

000 BRIDGING MODALITIES FOR FORGERY DETECTION 001 VIA LEARNABLE REPRESENTATIONS WITH QUERY- 002 GUIDED CONTRASTIVE LEARNING 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Image manipulation localization (IML) aims to identify tampered regions in edited
 011 images, which may range from object-level composites to subtle traces. Recent
 012 studies have began to explore the integration of multi-source cues, such as RGB,
 013 high frequency and noises, in pursuit of more precise localization. Despite this
 014 progress, the potential of cross-modal interactions and hierarchical perceptions de-
 015 serves deeper investigation and exploitation. Inspired by how humans detect for-
 016 geries through dynamic zooming to capture holistic-local and semantic-detail cues,
 017 we propose BriQ (Bridge-Modality Query), a query-based framework that learns
 018 forged-aware representations to perceive multi-scale information. Meanwhile, we
 019 incorporate a structured attention to effectively model cross-modal interactions.
 020 To further enhance discriminative capability, we introduce query-to-regions con-
 021 trastive learning (Q2R), which encourages representations to capture the essential
 022 contrast between tampered and authentic regions and aggregate forgery-related
 023 features, thereby significantly improving IML task performance. Extensive exper-
 024 iments conducted on multiple benchmark datasets validate BriQ’s state-of-the-art
 025 effectiveness and robustness, while comprehensive ablation studies confirm the
 026 contributions of each component.
 027

028 1 INTRODUCTION 029

030 Images have become essential evidence in modern life, shaping decision-making in domains ranging
 031 from journalism to justice. However, the ease of digital editing has led to a proliferation of manip-
 032 ulated images, crafted with increasingly sophisticated techniques. The computer vision community
 033 has responded to this challenge by exploring the task of Image Manipulation Localization (IML).
 034 Early methods adapt semantic segmentation methodologies, formulating forgery localization as a
 035 binary classification task based solely on RGB input to predict a pixel-level mask. These methods
 036 are effective in addressing manipulations with semantic inconsistencies. However, as tampering
 037 technologies evolve, forensic traces become increasingly faint, making pure RGB input inadequate
 038 for the accurate location of sophisticated manipulations.
 039

040 To tackle this, recent studies have extended beyond RGB inputs, incorporating a broader spectrum of
 041 signals such as edge information, noise distributions, high-frequency cues, etc. These signals are of-
 042 ten grouped under the “micro” perspective, complementing the “macro” view provided by semantic
 043 content. Research show that, compared to earlier RGB-only methods, combining both perspectives
 044 during training significantly enhances the detection of tampering and improves localization accuracy
 045 [[Kwon et al. \(2021\)](#); [Guillaro et al. \(2023\)](#); [Zeng et al. \(2024\)](#); [Zhu et al. \(2025b\)](#)]. A typical multi-
 046 modal IML pipeline comprises three stages: multi-source feature extraction, feature aggregation,
 047 and mask prediction. While notable progress has been made, current methods exhibit limitations
 048 both in establishing effective modality-interaction mechanisms and in precisely modeling intrinsic
 049 feature discrepancies between tampered and non-tampered regions.
 050

051 First, during feature extraction, most approaches rely solely on single-level features to predict tam-
 052 pering and supervise the entire network. This oversight in architecture fails to leverage hierarchical
 053 features with varying receptive fields, neglecting the discriminative power inherent in multi-scale
 features for characterizing tamper artifacts. Additionally, in feature aggregation paradigms, macro-

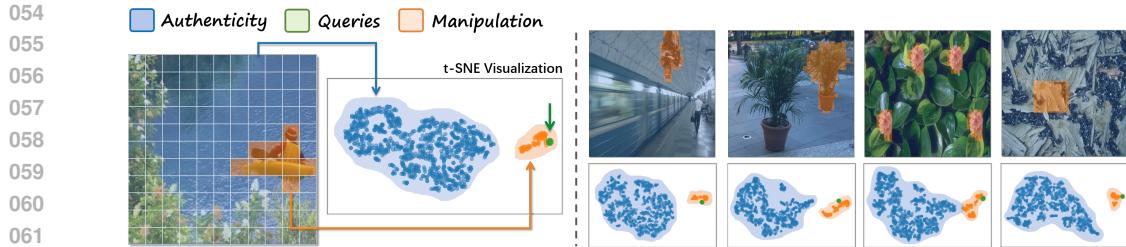


Figure 1: Manipulated examples and corresponding t-SNE projections of patch features and queries embeddings. Blue, orange and green denote authentic patches, forged patches, and forged-aware queries, respectively. The distinct clustering demonstrates BriQ’s strong discriminative capability in identifying authentic and manipulated regions.

and micro-modality features are typically fused via naive operations such as concatenation, addition, or simple weighting. This simplistic approach overlooks the necessity of modality-aware interactions to capture cross-modal dependencies, which are essential for precise tamper localization. To overcome these limitations, we propose a novel query-based architecture that introduces a set of learnable tampering-aware representations. These queries serve as anchors to integrate hierarchical features and guide cross-modal interaction. Notably, such a design also mimics the human perceptual reasoning process, where observers alternate between global understanding and local inspection to detect inconsistencies.

Second, contrastive learning has emerged as a promising strategy in IML to enhance discrimination between manipulated and authentic content. Existing methods typically employ straightforward Region-to-Region(R2R) designs that aim to differentiate features between tampered and non-tampered regions. However, this approach faces limitations in homogeneous splicing tampering scenarios, where both regions may exhibit virtually indistinguishable appearances and statistical properties; thereby violating the core assumptions of R2R contrastive learning that requires separable feature distributions. To address this issue, we introduce a novel Query-to-Regions (Q2R) contrastive learning mechanism. Instead of contrasting regions directly, our approach formulates the objective as learning attractions and repulsions between different regions and the tampering representations, enabling to perceive tampering-specific features even when regional similarity is high. Ultimately, we enable the representations to become tampering-aware anchors, achieving differentiation and localization of manipulated informations, as shown in Fig. 1.

In summary, our contributions are three-fold:

- ***Bidirectional Cross-modality Attention:*** We present BriQ, a noval dual-modality, multi-level aggregation framework. BriQ leverages learnable tampering-aware representations to hierarchically propagate tampering signals, and introduces bidirectional attention mechanism to enable effective cross-modality interaction at each level.
- ***Query-to-Regions Contrastive:*** We introduce a Q2R contrastive learning that supervises queries to aggregate tampering-related cues while remaining distinct from authentic content. By aligning the internal reasoning agents directly with manipulated regions, this objective strengthens the model’s sensitivity to subtle or ambiguous forgeries.
- ***Superior Performance in Accuracy and Robustness:*** We conduct extensive experiments to show that BriQ achieves state-of-the-art results on multiple datasets.

2 RELATED WORK

2.1 IMAGE MANIPULATION LOCALIZATION (IML)

Early approaches in IML mainly rely on RGB inputs and utilize single-branch CNN or Transformer architectures to achieve tampering localization, such as PSCC-Net and IML-ViT [Liu et al. (2022a); Ma et al. (2023)]. To handle increasingly sophisticated manipulation and perceive subtle tampering traces, recent studies have incorporated multiple signals (noise/frequency) and shifted toward dual-branch architectures for enhanced feature representation:

108 **CNN-based:** CAT-Net and ObjectFormer adopt two separate CNN encoders to extract RGB and
 109 frequency features, which are then aggregated through a decoder to identify tampering artifacts
 110 [Kwon et al. (2021); Wang et al. (2022)]. Similarly, MVSS-Net and MUN fuse features from RGB
 111 and noise branches via convolutional operations [Dong et al. (2022); Liu et al. (2025)].

112 **Transformer-based:** Compared to CNNs, ViT-based architectures exhibit stronger capabilities in
 113 modeling relationships between different regions [Ma et al. (2023)]. Trufor, MGQFormer and
 114 MMRL-Net employ dual Transformer encoders for RGB and noise maps [Guillaro et al. (2023);
 115 Zeng et al. (2024); Li et al. (2025)]. Trufor and MGQFormer merge features early via atten-
 116 tion mechanisms, while MMRL-Net enforces consistency constraints at the output stage. Besides,
 117 FMAE [Zhu et al. (2025a)] combines three signals SRM, Bayar, Noiseprint++ and progressively in-
 118 jects micro-branch features into the RGB Transformer encoder to enrich its representations [Fridrich
 119 & Kodovsky (2012); Bayar & Stamm (2018); Guillaro et al. (2023)].

120 **Hybrid Architectures:** To strengthen model’s ability of detecting both fine-grained traces and
 121 object-level manipulations, Mesorch adopts a hybrid CNN-Transformer architecture, where CNN
 122 processes fused RGB and high-frequency features, and Transformer handles the combination of
 123 RGB and low-frequency signals [Zhu et al. (2025b)]. The outputs across both branches (totaling 8
 124 features) are aggregated through weighted combination for final localization.

125 2.2 LEARNABLE REPRESENTATIONS

126 Query-based Vision Transformer architectures employ learnable query embeddings as task-specific
 127 representations. By performing global attention over the entire image, these queries effectively cap-
 128 ture holistic image information and have been widely adopted for specialized representations. DETR
 129 introduces object queries to detect the existence and localize targets, with each embedding encoding
 130 positional information to predict bounding boxes [Carion et al. (2020)]. MaskFormer, Mask2Former
 131 and AlignSeg utilize segment embeddings to represent latent objects for classification and localiza-
 132 tion, generating masks via cross-attention or dot-product operations [Cheng et al. (2021; 2022);
 133 Huang et al. (2021)]. BLIP2 bridges vision-language modalities, aligning text and image features
 134 by learnable queries in its Q-Former [Li et al. (2023)]. Adaptation to IML, MGQFormer pioneers
 135 the use of mask-guided forge and authentic class tokens [Zeng et al. (2024)]. These tokens inter-
 136 act with fused RGB-noise patch tokens through a self-attention decoder. However, these tampering
 137 tokens merely combine dual modalities, failing to explicitly model their inter-dependencies.

138 2.3 CONTRASTIVE LEARNING IN IML

139 To improve the discriminative power, contrastive learning has gained growing attention, owing to
 140 its inherent ability to model dichotomy problems without labeled data [van den Oord et al. (2019);
 141 Le-Khac et al. (2020)]. SAFIRE and MMRL-Net proposes region-to-region contrastive learning
 142 scheme that encourages consistency within the same source region while distinguishing between
 143 different sources [Kwon et al. (2024); Li et al. (2025)]. However, patch-based processing inherently
 144 leads to information blending in boundary patches containing mixed sources. This poses signif-
 145 icant challenges for copy-move forgeries, where semantically identical (but provenance-distinct)
 146 regions resist effective separation through standard contrastive objectives. To mitigate this, NCL-
 147 IML employs dual projectors to map ambiguous patches to both authentic and forged feature spaces,
 148 then incorporates these projections as soft samples in the contrastive learning objective [Zhou et al.
 149 (2023)]. FOCAL clusters patch features from different sources into forged and authentic cluster
 150 centers, enforcing contrastive repulsion only between these cluster centroids [Wu et al. (2025)].

151 3 METHODOLOGY

152 We present BriQ, a query-based framework tailored for IML task. It is designed to explicitly model
 153 hierarchical interactions between global and high-frequency features through structured attention
 154 and contrastive learning. As shown in Fig. 2 and detailed in Algorithm 1, the framework consists of
 155 four main components: (1) a dual-stream feature extraction module for global and local clues; (2)
 156 a hierarchical bidirectional attention block enabling cross-modal interaction; (3) a novel query-to-
 157 different-regions contrastive alignment module for fine-grained supervision; and (4) a query-feature
 158 similarity voting mechanism that generates the final mask without decoder.

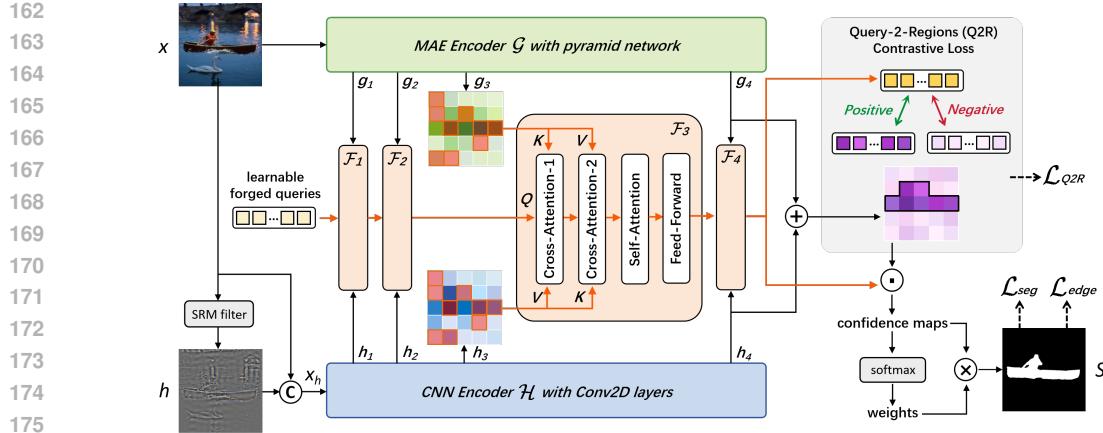


Figure 2: BriQ utilizes the original image and high-frequency information as two-modal inputs. During the modality aggregation stage \mathcal{F} , learnable queries interact alternately with hierarchical features from both modalities. Subsequently, Q2R contrastive learning is applied to pull the queries closer to forged patches while pushing them away from authentic ones. The final forgery map S is obtained by adopting a lightweight voting mechanism.

3.1 DUAL-STREAM FEATURE EXTRACTION

Image forgeries often manifest as either global inconsistencies, such as contextually implausible objects, or local artifacts, including abrupt edge transitions or texture anomalies. To comprehensively capture these cues, we design a dual-stream encoder consisting of two specialized branches: a global branch for object-level features and a local branch for fine-grained patterns.

We begin with the extraction of local manipulation-sensitive features like Mesorch. Following prior work on forensic signals, we apply the SRM filter to the original image $x \in \mathbb{R}^{3 \times h \times w}$ to obtain high-frequency features $h \in \mathbb{R}^{3 \times h \times w}$, which highlight traces such as texture abnormalities. These residuals are concatenated with the original image to form a six-channel input $x_h \in \mathbb{R}^{6 \times h \times w}$, which is then fed into a ConvNeXt-Tiny encoder [Liu et al. (2022b)]. The encoder \mathcal{H} extracts hierarchical feature representations at four resolution stages, denoted as $\{\hat{h}_1, \hat{h}_2, \hat{h}_3, \hat{h}_4\}$, where $\hat{h}_i \in \mathbb{R}^{(48 \cdot 2^{5-i}) \times \frac{h}{2^{6-i}} \times \frac{w}{2^{6-i}}}$, and each stage comprises multiple residual blocks. We then unify the channel dimensions of all feature maps via four convolutions (Conv2D) with fixed output channels, ensuring compatibility between different modalities. The encoder outputs hierarchical feature maps: $Proj(\mathcal{H}(x_h)) = \{h_1, h_2, h_3, h_4\}$, where $h_i \in \mathbb{R}^{256 \times \frac{h}{2^{6-i}} \times \frac{w}{2^{6-i}}}$, spanning from semantically rich deep features to spatially precise shallow features.

In parallel, we construct a global branch to encode object-level semantics and contextual relations. Specifically, we adopt a masked autoencoder(MAE-Base) as the backbone, augmented with a Feature Pyramid Network(FPN) to extract sufficient multi-scale features [He et al. (2021); Ma et al. (2023); Li et al. (2022)]. The encoder \mathcal{G} extracts the patch embeddings of the last block as coarse global information $\hat{g} \in \mathbb{R}^{768 \times \frac{h}{16} \times \frac{w}{16}}$. Then, using a 4-layer FPN, we obtain multi-scale feature maps with the same channel dimensions, structurally aligned with the local stream. The global stream outputs four global representation: $FPN(\mathcal{G}(x)) = \{g_1, g_2, g_3, g_4\}$, where $g_i \in \mathbb{R}^{256 \times \frac{h}{2^{6-i}} \times \frac{w}{2^{6-i}}}$, with g_1 corresponding to the coarsest semantic feature with the largest receptive field, and g_4 preserving the finest spatial resolution. This parallel design ensures that both abstract and forensic cues can be accessed and reasoned over in a layer-aligned manner in subsequent modules.

3.2 CROSS-MODALITY WITH PATCH-ALIGNED ATTENTION

We introduce a set of learnable representations $q \in \mathbb{R}^{N_q \times d}$, where N_q denotes the number of embeddings and d the dimension. The proposed embeddings hierarchically refine representations of potential forged regions through bidirectional cross-modal module \mathcal{F} . Specifically, the mechanism first inspects global context to identify objective anomalies, then examines fine details to detect localized artifacts, or vice versa.

216 Early methods aggregate multi-modal features via concatenation ($w_1x + w_2x_h$) or
 217 feature-level addition ($\sum_i w_i g_i + \sum_j w_j h_j$),
 218 where gradients are propagated only through the fusion weights $w_{1,2}(x, x_h)$ or $w_{ij}(g_i, h_j)$.
 219 This limits the optimization of direct cross-modal correlation. To address this, our
 220 method introduces explicit interaction at the attention level. In our method, for each hierarchy
 221 level $i \in \{1, 2, 3, 4\}$, module \mathcal{F}_i contains a two-step cross-attention process \mathcal{CA} , followed by self-attention \mathcal{SA} and feed-forward layers \mathcal{FFN} . The placement of \mathcal{SA} after \mathcal{CA} is inspired by Mask2Former, where late-stage \mathcal{SA} enhances cross-modal knowledge acquired during \mathcal{CA} and intra-query consistency [Cheng et al. (2022)]. The update rule is defined by lines 4-8 of Algorithm 1.

234 Here, $\mathcal{CA}(q, k, v)$ denotes our cross-modal attention module, where queries q attend to modality k
 235 by computing attention weights and aggregate information from modality v to achieve the modality-
 236 aware feature fusion. Formally:

$$\mathcal{CA}(q, k, v) = q + A(q, k, v) = q + W_v v \text{Softmax} \left(\frac{q^T W_q^T W_k k}{\sqrt{d_k}} \right). \quad (3)$$

241 This bidirectional structure, where g and h alternatively act as k and v across two successive attention
 242 stages, explicitly embeds interactions between global and local modalities, which is absent in
 243 uni-modal attention, such as $\mathcal{CA}(q, g, g)$ or $\mathcal{CA}(q, h, h)$.

244 **Theoretical Analysis.** We perform gradient flow analysis on attention output $A(q, g, h)$, examining
 245 gradients w.r.t. queries q , global info g , and high-frequent h to validate our design.

$$\begin{aligned} (a) \quad \frac{\partial \text{vec}(A)}{\partial \text{vec}(q)} &= (I \otimes W_v \boxed{h}) \frac{J}{\sqrt{d_k}} (\boxed{g}^T W_k^T W_q \otimes I) \\ (b) \quad \frac{\partial \text{vec}(A)}{\partial \text{vec}(g)} &= (I \otimes W_v \boxed{h}) \frac{J}{\sqrt{d_k}} (I \otimes q^T W_q^T W_k) \\ (c) \quad \frac{\partial \text{vec}(A)}{\partial \text{vec}(h)} &= \text{Softmax}(\dots)^T \otimes W_v, \end{aligned} \quad (4)$$

253 where J is a block diagonal matrix related to A and W_q, W_k, W_v are linear weight matrices.

255 In equation (4a), the gradient of $\frac{\partial \text{vec}(A)}{\partial \text{vec}(q)}$ depends jointly on both g and h , indicating that the query
 256 token receives feedback influenced by both modalities. Similarly, the gradient with respect to g
 257 involves h , indicating that modality h directly influences g . This highlights the cross-modal interaction,
 258 suggesting that g also benefits from direct dual modal supervision, as demonstrated in
 259 equation (4b). However, equation (4c) reveals that h 's gradient depends solely on the Softmax of
 260 relation between q and g without directly incorporating signals from g or q . To address this, our
 261 bidirectional structure $(q, g, h)(q, h, g)$ in Eq.(3) enables mutual participation of g and h in query
 262 refinement. This contrasts with conventional fusion strategies or uni-modal attention, propagating
 263 solely through weights or queries, lacking such direct interaction mechanisms. It can be further
 264 verified by analogy to Equation (4).

265 Beyond structural interactions, our framework implements a hierarchical coarse-to-fine pipeline. At
 266 lower levels (e.g., $i = 4$), where feature maps preserve finer spatial details, the queries attend to
 267 dense patch tokens for precise localization of subtle tampering traces. This framework overcomes
 268 the quadratic complexity limitation $O(N^2)$ (where $N = H/P \times W/P$ is the number of patch tokens),
 269 inherent in standard transformer architectures, as our query-based cross-attention maintains
 efficient $O(N_q \cdot N)$ scaling, where $N_q < N$, supporting high-resolution reasoning. To further

enhance efficiency and robustness, we randomly partition g and h into two spatial halves while preserving patch alignments: $\mathcal{CA}(q, g, h) = \mathcal{CA}(\mathcal{CA}(q, g^+, h^+), g^-, h^-)$, where g^+ and h^+ represent one half of the partitions, while g^- and h^- represent the complementary halves.

In summary, this module introduces a novel hierarchical and bidirectional cross-modal attention mechanism. It aligns semantic and forensic clues across scales, structurally embeds their interaction into query refinement, and supports efficient, interpretable, and fine-grained forgery localization.

3.3 QUERY-TO-REGIONS CONTRASTIVE LEARNING

To enhance the discriminative power of our learnable queries and ensure they accurately represent forged region patterns, we introduce the first Query-to-Region (Q2R) contrastive learning strategy in IML. This approach fundamentally differs from conventional Region-to-Region (R2R) paradigms.

A set-metric inequality inspired Q2R design. The objective of R2R is to maximize the distance $d(\mathcal{A}, \mathcal{F})$ between the two patch sets (authentic \mathcal{A} and forged \mathcal{F}). Q2R introduces a third query set \mathcal{Q} , treats set \mathcal{F} (tampered) as positive samples, and set \mathcal{A} (authentic) as negative samples. Its objective is to minimize the distance $d(\mathcal{Q}, \mathcal{F})$ (query to tampered) while maximizing $d(\mathcal{Q}, \mathcal{A})$ (query to authentic). According to the inequality $d(\mathcal{Q}, \mathcal{F}) > d(\mathcal{A}, \mathcal{F}) - d(\mathcal{Q}, \mathcal{A}) > 0$, as training progresses, $d(\mathcal{A}, \mathcal{F})$ increases and $d(\mathcal{A}, \mathcal{F})$ approaches $d(\mathcal{Q}, \mathcal{A})$. This design avoids the need for a direct partition between \mathcal{A} and \mathcal{F} inherent in R2R. This approach maintains effective region discrimination while simplifying the learning process. By leveraging the intermediate queries, Q2R ensures that the queries can still capture and differentiate the subtle features of tampered regions, thereby enhancing the overall robustness and efficiency of the model.

To construct the Q2R objective, we first divide the lowest-level features (i.e., g_4 or h_4) into patches aligned with the ground truth mask. A patch is labeled as positive if more than 25% are tampered while patches with no tampered pixels are treated as negative. We then define the contrastive loss via the InfoNCE objective:

$$\mathcal{L}_{Q2R} = \sum_{n \in [1, N_q]} \text{InfoNCE}(q_n, f_e, a_e) = \sum_{n \in [1, N_q]} -E[\log \frac{\sum_f \langle q_n, f_e \rangle}{\sum_f \langle q_n, f_e \rangle + \sum_a \langle q_n, a_e \rangle}], \quad (5)$$

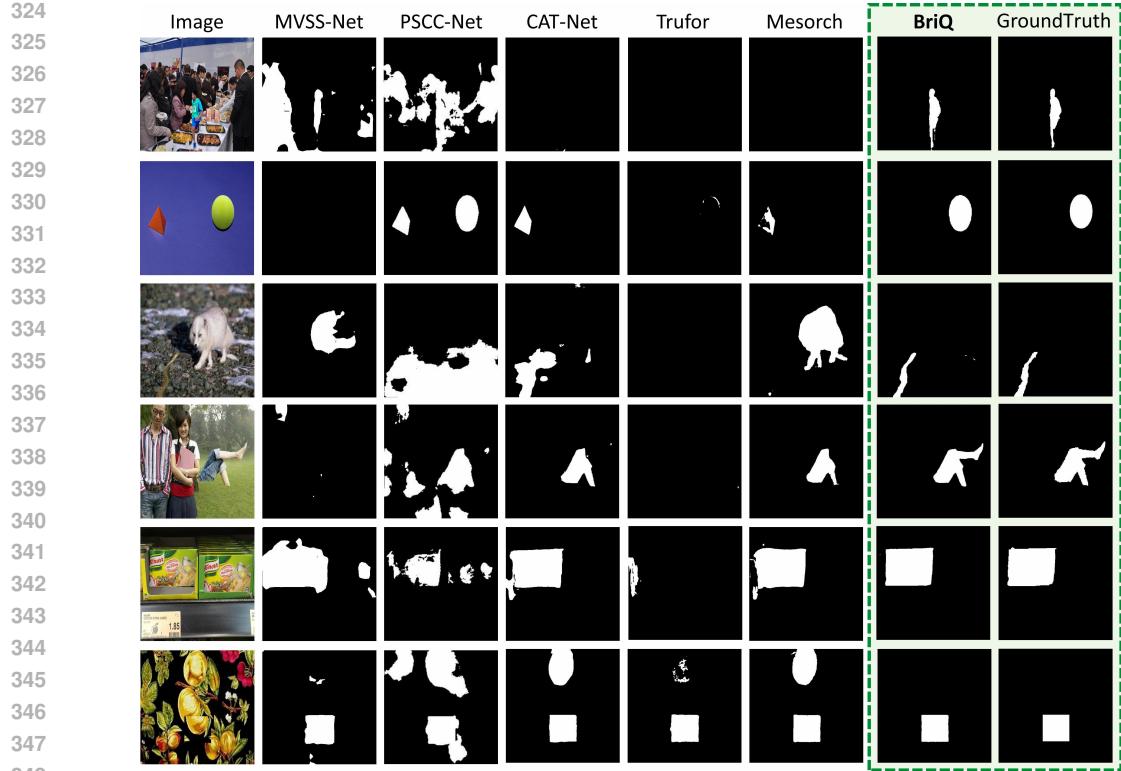
where f_e and a_e are feature embeddings from forged and authentic patches, respectively.

3.4 FINAL MASK PREDICTION

To generate the final tampering mask, we adopt a lightweight prediction mechanism based on query-to-feature similarity voting. Specifically, we first fuse the lowest global and local features by simple averaging: $p_4 = \frac{1}{2}(g_4 + h_4)$. Each learnable query q_n then performs a dot product with every patch embedding in p_4 , producing a set of query-to-feature confidence maps. These maps are multiplied by the weights obtained through softmax, and then summed to get the final prediction result S , specifically $S = \sum_{n=1}^{N_q} (\text{Softmax}(\langle q_n, p_4 \rangle) \times (\langle q_n p_4 \rangle))$. The prediction map S is supervised by both segmentation and edge-aware objectives: (1) \mathcal{L}_{seg} compares the predicted tampering map S against the ground truth binary mask M using standard Binary Cross-Entropy: $\mathcal{L}_{seg} = BCE(S, M)$. (2) $\mathcal{L}_{edge} = BCE(S, M, \text{weight} = M_{edge})$ enhances edge supervision, follow IML-ViT. The final combined loss is formulated as $\mathcal{L} = \mathcal{L}_{seg} + \lambda_1 \mathcal{L}_{edge} + \lambda_2 \mathcal{L}_{Q2R}$, where $\lambda_1 = 20$, $\lambda_2 = 0.1$ are served as normalized weights to account for the differing gradient scales.

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate BriQ on a standard IMDLBenCo benchmark [Ma et al. (2024)]. This section is organized as follows: (1) first describe the experimental settings, including datasets, baselines, evaluation metrics, and implementation details; (2) then present quantitative and qualitative comparisons with state-of-the-art methods; (3) finally conduct ablation studies to analyze the effectiveness of designed components in our framework.

349
350
351
352 Figure 3: Qualitative comparison with state-of-the-art IML methods.
353
354355
356 Table 1: Quantitative comparison with state-of-the-art IML methods. Avg. represents the average
357 score on test sets. Best and second-best results are highlighted in bold and underlined, respectively.
358
359
360
361

362 363 364 Method	365 F1↑				366 Permute-F1↑				367 Avg.	
	368 Coverage	369 Columbia	370 NIST16	371 CASIAv1	372 Avg.	373 Coverage	374 Columbia	375 NIST16	376 CASIAv1	
MVSS-Net	.4860	.7399	.3363	.5832	.5364	.5172	.7879	.3775	.6016	.5711
PSCC-Net	.4475	.8841	.3457	.6304	.5769	.4930	.8937	.3944	.6382	.6048
CAT-Net	.4273	.9150	.2521	.8081	.6006	.5165	.9547	.3316	.8154	.6546
TruFor	.4573	.8845	.3480	.8176	.6269	.5369	.9547	.4046	.8340	.6826
Mesorch	.5862	.8903	.3921	.8398	.6771	.6346	.9708	.4514	.8472	.7259
BriQ	.6976	<u>.8972</u>	.5199	.8549	.7424	.7189	<u>.9637</u>	.5495	.8599	.7730

362
363
364 4.1 EXPERIMENTAL SETUP
365
366

Datasets. We follow the standard Protocol-CAT, a widely adopted training protocol in IML [Kwon et al. (2022)]. The training set contains five public datasets, including CASIAv2, Fantastic Reality, IMD2020, tampered COCO and tampered RAISE, with fixed-size sampling from each source in every epoch [Dong et al. (2013); Kniaz et al. (2019); Novozamsky et al. (2020); Kwon et al. (2022)]. These datasets incorporates both classical forgeries (e.g. splicing, blurring, compression) and advanced editing (e.g. copy-move and cross-image composition), covering a broad manipulation spectrum. Evaluation is conducted on four widely used test sets to assess generalization across manipulation types and domains: CASIAv1, Coverage, NIST16, and Columbia [Dong et al. (2013); Wen et al. (2016); Guan et al. (2019); Hsu & Chang (2006)].

Baselines. We compare BriQ against state-of-the-art IML methods: MVSS-Net, PSCC-Net, Cat-Net, TruFor and Mesorch. To ensure fair comparison, we adopt IML-Benco, a standardized benchmark offering unified data loaders, testing pipelines, and evaluation metrics.[Chen et al. (2021); Liu et al. (2022a); Kwon et al. (2022); Guillaro et al. (2023); Zhu et al. (2025b)]

Method	Avg. F1↑		
	GN	GB	JC
MVSS-Net	.5744	.2962	.5061
PSCC-Net	.5639	.3282	.4925
CAT-Net	.7802	.5312	.7352
TruFor	.7286	.5320	.7049
Mesorch	.7998	.6016	.7738
BriQ	.8301	.6719	<u>.7734</u>

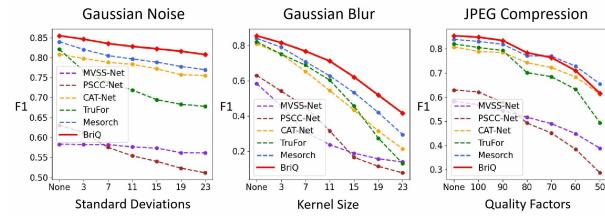


Table 2: Robustness test: Average F1 score on CASIAv1 under various perturbations. GN, GB, and JC represent Gaussian Noise, Gaussian Blur, and JPEG Compression, respectively.

Metrics. Following the public benchmark, we report two pixel-level evaluation metrics: F1-score, computed at a 0.5 threshold to evaluate localization performance; Permute-F1, defined as $\max(F1, Inverted-F1)$, serves to evaluate the model’s predictive ability to distinguish between tampered and non-tampered regions.

Implementation Details. In training process, images are uniformly resized to 512×512, with both standard augmentations (flip, rotation, brightness) and IML-specific methods (random inpainting, copy-move). BriQ is trained for 150 epochs with batch size 4 on 8 NVIDIA V100 GPUs. We use AdamW optimizer with a learning rate of 1e-4, weight decay of 0.05, and cosine annealing. A 4-epoch warm-up precedes cosine decay to 5e-7.

4.2 PERFORMANCE EVALUATION

Localization. Tab. 1 reports the quantitative results on four test sets. BriQ consistently achieves the best results, outperforming almost all prior methods across F1 and Permute-F1 metrics. Notably, BriQ delivers an average improvement of +6.53% in F1 and +4.71% in Permute-F1 over the second-best method, demonstrating its strong performance. As illustrated in Fig. 3, BriQ produces sharper and more accurate tampering masks, especially at small-scale and imperceptible manipulations. These qualitative improvements align with the quantitative gains and highlight the benefit of our cross-modality reasoning and query-based contrastive learning mechanism.

Robustness. We evaluate the robustness of all methods under three most common image corruptions: Gaussian Noise, Gaussian Blur, and JPEG Compression, each applied at increasing intensity levels. The results are shown in Tab. 2 and Fig. 4. BriQ demonstrates remarkable resilience, outperforming others under noise and blur with margins of +3.03% and +7.03% in Avg. F1, respectively.

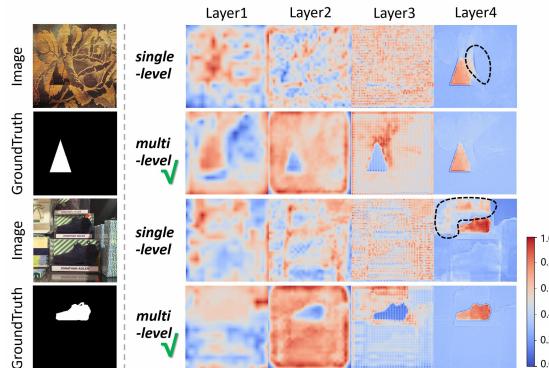


Figure 5: Similarity between the feature of each layer and queries under multi-level and single-level attention. Multi-scale information can help distinguish between manipulated and authentic features.

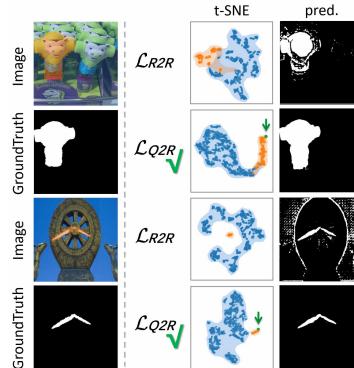


Figure 6: Feature distribution of queries and patch embeddings under Q2R paradigm and R2R paradigm. Forged patches are in orange, and authentic patches are in blue.

432 Table 3: Ablation studies on integration strategy, contrastive learning scheme, and query quantity.
433

434 Setting	435 Details	436 Avg. F1↑	437 Avg. P-F1↑
438 <i>BriQ</i>	439 multi-level + $\mathcal{F} + \mathcal{L}_{Q2R} + 16\text{-query}$	440 .7424	441 .7730
442 w/o multi-level	\mathcal{F}_4 only	443 .7271	444 .7575
446 w/o \mathcal{F}	$(q, h, g)(q, g, h)$ $(q, g, g)(q, h, h)$ $(q, h, h)(q, g, g)$ $(q, [g, h], [g, h])$	447 .7249 448 .7334 449 .7334 450 .7258	451 .7562 452 .7620 453 .7671 454 .7554
456 w/o \mathcal{L}_{Q2R}	\mathcal{L}_{R2R}	457 .6979	458 .7280
461 #queries	462 4-query 463 8-query 464 32-query	465 .7313 466 .7329 467 .7186	468 .7620 469 .7635 470 .7469

445
446 Under JPEG compression, BriQ performs best at light compression and remains highly competitive
447 at stronger levels, ranking second with a mere 0.04% gap in average performance.
448

450 4.3 ABLATION STUDY

451
452 We conduct detailed ablation studies to validate the contributions of BriQ’s components, including
453 integration strategy, contrastive learning design, and query quantity.

454 **Hierarchical Strategy.** To validate the effectiveness of hierarchical integration, we replace it with
455 a single-level approach, which performs modality aggregation solely at the shallowest layer \mathcal{F}_4 .
456 As shown in Tab. 3 and Fig. 5, compared to single-level attention, employing multi-level feature
457 aggregation allows the queries to effectively capture the distinctions between tampered and authentic
458 features at each layer of the model, thereby enabling more precise localization of forgery regions.

459 **Attention across modality.** We conduct comprehensive ablation studies on cross-modal attention
460 mechanisms. For conciseness, we represent the QKV attention mechanism as triplets. Our pro-
461 posed bidirectional cross-attention first uses global features as Keys and high-frequency infor-
462 mation as Values, then swaps their order, denoted as $(q, g, h)(q, h, g)$. We first compare it with per-
463 modality attention strategies executed sequentially: $(q, g, g)(q, h, h)$ and $(q, h, h)(q, g, g)$. Tab. 3
464 shows performance degradation when cross-modal interaction is absent. Second, we modify the
465 Key selection strategy, adopting $(q, h, g)(q, g, h)$, experimentally validating our design choice of
466 using global features as primary Keys. Finally, we compare against the conventional concatena-
467 tion fusion $(q, [g, h], [g, h])$. Through gradient analysis and experimental result, we demonstrate our
468 strategy outperforms this weighted fusion approach in effectiveness.

469 **Contrastive Learning Design.** We replace contrastive supervision \mathcal{L}_{Q2R} with \mathcal{L}_{R2R} , which di-
470 rectly drives a separation between the feature distributions of the two regions. As shown in Fig. 6,
471 \mathcal{L}_{Q2R} effectively discriminates the distributions of forged and authentic patches, while the queries
472 exhibiting proximity to the forged ones. The corresponding result in Tab. 3 demonstrates that \mathcal{L}_{Q2R}
473 significantly outperforms \mathcal{L}_{R2R} in forgery localization, highlighting its superior capability.

474 **Query Quantity.** As shown in Tab. 3, changing the query count to 4, 8, or 32 results in performance
475 drops, and 16 queries are suitable for capturing diverse tampering patterns.
476

477 5 CONCLUSION AND FUTURE WORK

480 In this paper, we propose a novel structured framework for image manipulation localization, built
481 upon learnable forged representations that evolves across feature maps from multi-scale modalities.
482 Our method demonstrates strong performance on challenging benchmarks while providing new pos-
483 sibilities for structural understanding in IML. In future work, we plan to extend this framework to
484 broader domains, including generative images produced by diffusion-based techniques. Besides,
485 large language models can be integrated to enhance interpretability and deliver accessible natural
language explanations.

486 REFERENCES
487

488 Belhassen Bayar and Matthew C. Stamm. Constrained convolutional neural networks: A new ap-
489 proach towards general purpose image manipulation detection. *IEEE Transactions on Information*
490 *Forensics and Security*, 13(11):2691–2706, 2018. doi: 10.1109/TIFS.2018.2825953.

491 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
492 Sergey Zagoruyko. End-to-end object detection with transformers, 2020. URL <https://arxiv.org/abs/2005.12872>.

493

494 Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong Li. Image manipulation detection by
495 multi-view multi-scale supervision. In *Proceedings of the IEEE/CVF international conference on*
496 *computer vision*, pp. 14185–14193, 2021.

497

498 Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you
499 need for semantic segmentation. 2021.

500

501 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
502 attention mask transformer for universal image segmentation. 2022.

503

504 Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and Xirong Li. Mvss-net: Multi-view multi-
505 scale supervised networks for image manipulation detection. *IEEE Transactions on Pattern Anal-*
506 *ysis and Machine Intelligence*, 45(3):3539–3553, 2022.

507

508 Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering detection evaluation database. In
509 *2013 IEEE China summit and international conference on signal and information processing*, pp.
510 422–426. IEEE, 2013.

511

512 Jessica Fridrich and Jan Kodovsky. Rich models for steganalysis of digital images. *IEEE Trans-*
513 *actions on Information Forensics and Security*, 7(3):868–882, 2012. doi: 10.1109/TIFS.2012.
514 2190402.

515

516 Haiying Guan, Mark Kozak, Eric Robertson, Yooyoung Lee, Amy N Yates, Andrew Delgado, Daniel
517 Zhou, Timothee Kheyrikhah, Jeff Smith, and Jonathan Fiscus. Mfc datasets: Large-scale bench-
518 mark datasets for media forensic challenge evaluation. In *2019 IEEE Winter Applications of*
519 *Computer Vision Workshops (WACVW)*, pp. 63–72. IEEE, 2019.

520

521 Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, and Luisa Verdoliva. Trufor:
522 Leveraging all-round clues for trustworthy image forgery detection and localization. In *Pro-
523 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20606–20615,
524 2023.

525

526 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
527 autoencoders are scalable vision learners, 2021. URL <https://arxiv.org/abs/2111.06377>.

528

529 Yu-Feng Hsu and Shih-Fu Chang. Detecting image splicing using geometry invariants and camera
530 characteristics consistency. In *2006 IEEE international conference on multimedia and expo*, pp.
531 549–552. IEEE, 2006.

532

533 Zilong Huang, Yunchao Wei, Xinggang Wang, Wenyu Liu, Thomas S. Huang, and Humphrey Shi.
Alignseg: Feature-aligned segmentation networks, 2021. URL <https://arxiv.org/abs/2003.00872>.

534

535 Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino. The point where reality meets fan-
536 tasy: Mixed adversarial generators for image splice detection. *Advances in neural information*
537 *processing systems*, 32, 2019.

538

539 Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, and Heung-Kyu Lee. Cat-net: Compression ar-
540 tifact tracing network for detection and localization of image splicing. In *Proceedings of the*
541 *IEEE/CVF winter conference on applications of computer vision*, pp. 375–384, 2021.

542

543 Myung-Joon Kwon, Seung-Hun Nam, In-Jae Yu, Heung-Kyu Lee, and Changick Kim. Learning
544 jpeg compression artifacts for image manipulation detection and localization. *International Jour-
545 nal of Computer Vision*, 130(8):1875–1895, 2022.

540 Myung-Joon Kwon, Wonjun Lee, Seung-Hun Nam, Minji Son, and Changick Kim. Safire: Segment
 541 any forged image region, 2024. URL <https://arxiv.org/abs/2412.08197>.

542

543 Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. Contrastive representation learning: A
 544 framework and review. *IEEE Access*, 8:193907–193934, 2020. ISSN 2169-3536. doi: 10.1109/
 545 access.2020.3031549. URL <http://dx.doi.org/10.1109/ACCESS.2020.3031549>.

546 Jiafeng Li, Ying Wen, and Lianghua He. M²rl-net: Multi-view and multi-level relation learning
 547 network for weakly-supervised image forgery detection. *Proceedings of the AAAI Conference
 548 on Artificial Intelligence*, 39(5):4743–4751, Apr. 2025. doi: 10.1609/aaai.v39i5.32501. URL
 549 <https://ojs.aaai.org/index.php/AAAI/article/view/32501>.

550 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
 551 training with frozen image encoders and large language models, 2023. URL <https://arxiv.org/abs/2301.12597>.

552

553 Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He. Exploring plain vision transformer
 554 backbones for object detection. *ArXiv*, abs/2203.16527, 2022.

555

556 Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. Pscc-net: Progressive spatio-channel
 557 correlation network for image manipulation detection and localization. *IEEE Transactions on
 558 Circuits and Systems for Video Technology*, 32(11):7505–7517, 2022a.

559

560 Yaqi Liu, Shuhuan Chen, Haichao Shi, Xiao-Yu Zhang, Song Xiao, and Qiang Cai. Mun: Image
 561 forgery localization based on m³ encoder and un decoder. *Proceedings of the AAAI Conference
 562 on Artificial Intelligence*, 39(6):5685–5693, Apr. 2025. doi: 10.1609/aaai.v39i6.32606. URL
 563 <https://ojs.aaai.org/index.php/AAAI/article/view/32606>.

564 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 565 A convnet for the 2020s. *Proceedings of the IEEE/CVF Conference on Computer Vision and
 566 Pattern Recognition (CVPR)*, 2022b.

567

568 Xiaochen Ma, Bo Du, Xianggen Liu, Ahmed Y. Al Hammadi, and Jizhe Zhou. Iml-vit: Image
 569 manipulation localization by vision transformer. *ArXiv*, abs/2307.14863, 2023. URL <https://api.semanticscholar.org/CorpusID:263888592>.

570

571 Xiaochen Ma, Xuekang Zhu, Lei Su, Bo Du, Zhuohang Jiang, Bingkui Tong, Zeyu Lei, Xinyu
 572 Yang, Chi-Man Pun, Jiancheng Lv, et al. Imdl-benco: A comprehensive benchmark and codebase
 573 for image manipulation detection & localization. *Advances in Neural Information Processing
 574 Systems*, 37:134591–134613, 2024.

575 Adam Novozamsky, Babak Mahdian, and Stanislav Saic. Imd2020: A large-scale annotated dataset
 576 tailored for detecting manipulated images. In *Proceedings of the IEEE/CVF winter conference on
 577 applications of computer vision workshops*, pp. 71–80, 2020.

578

579 Lei Su, Xiaochen Ma, Xuekang Zhu, Chaoqun Niu, Zeyu Lei, and Ji-Zhe Zhou. Can we get rid of
 580 handcrafted feature extractors? sparsevit: Nonsemantic-centered, parameter-efficient image ma-
 581 nipulation localization through sparse-coding transformer. In *Proceedings of the AAAI Conference
 582 on Artificial Intelligence*, volume 39, pp. 7024–7032, 2025.

583

584 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 585 tive coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

586

587 Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, and
 588 Yu-Gang Jiang. Objectformer for image manipulation detection and localization, 2022. URL
 589 <https://arxiv.org/abs/2203.14681>.

590

591 Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong Ng, Xuanjing Shen, and Stefan Win-
 592 kler. Coverage—a novel database for copy-move forgery detection. In *2016 IEEE international
 593 conference on image processing (ICIP)*, pp. 161–165. IEEE, 2016.

594

595 Haiwei Wu, Yiming Chen, Jiantao Zhou, and Yuanman Li. Rethinking image forgery detection
 596 via soft contrastive learning and unsupervised clustering, 2025. URL <https://arxiv.org/abs/2308.09307>.

594 Kunlun Zeng, Ri Cheng, Weimin Tan, and Bo Yan. Mggformer: Mask-guided query-based trans-
 595 former for image manipulation localization. *Proceedings of the AAAI Conference on Artifi-*
 596 *cial Intelligence*, 38(7):6944–6952, Mar. 2024. doi: 10.1609/aaai.v38i7.28520. URL <https://ojs.aaai.org/index.php/AAAI/article/view/28520>.

599 Jizhe Zhou, Xiaochen Ma, Xia Du, Ahmed Y. Alhammadi, and Wentao Feng. Pre-training-free
 600 image manipulation localization through non-mutually exclusive contrastive learning, 2023. URL
 601 <https://arxiv.org/abs/2309.14900>.

603 Jiaying Zhu, Dong Li, Xueyang Fu, Gege Shi, Jie Xiao, Aiping Liu, and Zheng-Jun Zha. A lottery
 604 ticket hypothesis approach with sparse fine-tuning and mae for image forgery detection and local-
 605 ization. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(10):10968–10976, Apr.
 606 2025a. doi: 10.1609/aaai.v39i10.33192. URL <https://ojs.aaai.org/index.php/AAAI/article/view/33192>.

609 Xuekang Zhu, Xiaochen Ma, Lei Su, Zhuohang Jiang, Bo Du, Xiwen Wang, Zeyu Lei, Wentao
 610 Feng, Chi-Man Pun, and Ji-Zhe Zhou. Mesoscopic insights: orchestrating multi-scale & hybrid
 611 architecture for image manipulation localization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 11022–11030, 2025b.

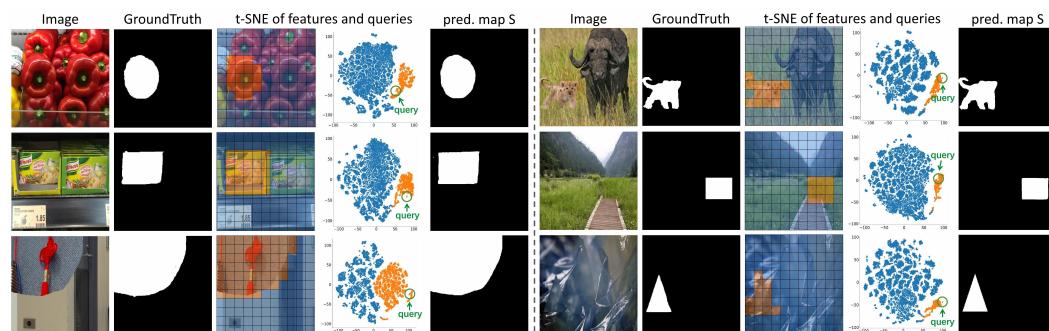
615 6 APPENDIX

617 We present **BriQ**, a query-based framework tailored for Image Manipulation Location (IML) task.
 618 Our method unifies and extends prior efforts in query-based modeling, cross-modal fusion, and
 619 contrastive supervision under a structured and interpretable framework.

620 We build upon the idea of using learnable query tokens, but go beyond by explicitly modeling
 621 their evolution across multiple feature levels, enabling hierarchical interaction. Unlike previous
 622 approaches where queries passively attend to features, our query token actively performs alternating
 623 attention with global and local features at each level, forming a multi-stage reasoning path that
 624 mirrors human perception.

625 To further enhance discrimination, we introduce a query-to-regions (Q2R) contrastive loss that sup-
 626 pervises the query token itself, guiding it to aggregate forged-region features while repelling pristine
 627 ones. Compared with prior work where contrastive losses are only applied globally, our design in-
 628 tegrates contrastive supervision into the query refinement loop, aligning feature learning with the
 629 model’s internal inference trajectory.

630 In this way, our approach not only inherits the strengths of prior models which contains multi-scale
 631 fusion, semantic-noise complementarity, and discriminative learning, but also introduces a layer-
 632 aware, interpretable reasoning structure tailored for fine-grained manipulation localization.



645 Figure 7: More manipulated examples and corresponding t-SNE projections of features and queries
 646 embeddings. Blue, orange and green denote authentic patches, forged patches, and forged-aware
 647 queries, respectively.

648 6.1 FEATURE DISTRIBUTION
649

650 After the training process is complete, the learnable representations evolve into tampering-aware
 651 anchors, achieving differentiation and localization of manipulated information. As illustrated in
 652 Fig.7, the BriQ model demonstrates a clear separation between the feature distributions of forged
 653 (orange) and authentic (blue) data. The query tokens (green), having been trained to focus on these
 654 distinctions, naturally gravitate towards the forged features in the feature space. This proximity
 655 indicates that the query tokens effectively capturing the essence of the manipulated information,
 656 enabling the model to perform detailed analysis and detection of tampering. This capability is
 657 essential for applications requiring high accuracy in identifying and localizing manipulated content.

701
Figure 8: More qualitative comparisons-1.

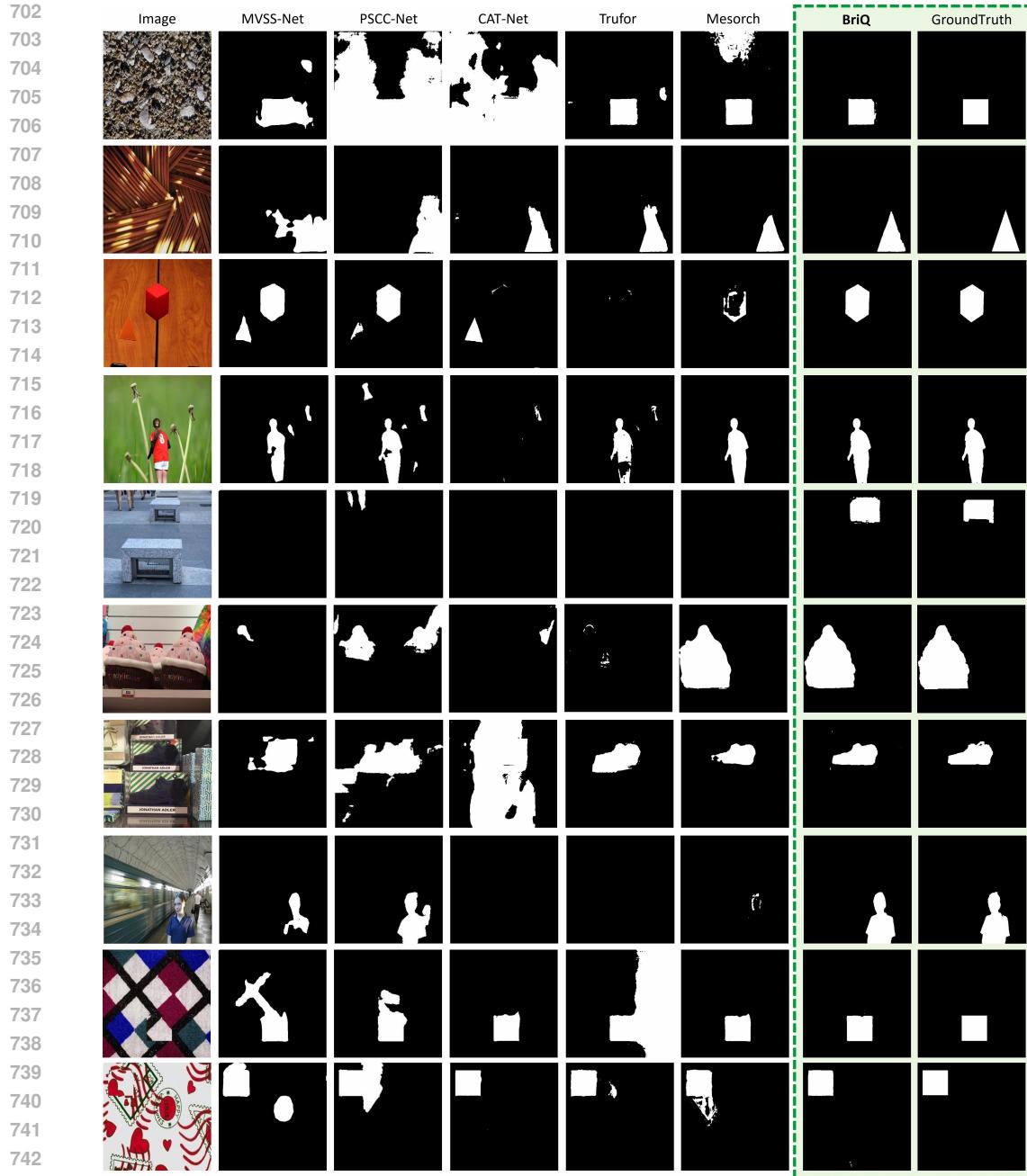


Figure 9: More qualitative comparisons-2.

6.2 LOCALIZATION PERFORMANCE

6.2.1 MORE QUALITATIVE COMPARISON

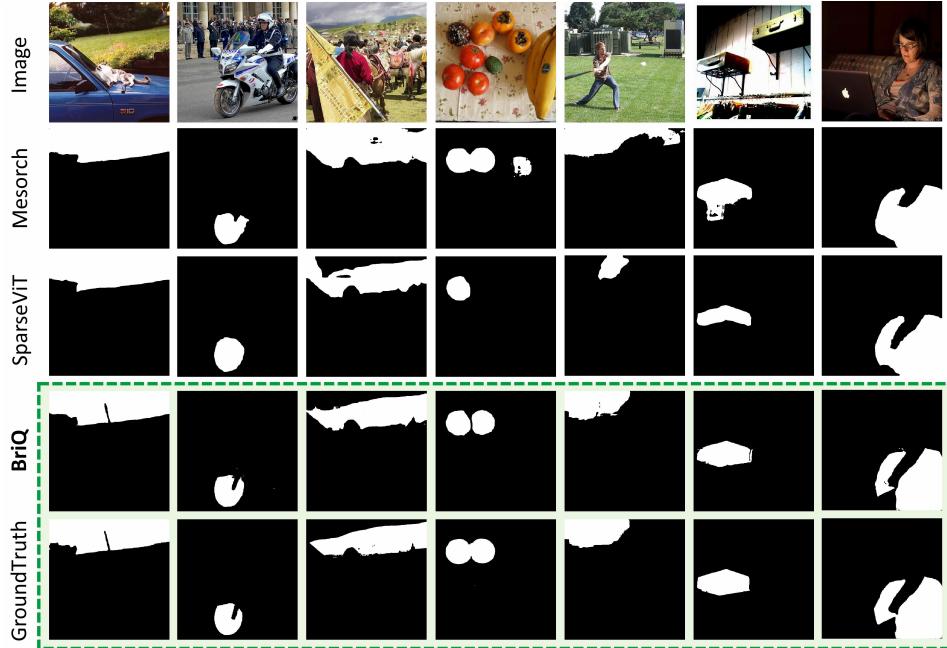
BriQ achieves high localization accuracy across a diverse range of manipulation techniques, such as duplication, cross-image collaging, and perceptually challenging subtle tampering operations. More comparisons in Fig.8 and Fig.9 showcase BriQ’s ability to accurately pinpoint the locations of manipulations, regardless of their complexity or subtlety.

756 Table 4: Quantitative comparison with SparseViT.
757

758 Method	759 F1↑					760 Permute-F1↑				
	Coverage	Columbia	NIST16	CASIAv1	Avg.	Coverage	Columbia	NIST16	CASIAv1	Avg.
SparseViT	.5164	.9567	.3726	.8196	.6663	.5832	.9746	.4292	.8308	.7045
BriQ	.6976	.8972	.5199	.8549	.7424	.7189	.9637	.5495	.8599	.7730

762 6.2.2 MORE QUANTITATIVE COMPARISON
763764 We supplement the quantitative metrics of SparseViT [Su et al. (2025)] under the same training
765 conditions. As shown in Tab. 4, BriQ achieves more favorable results.
766769 6.3 AIGC BENCHMARK
770771 To verify the effectiveness of BriQ on generative forgery, we adopt AIGC-Editing manipulation
772 dataset¹ and supplement the training and test sets to the existing dataset while keeping other configu-
773 rations unchanged. We select two recent state-of-the-art methods, Mesorch and SparseViT, and train
774 them following their scripts. The quantitative results for each test set are shown in Tab.5, which il-
775 lustrates the broad effectiveness of BriQ in addressing various tampering types—encompassing both
776 traditional tampering and generative forgery. For generative forgery, the qualitative comparison is
777 shown in Fig.10, while more of our visualization results are presented in Fig.11.
778779 Table 5: Quantitative comparison on various test set, including AIGC test set.
780

781 Method	782 F1↑					783 Permute-F1↑						
	Coverage	Columbia	NIST16	CASIAv1	Avg.	Coverage	Columbia	NIST16	CASIAv1	Avg.		
Mesorch	.5726	.9113	.3786	.8404	.8788	.7163	.6286	.9760	.4386	.8501	.8833	.7553
SparseViT	.5554	.9137	.2502	.7734	.7955	.6576	.6176	.9587	.3238	.7894	.8138	.7007
BriQ	.6579	.8938	.4864	.8541	.8699	.7524	.6838	.9572	.5238	.8592	.9731	.7994

807 Figure 10: Qualitative comparison on AIGC test set.
808809 ¹https://huggingface.co/datasets/zhipei/SD_inpaint_dataset

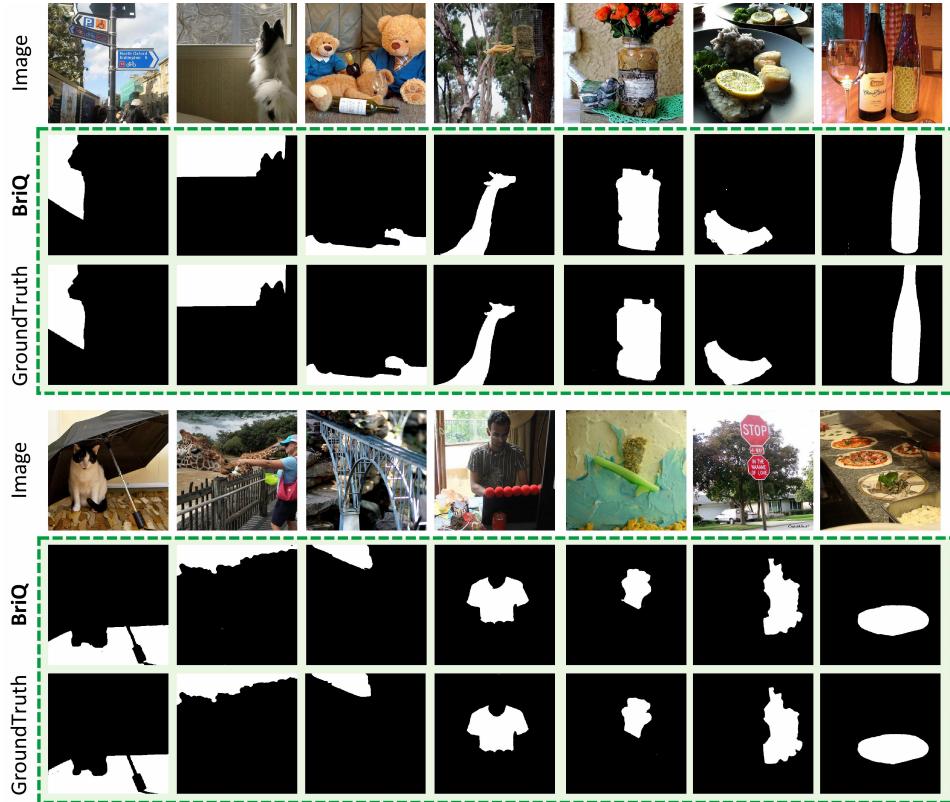


Figure 11: More visualization results of BriQ on AIGC test set.

6.4 ATTENTION MAP

We visualize the attention map between queries and macro features first, followed by micro features at each layer. Multi-head attention is aggregated via averaging, producing a (bs, q, hw) attention map. After applying mean pooling along the query dimension, we obtain the attention between queries and a single modality, which is visualized as a heatmap.

As shown in Fig.12, for each image, our dual-branch architecture extracts its RGB features (top row) and high-frequency features (bottom row) across four layers (left to right columns). Following the arrow directions: first, the tampering query computes attention with deep RGB features, but this attention applies to deep high-frequency features; then reversely, the query computes attention with deep high-frequency features that affects RGB features. This completes one layer’s computation before proceeding to the next layer.

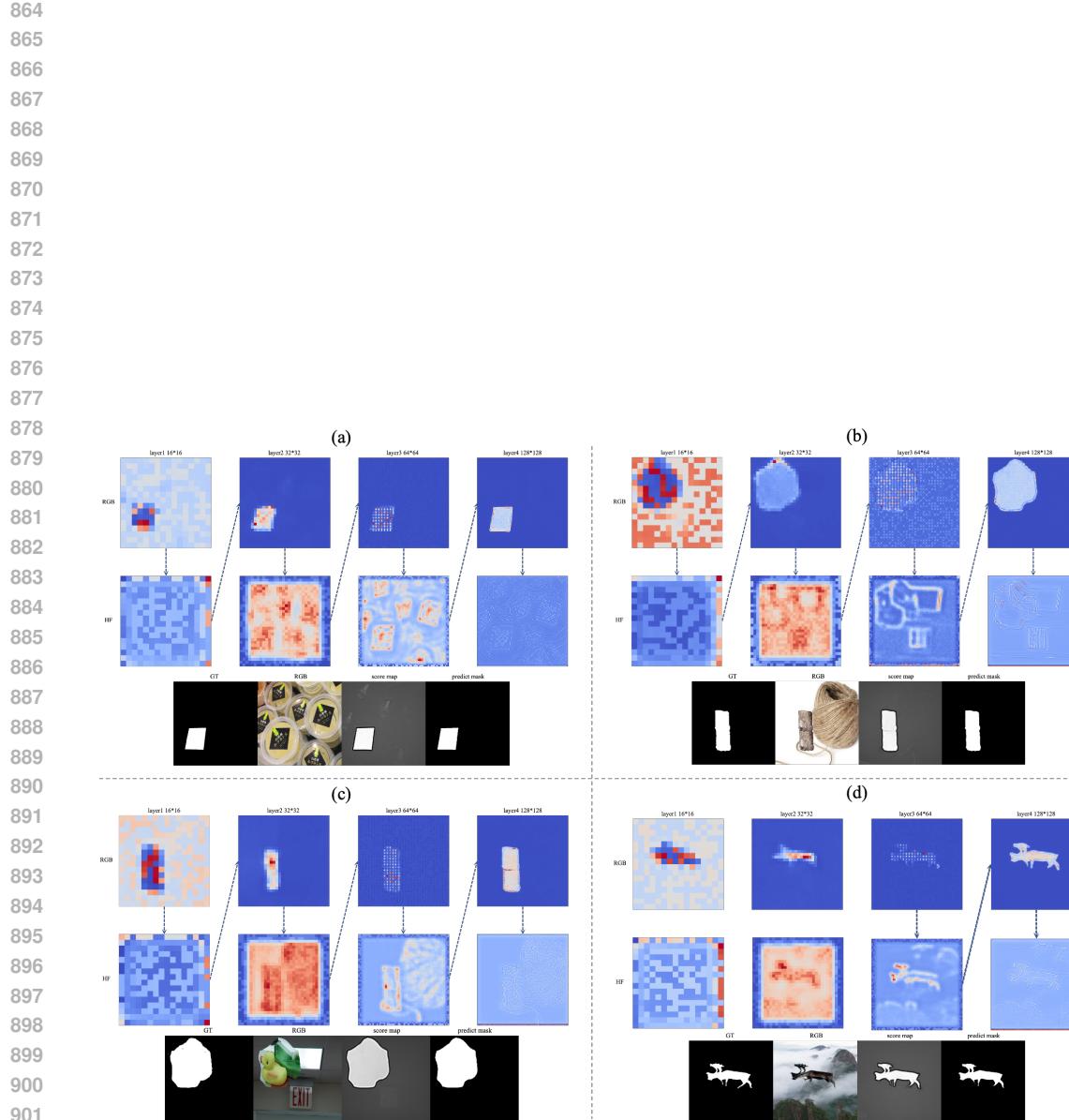


Figure 12: **Visualization of the attention map between queries and features from dual modalities in BriQ.**