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Abstract

Contrastive Language-Image Pretraining (CLIP) achieves strong generalization
in vision-language tasks by aligning images and texts in a shared embedding
space. However, recent findings show that CLIP-like models still underutilize
fine-grained semantic signals in text, and this issue becomes even more pronounced
when dealing with long and detailed captions. This stems from CLIP’s training
objective, which optimizes only global image-text similarity and overlooks token-
level supervision—limiting its ability to achieve fine-grained visual-text alignment.
To address this, we propose SuperCLIP, a simple yet effective framework that
augments contrastive learning with classification-based supervision. By adding
only a lightweight linear layer to the vision encoder, SuperCLIP leverages token-
level cues to enhance visual-textual alignment — with just a 0.077% increase in
total FLOPs, and no need for additional annotated data. Experiments show that
SuperCLIP consistently improves zero-shot classification, image-text retrieval, and
purely visual tasks. These gains hold regardless of whether the model is trained
on original web data or rich re-captioned data, demonstrating SuperCLIP’s ability
to recover textual supervision in both cases. Furthermore, SuperCLIP alleviates
CLIP’s small-batch performance drop through classification-based supervision that
avoids reliance on large batch sizes.

1 Introduction

CLIP [45] has become a cornerstone in vision-language learning, excelling in tasks like zero-shot
classification, retrieval, and text-to-image generation [72, 29, 26, 46]. By aligning images and text
in a shared embedding space and leveraging large-scale noisy web data [11, 6, 47], it learns rich,
transferable representations. However, despite its strong performance, CLIP’s representations still
have room for improvement, and further enhancing them remains crucial for advancing multimodal
applications [51, 65, 52, 57].

Recent works have proposed various improvements to CLIP in three main dimensions: training
strategies [33, 67,42, 32,22, 64, 12, 60], architectural modifications [5, 56, 63, 70, 16, 58, 50], and
data collection techniques [23, 17, 27, 38, 1, 11, 59]. These approaches have significantly enhanced
the performance of the CLIP model in zero-shot and other downstream tasks [55].

However, despite these advances, an interesting phenomenon emerges: Contrastive models like CLIP
still struggle to fully exploit the rich supervision in captions, especially when those captions are
long and detailed re-captioned texts [31, 10, 27]. This counterintuitive phenomenon highlights a
fundamental issue: contrastive learning fails to make full use of fine-grained semantic signals in text,
even when they are explicitly available.
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Figure 1: Evaluating Fine-Grained Alignment in Image-Text Retrieval. Each row presents pairs
of images and captions that are visually and semantically very similar, but differ in fine-grained
semantic distinctions such as object status (e.g. Statue vs. Real), spatial relation (e.g. Outside vs.
Inside), and action (e.g. Sitting vs. Standing). While both images and texts are close in meaning,
SuperCLIP demonstrates a stronger ability than CLIP in correctly distinguishing these fine-grained
semantic distinctions. Additional examples are provided in Appendix A.1.

This challenge stems from how CLIP is trained by optimizing only for global image-text similarity,
while overlooking the dense semantic cues encoded in individual words or phrases [70, 68, 61, 36, 24,
62]. The problem is further compounded by the characteristics of typical web data, which tend to be
short, ambiguous, and only loosely aligned with the visual content [11]. As a result, CLIP-like models
often miss subtle but important distinctions in object attributes, spatial relationships, and actions. As
illustrated in Fig.1, CLIP may confuse a statue with a real person or fail to distinguish whether a
bear is inside or outside the river. This lack of fine-grained alignment limits their effectiveness in
downstream multimodal tasks that require precise visual-textual understanding [54]. Existing works
have attempted to address this issue, but they either rely on additional annotated datasets beyond the
web-scale data typically used for CLIP training, or introduce substantial computational overhead
[31, 70, 68, 30, 64, 24, 62, 54, 55].

Thus, in this work, we propose SuperCLIP, a super simple yet effective approach that introduces a
classification-based supervision method [20] into the contrastive learning paradigm of image—text
pretraining. With only a lightweight linear layer added to the vision encoder, SuperCLIP directly
leverages raw text tokens to guide the vision encoder to attend to semantic entities mentioned in the
text and their visual manifestations in the image. In this way, SuperCLIP fully leverages the rich
textual supervision from all words in the text, thereby enhancing the model’s ability to achieve fine-
grained visual-text alignment — with just a 0.077% increase in total FLOPs, and without requiring
additional annotated data.

Extensive experiments demonstrate that our method effectively helps CLIP models recover rich
textual supervision from all words in the text—whether trained on original web data or rich re-
captioned data—Ileading to consistent improvements in zero-shot performance on classification and
retrieval tasks, while also enhancing the vision encoder’s features for purely visual tasks. Furthermore,
SuperCLIP is simple and easy to implement, making it readily applicable to other CLIP-style training
frameworks such as SigL.IP [67] and FLIP [33], where it also brings consistent performance gains.
Finally, thanks to its classification-based supervision and independence from large batch sizes,
SuperCLIP alleviates the performance degradation typically observed in CLIP under small-batch
training settings.

Our main contributions can be summarized as follows:

1. We propose SuperCLIP, a simple yet effective vision—language pretraining framework that
seamlessly integrates classification-based supervision into contrastive learning, enabling
CLIP models to effectively recover rich textual supervision from all words in the text.

2. Without introducing heavy computational cost or requiring additional annotated data, Super-
CLIP enhances CLIP’s ability to achieve fine-grained visual-text alignment and mitigates its
performance degradation under small batch sizes.



3. Empirical results demonstrate that SuperCLIP achieves improved performance on zero-shot
classification and retrieval tasks, as well as on purely visual downstream tasks, thereby
confirming its broad effectiveness.

2 Related Work

In this section, we first provide a brief overview of representative efforts to improve CLIP. Then,
we discuss existing approaches that specifically aim to address the underlying limitations of CLIP
highlighted in the introduction.

2.1 Contrastive Vision-Language Pretraining

Contrastive learning has become the dominant approach for vision-language pretraining, with
CLIP [45] demonstrating strong zero-shot transfer by aligning images and texts in a shared em-
bedding space using large-scale noisy web data. Subsequent efforts have improved CLIP along three
major dimensions. Training-centric [33, 67, 42, 32, 22, 64, 12, 60] strategies improve learning
efficiency and robustness by modifying optimization objectives and training dynamics, such as using a
sigmoid-based contrastive loss in SigLIP [67], applying masked image modeling to accelerate training
in FLIP [33], and leveraging nearest-neighbor supervision to enhance data efficiency in DeCLIP [32].
Model-centric [5, 56, 63, 70, 16, 58, 50] improvements include designing stronger vision encoders
such as Vitamin [5], rethinking input representations as in CLIPPO [56], and introducing more robust
attention mechanisms like DiffCLIP [16]. Data-centric [23, 17, 27, 38, 1, 11, 59]. approaches focus
on scaling dataset size and diversity to enhance model generalization, exemplified by ALIGN [23],
LAION-5B [47], and DataComp [11]. In summary, these methods have effectively boosted the CLIP
model’s performance by refining the data, model architecture, and training techniques.

2.2 Improve CLIP with Additional Supervision

A number of recent works have considered the underlying problem that CLIP struggles with fine-
grained visual-text alignment due to its reliance on global image-text similarity and weak, ambiguous
supervision from web-sourced captions [3 1, 70, 68, 30, 64, 24, 62, 54, 55]. To address this issue, these
works introduce additional forms of supervision to enhance fine-grained visual-text alignment. Recap-
DataComp-1B [31] recaptions the original web data using LLaMA-3 to produce more informative
captions for improving CLIP, but their findings show that CLIP is not fully effective at leveraging
such rich textual supervision. While RegionCLIP [70] introduces region-level supervision without
manual labels, it inherits CLIP’s semantic limitations, overlooks inter-region relationships, and incurs
additional computation due to region proposal processing. Long-CLIP [68] extends CLIP to long-text
understanding via positional embedding stretching and component matching, but it compromises
zero-shot image classification performance by disrupting the alignment between short-text prompts
and visual features. UniCL [64] enhances CLIP by unifying contrastive learning across image-text
and image-label pairs, but it relies on additional human-annotated category labels, which limits its
scalability compared to purely web-supervised approaches. Eyes Wide Shut [54] and SigLIP 2 [55]
both improve visual grounding and understanding through dense feature integration, but their methods
introduce substantial computational and data overhead. In summary, these methods either fall short
of fully resolving the issue, rely on additional annotated datasets beyond the web-scale data typically
used for CLIP training, or introduce substantial computational overhead.

3 Motivation and Method

In this section, we first revisit the inherent limitations of the CLIP contrastive learning paradigm to
motivate our approach. Then, we present a super simple classification-based method to recover rich
textual supervision and improve CLIP’s fine-grained visual-text alignment. The overall framework of
our proposed SuperCLIP is illustrated in Fig.2.

3.1 Limitations of the Contrastive Learning Paradigm

Overall Review of CLIP Training CLIP [45] learns joint image-text embeddings using a large
collection of paired examples {(I, T} )}, . The model consists of two encoders—fy for images



Keyword Group Man + Newspaper Bear + River Man + Mirror

Condition Basic Pair + Real/Stat Basic Pair + In/Out Basic Pair + Sit/Stand
Matching Captions 333 6 219 2 1216 19
Percentage (%) 0.00333 0.0006 0.00219 0.00002 0.01216 0.00019

Table 1: Keyword Co-occurrence Statistics in Datacomp-1B [11] (10M captions). "In/Out" =
Inside/Outside; "Real/Stat" = Real/Statue; "Sit/Stand" = Sitting/Standing. Each column shows how
many captions match specific keyword combinations. Percentages refer to frequency in 10M captions.
More keyword combination results are provided in Appendix A.2.

and g, for text—and normalizes their outputs to unit length. Specifically, for each image I; and text
T;, their embeddings are computed as:
u = Joldi) o ge(Ti) o
e l9e(To)2
For a batch of IV pairs, CLIP computes the similarity matrix:
u] v,
Sij = =, @
T
where 7 is the temperature parameter. The objective function Lcppp is designed to maximize the
similarity between matching image-text pairs while minimizing the similarity between non-matching

pairs in the shared embedding space. It is defined as:

N
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where log 5 corresponds to the image-to-text part, and log T corresponds to

'k{vzl exp(sik‘) . . . . . gzl.exp(ski) .
the text-to-image part. By aligning matching image-text pairs and separating non-matching ones,
CLIP learns robust visual and textual features, which are applicable to various downstream tasks.

Impact of Batch Size and Web Data Sparsity A key assumption of CLIP is that each batch
must contain enough positive and negative pairs for effective learning [45]. When batch size is
small, performance degrades rapidly [67], which is why CLIP training typically relies on very large
batches—often 16k or more—demanding significant computational resources [33, 49]. Large batches
help CLIP learn diverse object categories from web data [23, 47, 11], contributing to its strong
zero-shot classification performance. Despite CLIP’s strong performance in object recognition, it
struggles with fine-grained attributes like actions, spatial relations, and object states. This is largely
due to the nature of web data, where captions are often short, ambiguous, and poorly structured [11].
As aresult, semantic combinations needed to learn fine-grained distinctions are rare and inconsistent.
For example, “man + newspaper” appears 333 times in 10M captions, but “man + newspaper +
real/statue” appears only 6 times, and some combinations—Ilike “bear + river + in/out”—are nearly
absent (see Table 1). These low-frequency cases rarely form effective contrastive pairs [2, 3, 54],
and even when they do exist, they are unlikely to co-occur in the same batch—making contrastive
learning of such concepts nearly impossible without extremely large, computationally expensive
batch sizes.

Limitation in Using Rich Textual Supervision CLIP is trained with a contrastive objective that
aligns image and text embeddings by pulling matched pairs closer and pushing mismatched pairs
apart within each batch. While effective at capturing global semantic alignment, this objective tends to
overlook fine-grained or detailed semantic information present in the captions [70, 68, 61, 36, 24, 62],
limiting the model’s ability to fully leverage rich textual supervision. An interesting exploration
in [31] re-captioned web data using powerful MLLMs like LLaMA-3 [14], enriching the captions
with more semantic information. In theory, this should provide stronger supervision and improve
performance. However, contrary to expectations, CLIP models trained under the contrastive learning
paradigm actually showed a drop in performance when the original data was entirely replaced with re-
captioned data. Our experiments in section 4.3 further confirm this phenomenon, showing that simply
enriching captions does not necessarily lead to better performance under the contrastive learning
paradigm. This suggests that CLIP’s contrastive learning paradigm struggles to take advantage of rich
textual supervision—in fact, the added complexity introduced by richer captions can hinder learning
and lead to a drop in performance.
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Figure 2: Overall Framework of Our Proposed SuperCLIP. Introducing simple classification-
based supervision into the CLIP framework is straightforward. It only involves adding a lightweight
linear layer to the image encoder to map the averaged image features to text classification targets,
without requiring any changes to the original contrastive learning paradigm.

3.2 Super Simple Classification-based Supervision

Using text as supervision for visual backbones is well studied [41, 53, 25, 28]. However, existing
methods often rely on manual filtering or heuristics to construct classification vocabularies [19,
40], which limits scalability to noisy web data. To overcome this, we follow [20] and use raw
text tokens—prior to CLIP’s text encoder—as direct classification labels for the vision encoder.
Specifically, consider an image-text dataset D = {([;,T;) | ¢ € [1, N]} used for contrastive training
following the CLIP framework. Each caption T; is tokenized using CLIP’s subword-level tokenizer
with a vocabulary size of V, resulting in a set of token IDs C. These tokens are then represented as
a V-dimensional K-hot vector y € RY, where y. = 1if ¢ € C, and 3. = 0 otherwise. While the
original label y treats all subwords equally, some frequent stopwords or generic terms carry less
discriminative information. To address this imbalance, an Inverse Document Frequency (IDF) based

weighting is applied: D]
we = log <1+df(c)> ) 4)

where |D| denotes the total number of image-text pairs in the dataset, and df(c) is the document
frequency of subword c, i.e., the number of captions in which ¢ appears. Using these weights, a
normalized weighted label distribution ). is computed as:

N WeyY
o = e, ®
chzl WerY e

Given the normalized label distribution ., the goal is to train the model such that its output distribution
aligns closely with this weighted supervision signal. Let z. denote the logit output of the model for
class ce {1,...,V}, obtained by applying a linear classification head on top of the image features
extracted by the CLIP vision encoder. The final classification loss is defined as the cross-entropy
between the weighted label distribution ¢, and the softmax-normalized model predictions:

\4 Ze
EClass = - Z Qc IOg <V6> . (6)
c=1 Z

=1 exc/

This classification loss encourages alignment between the model predictions and all subword tokens
extracted from the text, ensuring that the full textual supervision signal is utilized. Finally, since both
the training data and the vision encoder are taken directly from the existing CLIP training pipline
(except for a simple linear layer that maps image features to classification targets), this loss can be
easily added to the CLIP optimization objective:

Loal = Levup + Lclass- @)

In this way, our method extends CLIP to effectively recover rich textual supervision from all words
in the text, naturally guiding the model to attend to fine-grained visual-text alignment that is often
overlooked by standard CLIP. What‘s more, since the classification loss does not rely on batch size, it
can alleviates the performance degradation typically observed in CLIP under small-batch training
settings.



Image Classification Image Retrieval Text Retrieval

Model Pretrain

val v2 COCO Flickr COCO Flickr
CLIP B-512M 60.5 53.0 29.0 54.5 46.7 73.3
SuperCLIP B-512M  63.5 300 55222 313 @23 569 24 47.8 1 75.6 +23)
CLIP L-512M 66.1 57.4 327 57.0 49.6 76.4
SuperCLIP L-512M  70.1 400 625 +5.1) 359 (+32) 624 +54) 52.2 +26)  79.3 (+2.9)
CLIP L-12.8B 79.0 72.0 43.9 72.7 62.5 87.0

SuperCLIP L-12.8B  80.0 +1.00 72.8 +0.8) 45516 74215  63.1 06 88.1 (+1.1)

Table 2: Comparison with CLIP across Different Model Sizes. We report zero-shot image
classification accuracy (%) on ImageNet-1K (val and v2), and zero-shot image and text retrieval
(Recall@1, %) on COCO and Flickr30K, comparing CLIP and our SuperCLIP under three settings:
B-512M, L-512M, and L-12.8B, where models are pretrained on 512M or 12.8B samples from
DataComp-1B. Values in parentheses reflect absolute gains or drops for SuperCLIP relative to CLIP.

4 Empirical Results

4.1 Experimental Setup

Pretraining Setup. We pretrain our proposed SuperCLIP and CLIP on a standard subset of the
Datacomp dataset [1 1], which contains about 1.3B image-text pairs. All images are resized to a fixed
resolution of 224 x 224, and the text is minimally processed with only basic tokenization. Note that,
except for the experiment (Comparison with CLIP with Mixed Caption) in Section 4.3 which
consider useing the Recap-DataComp[3 1] data, all other experiments are conducted on the original
Datacomp dataset. All experiments are conducted with a batch size of 16k, except for those under
varying batch sizes analyzing the impact on CLIP. For fair comparison, all models adopt AdamW
with a cosine schedule, using the same learning rate and weight decay as CLIP.

Evaluation Protocol. For zero-shot evaluation, we use the open-source LAION CLIP Benchmark
framework [47] to assess all models on zero-shot classification and image-text retrieval. For linear
probing image classification experiments, we follow the training protocol introduced in MAE [18].
For semantic segmentation and depth estimation, we follow a protocol similar to DINOv2 [44].

4.2 Main Results

Comparison across Different Model Sizes. We demonstrate that our method consistently benefits
CLIP across different model sizes, through zero-shot image classification on ImageNet-1K [8] (val
and v2) and image-text retrieval on COCO [35] and Flickr30K [66]. Detailed results are presented
in Table 2. By training both B- and L-sized models with varying amounts of pretraining data,
we compare CLIP and our proposed SuperCLIP under three settings: B-512M, L-512M, and L-
12.8B (ViT-B/L pretrianed with seen 512M/12.8B samples). Under the B-512M setting, SuperCLIP
improves classification and retrieval performance across all tasks, including gains of over +3% in
classification accuracy and up to +2.4% in retrieval. With the L-512M setting, the improvements are
more substantial, reaching up to +5.4% in image retrieval and over +5.1% in classification. At the
largest scale (L-12.8B), SuperCLIP still delivers consistent improvements across all benchmarks.
For the L-size model, we estimate the additional computation introduced by the linear head added
for classification-based supervision (see Table 3) using a single image-text pair, which accounts
for only 0.077%. These results demonstrate that our method not only scales well with model and
data size, but also consistently enhances CLIP’s performance by better leveraging classification
supervision—without introducing significant computational overhead. More FLOPs statistics of the
models are provided in Appendix A.3.

Analysis of Performance Gain.  We analyze word-image similarity statistics to demonstrate
that, compared to CLIP, our SuperCLIP more effectively captures fine-grained visual attributes
beyond global semantics. Visualization and statistical results are presented in Fig.3 and Table 4. We
compute the similarity between each image and the words in its captions on the COCO validation
set, measuring how much attention the model gives to different words. For each word, we then
average its similarity across the dataset by dividing the total similarity by its frequency. After filtering
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out low-frequency words (fewer than 20 occurrences), we obtain a set of about 1,000 words and
rank them by average similarity. The results are both interesting and expected. CLIP tends to rank
object category words (e.g., zebras, kites, elephants, often in the top 20) highest, as they are easily
captured by global visual features. In contrast, SuperCLIP, with added classification supervision,
raises the ranks of words describing object status, spatial relations, and actions (see Fig. 3). This is
because classification supervision encourages the model to focus more on fine-grained visual details
overlooked by CLIP. As shown in Table 4, SuperCLIP also produces more stable similarity rankings
with lower variance across words, reducing the long-tail effect seen in CLIP. Overall, these results
show that SuperCLIP better captures fine-grained attributes that CLIP often overlooks, leading to
improved performance across multiple tasks. More statistical analyses on word-image similarity are
provided in Appendix A.4.

4.3 Recover Textual Supervision

Comparison with CLIP using Mixed Caption. = We demonstrate that our method helps CLIP
recover overlooked textual supervision through extensive experiments, including zero-shot classifica-
tion on 38 datasets [47] and image-text retrieval on COCO and Flickr30k (Table 5). Following [31],
we train our models on a mix of DataComp-1B and Recap-DataComp-1B, with the latter containing
longer, semantically richer captions. While such captions provide more detailed and fine-grained
supervision, increasing their proportion in training tends to degrade CLIP’s performance—suggesting
that contrastive learning alone may not fully benefit from rich textual signals. In contrast, the classi-
fication supervision introduced in our method is better equipped to utilize this additional semantic
information, thereby mitigating the limitations of contrastive learning. Under the DualCaption set-
ting, contrastive learning captures coarse-grained semantics from short captions, while our classifier
extracts fine-grained details from long ones—achieving strong performance without the need for
the carefully tuned ''0.8/0.2'" mixing ratio identified through extensive search in [31]. Complete
evaluation results across 38 datasets are provided in Appendix A.5.

4.4 Generalization Analysis

Generalize to Other CLIP-style Frameworks. We test the generalizability of our method on two
CLIP-style models, SigLIP and FLIP, using zero-shot classification on ImageNet-1K and image-text
retrieval on COCO and Flickr30K. Detailed results are presented in Table 6. Our SuperCLIP variants
(SuperSigLIP and SuperFLIP) consistently outperform their baselines under the same pretraining
setup. SuperSigLIP achieves gains of up to +3.7% in image classification and +2.9% in image/text
retrieval. Similarly, SuperFLIP improves by +3.4% in classification, +2.6% in image retrieval, and up
to +5.3% in text retrieval. This demonstrates that our method is not limited to CLIP, but is a generally
effective enhancement to vision-language pretraining.



Model-Size Mixed Caption Image Retrieval Text Retrieval Image Classification

Short/Long COCO Flickr COCO Flickr Average. 38
CLIP-B 1.0/0.0 29.0 54.4 46.7 73.7 43.4
SuperCLIP-B 1.0/0.0 313 57.6 47.8 75.6 44.5 1.1
CLIP-B 0.0/1.0 23.6 41.8 40.5 66.2 27.8
SuperCLIP-B 0.0/1.0 30.6 48.7 47.2 70.4 31.4 3.0
CLIP-B 0.8/0.2 32.7 57.5 50.2 76.0 42.8
SuperCLIP-B Dual 34.1 60.2 51.2 76.6 45.1 (+23)
CLIP-L 1.0/0.0 327 57 49.6 76.4 45.7
SuperCLIP-L 1.0/0.0 35.9 624 52.2 79.3 48.6 (+2.9)
"CLIP-L  00/1.0 262 431 429 659 300
SuperCLIP-L 0.0/1.0 34.2 55.7 521 75.0 33.8 (+3.8)
"CLIPLL  08/02 370 611 537 788 468
SuperCLIP-L Dual 37.6 65.3 54.0 82.5 49.5 (+27)

Table 5: Comparison with CLIP using Mixed Captions. “Mixed Caption” refers to the ratio of
short (DataComp-1B) and long (Recap-DataComp-1B) captions used during training. The ''0.8/0.2"
mix is the optimal ratio identified in [31] through extensive tuning. “Dual” denotes our setup where
the contrastive loss uses only short captions and the classification loss uses only long captions.
We report average zero-shot image classification accuracy (%) across 38 datasets, and zero-shot
image/text retrieval (Recall@1, %) on COCO and Flickr30K, using 512M training samples. Bold
numbers indicate the best results, while values in parentheses show absolute gains or drops of
SuperCLIP relative to CLIP.

Model Image Classification Image Retrieval Text Retrieval

val v2 CoCo Flickr COCO Flickr
SigLIP 60.4 52.8 29.8 539 45.8 73.2
SuperSigLIP  64.1 +3.7) 55.9 43 32.5 +27) 56.8 (+2.9) 48.6 (+2.8) 75.9 2.7
FLIP 58.1 50.1 27.5 51.8 44.1 66.7

SuperFLIP 61.3 32 53.5 434 30.1 +2.6) 54.0 (+2.2) 46.7 (+2.6) 72.0 (+5.3)

Table 6: Generalization to Other CLIP-Style Frameworks. We report zero-shot performance on
image classification accuracy (%) on ImageNet-1K (val and v2), and image/text retrieval (Recall@1,
%) on COCO and Flickr30K, comparing SigL.IP and FLIP with their SuperCLIP variants (SuperSigLIP
and SuperFLIP). All models are pretrained with 512M samples (B-512M). Numbers in parentheses
indicate absolute gains over the original models.

Enhance CLIP for Purely Visual Tasks. We demonstrate how our method enhances CLIP for
purely visual tasks, through linear probing image classification on ImageNet, semantic segmentation
on Pascal [9] and ADE20K [71], and depth estimation on NYUv2 [43]. Detailed results are presented
in Table 7. For linear probing image classification experiments, we freeze the backbone and train a
linear classification head. For the semantic segmentation and depth estimation tasks, we similarly
attach a linear head to the backbone, but fine-tune the entire model. SuperCLIP consistently improves
performance across all tasks, indicating that the vision encoder trained with our method learns more
effective and discriminative visual representations.

4.5 Impact of Batch Size

Mitigate CLIP’s Drop with Limited Batch Sizes. We examine the extent to which our method
mitigates CLIP’s performance degradation under small batch sizes, through zero-shot and linear
probing classification on ImageNet across batch sizes ranging from 1K to 32K. Detailed results are
presented in Fig.4. For zero-shot classification (Left), SuperCLIP shows clear advantages under small-
batch training, where CLIP suffers significant degradation. For linear probing (Right), SuperCLIP



Model Pretrian Class T Segmentation 1 Depth |
ImageNet-1K PASCAL ADE20k NYUv2
CLIP B-512M 75.6 57.8 28.0 0.768
SuperCLIP B-512M 77.1 +1.5) 65.5 +7.7) 32.1 (+4.0) 0.746 (-0.022)
CLIP L-512M 79.7 67.8 342 0.740
SuperCLIP L-512M 81.0 (+1.3) 71.2 (+3.4) 36.3 +2.1) 0.733 -0.007)

Table 7: Enhance CLIP for Purely Visual Tasks. We report performance on three purely visual
tasks: linear probing image classification(Class) on ImageNet-1K (Accuracy, %), semantic segmen-
tation(Segmentation) on PASCAL and ADE20K (mloU), and depth estimation(Depth) on NYUv2
(RMSE). We compare CLIP and SuperCLIP under identical pretraining and evaluation settings to
ensure a fair comparison across all purely visual tasks. Numbers in parentheses indicate absolute
improvements over the original CLIP models.
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Figure 4: Mitigate CLIP’s Drop with Limited Batch Sizes. We report zero-shot (Left) and linear-
probing (Right) image classification accuracy (%) on ImageNet-1K (val) under varying batch sizes.
The green bars represent the performance of SuperCLIP under different batch sizes, while the gray
bars indicate the performance of CLIP under the corresponding batch sizes. Green numbers indicate
absolute improvements over the original CLIP models at the corresponding batch sizes.

maintains stable performance across all batch sizes, preserving high-quality visual representations
even in low-resource settings where CLIP’s performance drops noticeably. The above results validate
that our method effectively mitigates the performance degradation of CLIP under limited batch size
conditions. This improvement is attributed to the introduction of classification supervision, which is
inherently insensitive to batch size.

4.6 Integrate in Multi-modal LLM

Compare with CLIP under Multi-modal LLM Setting. We evaluate SuperCLIP beyond CLIP-
style contrastive pretraining by integrating both CLIP and SuperCLIP (ViT-B/16, 512M samples)
into the LLaVA-1.5 framework [37], combined with the Vicuna-7B language model [7], enabling
a fair comparison within the multi-modal LLM setting. This setup supports effective multi-modal
reasoning and instruction following across a broad range of downstream benchmarks, including
VQAV2 [13], GQA [21], VizWiz [15], T-VQA [48], SQA [69], MMB (MMBench) [39], MME [4]
and POPE [34]. Detailed results are presented in Table 8. These experiments confirm SuperCLIP’s
superior performance over CLIP encoders across multiple benchmarks, particularly on VQAv2
and MMBench, which focus on general visual question answering and fine-grained recognition,
respectively. The strong transfer performance demonstrates that SuperCLIP is not only effective in
contrastive pretraining but also exhibits excellent cross-modal generalization when integrated into
large-scale multi-modal frameworks.

4.7 Additional Ablation Studies

Ablation on Loss Weighting and IDF Weighting We study the effect of weighting the classification
loss by multiplying the Lcjass term in Eq. 7 by a factor A. As shown in Table 9, performance improves
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CLIP B-512M  67.8 554 421 478 693  49.1 1453 817

SuperCLIP B-512M  69.6 57.5 44.4 48.4 69.1 55.9 1562  82.0

Table 8: Compare with CLIP under Multi-modal LLM Setting. We report the performance scores
on 8 vision & language downstream tasks. Bold numbers indicate the best result.

Task Weighting Factor (\)
0.4 0.6 1 1.4 1.6
Classification 44.1 45.0 47.1 46.9 472
" Image Retrieval 413 21 40 438 442
" Text Retrieval 583 598 61.0 609 620

Table 9: Loss Weighting. We report zero-shot classification accuracy (%) on ImageNet-1K
(val) and the average retrieval result (Recall@1, %) across COCO and Flickr30K.

Design Image Retrieval Text Retrieval Classification

COCO Flickr COoCO Flickr ImageNet-1K
w/o IDF 31.6 51.7 48.0 71.1 44.8
IDF 33.2 54.7 48.9 73.1 47.1

Table 10: IDF Weighting. We report zero-shot classification accuracy (%) on ImageNet-1K (val)
and retrieval results (Recall@1, %) on COCO and Flickr30K, respectively.

across all tasks as A increases from 0.4 to 1.0. Beyond 1.0, text retrieval continues to improve, whereas
image retrieval and classification saturate. This confirms the effectiveness of the classification loss,
and we recommend A > 1.0 in practice. Then, we assess the role of IDF weighting by comparing
IDF-weighted and unweighted K-hot labels. As shown in Table 10, IDF consistently improves
performance across all benchmarks, confirming its benefit. All additional ablation studies use a
ViT-B/16 model trained on 256M samples with all other settings unchanged.

5 Conclusion and Future Work

We introduce SuperCLIP, a simple yet effective framework that adds classification supervision
to CLIP-style vision-language pretraining. By treating raw text tokens as classification labels,
SuperCLIP recovers rich semantic signals often missed by contrastive learning, enabling better
use of full textual content beyond coarse image-text alignment. SuperCLIP consistently improves
performance across a wide range of tasks, including zero-shot classification, image-text retrieval,
linear probing, and purely visual benchmarks. It enhances CLIP’s ability to achieve fine-grained
visual-text alignment, while requiring no additional annotations or significant computational cost. Its
batch-size-independent classification loss also mitigates CLIP’s performance drop under small-batch
settings, making it more practical for real-world applications. We hope these findings encourage
further research into combining classification and contrastive learning in large-scale multimodal
models. For the future work, SuperCLIP focuses on enhancing the supervision from text to the vision
encoder. A promising direction is to explore whether a similar approach can improve the supervision
from images to the text encoder.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section 5.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper is empirical in nature and does not include theoretical results,
assumptions, or formal proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code and models will be made publicly available upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include error bars, confidence intervals, or statistical
significance tests. It primarily reports deterministic results from large-scale pretraining
and evaluation. Due to the scale and cost of such pretraining (e.g., hundreds of millions of
samples), repeated runs or variance analysis are impractical.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix A.6.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully complies with the NeurIPS Code of Ethics. It uses only
publicly available datasets and does not involve human subjects, private data, or sensitive
content.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work does not have any foreseeable societal impact. It focuses on
improving vision-language pretraining methods without involving sensitive data, human
subjects, or deployment-oriented applications. Therefore, we believe there are no direct or
indirect risks associated with the proposed approach.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets that pose a high
risk of misuse. It builds on publicly available datasets and does not include pretrained
models or components with dual-use concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available datasets that are properly cited with their
original sources and licenses. We also rely on the official implementation of CLIP from

OpenCLIP, which is licensed under the MIT License. All assets used are cited with appro-
priate references and used in accordance with their licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the SuperCLIP model weights and training code upon accep-
tance. The release will include documentation covering model usage, training details, and
licensing information to ensure reproducibility and responsible use.

Guidelines:

* The answer NA means that the paper does not release new assets.
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16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects,
and thus IRB or equivalent approval is not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve the use of
LLMs as any important, original, or non-standard component.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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