveness and robustness, while comprehensive ablation studies confirm the
contributions of each component.

1 INTRODUCTION

Images have become essential evidence in modern life, shaping decision-making in domains ranging
from journalism to justice. However, the ease of digital editing has led to a proliferation of manip-
ulated images, crafted with increasingly sophisticated techniques. The computer vision community
has responded to this challenge by exploring the task of Image Manipulation Localization (IML).
Early methods adapt semantic segmentation methodologies, formulating forgery localization as a
binary classification task based solely on RGB input to predict a pixel-level mask. These methods
are effective in addressing manipulations with semantic inconsistencies. However, as tampering
technologies evolve, forensic traces become increasingly faint, making pure RGB input inadequate
for the accurate location of sophisticated manipulations.

To tackle this, recent studies have extended beyond RGB inputs, incorporating a broader spectrum of
signals such as edge information, noise distributions, high-frequency cues, etc. These signals are of-
ten grouped under the “micro” perspective, complementing the “macro” view provided by semantic
content. Research show that, compared to earlier RGB-only methods, combining both perspectives
during training significantly enhances the detection of tampering and improves localization accuracy
[Kwon et al.|(2021); Guillaro et al.| (2023); |Zeng et al.| (2024)); Zhu et al.|(2025b)]. A typical multi-
modal IML pipeline comprises three stages: multi-source feature extraction, feature aggregation,
and mask prediction. While notable progress has been made, current methods exhibit limitations
both in establishing effective modality-interaction mechanisms and in precisely modeling intrinsic
feature discrepancies between tampered and non-tampered regions.

First, during feature extraction, most approaches rely solely on single-level features to predict tam-
pering and supervise the entire network. This oversight in architecture fails to leverage hierarchical
features with varying receptive fields, neglecting the discriminative power inherent in multi-scale
features for characterizing tamper artifacts. Additionally, in feature aggregation paradigms, macro-
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Figure 1: Manipulated examples and corresponding t-SNE projections of patch features and queries
embeddings. Blue, orange and green denote authentic patches, forged patches, and forged-aware
queries, respectively. The distinct clustering demonstrates BriQ’s strong discriminative capability in
identifying authentic and manipulated regions.

and micro-modality features are typically fused via naive operations such as concatenation, addition,
or simple weighting. This simplistic approach overlooks the necessity of modality-aware interac-
tions to capture cross-modal dependencies, which are essential for precise tamper localization. To
overcome these limitations, we propose a novel query-based architecture that introduces a set of
learnable tampering-aware representations. These queries serve as anchors to integrate hierarchical
features and guide cross-modal interaction. Notably, such a design also mimics the human percep-
tual reasoning process, where observers alternate between global understanding and local inspection
to detect inconsistencies.

Second, contrastive learning has emerged as a promising strategy in IML to enhance discrimina-
tion between manipulated and authentic content. Existing methods typically employ straightfor-
ward Region-to-Region(R2R) designs that aim to differentiate features between tampered and non-
tampered regions. However, this approach faces limitations in homogeneous splicing tampering
scenarios, where both regions may exhibit virtually indistinguishable appearances and statistical
properties; thereby violating the core assumptions of R2R contrastive learning that requires sep-
arable feature distributions. To address this issue, we introduce a novel Query-to-Regions (Q2R)
contrastive learning mechanism. Instead of contrasting regions directly, our approach formulates
the objective as learning attractions and repulsions between different regions and the tampering rep-
resentations, enabling to perceive tampering-specific features even when regional similarity is high.
Ultimately, we enable the representations to become tampering-aware anchors, achieving differenti-
ation and localization of manipulated informations, as shown in Fig.[T}

In summary, our contributions are three-fold:

* Bidirectional Cross-modality Attention: We present BriQ, a noval dual-modality, multi-level ag-
gregation framework. BriQ leverages learnable tampering-aware representations to hierarchically
propagate tampering signals, and introduces bidirectional attention mechanism to enable effective
cross-modality interaction at each level.

* Query-to-Regions Contrastive: We introduce a Q2R contrastive learning that supervises queries to
aggregate tampering-related cues while remaining distinct from authentic content. By aligning the
internal reasoning agents directly with manipulated regions, this objective strengthens the model’s
sensitivity to subtle or ambiguous forgeries.

 Superior Performance in Accuracy and Robustness: We conduct extensive experiments to show
that BriQ achieves state-of-the-art results on multiple datasets.

2 RELATED WORK

2.1 IMAGE MANIPULATION LOCALIZATION (IML)

Early approaches in IML mainly rely on RGB inputs and utilize single-branch CNN or Transformer
architectures to achieve tampering localization, such as PSCC-Net and IML-ViT (2022a);
(2023)]. To handle increasingly sophisticated manipulation and perceive subtle tampering
traces, recent studies have incorporated multiple signals (noise/frequency) and shifted toward dual-
branch architectures for enhanced feature representation:
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CNN-based: CAT-Net and ObjectFormer adopt two separate CNN encoders to extract RGB and
frequency features, which are then aggregated through a decoder to identify tampering artifacts
[Kwon et al.|(2021)); Wang et al.|(2022)]. Similarly, MVSS-Net and MUN fuse features from RGB
and noise branches via convolutional operations [Dong et al.|(2022); Liu et al.| (2025))].

Transformer-based: Compared to CNNs, ViT-based architectures exhibit stronger capabilities in
modeling relationships between different regions [Ma et al| (2023)]. Trufor, MGQFormer and
MMRL-Net employ dual Transformer encoders for RGB and noise maps [Guillaro et al, (2023);
Zeng et al.| (2024); |L1 et al| (2025)]. Trufor and MGQFormer merge features early via atten-
tion mechanisms, while MMRL-Net enforces consistency constraints at the output stage. Besides,
FMAE [Zhu et al.|(2025a)] combines three signals SRM, Bayar, Noiseprint++ and progressively in-
jects micro-branch features into the RGB Transformer encoder to enrich its representations [Fridrich
& Kodovsky|(2012); Bayar & Stamm)| (2018)); |Guillaro et al.[(2023)].

Hybrid Architectures: To strengthen model’s ability of detecting both fine-grained traces and
object-level manipulations, Mesorch adopts a hybrid CNN-Transformer architecture, where CNN
processes fused RGB and high-frequency features, and Transformer handles the combination of
RGB and low-frequency signals [Zhu et al.|(2025b)] . The outputs across both branches (totaling 8
features) are aggregated through weighted combination for final localization.

2.2 LEARNABLE REPRESENTATIONS

Query-based Vision Transformer architectures employ learnable query embeddings as task-specific
representations. By performing global attention over the entire image, these queries effectively cap-
ture holistic image information and have been widely adopted for specialized representations. DETR
introduces object queries to detect the existence and localize targets, with each embedding encoding
positional information to predict bounding boxes [[Carion et al.|(2020)]. MaskFormer, Mask2Former
and AlignSeg utilize segment embeddings to represent latent objects for classification and localiza-
tion, generating masks via cross-attention or dot-product operations [[Cheng et al. (2021} [2022));
Huang et al.| (2021)]. BLIP2 bridges vision-language modalities, aligning text and image features
by learnable queries in its Q-Former [Li et al.| (2023)]. Adaptation to IML, MGQFormer pioneers
the use of mask-guided forge and authentic class tokens [Zeng et al.| (2024)]. These tokens inter-
act with fused RGB-noise patch tokens through a self-attention decoder. However, these tampering
tokens merely combine dual modalities, failing to explicitly model their inter-dependencies.

2.3 CONTRASTIVE LEARNING IN IML

To improve the discriminative power, contrastive learning has gained growing attention, owing to
its inherent ability to model dichotomy problems without labeled data [[van den Oord et al.| (2019));
Le-Khac et al.| (2020)]. SAFIRE and MMRL-Net proposes region-to-region contrastive learning
scheme that encourages consistency within the same source region while distinguishing between
different sources [Kwon et al.[(2024); L1 et al.|(2025)]. However, patch-based processing inherently
leads to information blending in boundary patches containing mixed sources. This poses signif-
icant challenges for copy-move forgeries, where semantically identical (but provenance-distinct)
regions resist effective separation through standard contrastive objectives. To mitigate this, NCL-
IML employs dual projectors to map ambiguous patches to both authentic and forged feature spaces,
then incorporates these projections as soft samples in the contrastive learning objective [Zhou et al.
(2023)]. FOCAL clusters patch features from different sources into forged and authentic cluster
centers, enforcing contrastive repulsion only between these cluster centroids [Wu et al.[(2025)].

3 METHODOLOGY

We present BriQ, a query-based framework tailored for IML task. It is designed to explicitly model
hierarchical interactions between global and high-frequency features through structured attention
and contrastive learning. As shown in Fig. [2]and detailed in Algorithm [I] the framework consists of
four main components: (1) a dual-stream feature extraction module for global and local clues; (2)
a hierarchical bidirectional attention block enabling cross-modal interaction; (3) a novel query-to-
different-regions contrastive alignment module for fine-grained supervision; and (4) a query-feature
similarity voting mechanism that generates the final mask without decoder.
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Figure 2: BriQ utilizes the original image and high-frequency information as two-modal inputs.
During the modality aggregation stage JF, learnable queries interact alternately with hierarchical
features from both modalities. Subsequently, Q2R contrastive learning is applied to pull the queries
closer to forged patches while pushing them away from authentic ones. The final forgery map S is
obtained by adopting a lightweight voting mechanism.

3.1 DUAL-STREAM FEATURE EXTRACTION

Image forgeries often manifest as either global inconsistencies, such as contextually implausible
objects, or local artifacts, including abruptive edge transitions or texture anomalies. To comprehen-
sively capture these cues, we design a dual-stream encoder consisting of two specialized branches:
a global branch for object-level features and a local branch for fine-grained patterns.

We begin with the extraction of local manipulation-sensitive features like Mesorch. Following prior
work on forensic signals, we apply the SRM filter to the original image x € R3*"*% to obtain
high-frequency features h € R3*"*® which highlight traces such as texture abnormalities. These
residuals are concatenated with the original image to form a six-channel input z;, € RO6*hxw,
which is then fed into a ConvNeXt-Tiny encoder [Liu et al|(2022b)]. The encoder H extracts

hierarchical feature representations at four resolution stages, denoted as {izl, ilQ, ﬁg, ﬁ4}, where

h; € RS2 )X g X 5t , and each stage comprises multiple residual blocks. We then unify the

channel dimensions of all feature maps via four convolutions (Conv2D) with fixed output channels,

ensuring compatibility between different modalities. The encoder outputs hierarchical feature maps:
h w

Proj(H(xzp)) = {hi1,ha, hs, ha}, where h; € [R?96% 367 ¥ 557 gpanning from semantically rich

deep features to spatially precise shallow features.

In parallel, we construct a global branch to encode object-level semantics and contextual relations.
Specifically, we adopt a masked autoencoder(MAE-Base) as the backbone, augmented with a Fea-
ture Pyramid Network(FPN) to extract sufficient multi-scale features [He et al.| (2021)); Ma et al.
(2023)); ILi et al (2022)]. The encoder G extracts the patch embeddings of the last block as coarse
global information § € R78% 15 * 1, Then, using a 4-layer FPN, we obtain multi-scale feature maps
with the same channel dimensions, structurally aligned with the local stream. The global stream out-

puts four global representation: FPN (G(z)) = {g1, g2, g3, g4}, where g; € R?76% 57 X557 with
g1 corresponding to the coarsest semantic feature with the largest receptive field, and g4 preserving
the finest spatial resolution. This parallel design ensures that both abstract and forensic cues can be
accessed and reasoned over in a layer-aligned manner in subsequent modules.

3.2 CROSS-MODALITY WITH PATCH-ALIGNED ATTENTION

We introduce a set of learnable representations ¢ € RNaxd where N, denotes the number of em-
beddings and d the dimension. The proposed embeddings hierarchically refine representations of
potential forged regions through bidirectional cross-modal module F. Specifically, the mechanism
first inspects global context to identify objective anomalies, then examines fine details to detect
localized artifacts, or vice versa.
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the fusion weights wy o(z, xp,) or wi;(g;, hj). 1: Initialize go

This limits the optimization of direct cross- 2: Extract features g;, h; fori = 1to 4:

modal correlation.  To address this, our _

method introduces explicit interaction at the {91,92,93, 94} = FPN(Q(I)) (1)
attention level. In our method, for each hierar- {h1,ha, k3, ha} = Proj(H([x,h])) (2)

chy level i € {1,2,3,4}, module F; contains
a two-step cross-attention process C.A, fol-
lowed by self-attention S.A and feed-forward
layers FFN. The placement of SA after
CA is inspired by Mask2Former, where late-
stage S.A enhances cross-modal knowledge
acquired during CA and intra-query consis-
tency [[Cheng et al.| (2022)]. The update rule
is defined by lines 4-8 of Algorithm|[I}

Hierarchical feature aggregation:
fori=1to4do

@i < CA[(qi—1, i, hs)

¢i < FFNi(SAi(q:))
end for
Compute Score map S
Compute LgoR, Lseg and Legge
Return the final loss £
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Here, C.A(g, k,v) denotes our cross-modal attention module, where queries ¢ attend to modality k
by computing attention weights and aggregate information from modality v to achieve the modality-
aware feature fusion. Formally:

3)

TWIWyk
CA(q, k,v) = q+ A(g, k,v) = g + W,v Softmax <(qu> .

Vdy
This bidirectional structure, where g and h alternatively act as k and v across two successive atten-

tion stages, explicitly embeds interactions between global and local modalities, which is absent in
uni-modal attention, such as CA(q, g, g) or CA(q, h, h).

Theoretical Analysis. We perform gradient flow analysis on attention output A(q, g, h), examining
gradients w.r.t. queries g, global info g, and high-frequent h to validate our design.

Ovec(A) J T T

(a) Boeelq) = ® Wv)ﬁ(@ Wy, Wy 1)
Ouec(A) J TorrT

® Freerg ~ 1€ W”)\/T?(I @ "W W) 4)
Ouec(A) T

(@) 81166( ) = Softmazx(...)" @ W,,

where J is a block diagonal matrix related to A and Wy, Wy, W, are linear weight matrices.

In equation (4 ) the gradient of avep((q)) depends jointly on both g and h, indicating that the query

token receives feedback influenced by both modalities. Similarly, the gradient with respect to g
involves h , indicating that modality h directly influences g. This highlights the cross-modal in-
teraction, suggesting that g also benefits from direct dual modal supervision, as demonstrated in
equation (#@b). However, equation (k) reveals that h’s gradient depends solely on the Softmax of
relation between ¢ and g without directly incorporating signals from g or ¢q. To address this, our
bidirectional structure (q, g, h)(q, h, g) in Eq.(3) enables mutual participation of g and h in query
refinement. This contrasts with conventional fusion strategies or uni-modal attention, propagating
solely through weights or queries, lacking such direct interaction mechanisms. It can be further
verified by analogy to Equation (4).

Beyond structural interactions, our framework implements a hierarchical coarse-to-fine pipeline. At
lower levels (e.g., ¢ = 4), where feature maps preserve finer spatial details, the queries attend to
dense patch tokens for precise localization of subtle tampering traces. This framework overcomes
the quadratic complexity limitation O(N?) (where N = H/P x W/P is the number of patch to-
kens), inherent in standard transformer architectures, as our query-based cross-attention maintains
efficient O(N, - N) scaling, where N, < N, supporting high-resolution reasoning. To further
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enhance efficiency and robustness, we randomly partition g and h into two spatial halves while pre-
serving patch alignments: CA(q, g,h) = CA(CA(q,g*,h"),g~,h™), where g* and h* represent
one half of the partitions, while g~ and h™ represent the complementary halves.

In summary, this module introduces a novel hierarchical and bidirectional cross-modal attention
mechanism. It aligns semantic and forensic clues across scales, structurally embeds their interaction
into query refinement, and supports efficient, interpretable, and fine-grained forgery localization.

3.3 QUERY-TO-REGIONS CONTRASTIVE LEARNING

To enhance the discriminative power of our learnable queries and ensure they accurately represent
forged region patterns, we introduce the first Query-to-Region (Q2R) contrastive learning strategy in
IML. This approach fundamentally differs from conventional Region-to-Region (R2R) paradigms.

A set-metric inequality inspired Q2R design. The objective of R2R is to maximize the distance
d(A, F) between the two patch sets (authentic A and forged F). Q2R introduces a third query
set Q, treats set F (tampered) as positive samples, and set A (authentic) as negative samples.
Its objective is to minimize the distance d(Q, F) (query to tampered) while maximizing d(Q, A)
(query to authentic). According to the inequality d(Q, F) > d(A,F) — d(Q,.A) > 0, as training
progresses,d(A, F) increases and d(A, F) approaches d(Q, A). This design avoids the need for a
direct partition between .4 and F inherent in R2R. This approach maintains effective region dis-
crimination while simplifying the learning process. By leveraging the intermediate queries, Q2R
ensures that the queries can still capture and differentiate the subtle features of tampered regions,
thereby enhancing the overall robustness and efficiency of the model.

To construct the Q2R objective, we first divide the lowest-level features (i.e., g4 or hy) into patches
aligned with the ground truth mask. A patch is labeled as positive if more than 25% are tampered
while patches with no tampered pixels are treated as negative. We then define the contrastive loss
via the InfoNCE objective:

Zf<Qna fe>
L = InfoNCE(qn, fe,ae) = —E[log I, (5
o "e%vq] né%vq] Zf<qn’ f6> + Za <qn7 a’€> ( )

where f. and a,. are feature embeddings from forged and authentic patches, respectively.

3.4 FINAL MASK PREDICTION

To generate the final tampering mask, we adopt a lightweight prediction mechanism based on query-
to-feature similarity voting. Specifically, we first fuse the lowest global and local features by simple
averaging: py = %( g4 + hy). Each learnable query g,, then performs a dot product with every patch
embedding in p4, producing a set of query-to-feature confidence maps. These maps are multiplied
by the weights obtained through softmax, and then summed to get the final prediction result S,

specifically S = Zgil (Softmax ({(gy, pa)) X ({gnp4))). The prediction map S is supervised by both
segmentation and edge-aware objectives: (1) L., compares the predicted tampering map .S against
the ground truth binary mask M using standard Binary Cross-Entropy: Ls., = BCE(S, M). (2)
Leqge = BCE(S, M, weight = M_.q44.) enhances edge supervision, follow IML-ViT. The final
combined loss is formulated as £ = Lseg + A1 Ledge + A2Lg2or, Where A\ = 20, Ay = 0.1 are
served as normalized weights to account for the differing gradient scales.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate BriQ on a standard IMDLBenCo benchmark
[Ma et al,| (2024)]. This section is organized as follows: (1) first describe the experimental set-
tings, including datasets, baselines, evaluation metrics, and implementation details; (2) then present
quantitative and qualitative comparisons with state-of-the-art methods; (3) finally conduct ablation
studies to analyze the effectness of designed components in our framework.
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Figure 3: Qualitative comparison with state-of-the-art IML methods.

Table 1: Quantitative comparison with state-of-the-art IML methods. Avg. represents the average
score on test sets. Best and second-best results are highlighted in bold and underlined, respectively.

Method Fi1t Permute-F11
Coverage Columbia NIST16 CASIAv1| Avg. |Coverage Columbia NIST16 CASIAv1| Avg.
MVSS-Net| .4860 7399 3363 5832 |.5364| 5172 879 3775 6016 |.5711
PSCC-Net| .4475 8841 3457  .6304 |.5769| .4930 8937 3944 6382 [.6048
CAT-Net | .4273 9150 2521 8081 |.6006| .5165 9547 3316  .8154 |.6546
TruFor 4573 8845 3480  .8176 |.6269| .5369 9547 4046  .8340 |.6826
Mesorch | .5862 8903  .3921  .8398 |.6771| .6346 9708 4514 8472 |.7259
BriQ 6976 8972 5199 8549 |.7424| .7189 9637  .5495  .8599 |.7730

4.1 EXPERIMENTAL SETUP

Datasets. We follow the standard Protocol-CAT, a widely adopted training protocol in IML [Kwon
et al.| (2022)]. The training set contains five public datasets, including CASIAv2, Fantastic Real-
ity, IMD2020, tampered COCO and tampered RAISE, with fixed-size sampling from each source
in every epoch [Dong et al|(2013); [Kniaz et al.| (2019); Novozamsky et al.| (2020); |[Kwon et al.
(2022)]. These datasets incorporates both classical forgeries (e.g. splicing, blurring, compression)
and advanced editing (e.g. copy-move and cross-image composition), covering a broad manipula-
tion spectrum. Evaluation is conducted on four widely used test sets to assess generalization across
manipulation types and domains: CASIAv1, Coverage, NIST16, and Columbia [[Dong et al.| (2013));
Wen et al.| (2016); \Guan et al.|(2019); Hsu & Chang|(2006)].

Baselines. We compare BriQ against state-of-the-art IML. methods: MVSS-Net, PSCC-Net, Cat-
Net, TruFor and Mesorch. To ensure fair comparison, we adopt IML-Benco, a standardized bench-
mark offering unified data loaders, testing pipelines, and evaluation metrics.[Chen et al.|(2021)); [Liu
et al. (2022a); Kwon et al.|(2022)); |Guillaro et al.|(2023)); [Zhu et al.| (2025b)]



Under review as a conference paper at ICLR 2026

Avg. F11
MethOd GN GB JC Gaussian Noise Gaussian Blur JPEG Compression
MVSS-Net | 5744 2962 5061 T—— '
PSCC-Net | .5639 3282 4925  es =y~ Ll RN
CAT-Net | .7802 .5312 .7352  alllomi’  wowes i | SO

0.6 .
TruF 7286 5320 7049 ol i I Moo mechrs
— BriQ - . ~
rukor : : : Z: R e R 02|72 Mesoren "M o4 2 Mesoren N
Mesorch 7998 .6016 .7738 - S R ] [P 1
0 None 3 7 1 15 19 23 None 3 7 1 15 19 23 None 100 90 80 70 60 50
BrlQ ‘8301 '6719 77734 Standard Deviations Kernel Size Quality Factors

Table 2: Robustness test: Average F1 Figure 4: Robustness test: F1 score on CASIAv1 under
score on CASIAv1 under various pertur- increasing level of various perturbations. The red solid
bations. GN, GB, and JC represent Gaus- line represents the performance of BriQ, demonstrating
sian Noise, Gaussian Blur, and JPEG superior robustness compared to others.

Compression, respectively.

Metrics. Following the public benchmark, we report two pixel-level evaluation metrics: F1-
score, computed at a 0.5 threshold to evaluate localization performance; Permute-F1, defined as
max(F'1, Inverted-F1), serves to evaluate the model’s predictive ability to distinguish between
tampered and non-tampered regions.

Implementation Details. In training process, images are uniformly resized to 512x512, with both
standard augmentations (flip, rotation, brightness) and IML-specific methods (random inpainting,
copy-move). BriQ is trained for 150 epochs with batch size 4 on 8§ NVIDIA V100 GPUs. We use
AdamW optimizer with a learning rate of le-4, weight decay of 0.05, and cosine annealing. A
4-epoch warm-up precedes cosine decay to Se-7.

4.2 PERFORMANCE EVALUATION

Localization. Tab. [T|reports the quantitative results on four test sets. BriQ consistently achieves the
best results, outperforming almost all prior methods across F1 and Permute-F1 metrics. Notably,
BriQ delivers an average improvement of +6.53% in F1 and +4.71% in Permute-F1 over the second-
best method, demonstrating its strong performance. As illustrated in Fig. 3| BriQ produces sharper
and more accurate tampering masks, especially at small-scale and imperceptible manipulations.
These qualitative improvements align with the quantitative gains and highlight the benefit of our
cross-modality reasoning and query-based contrastive learning mechanism.

Robustness. We evaluate the robustness of all methods under three most common image corrup-
tions: Gaussian Noise, Gaussian Blur, and JPEG Compression, each applied at increasing intensity
levels. The results are shown in Tab. [2|and Fig. |4l BriQ demonstrates remarkable resilience, outper-
forming others under noise and blur with margins of +3.03% and +7.03% in Avg. F1, respectively.
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Figure 5: Similarity between the feature of each layer Figure 6: Feature distribution of queries and
and queries under multi-level and single-level atten- patch embeddings under Q2R paradigm and
tion. Multi-scale information can help distinguish R2R paradigm. Forged patches are in orange,
between manipulated and authentic features. and authentic patches are in blue.
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Table 3: Ablation studies on integration strategy, contrastive learning scheme, and query quantity.

Setting Details Avg. F11 | Avg. P-F11
BriQ multi-level + 7 + Lgog + 16-query | 7424 7730
w/o multi-level F4 only 7271 1575
(a,h,9)(q,9.h) 7249 7562
q,9,9)(q,h, h 7334 .7620
who 7 Ao 7334 | 7671
(. [9: 1. [g. h]) 7258 | 554
w/o EQQR ERQR .6979 7280
4-query 7313 7620
#queries 8-query 7329 1635
32-query 7186 7469

Under JPEG compression, BriQ performs best at light compression and remains highly competitive
at stronger levels, ranking second with a mere 0.04% gap in average performance.

4.3 ABLATION STUDY

We conduct detailed ablation studies to validate the contributions of BriQ’s components, including
integration strategy, contrastive learning design, and query quantity.

Hierarchical Strategy. To validate the effectiveness of hierarchical integration, we replace it with
a single-level approach, which performs modality aggregation solely at the shallowest layer Fy.
As shown in Tab. [3] and Fig. [5] compared to single-level attention, employing multi-level feature
aggregation allows the queries to effectively capture the distinctions between tampered and authentic
features at each layer of the model, thereby enabling more precise localization of forgery regions.

Attention across modality. We conduct comprehensive ablation studies on cross-modal attention
mechanisms. For conciseness, we represent the QKV attention mechanism as triplets. Our pro-
posed bidirectional cross-attention first uses global features as Keys and high-frequency informa-
tion as Values, then swaps their order, denoted as (g, g, h)(g, h,g). We first compare it with per-
modality attention strategies executed sequentially: (g, g,¢)(q, h,h) and (q, h,h)(q,g,g). Tab.
shows performance degradation when cross-modal interaction is absent. Second, we modify the
Key selection strategy, adopting (g, h, g)(q, g, h), experimentally validating our design choice of
using global features as primary Keys. Finally, we compare against the conventional concatena-
tion fusion (g, [g, h], [g, h]). Through gradient analysis and experimental result, we demonstrate our
strategy outperforms this weighted fusion approach in effectiveness.

Contrastive Learning Design. We replace contrastive supervision Loar with Lrog, which di-
rectly drives a separation between the feature distributions of the two regions. As shown in Fig. [6}
Lg2r effectively discriminates the distributions of forged and authentic patches, while the queries
exhibiting proximity to the forged ones. The corresponding result in Tab. [3|demonstrates that L2 g
significantly outperforms £ rop in forgery localization, highlighting its superior capability.

Query Quantity. As shown in Tab. [3] changing the query count to 4, 8, or 32 results in performance
drops, and 16 queries are suitable for capturing diverse tampering patterns.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel structured framework for image manipulation localization, built
upon learnable forged representations that evolves across feature maps from multi-scale modalities.
Our method demonstrates strong performance on challenging benchmarks while providing new pos-
sibilities for structural understanding in IML. In future work, we plan to extend this framework to
broader domains, including generative images produced by diffusion-based techniques. Besides,
large language models can be integrated to enhance interpretability and deliver accessible natural
language explanations.
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6 APPENDIX

We present BriQ, a query-based framework tailored for Image Manipulation Location (IML) task.
Our method unifies and extends prior efforts in query-based modeling, cross-modal fusion, and
contrastive supervision under a structured and interpretable framework.

We build upon the idea of using learnable query tokens, but go beyond by explicitly modeling
their evolution across multiple feature levels, enabling hierarchical interaction. Unlike previous
approaches where queries passively attend to features, our query token actively performs alternating
attention with global and local features at each level, forming a multi-stage reasoning path that
mirrors human perception.

To further enhance discrimination, we introduce a query-to-regions (Q2R) contrastive loss that su-
pervises the query token itself, guiding it to aggregate forged-region features while repelling pristine
ones. Compared with prior work where contrastive losses are only applied globally, our design in-
tegrates contrastive supervision into the query refinement loop, aligning feature learning with the
model’s internal inference trajectory.

In this way, our approach not only inherits the strengths of prior models which contains multi-scale
fusion, semantic-noise complementarity, and discriminative learning, but also introduces a layer-
aware, interpretable reasoning structure tailored for fine-grained manipulation localization.

Image GroundTruth t-SNE of features and queries pred. map S GroundTruth t-SNE of features and queries pred. map S
e : 5 i . BE - -
!

Figure 7: More manipulated examples and corresponding t-SNE projections of features and queries
embeddings. Blue, orange and green denote authentic patches, forged patches, and forged-aware
queries, respectively.
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6.1 FEATURE DISTRIBUTION

After the training process is complete, the learnable representations evolve into tampering-aware
anchors, achieving differentiation and localization of manipulated information. As illustrated in
Fig[7] the BriQ model demonstrates a clear separation between the feature distributions of forged
(orange) and authentic (blue) data. The query tokens (green), having been trained to focus on these
distinctions, naturally gravitate towards the forged features in the feature space. This proximity
indicates that the query tokens effectively capturing the essence of the manipulated information,
enabling the model to perform detailed analysis and detection of tampering. This capability is
essential for applications requiring high accuracy in identifying and localizing manipulated content.

MVSS-Net PSCC-Net CAT-Net Mesorch

Figure 8: More qualitative comparisons-1.
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Figure 9: More qualitative comparisons-2.

6.2 LOCALIZATION PERFORMANCE
6.2.1 MORE QUALITATIVE COMPARISON

BriQ achieves high localization accuracy across a diverse range of manipulation techniques, such
as duplication, cross-image collaging, and perceptually challenging subtle tampering operations.
More comparisons in Fig[§|and Fig[9showcase BriQ’s ability to accurately pinpoint the locations of
manipulations, regardless of their complexity or subtlety.

14



Under review as a conference paper at ICLR 2026

Table 4: Quantitative comparison with SparseViT.

Method F171 Permute-F171
Coverage Columbia NIST16 CASIAv1| Avg. |Coverage Columbia NIST16 CASIAv1| Avg.
SparseViT| .5164 9567 3726  .8196 |.6663| .5832 9746 4292 8308 |.7045
BriQ 6976 8972 5199 8549 |.7424| .7189 9637 5495 8599 |.7730

6.2.2 MORE QUANTITATIVE COMPARISON

We supplement the quantitative metrics of SparseViT [Su et al.| (2025)] under the same training
conditions. As shown in Tab. |4} BriQ achieves more favorable results.

6.3 AIGC BENCHMARK

To verify the effectiveness of BriQ on generative forgery, we adopt AIGC-Editing manipulation
dataset and supplement the training and test sets to the existing dataset while keeping other configu-
rations unchanged. We select two recent state-of-the-art methods, Mesorch and SparseViT, and train
them following their scripts. The quantitative results for each test set are shown in Tab[5] which il-
lustrates the broad effectiveness of BriQ in addressing various tampering types—encompassing both
traditional tampering and generative forgery. For generative forgery, the qualitative comparison is
shown in Fig[T0} while more of our visualization results are presented in Fig[TT]

Table 5: Quantitative comparison on various test set, including AIGC test set.

Method Fit Permute-F111

Coverage Columbia NIST16 CASIAv1 AIGC| Avg. [Coverage Columbia NIST16 CASIAv1 AIGC

Avg.

Mesorch | .5726 9113 3786  .8404 .8788|.7163| .6286 9760 4386  .8501 .8833|.7553
SparseViT| .5554 9137 2502 7734 .7955|.6576| .6176 9587 3238 7894 .8138|.7007

BriQ 6579 .8938 4864 .8541 .8099|.7524| .6838 9572 5238  .8592 .9731|.7994

SparseViT Mesorch Image

BriQ

GroundTruth

Figure 10: Qualitative comparison on AIGC test set.

"nttps://huggingface.co/datasets/zhipeixu/SD_inpaint_dataset
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Image

BriQ

GroundTruth

BriQ Image

GroundTruth

Figure 11: More visualization results of BriQ on AIGC test set.

6.4 ATTENTION MAP

We visualize the attention map between queries and macro features first, followed by micro features
at each layer. Multi-head attention is aggregated via averaging, producing a (bs, ¢, hw) attention
map. After applying mean pooling along the query dimension, we obtain the attention between
queries and a single modality, which is visualized as a heatmap.

As shown in Fig[T2] for each image, our dual-branch architecture extracts its RGB features (top
row) and high-frequency features (bottom row) across four layers (left to right columns). Following
the arrow directions: first, the tampering query computes attention with deep RGB features, but this
attention applies to deep high-frequency features; then reversely, the query computes attention with
deep high-frequency features that affects RGB features. This completes one layer’s computation
before proceeding to the next layer.
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Figure 12: Visualization of the attention map between queries and features from dual modalities in
BriQ.
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