
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPRESSKV: SEMANTIC RETRIEVAL HEADS KNOW
WHAT TOKENS ARE NOT IMPORTANT BEFORE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have significantly boosted
long-context processing. However, the increasing key-value (KV) cache size
poses critical challenges to memory and execution efficiency. Most KV cache
compression methods rely on heuristic token eviction using all attention heads in
Grouped Query Attention (GQA)-based LLMs. This method ignores the different
functionalities of attention heads, leading to the eviction of critical tokens and thus
degrades the performance of LLMs.
To address the issue above, instead of using all the attention heads in GQA-based
LLMs to determine important tokens as in the previous work, we first identify the
attention heads in each layer that are not only capable of retrieving the initial and
final tokens of a prompt, but also capable of retrieving important tokens within
the text and attending to their surrounding semantic context. Afterwards, we ex-
ploit such heads to determine the important tokens and retain their correspond-
ing KV cache pairs. Furthermore, we analyze the cache eviction error of each
layer individually and introduce a layer-adaptive KV cache allocation strategy.
Experimental results demonstrate the proposed CompressKV consistently outper-
forms state-of-the-art approaches under various memory budgets on LongBench
and Needle-in-a-Haystack benchmarks. Notably, it retains over 97% of full-cache
performance using only 3% of KV cache on LongBench’s question-answering
tasks and achieves 90% of accuracy with just 0.7% of KV storage on Needle-in-
a-Haystack benchmark. Our code is available in the supplementary material.

1 INTRODUCTION

Recent advances in large language models (LLMs) (Achiam et al., 2024; Anthropic, 2024; Dubey
et al., 2024; Hui et al., 2025; Wang et al., 2025) have boosted their long-context processing capabil-
ities. However, with the increasing length of texts, the resulting key-value (KV) cache size grows
linearly. The large KV cache leads to slow inference due to the attention calculation across past KV
cache. In addition, the large KV cache requires substantial memory storage, which creates a major
bottleneck in the deployment of long-context LLMs. Therefore, effective compression of KV cache
is essential for optimizing the computational efficiency and model scalability.

State-of-the-art KV cache compression focuses on quantization, low-rank approximation, and KV
cache eviction (Liu et al., 2024; Kang et al., 2024; Ge et al., 2024; Xiao et al., 2024; Li et al.,
2024; Cai et al., 2025; Yang et al., 2024; Qin et al., 2025). Among such techniques, KV cache
eviction strategy where KV pairs corresponding to those unimportant tokens are eliminated and the
remaining KV pairs are kept has started to draw more and more attention.

There are different criteria to determine unimportant tokens for KV cache compression. For ex-
ample, StreamingLLM (Xiao et al., 2024) retain the first and last tokens and neglects potentially
important tokens in the middle of the prompt. SnapKV (Li et al., 2024) clusters recent attention
scores within an observation window at the end of the prompt, either per head or per head group,
to identify and retain the important tokens receiving the highest attention values. CAKE (Qin et al.,
2025) extends SnapKV’s method by adding the attention variance in an observation window to the
eviction score, enabling it to capture tokens whose importance fluctuates over time.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The criteria described above are effective in many scenarios in KV cache compression. However,
they treat all heads equally without examining their distinct functionalities, so that they use the sum
of the attention scores across all the attention heads to make decisions on KV cache eviction. In fact,
attention heads exhibit different functionalities. For example, in Grouped Query Attention (GQA)-
based LLMs (Ainslie et al., 2023), some attention heads, called Streaming Heads, exclusively focus
on the beginning and the end of a prompt (Xiao et al., 2024; 2025). When the attention heads
within a GQA group are dominated by Streaming Heads, those heads have the largest influence on
KV cache eviction, resulting in only the initial and last tokens’ KV pairs being retained. This leads
to the eviction of crucial tokens in the middle of a prompt and thus degrades performance of LLMs.

Besides eliminating KV pairs for those unimportant tokens, state-of-the-art research also allocates
specified memory budgets to layers. For example, Xiao et al. (2024); Li et al. (2024) allocates each
layer to a fixed number of KV pairs without considering layer difference. Yang et al. (2024); Cai
et al. (2025); Qin et al. (2025) allocates KV cache budget across layers based on attention distri-
butions or layer-wise statistics such as attention entropy or variance, which often require additional
online computation cost. Moreover, since attention distributions can vary significantly across differ-
ent models, limiting their generalization ability and effectiveness. Orthogonally, HeadKV (Fu et al.,
2025) and AdaKV (Feng et al., 2025) extend to head-level budget allocation.

In this paper, we observe that certain attention heads are capable of retrieving important tokens
within the text and attending to their surrounding semantic context. We refer to these heads as Se-
mantic Retrieval Heads. Motivated by this observation, we identify such Semantic Retrieval Heads
in each layer and use them to determine the crucial tokens and share a unified set of crucial token
indices across all heads within that layer. This approach can substantially address the dominance
of Streaming Heads in KV cache evictions, so that it can enhance the performance of GQA-based
models. Furthermore, we analyze the cache eviction error of each layer individually and introduce a
layer-adaptive KV cache allocation strategy. Our contributions are as follows:

(1) We introduce a Semantic-Retrieval–driven mechanism to address streaming-head dominance in
GQA, preventing important tokens from being evicted out; The identified Semantic Retrieval Heads
then guide token importance and KV-cache eviction. Our experimental results demonstrate Semantic
Retrieval Heads know what tokens are unimportant before generation.

(2) We estimate each layer’s compression impact by computing the Frobenius norm of the difference
between its attention-block outputs with the compressed cache and those with the full cache, dur-
ing the decoding stage. Cache budgets are then proportionally assigned across layers, prioritizing
layers with higher errors. Importantly, this analysis is performed offline and does not introduce any
additional overhead during online inference.

(3) CompressKV is validated on multiple LLMs using LongBench and Needle-in-a-Haystack
(NIAH). On LongBench, CompressKV maintains over 99% of full-cache performance with only
19% of KV budget and retains 97% of question-answering accuracy using just 3% of the cache. On
Needle-in-a-Haystack retrieval benchmark, it achieves 90% of the baseline accuracy with only 0.7%
of KV storage.

2 BACKGROUND AND RELATED WORK

2.1 KV-CACHE BASICS

The motivation of KV cache is to reduce the signification computation cost of attention evaluation.
To explain this, consider the case of a single attention head. This attention head can be evaluated
with weight matrices, denoted as WQ, WK, WV ∈ Rd×d, and a prompt, denoted as X ∈ Rl×d,
where where l is the sequence length and d the hidden dimension. The attention evaluation includes
two phases, i.e., prefilling phase and decoding phase.

Prefilling Phase: In this phase, the query Q, key K, and value V are evaluated with the entire input
embeddings as follows

Q = XWQ,K = XWK,V = XWV (1)

With K, V and Q, the output of the attention can be evaluated as follows

O = Softmax
(
QK⊤)V (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 <|BOS|> Once upon a  ... ...  reading drafts of this. 

A
tte

nt
io

n 
Sc

or
e

0
 The best thing to do in San Francisco is to eat a  sandwich 

ContextContext Needle Sentence 
What is the best thing to do in San Francisco?

Question

High attention zone
High attention zone  SandwichA: Eat a    ...

(a) Attention distribution of head 0 (Streaming Head(SH))

 SandwichA: Eat a    ...

 <|BOS|> Once upon a  ... ...  reading drafts of this. 

A
tte

nt
io

n 
Sc

or
e

0
 The best thing to do in San Francisco is to eat a  sandwich 

ContextContext Needle Sentence 
What is the best thing to do in San Francisco?

Question

Highest attention score

(b) Attention distribution of head 1 (Retrieval Head(RH))

Darker = Higher

Lighter = LowerTop-N

Head 1(SH)

Avg

Head 2(RH)

Sum      Pooling

Head 0(SH)

(c) Critical tokens were evicted 

Key Information in the ContextInitial tokens Last tokens

Figure 1: Motivation. (a) The attention score distribution of a streaming head (SH). (b) The attention
score distribution of a retrieval head (RH). (c) Streaming attention heads in a GQA group dominate
the token eviction, indicating only initial and final tokens are remained. The critical tokens are
evicted.

The key K and the value V are then stored in cache memory, which is also called KV cache.

Decoding Phase: In this phase, the previously stored KV cache is used to generate new tokens and
the newly generated KV pair is then appended to the previously stored KV cache to refresh KV
cache. Specifically, at a decoding step t, given a new token embedding xt ∈ R1×d, we first evaluate
the newly generated KV pairs with this new token as follows

kt = xt WK, vt = xt WV. (3)

Afterwards, we use such new KV pairs to update the cache via

K← Concat
[
K, kt

]
,V← Concat

[
V, vt

]
. (4)

In GQA-based LLMs, query heads in a layer are partitioned into multiple groups. Multiple query
heads within the same group share the same KV cache. The shared key and value are evaluated
once per group and reused to produce the output of each head in the group. Although KV caching
removes the need to recompute keys and values at every step, the cache itself grows linearly with
prompt sequence length, becoming especially problematic for long-text tasks.

2.2 KV CACHE COMPRESSION

To alleviate the burden of KV cache storage, various KV cache compression methods, e.g., quantiza-
tion (Liu et al., 2024), low-rank approximations (Kang et al., 2024), and KV cache eviction strategy
have been proposed. In particular, KV cache eviction reduces cache size by removing KV cache
pairs of unimportant tokens without retraining. There are different eviction strategies. For example,
StreamingLLM (Xiao et al., 2024) focuses solely on retaining the first and last tokens, which only
addresses the Streaming Head scenario and neglects potentially important tokens in the middle of
the sequence. To overcome this limitation, more advanced methods have been proposed (Liu et al.,
2023; Zhang et al., 2023; Li et al., 2024; Han et al., 2024; Oren et al., 2024). A representative
example is SnapKV (Li et al., 2024), which clusters recent attention scores, either per head or per
head group to identify important token and retain the KV cache pairs of such tokens. Besides, re-
cent approaches, including PyramidKV (Cai et al., 2025), D2O (Wan et al., 2025), and CAKE (Qin
et al., 2025), dynamically allocate cache budgets based on attention statistics or modeled attention
dynamics of all the layers in an LLM. Beyond layer-level allocation, HeadKV (Fu et al., 2025) and
AdaKV (Feng et al., 2025) further enhances cache budget with head-level budget allocation. Their
selection strategies for important tokens are an extended version of SnapKV’s eviction strategy.

The KV cache eviction approaches above have two major limitations. First, In GQA-based LLMs,
many prior KV cache eviction pipelines compute token importance via head-agnostic pooling (e.g.,
across heads within each GQA group) when selecting tokens for eviction, effectively treating all
attention heads equally and ignoring their functional heterogeneity; Recent work (Olsson et al.,
2022; Kwon et al., 2022; Zheng et al., 2024; Ren et al., 2024; Wu et al., 2025; Todd et al., 2024;
Yin & Steinhardt, 2025; Tang et al., 2025; Fu et al., 2025) has shown that different attention heads
have distinct roles. For example, some attention heads, called Streaming Heads in the state-of-the-art
research, always focus on the beginning and the end of a prompt. For example, in Figure 1(a), head 0
is such a Streaming Head since the attention scores of the initial token and the last tokens are larger

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

than the remaining tokens. On the contrary, some attention heads, called Retrieval heads in Wu
et al. (2025), exhibit copy-and-paste behaviors for long-context scenarios. For example, in Figure
1(b), head 1 is such a retrieval head since the attention scores of the correct answer “sandwich” are
larger. HeadKV (Fu et al., 2025) further scores heads using retrieval and reasoning signals. In GQA-
based LLMs, Streaming Heads tend to have larger effect than the other heads for KV cache eviction,
which indicates only KV cache pairs corresponding to initial and last tokens are retained. This leads
to the eviction of crucial tokens in the middle of a prompt and thus degrades the performance of
LLMs. Figure 1(c) illustrates such an example, where Streaming Heads including head0 and head1
dominate token eviction for KV cache compression.

Second, the layer budget allocation in the previous work Yang et al. (2024); Cai et al. (2025); Qin
et al. (2025) typically relies on attention distributions or layer-wise statistics such as attention en-
tropy or variance, which often require additional online computation. Moreover, since attention dis-
tributions can vary significantly across different models, directly adopting a fixed allocation strategy
according to attention distributions may not yield optimal results.

3 COMPRESSKV

CompressKV includes three key components: (1) Identification of the attention heads that are capa-
ble of retrieving important tokens within the text and attending to their surrounding semantic context.
(2) Important token selection driven by such identified heads. (3) Error-aware layer-adaptive cache
allocation. In the following subsections, we will first explain our observations and insights into
identification of attention heads with specified functionalities. Afterwards, we will take advantage
of such heads to select tokens for KV cache eviction. Furthermore, different cache budgets will be
allocated to different layers.

3.1 OBSERVATIONS AND INSIGHTS

To avoid that Streaming Attention Heads dominate the KV cache eviction as illustrated in Fig-
ure 1(c), intuitively, Retrieval Heads instead of all attention heads can be used to identify important
tokens for KV cache eviction. Previous work typically identifies Retrieval Heads using a strict top-1
rule, indicating that those attention heads, the highest attention score of which aligns exactly with
the correct token answer during generation, are labeled as Retrieval Heads (Wu et al., 2025). This
identification technique emphasizes copy-and-paste behavior. Tang et al. (2025) extends copy-and-
paste identification by classifying both echo heads (copy-and-paste to the identical prior token) and
induction heads (an extension that attends to the immediately preceding token) as Retrieval Heads.
HeadKV (Fu et al., 2025) relaxes the strict top-1 criterion to a top-N hit: at each decoding step, a
head is credited if the ground-truth answer token ranks within its top-k attention weights.

Although HeadKV are more relaxed than strict top-1, this criteria still remains peak-driven, privi-
leging sharp attentions on the answer token. In long contexts where attention is sparse and skewed
towards boundary tokens—top-1 rules yield low hit rates and can under-credit attention heads whose
attention covers the answer span and its semantic neighborhood without placing a single sharp peak
on the exact answer token. In HeadKV, if parts of the answer span do not appear within the top-k
ranked positions, heads allocating substantial attention to these tokens may not be credited. For in-
stance, in Figure 2(a), head 0 fails to receive credit because the relevant tokens fall outside the top-k
range despite providing coverage around the correct answer. Moreover, because the top-k threshold
in HeadKV is tied to the answer length, when answers are short, e.g., only one or two tokens, this
method returns back to the original strict top-1 regime.

To address the limitation above, we introduce Semantic Retrieval Heads (SRH), a span-aggregation
standard that credits attention heads for both copy-and-paste behaviours and deeper semantic de-
pendencies. We then use such heads to identify important tokens for KV cache eviction, thereby
preventing crucial mid-prompt evidence from being suppressed by streaming heads.

3.2 SEMANTIC RETRIEVAL HEAD IDENTIFICATION STANDARDS

Instead of requiring exact top-k hits in the traditional Retrieval Head identification, we aggregate a
head’s attention scores over the entire answer span inserted into a long context whenever the model

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Traditional Retrieval Head identification

Unable to recognize Successfully Captured

...  reading drafts of this. What is the best thing to do in San Francisco?

...  reading drafts of this. What is the best thing to do in San Francisco?

Attention distribution of head 1

 <|BOS|> Once upon a  ...

A
tte

nt
io

n 
Sc

or
e

0

Context Needle Sentence 

Top 1 score

Context

Attention distribution of head 0

 <|BOS|> Once upon a  ...

A
tte

nt
io

n 
Sc

or
e

0

Context Needle Sentence 

Not the top-1 score

Context

Question

Question

 The best thing to do in San Francisco is to eat a  sandwich 

A: Eat a   Sandwich ...

 The best thing to do in San Francisco is to eat a  sandwich 

A: Eat a   Sandwich ...

(b) Semantic Retrieval Head identification
Question

...  reading drafts of this. What is the best thing to do in San Francisco?

Context

Attention distribution of head 0

 <|BOS|> Once upon a  ...

A
tte

nt
io

n 
Sc

or
e

0

Context Needle Sentence 
 The best thing to do in San Francisco is to eat a  sandwich 

A: Eat a   Sandwich ...

Larger enough

Attention distribution of head 1

 <|BOS|> Once upon a  ...

A
tte

nt
io

n 
Sc

or
e

0
 The best thing to do in San Francisco is to eat a  sandwich 

Context Needle Sentence 

A: Eat a   Sandwich ...

Larger enough

...  reading drafts of this. What is the best thing to do in San Francisco?

Context Question

Figure 2: Illustration of Semantic Retrieval Head identification versus traditional Retrieval Head
selection. Semantic Retrieval Heads capture attention over the entire answer span, addressing the
limitations of traditional methods that rely solely on copy-and-paste behavior.

generates a correct answer token as the score of this head. This evaluation is expressed with the
following equation as follows

SemanticRetrievalScore(h) =
N∑
t=1

1{ yt∈A}
∑
j∈A

a
(h)
t,j . (5)

where yt is the generated token at step t, A is the answer span, and aht,j is head h’s attention weight
on the j-th token of A. The higher the score of a head is, the more capable of capturing semantic
information this head is.

Figure 2(b) illustrates the concept of this new identification standard. By summing over the en-
tire span, we can capture attention heads that contribute semantically relevant context even when
they never achieve top-1 attention on a single token. Aggregation over multiple tokens enables the
method to recognize heads that attend to semantic cues—such as “eat” or “a thing” around “sand-
wich”—rather than only pure copy-and-paste patterns. For example, head 0 in Figure 2 is considered
as Semantic Retrieval Head in our new standard although it is not considered as Retrieval Head in
the traditional identification methods. For a visual comparison between Semantic Retrieval Heads
and traditional Retrieval Heads, please refer to Appendix G

3.3 TOKEN SELECTION DRIVEN BY SEMANTIC RETRIEVAL HEADS

In GQA-based LLMs, for each layer, we will select top top-k Semantic Retrieval Heads with high
scores defined with equation (5) as the criterion for selecting important tokens for KV cache eviction.
All the attention heads within this layer share a common set of selected token indices determined
by these top Semantic Retrieval Heads. This concept is illustrated in Figure 3, where a layer has
two groups. In this example, Head 2 and Head 3 are top 2 Semantic Retrieval Heads. The attention
score matrices of such heads are compressed by summing over the observation window and pooling
across the token dimension. Afterwards, such compressed vectors are averaged. The tokens with
the top N highest attention scores will be selected and their corresponding KV cache pairs will be
retained. The KV cache pairs for the remaining tokens will be evicted to compress KV cache.

3.4 ERROR-AWARE LAYER-ADAPTIVE CACHE ALLOCATION

To maximize memory efficiency under strict budget constraints, we propose an error-aware and
layer-adaptive cache allocation strategy. Instead of relying on attention statistics as in the previous
methods, this approach quantifies the compression error caused by KV cache compression, using
full-cache outputs as the reference. We specifically focus on the extreme compression setting, where
only a small fraction of tokens are retained in each layer’s KV cache. For each layer l and decoding
step t, let Ol

full,t and Ol
comp,t denote the attention outputs using the full and compressed KV caches,

respectively:
Ol

full,t = Wl
O Attention

(
Ql

t, K
l
full, V

l
full

)
(6)

Ol
comp,t = Wl

O Attention
(
Ql

t, K
l
comp, V

l
comp

)
(7)

where W
(l)
O is the output projection matrix of layer l, Ql

t is the query, Kl is the key, and Vl is the
value representation at layer l. To evaluate the error incurred by compressing KV cache per layer,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CompressKV

Sum      Pooling

Head 1(SH)Head 0(SH) Head 2(SRH) Head 4(SH)Head 3(SRH)

Top-N

Head 5(SH)

Group 0 Group 1
Avg

Sum      Pooling

Last tokens
Initial tokens

Key Information in the Context

SH: Streaming Head
SRH: Semantic Retrieval Head

Figure 3: Illustration of the token selection driven by Semantic Retrieval Heads.

the error score for layer l is computed and normalized as:

e(l) =

T∑
t=1

∥∥Ol
comp,t −Ol

full,t

∥∥
F∥∥∥Ol

full,t

∥∥∥
F
+ ϵ

, ẽ(l) =
e(l)∑
k e

(k)
(8)

where T is the total number of decoding steps,| · |F denotes the Frobenius norm and ϵ is a small
positive constant (e.g., 10−6) to prevent division by zero.

Given the normalized per-layer error scores ẽ and total cache budget Btotal, we first assign a mini-
mum allocation m and a maximum allocation M to each layer to avoid a layer either has no memory
budget or a large memory budget. The remaining budget is distributed in proportion to the error
scores. More details can be found in Appendix C.

4 EXPERIMENTS

Baselines and Backbone LLMs We compare CompressKV with six representative work:
StreamingLLM (Xiao et al., 2024), SnapKV (Li et al., 2024), PyramidKV (Cai et al., 2025),
CAKE (Qin et al., 2025)),HeadKV (Fu et al., 2025) and AdaKV (Feng et al., 2025). All meth-
ods are evaluated on state-of-the-art open-source LLMs, including Llama-3.1-8B-Instruct (Dubey
et al., 2024),Mistral-7B-Instruct-v0.3 (Jiang et al., 2024a), and Qwen2.5-7B-Instruct (Hui et al.,
2025). In addition, we extend our evaluation to larger-scale LLMs, with detailed results provided in
the Table 10. All evaluations are conducted in a generative setting using greedy decoding to ensure
a fair comparison across tasks. Beyond direct comparison, we further demonstrate two orthogonal
integrations: (i) CompressKV with head-level budget allocation methods in Appendix D and (ii)
CompressKV with prefilling-stage acceleration methods in Appendix E

Evaluating Tasks To evaluate CompressKV’s performance under different memory budgets,
we adopt two comprehensive benchmarks and one masking-based ablation analysis: (1) Long-
Bench (Bai et al., 2024), which evaluates long-context understanding across 16 datasets; see Ap-
pendix B for more details. (2) Needle-in-a-Haystack (Kamradt, 2023), which measures the retrieval
of a target answer hidden in extended text; and (3) an ablation of retrieval head types (following Wu
et al., 2024), where we selectively disable SRH and TRH to quantify their contributions. We also
compare CompressKV with TRH vs. SRH under equal per-layer KV budgets, e.g., 256 tokens and
report results separately.

Implementation Details Our experiments evaluate CompressKV and baseline methods under total
memory budgets ranging from 128 to 2048 tokens for each layer. The KV cache budget is distributed
equally across layers for baseline methods: StreamingLLM and SnapKV, while methods such as
PyramidKV, CAKE, and CompressKV distributes the cache differently across layers but keeps total
memory usage fixed. By contrast, HeadKV and AdaKV are head-level allocation schemes; in our
setup, to respect grouped-query attention, we allocate at the GQA-group granularity under the same
total memory. To ensure a fair comparison, tokens are evicted only during the prefilling phase. For
CompressKV, we select the top four Semantic Retrieval Heads in each layer to identify and preserve
the most important tokens. Using the LongBench benchmark, we derive each layer’s normalized
error scores by simulating minimal-size KV compression and computing the Frobenius-norm recon-
struction error of its attention-block outputs. During budget allocation, we impose per-layer bounds
[m,M ] with m = 32 and M = 3× Bper-layer, and distribute the remaining KV pairs proportionally
to normalized errors.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of CompressKV with StreamingLLM, SnapKV, PyramidKV,
CAKE, HeadKV, AdaKV, and FullKV on LongBench for Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.3 and Qwen2.5-7B-Instruct. CompressKV generally outperforms other KV cache com-
pression methods across various KV cache sizes and LLMs. Best in bold

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

Musique

2WikiMQA

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama3.1-8B-Instruct, KV Size = 256

StreamingLLM 23.35 22.26 33.94 42.8 21.91 24.47 23.35 16.28 23.85 54.5 70.66 17.65 6.12 87.99 39.64 34.01 33.92
SnapKV 30.41 36.24 49.88 54.06 30.69 45.95 23.64 22.99 23.6 58.0 91.29 40.92 6.25 99.0 59.68 50.74 45.21
PyramidKV 29.02 33.4 49.43 54.79 29.21 46.24 23.45 22.87 22.81 58.0 89.41 39.8 6.25 98.5 57.42 49.16 44.36
CAKE 31.31 40.18 51.54 54.48 29.66 45.75 25.22 23.84 24.09 64.5 91.49 42.06 6.14 99.5 59.6 51.51 46.3
HeadKV(GQA) 30.55 32.41 48.36 53.72 30.26 45.97 23.93 23.57 23.4 57.0 90.0 40.54 6.33 93.0 58.23 48.45 44.11
AdaKV(GQA) 29.45 33.7 48.96 54.48 29.59 46.09 23.58 23.13 23.27 53.0 90.79 40.49 6.33 98.5 59.47 50.31 44.45
CompressKV 30.68 42.58 52.27 54.37 30.43 46.46 24.86 23.79 24.13 68.5 89.97 41.08 6.14 99.5 60.63 51.94 46.71

Llama3.1-8B-Instruct, KV Size = 1024

StreamingLLM 23.55 28.99 43.17 42.5 21.61 28.37 28.26 19.12 26.37 68.0 74.02 19.41 6.19 82.58 43.65 35.49 36.95
SnapKV 31.32 44.62 52.51 54.65 30.24 46.8 28.14 24.12 26.36 69.0 92.05 42.67 6.12 99.5 62.06 54.99 47.82
PyramidKV 31.06 44.09 53.25 54.25 30.45 46.87 27.44 23.46 26.31 70.0 91.93 42.91 6.08 99.5 62.03 52.75 47.65
CAKE 30.61 44.64 52.18 54.89 30.44 46.14 29.1 24.28 26.33 71.0 91.89 42.81 6.17 99.5 62.05 55.47 47.97
HeadKV(GQA) 30.6 41.24 52.13 54.34 30.96 46.33 27.27 24.11 26.0 65.5 91.51 43.1 6.17 98.5 61.84 53.17 47.05
AdaKV(GQA) 31.75 44.71 52.74 54.75 31.05 46.73 27.9 23.86 26.41 69.5 92.05 42.82 6.58 99.5 62.04 54.61 47.94
CompressKV 30.27 45.18 53.44 55.25 30.83 46.57 29.06 24.34 26.48 71.0 91.79 43.37 6.0 99.5 63.14 55.62 48.24

Mistral-7B-Instruct-v0.3, KV Size = 256

StreamingLLM 21.89 21.37 32.51 36.98 16.78 25.43 21.85 16.89 23.55 57.5 72.38 18.24 4.0 65.0 31.63 33.53 31.22
SnapKV 27.49 29.18 48.92 48.0 26.47 36.78 22.46 22.04 22.54 70.0 89.44 43.72 6.0 96.0 56.69 54.49 43.76
PyramidKV 27.71 28.23 48.25 48.61 25.62 36.18 22.1 21.77 21.8 70.0 89.33 43.65 6.0 93.5 55.13 51.06 43.06
CAKE 27.46 33.09 54.32 48.32 27.08 37.8 24.62 23.61 23.85 70.0 89.33 44.09 4.5 95.5 55.76 56.35 44.73
HeadKV(GQA) 29.15 31.66 51.03 49.09 24.88 36.64 22.46 22.2 22.97 70.5 89.57 43.86 5.5 94.0 56.77 55.39 44.1
AdaKV(GQA) 29.08 27.93 49.69 49.4 26.07 36.34 22.55 21.72 22.14 70.5 89.69 44.09 6.5 94.0 56.21 54.05 43.75
CompressKV 29.86 35.32 52.84 49.77 27.64 38.04 24.05 23.37 23.26 75.5 89.16 45.31 4.5 96.5 56.47 55.31 45.43

Mistral-7B-Instruct-v0.3, KV Size = 1024

StreamingLLM 22.37 28.03 41.21 38.0 17.05 26.95 27.75 19.87 27.13 71.5 70.34 19.02 5.37 68.5 37.95 34.57 34.73
SnapKV 29.82 36.49 52.64 50.33 26.88 38.53 26.39 23.94 25.84 75.0 89.24 46.73 6.5 97.0 58.57 59.86 46.48
PyramidKV 28.14 35.83 54.28 49.88 25.68 38.31 25.91 23.82 25.42 74.5 89.86 46.17 5.0 97.5 57.72 57.36 45.96
CAKE 29.21 36.86 53.2 48.69 27.62 38.78 28.94 24.54 26.98 74.0 88.94 46.94 5.0 98.0 58.88 59.91 46.66
HeadKV(GQA) 29.62 37.34 53.09 50.31 26.67 38.28 26.44 23.52 26.11 76.0 89.35 45.68 5.0 97.0 58.54 59.56 46.41
AdaKV(GQA) 29.73 37.04 53.07 50.01 26.32 37.54 26.27 23.97 26.12 75.5 89.49 46.25 6.5 96.5 58.62 59.16 46.38
CompressKV 29.75 38.88 52.81 49.71 28.48 39.04 28.26 24.95 26.88 76.0 89.24 46.16 5.5 97.0 58.65 60.05 46.96

Qwen2.5-7B-Instruct, KV Size = 256

StreamingLLM 18.04 21.45 27.37 35.88 14.17 19.45 22.23 15.54 20.77 52.5 62.65 17.86 8.5 25.33 33.76 33.51 26.81
SnapKV 27.32 35.61 49.31 54.66 27.11 43.67 21.93 20.88 19.33 53.0 88.04 43.2 8.5 98.0 55.08 56.46 43.88
PyramidKV 25.05 33.19 47.72 52.62 25.28 44.05 20.14 19.92 16.64 50.5 87.76 40.71 8.5 94.0 50.36 51.77 41.76
CAKE 26.56 36.42 49.88 54.25 27.56 45.93 23.22 20.82 19.82 53.0 86.08 43.59 8.5 97.0 54.44 57.81 44.05
HeadKV(GQA) 27.62 36.57 49.71 54.96 26.82 44.83 22.51 20.43 19.5 56.5 89.12 43.43 8.5 98.5 55.63 58.33 44.56
AdaKV(GQA) 27.19 35.54 48.15 54.34 27.8 44.7 21.74 20.44 18.99 53.5 87.65 42.5 8.5 98.0 55.04 56.65 43.8
CompressKV 28.94 36.39 48.85 54.45 26.65 44.13 22.37 20.96 19.02 65.5 87.5 42.08 8.5 98.5 53.72 57.46 44.69

Qwen2.5-7B-Instruct, KV Size = 1024

StreamingLLM 20.68 30.34 41.03 37.96 16.35 25.71 27.04 17.89 23.39 67.0 61.54 18.18 8.5 12.5 39.15 36.4 30.23
SnapKV 28.77 40.73 51.54 56.84 28.64 45.65 26.7 21.87 22.84 69.0 89.57 44.35 8.5 99.5 59.65 64.85 47.44
PyramidKV 29.71 39.75 52.22 56.39 26.09 45.77 24.57 20.91 21.19 68.5 89.14 44.06 8.5 99.0 58.44 60.03 46.52
CAKE 28.88 42.2 51.66 56.66 28.96 45.25 28.0 21.98 23.09 68.5 88.73 44.85 8.5 100.0 58.95 64.15 47.52
HeadKV(GQA) 28.6 41.32 52.07 57.09 28.98 45.32 27.39 21.91 23.11 69.5 89.58 44.58 8.5 99.5 59.56 64.47 47.59
AdaKV(GQA) 28.9 40.86 52.09 56.93 26.62 45.64 26.51 21.87 22.89 69.5 89.74 44.44 8.5 99.5 59.83 63.32 47.32
CompressKV 29.52 42.17 51.82 57.55 29.5 45.17 26.96 22.06 22.69 70.5 88.43 44.11 8.5 100.0 59.08 63.94 47.62

4.1 EVALUATION ON LONGBENCH BENCHMARK

Table 1 demonstrates performance comparison under two KV cache budgets—low (256) and high
(1024)—with full results across additional budgets as well as large-scale language model evaluations
reported in Appendix F. CompressKV consistently ranks the top performers across various tasks.
The advantage of CompressKV is particularly pronounced in low-memory scenarios. CompressKV
outperforms HeadKV by 2.5 points on Llama-3.1-8B-Instruct; even in the 1024 cache budget setting
scenario, CompressKV still maintains superior accuracy. By leveraging a small number of Semantic
Retrieval Heads to accurately identify semantically important tokens, combined with an effective
adaptive layer budget allocation strategy, CompressKV achieves the best overall performance.

As illustrated in Figure 4, we benchmark CompressKV on LongBench across KV cache sizes from
128 to 2048, presenting results for Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Qwen-2.5-
7B-Instruct. The evaluation metric is the average score across all LongBench datasets. SnapKV
outperforms the legacy method StreamingLLM. Despite its methodological similarities to SnapKV,
PyramidKV underperforms in many scenarios, possibly due to its limited adaptability. CAKE
achieves better results than previous baseline methods in most cases by dynamically allocating
memory to each layer and incorporating additional computations of variance and entropy scores.
HeadKV and AdaKV (head-level allocation) perform strongly at generous budgets but degrade un-
der tight budgets. In contrast, CompressKV consistently surpasses all methods across budgets—with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the largest margins in the low-budget regime—except for Qwen-2.5-7B-Instruct at a per-layer bud-
get of 2048 tokens, where it is on par with HeadKV; in all other model–budget combinations, Com-
pressKV attains the best average score.

Figure 4: Average performance on 16 LongBench datasets under different KV cache budget settings
compared with various baseline methods.

4.2 EVALUATION ON NEEDLE IN A HAYSTACK

Figure 5 presents average Needle-in-a-Haystack performance across KV budgets for three
LLMs—8K–128K contexts for Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct, and 2K–32K for
Mistral-7B—showing CompressKV consistently surpasses competing methods at every budget. On
Mistral-7B-Instruct-v0.3, CompressKV, HeadKV, and CAKE achieve near lossless compression
with as few as 256 KV budget, highlighting their robustness. On Qwen-2.5-7B-Instruct, how-
ever, CAKE lags under low budgets, whereas CompressKV remains competitive. On Llama-3.1-
8B-Instruct, AdaKV and HeadKV also underperform at low budgets, while CompressKV achieves
nearly lossless performance at a 2048 KV budget (5% of the full cache) and still retains 90% of
the original performance with only 256 KV budget (0.7% capacity). Together with the LongBench
evaluation, these results show that CompressKV preserves general LLM performance across diverse
long-context tasks while delivering efficient KV-cache compression. Additional results appear in
Appendix H.

Figure 5: Average performance on the Needle-in-a-Haystack benchmark under different KV cache
budget settings, in comparison with baseline methods.

4.3 SEMANTIC RETRIEVAL HEADS: CAUSAL ABLATION AND HEAD-AGNOSTIC GAINS

Following the masking-based causal test of Wu et al. (2025), we perform targeted ablation by mask-
ing the top 20 of these heads and comparing against traditional Retrieval Heads(TRH), as shown in
Figure 6 . Even masking a small subset of Semantic Retrieval Heads causes a sharp drop in retrieval
accuracy and a significant rise in hallucinations, underscoring their essential role in preserving fac-
tual consistency and their ability to retrieve and localize textual information. For more results, please
refer to the Appendix I. CompressKV is compatible with heterogeneous head definitions. Table 2
compares CompressKV using TRH vs. SRH under a fixed per-layer KV budget of 256 tokens. SRH
yields a modest yet consistent average gain over TRH (+0.24). Moreover, even with TRH and with-
out dynamic budget allocation, CompressKV still surpasses most representative baselines (Table 1),
evidencing more precise salient-token selection.

4.4 EVALUATION OF LATENCY AND PEAK MEMORY

We evaluate the end-to-end generation latency, decoding latency, and peak memory usage on Llama-
3.1-8B-Instruct, implemented with FlashAttention-2 (Dao, 2024), running on a single NVIDIA
A100 GPU. The evaluation spans context lengths from 4K to 128K tokens with a fixed genera-
tion length of 1024 tokens. We compare our proposed CompressKV method against a full cache

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: LongBench accuracy under a fixed per-layer KV budget (256) comparing TRH vs. SRH.

Method NrtvQA
Qasper

MF-en
HotpotQA

Musique
2WikiMQA

GovReport
QMSum

MultiNews
TREC

TriviaQA
SAMSum

PCount
PR-en

Lcc RB-P Avg

Mistral-7B-Instruct-v0.3, KV Size = 256

CompressKV(TRH) 28.67 32.47 53.45 50.03 27.68 37.04 23.28 23.12 22.82 73.0 90.33 44.24 4.5 95.5 54.99 54.4 44.72
CompressKV(SRH) 28.99 34.6 54.65 49.17 27.58 37.94 23.24 23.23 22.71 74.5 89.28 44.07 3.5 95.5 55.83 54.51 44.96

Figure 6: Masking different head types in
Mistral-7B-Instruct-v0.3.

Figure 7: Comprehensive evaluation of infer-
ence efficiency on a single NVIDIA A100 GPU.

baseline and six aforementioned KV cache eviction methods—each constrained by a KV cache bud-
get of 1024. As illustrated in Figure 7, the end-to-end generation latency and time-to-first-token in-
creases with longer context lengths for all methods. However, while the decoding latency of the full-
cache baseline consistently grows with context length, all KV cache eviction strategies—including
CompressKV—maintain nearly constant decoding latency, demonstrating their efficiency. Figure 7
shows that with a fixed KV budget, all eviction methods (including CompressKV) have similar peak
memory, while the full-cache baseline is much higher—especially at long contexts.

4.5 ABLATION STUDIES

To evaluate the effectiveness of each part in CompressKV, we conduct a series of ablation studies
on the LongBench benchmark using Mistral-7B-Instruct-v0.3 with a fixed KV cache budget of 256.

Ablation Study on the Number of Selected Heads per Layer To quantify how many Semantic
Retrieval Heads are needed per layer, we vary per-layer SR-Head selection from 2 to 24 on Table 3.
Accuracy gains peak at 4 heads and then plateau (Top-6: −0.17; Top-12: 0.00), with 24 heads
slightly worse. Thus, 4 heads are sufficient to capture most semantic-retrieval capacity.

Table 3: Ablation studies: (Left) number of Semantic Retrieval Heads per layer; (Right) token
selection strategy and layer-aware cache allocation.

Heads per Layer Mean Acc. (%) ∆ vs. Top-4 (%)

Top-2 44.33 –0.63
Top-4 44.96 0.00
Top-6 44.79 –0.17
Top-12 44.96 0.00
Top-24 44.30 –0.66

Method Acc. (%)

SnapKV 43.76
+ SRH Selection 44.96
+ SRH + Layer Alloc 45.43

Ablation Study on Token Selection and Layer-Wise Cache Allocation We ablate SR-Head–
driven token selection and layer-aware budget allocation on Table 3). Adding our selection to
SnapKV improves accuracy; adding layer-aware allocation yields further gains—both components
are complementary.

5 CONCLUSION

In this work, we proposed CompressKV, a novel KV-cache compression framework for GQA-based
LLMs that (1) addresses streaming-head dominance via Semantic Retrieval Heads guide token-
importance estimation and KV eviction, evicting unimportant tokens before generation and (2) al-
locates a layer-adaptive cache budget by measuring each layer’s offline cache-eviction error. Exten-
sive experiments on LongBench and Needle-in-a-Haystack across multiple model architectures and
cache budgets confirm better performance under diverse memory constraints.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report, 2024. URL https://arxiv.org/abs/2303.08774.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=hmOwOZWzYE.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Techni-
cal report, Anthropic, 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.
Accessed: 2024-07-09.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2024. URL https:
//aclanthology.org/2024.acl-long.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based
on pyramidal information funneling, 2025. URL https://arxiv.org/abs/2406.02069.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2025. URL https://arxiv.
org/abs/2407.11550.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. In The Twelfth
International Conference on Learning Representations, 2025. URL https://arxiv.org/
abs/2410.19258.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. In The Thirteenth International
Conference on Learning Representations, 2024. URL https://openreview.net/pdf?
id=uNrFpDPMyo.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2.5 technical report, 2025. URL https://arxiv.org/
abs/2412.15115.

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin’e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
models, 2024a. URL https://arxiv.org/abs/2310.08825.

10

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=hmOwOZWzYE
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2410.19258
https://arxiv.org/abs/2410.19258
https://openreview.net/pdf?id=uNrFpDPMyo
https://openreview.net/pdf?id=uNrFpDPMyo
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2310.08825


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MIn-
ference 1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=fPBACAbqSN.

Greg Kamradt. Needleinahaystack. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack, 2023. Accessed: 2025-07-13.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm, 2024. URL https://arxiv.org/abs/2403.05527.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=0GRBKLBjJE.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test time. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
JZfg6wGi6g.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=L057s2Rq8O.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18724–18741, 2024.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. CAKE: Cascading and adaptive KV cache eviction with layer preferences. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=EQgEMAD4kv.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Quanshi Zhang, Xipeng Qiu, and Dahua Lin. Iden-
tifying semantic induction heads to understand in-context learning. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, 2024. URL https://aclanthology.org/
2024.findings-acl.412/.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razo-
rattention: Efficient kv cache compression through retrieval heads. In The Twelfth International
Conference on Learning Representations, 2025. URL https://arxiv.org/abs/2407.
15891.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

11

https://openreview.net/forum?id=fPBACAbqSN
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2403.05527
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://aclanthology.org/2024.findings-acl.412/
https://aclanthology.org/2024.findings-acl.412/
https://arxiv.org/abs/2407.15891
https://arxiv.org/abs/2407.15891
https://openreview.net/forum?id=AwyxtyMwaG


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, Longyue Wang, and Mi Zhang. D2o: Dynamic discriminative operations for effi-
cient long-context inference of large language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
HzBfoUdjHt.

Jingcun Wang, Yu-Guang Chen, Ing-Chao Lin, Bing Li, and Grace Li Zhang. Basis sharing: Cross-
layer parameter sharing for large language model compression. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=gp32jvUquq.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanis-
tically explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=cFu7ze7xUm.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. XAttention: Block
sparse attention with antidiagonal scoring. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=KG6aBfGi6e.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 3258–3270, 2024.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning?, 2025. URL
https://arxiv.org/abs/2502.14010.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
Xiong, and Zhiyu Li. Attention heads of large language models: A survey, 2024. URL https:
//arxiv.org/abs/2409.03752.

A LLM USAGE STATEMENT

In accordance with the ICLR policy on the use of Large Language Models (LLMs), we disclose
that ChatGPT 5 (by OpenAI) was used solely as a writing assistant to polish the language and
improve the readability of the paper. It was not involved in research ideation, experimental design,
implementation, data analysis, or result interpretation.

B DATASET DETAILS

Table 4 presents the LongBench benchmark used in our experiments, which consists of 14 En-
glish subtasks and 2 code-completion subtasks organized into six categories—single-document QA,
multi-document QA, summarization, few-shot learning, synthetic tasks, and code completion. Each
subtask contains 150–500 samples with input lengths ranging from 1,235 to 18,409 words. Evalua-
tion metrics include F1, Rouge-L, classification accuracy, and edit similarity.

12

https://openreview.net/forum?id=HzBfoUdjHt
https://openreview.net/forum?id=HzBfoUdjHt
https://openreview.net/forum?id=gp32jvUquq
https://openreview.net/forum?id=gp32jvUquq
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=KG6aBfGi6e
https://arxiv.org/abs/2502.14010
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2409.03752


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: An overview of the dataset statistics in LongBench.

Dataset Source Task Type Avg Len Metric Language # Samples

NarrativeQA Literature, Film Single-Document QA 18,409 F1 English 200
Qasper Science Single-Document QA 3,619 F1 English 200
MultiFieldQA-en Multi-field Single-Document QA 4,559 F1 English 150

HotpotQA Wikipedia Multi-Document QA 9,151 F1 English 200
2WikiMultihopQA Wikipedia Multi-Document QA 4,887 F1 English 200
MuSiQue Wikipedia Multi-Document QA 11,214 F1 English 200

GovReport Government report Summarization 8,734 Rouge-L English 200
QMSum Meeting Summarization 10,614 Rouge-L English 200
MultiNews News Summarization 2,113 Rouge-L English 200

TREC Web question Few-shot Learning 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web Few-shot Learning 8,209 F1 English 200
SAMSum Dialogue Few-shot Learning 6,258 Rouge-L English 200

PassageCount Wikipedia Synthetic Task 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia Synthetic Task 9,289 Accuracy (EM) English 200

LCC Github Code Completion 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository Code Completion 4,206 Edit Sim Python/Java 500

C MORE IMPLEMENTATION DETAILS

In this section, we provide additional details of our experimental setup and a comprehensive descrip-
tion of the error-aware, layer-adaptive cache allocation algorithm used by CompressKV. To ensure
a fair comparison across all KV cache compression methods, we use identical hyperparameters: an
observation window of 8 tokens, a 1D pooling kernel of size 5, and average-pooling to aggregate
attention scores.

C.1 DETAILED DESCRIPTION OF ERROR-AWARE LAYER-ADAPTIVE CACHE ALLOCATION

Using the LongBench benchmark, we simulate an extreme compression scenario by restricting each
layer’s KV cache size to 32 tokens (approximately 0.3% of full capacity). Unlike completely skip-
ping an attention block (binary on/off), retaining a small subset of tokens allows us to explicitly
quantify the direct impact of KV cache compression on the attention outputs. This approach ef-
fectively captures fine-grained compression errors without incurring multiple forward computations
that would otherwise be necessary for evaluating the complete removal of attention blocks.

Formally, for each dataset d ∈ D, transformer layer l, and decoding step t, we compute the per-layer
compression-induced reconstruction error as follows:

e
(l)
d =

T∑
t=1

∥O(l)
comp,t −O

(l)
full,t∥F

∥O(l)
full,t∥F + ϵ

(9)

where T denotes the total decoding steps, ∥ · ∥F represents the Frobenius norm, and ϵ = 10−6

ensures numerical stability. Next, we perform an L1 normalization of the per-layer errors within
each dataset:

ê
(l)
d =

e
(l)
d∑

k

e
(k)
d

. (10)

Then, we average these normalized per-layer errors across all datasets:

ē(l) =
1

|D|
∑
d∈D

ê
(l)
d . (11)

Finally, we apply another L1-normalization across layers to obtain the final importance scores:

ẽ(l) =
ē(l)∑
k ē

(k)
. (12)

Averaging normalized errors across all datasets ensures both generalizability and fairness: by av-
eraging errors from diverse datasets, we capture consistent trends in layer importance rather than

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

overfitting to any single task or domain. Compared with budget allocation methods that rely solely
on attention-score distributions, our error-aware approach explicitly quantifies the impact of com-
pression on the model’s final attention outputs, resulting in a more precise and effective allocation
strategy. These normalized, dataset-averaged error scores ẽ(l) guide our error-aware, layer-adaptive
cache allocation as detailed in Algorithm 1 below.

To safeguard against extreme cases, we impose per-layer bounds [m,M ], where the minimum allo-
cation m = 32 ensures that each layer receives at least a small, baseline cache allocation, preventing
any single layer from becoming completely inactive under extreme conditions. The upper bound
M = 3 × Bper-layer prevents excessive cache allocation to any individual layer, ensuring a balanced
distribution of cache resources and maintaining overall model performance. Additionally, we plot
the performance of both the Mistral-7B-Instruct-v0.3 and Llama-3.1-8B-Instruct models under a
per-layer KV cache budget of 256 tokens as bar charts (see Figures 8), illustrating the distinct allo-
cation characteristics of each model.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Index

0

100

200

300

Al
lo

ca
te

d 
To

ke
ns

Mistral-7B-Instruct-v0.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Index

0

100

200

300

Al
lo

ca
te

d 
To

ke
ns

Llama-3.1-8B-Instruct

Figure 8: Per-layer KV cache allocation for Mistral-7B-Instruct-v0.3 (left) and Llama-3.1-8B-
Instruct (right) under a total budget of 256 tokens per layer.

Algorithm 1 Error-aware Layer-adaptive Cache Allocation

Require: Scores ẽ, total budget Btotal, per-layer bounds [m,M ]
Ensure: Allocations B

1: Bi ← m,∀i
2: R← Btotal −

∑
i Bi

3: Bi ← clip(Bi + round(ẽi ·R),m,M), ∀i
4: ∆← Btotal −

∑
i Bi

5: while ∆ ̸= 0 do
6: if ∆ > 0 then
7: L ← {i | Bi < M}
8: if L = ∅ then
9: Break

10: end if
11: j ← argmaxi∈L ẽi, Bj ← Bj + 1, ∆← ∆− 1
12: else
13: L ← {i | Bi > m}
14: if L = ∅ then
15: Break
16: end if
17: j ← argmini∈L ẽi, Bj ← Bj − 1, ∆← ∆+ 1
18: end if
19: end while
20: return B

D ORTHOGONAL INTEGRATION WITH HEAD-LEVEL BUDGET ALLOCATION
METHODS

CompressKV is orthogonal to head-level budget allocation methods such as HeadKV (Jiang et al.,
2024b) and AdaKV (Feng et al., 2025). To examine complementarity, we graft our components onto
these backbones:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• HeadCompressKV = HeadKV + our token selection;
• AdaCompressKV = AdaKV + our token selection and error-aware, layer-wise budget allo-

cation.

Evaluated on LongBench with Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3 (Table 5), both
HeadCompressKV and AdaCompressKV outperform their respective backbones, with the largest
gains under tight KV budgets. Consistent patterns hold on the Needle-in-a-Haystack benchmark
(Figure 9). On Llama-3.1-8B-Instruct at low KV budgets (e.g., 128 cache budget per layer), Head-
CompressKV improves over HeadKV by 6% relative accuracy, and AdaCompressKV improves over
AdaKV by 13%.

These results indicate that combining CompressKV’s token selection with error-aware budget al-
location further strengthens head-level allocation schemes by avoiding GQA-induced overwriting
during eviction and prioritizing capacity where it is most impactful—especially in the low-budget
regime.

Figure 9: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3.

E ORTHOGONAL INTEGRATION WITH PREFILLING-STAGE ACCELERATION
METHODS

CompressKV is orthogonal to prefilling-stage acceleration approaches such as MInference (Jiang
et al., 2024b) and XAttention (Xu et al., 2025). While MInference and XAttention primarily speed
up long-context inference during the prefilling stage via sparse attention, CompressKV targets the
decoding stage by reducing the KV-cache footprint, thereby alleviating the memory-bound bottle-
neck and improving throughput.

To verify this complementarity, we integrate CompressKV with MInference and XAttention and
evaluate on the LongBench benchmark; results are summarized in Table 6 under a KV budget of
2048 tokens per layer. For MInference, we adopt its default configuration; for XAttention, we
use stride=8 and threshold=0.9. Across tasks, the combined variants maintain accuracy within a
narrow band relative to their prefilling-only counterparts, while enabling decoding-stage memory
reduction—collaborating that the two classes of techniques address orthogonal bottlenecks.

F COMPREHENSIVE RESULTS ON THE LONGBENCH DATASET

In Table 7- 9, we provide the detailed results corresponding to Figure 4 in the main paper. Across all
KV cache budgets, CompressKV consistently outperforms the baseline methods, with one excep-
tion: on Qwen-2.5-7B-Instruct at a per-layer budget of 2048 tokens, it performs on par with HeadKV.
The performance advantage of CompressKV becomes especially pronounced under tight memory
constraints (i.e., smaller cache sizes). We further extend our evaluation to large-scale LLMs, in-
cluding Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct, and report the results in Table 10, which
show consistent improvements.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Detailed results of integrating CompressKV with head-level allocation methods on Long-
Bench with Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Llama3.1-8B-Instruct, KV Size = 256

HeadKV(GQA) 30.55 32.41 48.36 53.72 30.26 45.97 23.93 23.57 23.4 57.0 90.0 40.54 6.33 93.0 58.23 48.45 44.11

AdaKV(GQA) 29.45 33.7 48.96 54.48 29.59 46.09 23.58 23.13 23.27 53.0 90.79 40.49 6.33 98.5 59.47 50.31 44.45

HeadCompressKV 29.73 36.42 51.56 54.54 30.29 45.25 24.55 23.45 23.67 66.0 89.45 40.22 6.78 99.0 59.12 49.53 45.6

AdaCompressKV 30.37 41.53 51.98 54.86 30.25 45.81 24.7 24.14 23.68 66.5 90.37 41.02 6.14 99.0 60.7 51.31 46.4

Llama3.1-8B-Instruct, KV Size = 512

HeadKV(GQA) 30.92 35.98 50.78 54.61 31.26 46.26 25.69 23.84 24.62 64.0 91.23 41.94 6.33 97.5 60.69 51.22 46.05

AdaKV(GQA) 30.88 38.6 52.0 54.67 30.26 46.19 25.52 23.58 24.78 61.5 91.17 42.17 6.33 99.0 61.5 52.27 46.28

HeadCompressKV 29.31 39.41 52.32 55.3 31.18 46.47 26.17 23.69 24.94 68.5 90.48 42.66 6.17 99.0 60.44 52.13 46.76

AdaCompressKV 30.52 44.25 52.55 55.06 31.14 47.09 26.63 24.1 25.1 70.0 91.77 43.66 6.08 99.5 62.54 53.76 47.73

Llama3.1-8B-Instruct, KV Size = 1024

HeadKV(GQA) 30.6 41.24 52.13 54.34 30.96 46.33 27.27 24.11 26.0 65.5 91.51 43.1 6.17 98.5 61.84 53.17 47.05

AdaKV(GQA) 31.75 44.71 52.74 54.75 31.05 46.73 27.9 23.86 26.41 69.5 92.05 42.82 6.58 99.5 62.04 54.61 47.94

HeadCompressKV 30.8 43.42 52.56 54.96 29.94 46.64 28.21 24.62 25.87 71.5 90.98 43.47 6.08 99.5 62.46 54.31 47.83

AdaCompressKV 30.68 44.73 53.54 55.25 30.9 46.95 29.0 24.59 26.5 71.0 91.79 43.44 6.5 99.5 62.99 55.86 48.33

Mistral-7B-Instruct-v0.3, KV Size = 128

HeadKV(GQA) 27.55 27.82 47.79 47.85 26.93 36.83 20.63 21.66 20.12 62.0 89.39 43.28 5.5 90.5 53.89 51.48 42.08

AdaKV(GQA) 25.61 24.66 45.24 47.07 24.36 34.95 20.45 21.08 19.84 62.0 88.86 42.06 6.5 90.0 52.53 49.34 40.91

HeadCompressKV 28.49 32.0 50.69 47.43 27.74 37.77 21.47 21.99 20.64 72.0 89.69 42.55 5.5 93.5 52.41 50.34 43.39

AdaCompressKV 28.02 30.94 53.07 49.99 26.65 36.91 21.4 22.41 21.32 72.0 89.64 42.95 6.0 90.0 52.89 50.71 43.43

Mistral-7B-Instruct-v0.3, KV Size = 256

HeadKV(GQA) 29.15 31.66 51.03 49.09 24.88 36.64 22.46 22.2 22.97 70.5 89.57 43.86 5.5 94.0 56.77 55.39 44.1

AdaKV(GQA) 29.08 27.93 49.69 49.4 26.07 36.34 22.55 21.72 22.14 70.5 89.69 44.09 6.5 94.0 56.21 54.05 43.75

HeadCompressKV 29.61 33.87 52.4 49.26 28.53 37.17 22.87 23.1 23.03 76.0 89.44 44.18 5.0 96.5 55.73 55.28 45.12

AdaCompressKV 30.05 33.38 53.38 49.23 27.59 38.04 23.47 22.87 23.27 74.5 89.33 43.89 4.0 96.0 56.15 55.24 45.02

Mistral-7B-Instruct-v0.3, KV Size = 512

HeadKV(GQA) 29.38 33.75 53.24 50.45 27.24 37.44 24.5 23.41 24.72 75.0 89.52 45.52 6.0 96.0 57.68 57.9 45.73

AdaKV(GQA) 29.04 32.7 51.16 49.56 25.56 37.03 24.17 22.69 24.11 73.5 89.49 45.06 6.5 95.0 57.98 57.48 45.06

HeadCompressKV 29.06 36.55 53.31 50.81 28.93 39.18 25.22 23.93 24.84 76.0 89.19 44.96 4.5 96.0 57.31 57.85 46.1

AdaCompressKV 30.5 36.74 53.75 49.39 27.62 38.16 26.01 24.19 25.13 76.0 89.49 44.71 5.5 96.0 58.04 57.52 46.17

Mistral-7B-Instruct-v0.3, KV Size = 1024

HeadKV(GQA) 29.62 37.34 53.09 50.31 26.67 38.28 26.44 23.52 26.11 76.0 89.35 45.68 5.0 97.0 58.54 59.56 46.41

AdaKV(GQA) 29.73 37.04 53.07 50.01 26.32 37.54 26.27 23.97 26.12 75.5 89.49 46.25 6.5 96.5 58.62 59.16 46.38

HeadCompressKV 29.89 38.07 53.62 48.92 29.08 38.69 27.62 24.36 26.31 76.0 89.46 45.96 5.5 96.5 58.55 59.96 46.78

AdaCompressKV 29.83 38.86 53.1 49.18 28.56 39.06 28.06 25.1 26.82 76.0 89.24 45.66 5.5 97.0 58.17 60.26 46.9

Table 6: Prefilling-stage accelerators and their integration with CompressKV on LongBench. Com-
bined variants maintain accuracy comparable to prefilling-only baselines while enabling decoding-
stage memory reduction, confirming orthogonality.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Mistral-7B-Instruct-v0.3, KV Size = 2048

CompressKV 29.4 40.92 53.52 50.36 28.76 39.45 31.26 25.17 27.35 76.0 88.64 47.09 5.5 97.5 59.21 60.72 47.55

MInference 29.34 41.81 53.8 49.88 28.9 40.16 34.96 25.69 27.82 76.0 88.59 47.63 5.5 98.0 59.47 61.27 48.05

MInference+CompressKV 27.74 40.49 53.69 51.37 28.86 39.87 31.2 25.45 27.32 76.0 88.89 47.53 5.5 98.0 59.17 61.01 47.63

XAttention 27.65 35.79 53.64 51.89 27.91 39.11 34.46 24.98 27.25 74.5 89.0 47.3 6.5 89.5 59.49 61.21 46.89

XAttention+CompressKV 27.51 34.77 52.91 52.27 27.4 38.73 30.67 24.54 27.25 74.5 89.27 46.43 6.5 90.5 59.27 61.41 46.5

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Details Performance comparison of CompressKV with StreamingLLM, SnapKV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Llama-3.1-8B-Instruct.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Llama3.1-8B-Instruct, KV Size = Full

FullKV 30.97 45.49 53.78 54.76 31.42 47.13 34.9 25.28 27.48 73.0 91.65 43.8 6.0 99.5 63.38 56.73 49.08

Llama3.1-8B-Instruct, KV Size = 128

StreamingLLM 23.99 21.68 30.86 42.58 20.78 25.03 21.14 15.69 20.93 43.5 71.07 17.24 6.12 84.33 37.92 33.66 32.28

SnapKV 27.53 28.86 48.14 54.1 28.94 45.66 21.32 22.6 20.95 51.5 90.25 39.44 6.3 90.0 57.21 48.5 42.58

PyramidKV 27.41 27.59 46.88 54.81 28.08 45.32 21.34 22.48 20.77 52.0 87.86 38.11 6.5 94.0 53.47 45.77 42.02

CAKE 31.19 35.82 51.36 53.66 30.1 43.65 23.58 23.22 22.45 60.5 90.32 40.54 6.33 99.0 57.06 48.59 44.84

HeadKV(GQA) 29.51 32.23 47.49 53.44 29.1 44.89 22.11 22.59 21.74 48.5 89.3 37.99 6.25 97.0 54.93 45.46 42.66

AdaKV(GQA) 27.74 30.4 48.35 54.63 29.32 45.76 21.01 22.08 20.79 47.0 88.43 39.5 6.5 89.0 55.76 46.58 42.05

CompressKV 30.43 35.74 51.12 53.8 31.09 46.13 22.58 23.42 22.05 65.5 87.56 39.43 6.28 99.0 57.3 50.1 45.1

Llama3.1-8B-Instruct, KV Size = 256

StreamingLLM 23.35 22.26 33.94 42.8 21.91 24.47 23.35 16.28 23.85 54.5 70.66 17.65 6.12 87.99 39.64 34.01 33.92

SnapKV 30.41 36.24 49.88 54.06 30.69 45.95 23.64 22.99 23.6 58.0 91.29 40.92 6.25 99.0 59.68 50.74 45.21

PyramidKV 29.02 33.4 49.43 54.79 29.21 46.24 23.45 22.87 22.81 58.0 89.41 39.8 6.25 98.5 57.42 49.16 44.36

CAKE 31.31 40.18 51.54 54.48 29.66 45.75 25.22 23.84 24.09 64.5 91.49 42.06 6.14 99.5 59.6 51.51 46.3

HeadKV(GQA) 30.55 32.41 48.36 53.72 30.26 45.97 23.93 23.57 23.4 57.0 90.0 40.54 6.33 93.0 58.23 48.45 44.11

AdaKV(GQA) 29.45 33.7 48.96 54.48 29.59 46.09 23.58 23.13 23.27 53.0 90.79 40.49 6.33 98.5 59.47 50.31 44.45

CompressKV 30.68 42.58 52.27 54.37 30.43 46.46 24.86 23.79 24.13 68.5 89.97 41.08 6.14 99.5 60.63 51.94 46.71

Llama3.1-8B-Instruct, KV Size = 512

StreamingLLM 24.54 25.69 36.97 42.42 22.31 25.6 26.08 17.65 25.76 61.0 71.94 18.6 6.5 87.71 41.39 35.22 35.59

SnapKV 30.62 40.05 52.43 54.74 30.93 46.39 25.52 23.42 25.16 65.0 91.21 42.07 6.03 99.0 61.84 52.91 46.71

PyramidKV 30.43 39.81 52.98 54.47 31.06 46.31 25.35 23.66 24.74 64.5 91.84 41.93 6.08 99.5 59.97 51.19 46.49

CAKE 30.47 43.19 51.92 54.24 30.41 45.5 27.04 24.21 25.15 70.0 91.46 42.28 6.33 99.5 61.55 52.68 47.25

HeadKV(GQA) 30.92 35.98 50.78 54.61 31.26 46.26 25.69 23.84 24.62 64.0 91.23 41.94 6.33 97.5 60.69 51.22 46.05

AdaKV(GQA) 30.88 38.6 52.0 54.67 30.26 46.19 25.52 23.58 24.78 61.5 91.17 42.17 6.33 99.0 61.5 52.27 46.28

CompressKV 30.8 44.41 53.13 55.32 30.67 46.89 27.0 23.92 25.17 70.5 92.0 43.5 6.58 99.5 62.1 53.01 47.78

Llama3.1-8B-Instruct, KV Size = 1024

StreamingLLM 23.55 28.99 43.17 42.5 21.61 28.37 28.26 19.12 26.37 68.0 74.02 19.41 6.19 82.58 43.65 35.49 36.95

SnapKV 31.32 44.62 52.51 54.65 30.24 46.8 28.14 24.12 26.36 69.0 92.05 42.67 6.12 99.5 62.06 54.99 47.82

PyramidKV 31.06 44.09 53.25 54.25 30.45 46.87 27.44 23.46 26.31 70.0 91.93 42.91 6.08 99.5 62.03 52.75 47.65

CAKE 30.61 44.64 52.18 54.89 30.44 46.14 29.1 24.28 26.33 71.0 91.89 42.81 6.17 99.5 62.05 55.47 47.97

HeadKV(GQA) 30.6 41.24 52.13 54.34 30.96 46.33 27.27 24.11 26.0 65.5 91.51 43.1 6.17 98.5 61.84 53.17 47.05

AdaKV(GQA) 31.75 44.71 52.74 54.75 31.05 46.73 27.9 23.86 26.41 69.5 92.05 42.82 6.58 99.5 62.04 54.61 47.94

CompressKV 30.27 45.18 53.44 55.25 30.83 46.57 29.06 24.34 26.48 71.0 91.79 43.37 6.0 99.5 63.14 55.62 48.24

Llama3.1-8B-Instruct, KV Size = 2048

StreamingLLM 25.2 37.54 48.31 44.74 23.09 31.47 30.61 19.51 27.15 69.0 79.5 21.21 5.73 71.75 51.99 37.02 38.99

SnapKV 30.61 45.01 53.22 55.2 30.62 46.21 30.57 24.1 27.2 71.5 91.65 43.91 6.0 99.5 63.27 56.9 48.47

PyramidKV 30.99 44.83 52.73 54.47 31.33 46.76 29.64 23.92 27.22 72.5 91.92 43.04 6.55 99.5 63.12 54.89 48.34

CAKE 30.56 44.58 52.54 54.82 30.36 46.43 30.38 24.72 27.24 71.5 91.48 43.04 6.17 99.5 63.05 55.84 48.26

HeadKV(GQA) 30.7 44.14 53.2 54.78 30.65 46.42 29.27 23.94 26.98 70.5 91.81 43.81 6.0 99.5 63.01 55.34 48.13

AdaKV(GQA) 31.08 45.42 52.8 54.81 30.46 46.19 30.14 24.57 27.22 70.5 91.66 43.52 6.0 99.5 63.14 56.56 48.35

CompressKV 30.83 45.59 53.86 55.04 31.05 46.43 31.62 24.86 27.15 72.0 91.65 43.67 6.0 99.5 63.3 56.73 48.7

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Details Performance comparison of CompressKV with StreamingLLM, SnapKV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Mistral-7B-Instruct-v0.3.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Mistral-7B-Instruct-v0.3, KV Size = Full

FullKV 29.07 41.54 52.88 49.37 28.58 39.01 35.07 25.71 27.73 76.0 88.59 47.51 6.0 98.0 59.35 60.7 47.82

Mistral-7B-Instruct-v0.3, KV Size = 128

StreamingLLM 21.06 20.03 29.31 36.98 16.77 24.14 18.97 17.29 20.19 46.5 73.66 18.08 4.5 67.75 29.45 32.86 29.85

SnapKV 25.95 25.46 45.79 47.79 25.27 36.47 20.63 21.02 19.96 58.5 89.16 41.94 5.0 86.0 53.3 50.39 40.79

PyramidKV 24.95 24.43 46.35 45.77 24.74 35.45 20.93 21.26 20.07 58.0 88.63 40.82 6.0 89.0 50.92 47.34 40.29

CAKE 28.15 28.81 50.69 48.27 26.99 37.8 22.71 23.37 22.0 63.0 89.31 42.95 6.5 93.0 53.25 51.84 43.04

HeadKV(GQA) 27.55 27.82 47.79 47.85 26.93 36.83 20.63 21.66 20.12 62.0 89.39 43.28 5.5 90.5 53.89 51.48 42.08

AdaKV(GQA) 25.61 24.66 45.24 47.07 24.36 34.95 20.45 21.08 19.84 62.0 88.86 42.06 6.5 90.0 52.53 49.34 40.91

CompressKV 28.06 31.74 52.62 49.75 25.99 37.1 21.76 22.53 21.58 69.0 89.89 43.35 6.0 93.5 52.74 51.27 43.55

Mistral-7B-Instruct-v0.3, KV Size = 256

StreamingLLM 21.89 21.37 32.51 36.98 16.78 25.43 21.85 16.89 23.55 57.5 72.38 18.24 4.0 65.0 31.63 33.53 31.22

SnapKV 27.49 29.18 48.92 48.0 26.47 36.78 22.46 22.04 22.54 70.0 89.44 43.72 6.0 96.0 56.69 54.49 43.76

PyramidKV 27.71 28.23 48.25 48.61 25.62 36.18 22.1 21.77 21.8 70.0 89.33 43.65 6.0 93.5 55.13 51.06 43.06

CAKE 27.46 33.09 54.32 48.32 27.08 37.8 24.62 23.61 23.85 70.0 89.33 44.09 4.5 95.5 55.76 56.35 44.73

HeadKV(GQA) 29.15 31.66 51.03 49.09 24.88 36.64 22.46 22.2 22.97 70.5 89.57 43.86 5.5 94.0 56.77 55.39 44.1

AdaKV(GQA) 29.08 27.93 49.69 49.4 26.07 36.34 22.55 21.72 22.14 70.5 89.69 44.09 6.5 94.0 56.21 54.05 43.75

CompressKV 29.86 35.32 52.84 49.77 27.64 38.04 24.05 23.37 23.26 75.5 89.16 45.31 4.5 96.5 56.47 55.31 45.43

Mistral-7B-Instruct-v0.3, KV Size = 512

StreamingLLM 21.13 22.16 34.59 37.86 16.08 26.1 25.19 18.47 26.53 65.5 71.51 18.13 3.25 68.0 34.13 33.7 32.65

SnapKV 29.43 34.49 52.68 50.1 26.08 37.04 23.97 22.94 24.06 73.0 89.55 45.23 5.5 96.5 57.94 57.54 45.38

PyramidKV 27.87 33.32 51.53 49.63 25.42 36.91 24.0 22.76 24.14 72.0 90.07 44.49 5.5 96.5 57.33 55.6 44.82

CAKE 29.5 35.89 53.79 49.74 27.13 39.32 26.7 23.81 25.44 72.5 89.27 45.78 5.5 97.5 57.35 57.71 46.06

HeadKV(GQA) 29.38 33.75 53.24 50.45 27.24 37.44 24.5 23.41 24.72 75.0 89.52 45.52 6.0 96.0 57.68 57.9 45.73

AdaKV(GQA) 29.04 32.7 51.16 49.56 25.56 37.03 24.17 22.69 24.11 73.5 89.49 45.06 6.5 95.0 57.98 57.48 45.06

CompressKV 29.91 37.01 54.3 49.31 27.93 38.1 26.35 23.97 24.99 76.0 89.49 44.81 7.0 96.0 58.41 58.65 46.39

Mistral-7B-Instruct-v0.3, KV Size = 1024

StreamingLLM 22.37 28.03 41.21 38.0 17.05 26.95 27.75 19.87 27.13 71.5 70.34 19.02 5.37 68.5 37.95 34.57 34.73

SnapKV 29.82 36.49 52.64 50.33 26.88 38.53 26.39 23.94 25.84 75.0 89.24 46.73 6.5 97.0 58.57 59.86 46.48

PyramidKV 28.14 35.83 54.28 49.88 25.68 38.31 25.91 23.82 25.42 74.5 89.86 46.17 5.0 97.5 57.72 57.36 45.96

CAKE 29.21 36.86 53.2 48.69 27.62 38.78 28.94 24.54 26.98 74.0 88.94 46.94 5.0 98.0 58.88 59.91 46.66

HeadKV(GQA) 29.62 37.34 53.09 50.31 26.67 38.28 26.44 23.52 26.11 76.0 89.35 45.68 5.0 97.0 58.54 59.56 46.41

AdaKV(GQA) 29.73 37.04 53.07 50.01 26.32 37.54 26.27 23.97 26.12 75.5 89.49 46.25 6.5 96.5 58.62 59.16 46.38

CompressKV 29.75 38.88 52.81 49.71 28.48 39.04 28.26 24.95 26.88 76.0 89.24 46.16 5.5 97.0 58.65 60.05 46.96

Mistral-7B-Instruct-v0.3, KV Size = 2048

StreamingLLM 23.53 31.86 47.11 37.98 18.91 29.27 30.10 20.26 27.18 73.0 69.97 19.01 4.75 72.25 42.87 36.07 36.51

SnapKV 30.54 39.94 53.16 50.18 27.29 38.49 28.47 24.06 27.46 76.0 88.48 46.06 5.0 98.0 59.38 60.35 47.05

PyramidKV 29.21 39.62 52.78 50.47 27.71 37.88 28.46 24.27 27.38 75.0 89.86 46.32 5.0 98.0 58.60 59.05 46.85

CAKE 29.91 40.06 53.56 48.11 28.06 38.78 31.05 24.90 27.53 75.0 88.64 47.08 5.5 97.5 59.56 60.35 47.22

HeadKV(GQA) 30.42 39.86 53.21 49.96 27.77 38.13 28.71 24.83 27.26 76.0 89.49 45.96 5.5 98.0 59.65 60.51 47.20

AdaKV(GQA) 30.41 40.25 52.93 50.31 27.67 38.71 28.96 24.31 27.26 76.0 88.48 46.25 5.5 98.0 59.17 60.33 47.16

CompressKV 29.40 40.92 53.52 50.36 28.76 39.45 31.26 25.17 27.35 76.0 88.64 47.09 5.5 97.5 59.21 60.72 47.55

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Details Performance comparison of CompressKV with StreamingLLM, SnapKV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Qwen2.5-7B-Instruct.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Qwen2.5-7B-Instruct, KV Size = Full

FullKV 28.14 43.76 52.61 57.7 29.67 47.19 31.89 23.61 23.91 71.5 89.97 46.16 8.5 100.0 60.56 66.83 48.88

Qwen2.5-7B-Instruct, KV Size = 128

StreamingLLM 16.52 19.94 25.07 35.1 14.16 20.74 19.42 14.54 16.98 45.0 62.68 17.9 8.5 29.33 31.34 32.73 25.62

SnapKV 24.57 28.43 46.92 51.78 26.54 43.94 19.64 19.99 16.54 46.5 87.26 40.39 9.0 99.0 49.62 53.45 41.47

PyramidKV 21.59 27.34 42.46 50.67 23.19 43.56 17.72 18.81 14.14 43.5 86.34 38.92 9.0 83.5 44.54 46.8 38.25

CAKE 26.95 33.29 47.14 53.11 25.36 43.98 20.99 20.81 18.14 47.5 82.47 42.82 8.5 97.5 50.97 53.22 42.05

HeadKV(GQA) 26.52 31.25 47.66 53.2 27.54 43.28 19.67 19.99 16.86 48.5 88.34 41.22 8.5 98.0 50.74 53.75 42.19

AdaKV(GQA) 24.78 29.21 44.99 52.57 26.91 43.59 19.57 20.06 16.57 45.5 87.94 41.2 9.0 97.5 49.63 52.37 41.34

CompressKV 27.3 32.56 48.43 53.94 26.43 43.2 20.35 20.19 17.0 56.0 85.63 42.23 8.5 97.0 50.62 52.45 42.61

Qwen2.5-7B-Instruct, KV Size = 256

StreamingLLM 18.04 21.45 27.37 35.88 14.17 19.45 22.23 15.54 20.77 52.5 62.65 17.86 8.5 25.33 33.76 33.51 26.81

SnapKV 27.32 35.61 49.31 54.66 27.11 43.67 21.93 20.88 19.33 53.0 88.04 43.2 8.5 98.0 55.08 56.46 43.88

PyramidKV 25.05 33.19 47.72 52.62 25.28 44.05 20.14 19.92 16.64 50.5 87.76 40.71 8.5 94.0 50.36 51.77 41.76

CAKE 26.56 36.42 49.88 54.25 27.56 45.93 23.22 20.82 19.82 53.0 86.08 43.59 8.5 97.0 54.44 57.81 44.05

HeadKV(GQA) 27.62 36.57 49.71 54.96 26.82 44.83 22.51 20.43 19.5 56.5 89.12 43.43 8.5 98.5 55.63 58.33 44.56

AdaKV(GQA) 27.19 35.54 48.15 54.34 27.8 44.7 21.74 20.44 18.99 53.5 87.65 42.5 8.5 98.0 55.04 56.65 43.8

CompressKV 28.94 36.39 48.85 54.45 26.65 44.13 22.37 20.96 19.02 65.5 87.5 42.08 8.5 98.5 53.72 57.46 44.69

Qwen2.5-7B-Instruct, KV Size = 512

StreamingLLM 18.99 23.62 32.66 36.5 15.14 22.27 25.27 16.79 22.57 59.5 61.28 18.18 8.5 14.0 35.46 34.79 27.85

SnapKV 28.52 38.99 49.77 56.46 27.73 44.58 24.09 21.06 20.86 64.0 88.91 43.92 8.5 99.0 57.38 61.03 45.93

PyramidKV 29.66 36.78 49.29 55.8 26.6 44.96 22.54 20.47 18.35 64.5 88.46 42.23 8.5 99.0 53.21 56.39 44.8

CAKE 29.6 39.9 50.35 55.92 29.3 44.01 25.56 21.75 21.35 62.5 87.95 44.44 8.5 99.5 56.9 60.9 46.15

HeadKV(GQA) 28.13 39.26 50.52 56.47 26.68 44.57 24.9 21.4 21.17 65.0 89.2 43.56 8.5 99.0 57.53 61.87 46.11

AdaKV(GQA) 29.18 39.17 49.16 55.7 26.94 43.83 24.08 21.02 20.91 64.0 89.29 43.32 8.5 99.0 57.24 60.68 45.75

CompressKV 29.95 41.09 51.54 56.31 28.74 45.05 24.7 21.62 20.99 68.0 87.95 43.88 8.5 98.5 57.1 61.38 46.58

Qwen2.5-7B-Instruct, KV Size = 1024

StreamingLLM 20.68 30.34 41.03 37.96 16.35 25.71 27.04 17.89 23.39 67.0 61.54 18.18 8.5 12.5 39.15 36.4 30.23

SnapKV 28.77 40.73 51.54 56.84 28.64 45.65 26.7 21.87 22.84 69.0 89.57 44.35 8.5 99.5 59.65 64.85 47.44

PyramidKV 29.71 39.75 52.22 56.39 26.09 45.77 24.57 20.91 21.19 68.5 89.14 44.06 8.5 99.0 58.44 60.03 46.52

CAKE 28.88 42.2 51.66 56.66 28.96 45.25 28.0 21.98 23.09 68.5 88.73 44.85 8.5 100.0 58.95 64.15 47.52

HeadKV(GQA) 28.6 41.32 52.07 57.09 28.98 45.32 27.39 21.91 23.11 69.5 89.58 44.58 8.5 99.5 59.56 64.47 47.59

AdaKV(GQA) 28.9 40.86 52.09 56.93 26.62 45.64 26.51 21.87 22.89 69.5 89.74 44.44 8.5 99.5 59.83 63.32 47.32

CompressKV 29.52 42.17 51.82 57.55 29.5 45.17 26.96 22.06 22.69 70.5 88.43 44.11 8.5 100.0 59.08 63.94 47.62

Qwen2.5-7B-Instruct, KV Size = 2048

StreamingLLM 21.87 36.22 46.03 38.79 17.96 31.26 28.31 18.67 23.63 68.5 65.02 19.81 8.5 17.5 47.11 37.74 32.93

SnapKV 28.96 43.09 53.06 56.73 29.66 46.9 28.84 22.13 23.71 70.0 89.72 44.32 8.5 100.0 60.17 66.31 48.26

PyramidKV 28.5 42.27 52.58 55.5 28.36 47.21 26.42 21.87 23.78 71.0 89.48 44.3 8.5 99.5 59.97 61.78 47.56

CAKE 28.73 42.87 52.11 56.34 29.47 46.43 29.5 22.69 23.57 70.0 89.63 45.58 8.5 100.0 59.86 66.17 48.22

HeadKV(GQA) 28.43 42.99 52.73 57.08 30.0 46.68 29.58 22.47 23.85 70.5 89.72 44.88 8.5 100.0 60.04 66.55 48.38

AdaKV(GQA) 29.76 43.11 52.93 56.39 28.14 46.5 28.67 22.08 23.8 70.5 89.72 44.86 8.5 100.0 60.36 65.39 48.17

CompressKV 28.48 43.24 51.83 57.17 30.54 46.99 28.98 22.53 23.43 71.0 89.84 45.15 8.5 100.0 59.65 65.46 48.30

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison of CompressKV with StreamingLLM, SnapKV, PyramidKV,
CAKE, HeadKV, AdaKV and FullKV on LongBench for large-scale LLMs(Qwen2.5-14B-Instruct
and Qwen2.5-32B-Instruct).

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Qwen2.5-14B-Instruct, KV Size = Full

FullKV 30.11 45.21 53.79 61.99 37.43 58.21 29.53 23.41 22.07 77.0 90.69 47.89 10.13 98.67 61.34 49.33 49.8

Qwen2.5-14B-Instruct, KV Size = 256

StreamingLLM 17.32 20.57 25.08 36.12 22.3 25.1 20.68 14.56 19.49 54.5 61.93 17.15 0.17 13.33 37.96 27.45 25.86

SnapKV 25.03 29.88 42.89 56.9 36.21 53.83 20.44 20.3 17.61 58.5 88.01 45.27 7.27 97.5 57.14 43.5 43.77

PyramidKV 23.2 28.44 42.36 57.22 35.56 55.12 19.45 19.56 16.11 58.5 87.22 43.88 8.1 95.75 52.76 40.08 42.71

CAKE 24.14 33.4 43.14 57.16 35.68 55.36 21.53 21.32 18.45 62.0 89.21 45.64 8.1 98.0 57.7 44.38 44.7

HeadKV 26.21 31.4 43.11 57.08 36.11 53.94 20.9 20.75 17.73 60.5 88.51 45.97 8.88 95.58 56.55 44.21 44.21

AdaKV 25.66 30.56 42.98 54.52 36.1 53.65 20.46 20.62 17.6 57.5 88.37 44.72 8.05 97.0 57.23 43.85 43.68

CompressKV 26.11 34.99 43.76 57.86 35.25 55.55 20.81 21.02 17.68 72.0 88.57 45.34 9.14 95.92 57.49 44.43 45.37

Qwen2.5-14B-Instruct, KV Size = 1024

StreamingLLM 19.52 29.65 39.87 39.67 22.74 31.34 25.47 17.08 21.61 71.5 61.71 18.67 1.6 7.92 41.83 27.27 29.84

SnapKV 27.52 43.57 50.92 59.71 36.82 56.51 24.69 21.98 20.71 75.0 90.37 47.17 8.35 98.75 60.64 48.22 48.18

PyramidKV 27.38 42.54 51.11 59.39 36.28 56.88 23.61 21.38 20.0 75.5 89.88 46.17 8.95 98.42 59.83 45.94 47.7

CAKE 28.82 44.37 51.75 60.1 36.86 57.64 26.07 22.45 21.1 74.0 90.14 47.0 8.3 98.42 60.84 48.5 48.52

HeadKV 27.54 44.1 51.72 59.51 36.32 57.09 25.43 22.24 21.0 75.5 90.47 47.27 7.43 98.75 61.74 48.66 48.42

AdaKV 27.49 43.3 51.15 59.22 37.4 55.85 24.82 21.76 20.59 75.5 90.37 47.52 7.77 98.5 61.38 48.47 48.19

CompressKV 28.96 44.26 51.63 60.49 37.23 56.92 25.42 22.61 20.83 77.0 90.32 47.32 8.91 98.42 61.14 47.61 48.69

Qwen2.5-32B-Instruct, KV Size = Full

FullKV 31.02 44.24 52.18 63.21 38.73 61.0 30.25 23.59 22.82 73.5 87.78 45.77 10.5 100.0 53.23 39.26 48.57

Qwen2.5-32B-Instruct, KV Size = 256

StreamingLLM 16.65 21.13 23.6 37.32 20.02 26.09 20.28 14.37 20.33 53.5 62.54 16.44 10.0 9.33 31.15 21.71 25.28

SnapKV 27.22 30.06 41.9 56.1 36.32 56.91 20.3 19.58 18.22 63.5 85.95 42.53 10.5 99.33 49.77 35.61 43.36

PyramidKV 25.46 28.73 41.27 56.29 34.38 56.22 18.92 19.04 16.44 64.0 85.8 41.2 10.0 96.33 47.53 32.19 42.11

CAKE 28.97 34.66 44.01 57.93 34.11 58.95 21.5 20.45 19.25 67.0 84.81 42.82 10.79 99.83 50.61 36.17 44.49

HeadKV 28.09 31.82 42.77 57.24 36.44 57.56 21.3 19.71 18.71 64.0 87.17 42.31 10.5 99.5 50.29 36.97 44.02

AdaKV 27.21 30.98 40.9 56.57 35.92 57.04 20.59 19.33 18.27 63.0 85.0 42.46 10.07 99.33 50.36 35.74 43.3

CompressKV 27.9 33.99 44.52 58.76 35.23 58.83 21.24 20.29 18.58 70.5 87.93 42.44 11.0 99.5 50.29 34.62 44.73

Qwen2.5-32B-Instruct, KV Size = 1024

StreamingLLM 20.07 30.1 38.15 39.68 20.73 30.59 25.46 17.37 22.27 68.0 61.9 17.32 12.0 10.92 35.69 23.73 29.62

SnapKV 30.13 41.12 49.47 61.84 38.39 61.02 25.18 21.0 21.77 74.0 87.84 44.42 10.1 100.0 53.32 37.84 47.34

PyramidKV 31.48 41.21 48.95 61.16 38.85 61.12 23.15 20.29 20.62 73.5 88.37 44.23 10.5 100.0 51.67 36.66 46.98

CAKE 29.28 42.6 50.01 61.98 38.02 60.47 26.16 21.96 22.28 72.5 87.66 44.62 11.0 100.0 53.33 38.25 47.51

HeadKV 30.48 42.59 49.41 61.66 37.9 61.58 26.37 21.38 21.99 73.5 87.84 43.78 10.5 100.0 53.05 37.96 47.5

AdaKV 29.44 41.29 48.98 61.9 38.74 61.11 25.12 21.26 21.75 74.0 87.81 44.62 10.1 100.0 53.41 37.72 47.33

CompressKV 31.07 43.9 49.96 62.53 39.51 61.14 25.63 21.47 21.92 73.5 88.49 43.88 11.0 100.0 52.46 37.97 47.78

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G HEAD VISUALIZATION

In Figures 10, we present a comparison between traditional Retrieval Heads and Semantic Retrieval
Heads identified using Mistral-7B-Instruct-v0.3. All scores are L1-normalized across the attention
head importance distributions. Unlike traditional methods that require exact top-k attention hits, our
approach aggregates scores over entire answer spans, capturing heads that contribute semantically
relevant context even when they never achieve top-1 attention for individual tokens. For instance,
as shown in Figure 10, layers 0 and 1 of the Mistral model have zero scores for all heads using
the traditional method, whereas our approach successfully identifies heads of lower yet meaningful
importance.

Figure 10: Head visualization for Mistral-7B-Instruct-v0.3. Left: Traditional Retrieval Heads.
Right: Semantic Retrieval Heads identified.

H DETAILED RESULTS FOR NEEDLE-IN-A-HAYSTACK EVALUATION

This section provides detailed results for the Needle-in-a-Haystack evaluation referenced in the main
paper. Figures 11–15 present the corresponding results for the Llama-3.1-8B-Instruct model under
KV cache budgets ranging from 128 to 2048. Figures 16–20 present the performance of the Mistral-
7B-Instruct-v0.3 model under the same cache budgets. Figures 21–25 present the corresponding
results for the Llama-3.1-8B-Instruct model under the same cache budgets. CompressKV consis-
tently achieves the highest accuracy across all settings, demonstrating its superiority over competing
compression strategies.

Llama-3.1-8B-Instruct

Figure 11: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 128.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Llama-3.1-8B-Instruct

Figure 12: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 256.

Llama-3.1-8B-Instruct

Figure 13: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 512.

Llama-3.1-8B-Instruct

Figure 14: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 1024.

Llama-3.1-8B-Instruct

Figure 15: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 2048.

Mistral-7B-Instruct-v0.3

Figure 16: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 128.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Mistral-7B-Instruct-v0.3

Figure 17: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 256.

Mistral-7B-Instruct-v0.3

Figure 18: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 512.

Mistral-7B-Instruct-v0.3

Figure 19: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 1024.

Mistral-7B-Instruct-v0.3

Figure 20: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 2048.

Qwen2.5-7B-Instruct

Figure 21: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 128.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Qwen2.5-7B-Instruct

Figure 22: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 256.

Qwen2.5-7B-Instruct

Figure 23: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 512.

Qwen2.5-7B-Instruct

Figure 24: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 1024.

Qwen2.5-7B-Instruct

Figure 25: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 2048.

I COMPREHENSIVE MASKING-BASED ABLATION OF DIFFERENT HEAD
TYPES

We extend the masking analysis from the main paper by evaluating the effect of masking the top 10,
20, and 30 Semantic Retrieval Heads and the traditional Retrieval Heads in Mistral-7B-Instruct-v0.3
shown in Figure 26. Our experiments demonstrate that masking the top 30 traditional Retrieval
Heads in Mistral-7B-Instruct-v0.3 results in only a ≈ 12% drop in accuracy, whereas masking the
top 30 Semantic Retrieval Heads causes a≈ 74% degradation. These findings underscore the critical
role of Semantic Retrieval Heads in overall model performance and validate the superiority of our
identification method over conventional head-selection approaches.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mistral-7B-Instruct-v0.3

Figure 26: Ablation on the Needle-in-a-Haystack retrieval task for Mistral-7B-Instruct-v0.3. The
left column masks the top-k retrieval heads, and the right column masks the top-k semantic retrieval
heads. Lower scores indicate heads with the greatest impact on model performance—masking them
causes the most severe drop in accuracy.

J ORTHOGONAL INTEGRATION WITH QUANTIZAITON

CompressKV is orthogonal to KV-cache quantization approaches such as KIVI (Liu et al., 2024).
While KIVI reduces the KV-cache by representing keys and values in low-bit precision (e.g., per-
channel/per-token quantization), CompressKV keeps full-precision KV entries but aggressively
prunes less critical tokens, thereby shortening the effective sequence length during decoding. As
a result, the two methods target different dimensions of the KV-cache bottleneck and can be nat-
urally combined. To verify this orthogonality and clarify their relative strengths, we evaluate (i)
CompressKV alone, (ii) KIVI alone, and (iii) the combined CompressKV+KIVI variant on the
LongBench benchmark; results are summarized in Table 11. In our main setup, we parameterize
compression by the fraction of KV-cache memory saved relative to a 16-bit full-precision baseline.
Under this convention, KIVI with 2-bit quantization corresponds to a compression ratio of 0.875
(i.e., 87.5% memory saving), while an extreme 1-bit setting corresponds to a compression ratio of
0.9375. At the 0.875 setting, KIVI attains slightly higher average accuracy than CompressKV at the
same overall memory budget. However, when pushing to the more aggressive 0.9375 setting, KIVI
suffers a substantial performance drop, whereas CompressKV remains robust and yields markedly
better overall accuracy.

For the combined KIVI CompressKV variant, we first apply CompressKV to discard approximately
87.5% of the least important tokens and then quantize the remaining KV entries to 2-bit. This
yields an overall compression ratio of 0.984375 (i.e., 98.4375% memory saving relative to a 16-bit
full KV cache). As shown in Table 11, this combined scheme maintains accuracy comparable to
CompressKV alone and far exceeds pure KIVI at the same extreme compression level, indicating
that KIVI and CompressKV are complementary rather than competing techniques.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 11: We compare KIVI (quantization), CompressKV (token pruning), and their combination
(KIVI+CompressKV) on Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3. “FullKV” denotes
the uncompressed 16-bit KV cache. “Compression ratio” denotes the fraction of KV-cache memory
saved relative to the 16-bit full-precision baseline (e.g., 0.875 corresponds to 2-bit quantization,
0.9375 to 1-bit, and 0.984375 to applying CompressKV with a token keep ratio of 12.5% followed
by 2-bit quantization).

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Llama3.1-8B-Instruct, KV Size = Full

FullKV 30.97 45.49 53.78 54.76 31.42 47.13 34.9 25.28 27.48 73.0 91.65 43.8 6.0 99.5 63.38 56.73 49.08

Llama-3.1-8B-Instruct, Compression ratio = 0.875(2bit)

KIVI 30.85 43.95 53.97 54.38 30.34 46.11 34.48 25.33 27.16 73 92.26 43.43 6.33 99 62.06 55.15 48.61

CompressKV 30.89 45.47 51.98 54.94 31.05 46.79 30.87 24.98 23.99 70.5 91.32 42.5 6 99.5 62.34 56.86 48.12

Llama-3.1-8B-Instruct, Compression ratio = 0.9375(2bit)

KIVI 4.85 8.93 9.13 12.26 4.24 7.73 13.44 11.17 13.7 36.25 23.19 9.6 4.2 10.06 28.8 26.06 13.98

CompressKV 30.77 41.48 52.17 55.25 30.81 46.81 28.21 24.05 22.16 70.5 90.93 41.37 6 99.5 60.33 55.72 47.25

Llama-3.1-8B-Instruct, Compression ratio = 0.984375

KIVI+CompressKV 29.24 43.03 50.93 55.3 30.41 46.36 30.73 24.91 23.65 68.5 91.49 41.64 6.36 99.5 60.43 53.22 47.23

Mistral-7B-Instruct-v0.3, KV Size = Full

FullKV 29.07 41.54 52.88 49.37 28.58 39.01 35.07 25.71 27.73 76.0 88.59 47.51 6.0 98.0 59.35 60.7 47.82

Mistral-7B-Instruct-v0.3, Compression ratio = 0.875(2bit)

KIVI 29.93 39.87 54.02 48.68 28.55 38.39 34.03 25.22 27.42 76 88.07 47.22 5.56 95.5 58.82 59.51 47.3

CompressKV 29.57 37.44 53.28 50.38 28.86 39.04 30.39 24.99 23.81 76 89.21 45.7 5.5 97.5 59.09 60.87 46.98

Mistral-7B-Instruct-v0.3, Compression ratio = 0.9375(2bit)

KIVI 8.61 5.57 9.68 8.37 3.72 5.99 15.45 12.51 12.16 36 29.66 8.84 3.49 14.33 30.38 27.88 14.54

CompressKV 29.14 34.81 52.42 49.55 28.85 38.1 27.95 24.76 21.94 76 89.54 43.97 5.5 97 57.98 60.44 46.12

Mistral-7B-Instruct-v0.3, Compression ratio = 0.984375

KIVI+CompressKV 29.46 37.22 53 48.36 27.2 38.71 29.85 24.48 23.63 76 89.42 44.54 6.06 93 57.97 58.24 46.07

K COMPARISON WITH D2O

We also compare CompressKV against D2O (Wan et al., 2025). D2O is built on H2O-style heavy-
hitter estimation and requires explicitly computing the full attention matrix in the prefill stage using
the original dense attention kernels. This design is incompatible with FlashAttention-2 (Dao, 2024),
and in practice it introduces substantial prefill slowdowns and, at long context lengths, O(L2) mem-
ory pressure that often results in out-of-memory (OOM) errors.

To obtain a practical comparison, we restrict the maximum context length to 8,192 tokens, and run
both methods on Llama-3.1-8B-Instruct on LongBench. Compression ratio denotes the fraction of
KV-cache memory saved relative to a 16-bit full-precision KV cache. Thus, keeping a global KV
budget (keep ratio) of 0.125 corresponds to a compression ratio of 1− 0.125 = 0.875, and a budget
of 0.0625 corresponds to a compression ratio of 1 − 0.0625 = 0.9375. Table 12 reports task-wise
scores and the average over all LongBench tasks.

At a compression ratio of 0.875, CompressKV outperforms D2O by +3.53 points on average (44.76
vs. 41.23). When we further tighten the budget to 0.0625 (compression ratio 0.9375), the gap widens
to +6.20 points (43.91 vs. 37.71),indicating that token-level compression with CompressKV is more
robust under aggressive compression than the heavy-hitter style selection used by D2O.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: Comparison with D2O on LongBench. We evaluate CompressKV and D2O on Llama-
3.1-8B-Instruct with maximum context length 8,192). We report results at two KV compression
ratios, following the same convention as for KIVI: compression ratio denotes the fraction of KV-
cache memory saved relative to a 16-bit full-precision KV cache. A compression ratio of 0.875
corresponds to a global KV budget (keep ratio) of 0.125, and 0.9375 corresponds to a budget of
0.0625.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

M
us

iqu
e

2W
iki

M
QA

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC
Triv

iaQ
A

SAM
Sum

PCou
nt

PR-en
Lcc RB-P

Llama-3.1-8B-Instruct, KV compression ratio = 0.875

CompressKV 25.16 44.16 52.30 46.56 24.73 45.72 29.16 22.94 23.87 67.5 91.51 44.10 5.95 76.0 62.16 54.28 44.76

D2O 25.52 32.54 41.42 45.68 22.36 42.61 26.71 22.78 23.32 58.5 90.40 41.25 5.75 74.5 55.85 50.54 41.23

Llama-3.1-8B-Instruct, KV compression ratio = 0.9375

CompressKV 25.17 41.19 51.18 47.16 24.12 45.80 27.25 22.87 21.92 67.0 90.85 43.05 7.22 76.0 59.92 51.81 43.91

D2O 23.56 26.02 36.07 43.48 20.91 39.48 23.67 21.92 21.62 51.0 89.01 38.22 6.55 74.5 43.62 43.76 37.71

L ADDITIONAL ABLATION ON LAYER-WISE BUDGET ALLOCATION AND
ADAPTIVE NUMBER OF SRH

L.1 ABLATION ON LAYER-WISE BUDGET ALLOCATION

Table 13: Additional ablation on layer-wise budget allocation. We report LongBench average
accuracy (%) of Mistral-7B-Instruct-v0.3 with a fixed KV budget of 256 tokens per layer, under
different choices of dataset D used to compute layer importance scores in Eq. (9)–(12). Results are
nearly identical, indicating that our layer-wise allocation is robust to the choice of D.

Layer-score source Acc. (%)

All-tasks Average 45.43
NarrativeQA-only 45.45
Qasper-only 45.43
QMSum-only 45.38
TriviaQA-only 45.36

Here, we perform an additional ablation in which the layer scores are derived from a single dataset
rather than from the average across all tasks.

Concretely, we consider Mistral-7B-Instruct-v0.3 on LongBench with a fixed KV budget of 256
tokens per layer (the same setting as in the main ablation in Table 3). We compute layer importance
scores in five ways: (i) averaging reconstruction errors over all LongBench datasets (our default),
and (ii) using only NarrativeQA, (iii) only Qasper, (iv) only QMSum, or (v) only TriviaQA as the
datasetD for Eq. (9)–(12). In all cases, the resulting layer scores are normalized and used to allocate
the same global KV budget across layers.

Table 13 reports task-wise scores and averages. The overall performance is virtually identical across
all variants: the average accuracy ranges from 45.36% to 45.45%, and the differences with respect
to the “All-tasks Average” profile are less than 0.08 points. This indicates that our layer-wise budget
allocation is robust to the choice of dataset used to compute layer importance and does not overfit to
a particular task; averaging over all tasks is a convenient and stable default.

L.2 ADAPTIVE-k SRH SELECTION

Here, we further evaluate an adaptive-k variant. For each layer, we first L1-normalize the SRH
scores and then select all heads whose normalized score exceeds a threshold τ , while enforcing
a minimum of 4 heads per layer. We sweep τ ∈ {0.001, 0.002, 0.003, 0.004, 0.006, 0.007} on

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Mistral-7B-Instruct-v0.3 with a KV budget of 256 tokens per layer. As summarized in Table 14,
all adaptive-k configurations achieve average LongBench accuracy that is very close to the fixed
top-4 baseline and do not exhibit a consistent improvement trend. This suggests that a small fixed k
is already a stable and effective design choice, and we therefore adopt top-4 SRH per layer for all
main experiments for simplicity and reproducibility.

Table 14: Ablation on adaptive-k SRH selection (Mistral-7B-Instruct-v0.3, KV budget = 256). We
compare fixed top-4 SRH per layer with adaptive-k variants using different thresholds τ on L1-
normalized SRH scores (with a minimum of 4 heads per layer).

Method Acc. (%)

Fixed top-4 SRH 44.96
Adaptive-k (τ = 0.001) 44.84
Adaptive-k (τ = 0.002) 44.74
Adaptive-k (τ = 0.003) 44.75
Adaptive-k (τ = 0.004) 44.80
Adaptive-k (τ = 0.005) 44.89
Adaptive-k (τ = 0.006) 44.87
Adaptive-k (τ = 0.007) 44.88

M THROUGHPUT

4k 8k 16k 32k 64k 128k
Context Length

0

10

20

30

40

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Throughput vs. Context Length

FullKV
StreamingLLM
SnapKV
PyramidKV

CAKE
HeadKV
AdaKV
CompressKV

Figure 27: Decoding throughput vs. context length. Throughput (tokens/s) of Llama-3.1-8B-Instruct
evaluated on a single NVIDIA A100 GPU as the context length increases from 4k to 128k under
different KV-cache eviction approaches (higher is better).

Figure 27 shows the decoding throughput (tokens/s) of Llama-3.1-8B-Instruct as a function
of context length from 4k to 128k under different KV-cache management strategies. All the setting
are same with the Section 4.4 As expected, the FullKV baseline is the slowest configuration and
its throughput degrades noticeably as the context grows, illustrating the quadratic cost of attending
over an ever-expanding KV cache. In contrast, all KV compression and streaming-based methods
(StreamingLLM, SnapKV, PyramidKV, CAKE, HeadKV-GQA, AdaKV-GQA, and CompressKV)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

maintain a much flatter throughput curve and consistently outperform FullKV across all context
lengths.

N EVALUATION ON LONGBENCH V2

We evaluate Llama-3.1-8B-Instruct on LongBench V2(QA Tasks) using the official evaluation pro-
tocol. For all methods, we adopt chain-of-thought prompting (“cot” in Table 15). With a full 128k
KV cache, the FullKV baseline attains an overall accuracy of 35.8. At a 0.75 KV Compression ratio,
StreamingLLM suffers a large degradation (22.7 overall), whereas eviction-based methods such as
SnapKV, PyramidKV, CAKE, HeadKV-GQA, AdaKV-GQA, and CompressKV substantially close
the gap to FullKV. Among these, SnapKV and CompressKV achieve the strongest overall perfor-
mance (32.2 and 32.0, respectively). At a more aggressive 0.9375 KV Compression ratio, the dif-
ferences between methods become more pronounced. StreamingLLM drops to 18.1 overall, while
all cache-compression approaches remain in the 27–32% range. CompressKV reaches 32.2 overall
accuracy, outperforming SnapKV (31.2), PyramidKV (30.0), CAKE (27.2), HeadKV-GQA (30.2),
and AdaKV-GQA (28.2).

Table 15: Results on LongBench V2 benchmark with Llama-3.1-8B-Instruct. All results use chain-
of-thought (CoT) prompting. We report overall accuracy and breakdowns by difficulty (Easy/Hard)
and context length (Short/Medium/Long). “KV compression ratio” denotes the fraction of the orig-
inal KV cache that is removed. All numbers are accuracies in %.

Method Overall Acc. Easy Hard Short Medium Long

Llama-3.1-8B-Instruct, Full KV cache

FullKV 35.8 42.7 31.5 40.6 32.6 34.3

KV Compression ratio = 0.75 (25% of full KV cache)

StreamingLLM 22.7 22.9 22.5 32.2 19.5 13.0
SnapKV 32.2 37.5 28.9 32.8 31.6 32.4
PyramidKV 30.6 34.9 28.0 31.1 30.2 30.6
CAKE 30.4 33.3 28.6 30.6 30.7 29.6
HeadKV-GQA 30.0 30.7 29.6 34.4 28.4 25.9
AdaKV-GQA 30.4 34.4 28.0 34.4 29.8 25.0
CompressKV 32.0 35.4 29.9 35.6 32.6 25.0

KV Compression ratio = 0.9375 (6.25% of full KV cache)

StreamingLLM 18.1 21.4 16.1 22.2 17.2 13.0
SnapKV 31.2 33.3 29.9 37.2 28.4 26.9
PyramidKV 30.0 30.7 29.6 34.4 27.0 28.7
CAKE 27.2 28.6 26.4 30.0 23.3 30.6
HeadKV-GQA 30.2 33.3 28.3 34.4 28.4 26.9
AdaKV-GQA 28.2 25.0 30.2 35.0 24.7 24.1
CompressKV 32.2 33.3 31.5 35.0 34.0 24.1

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

O COMPRESSKV PSEUDO CODE

Following SnapKV Li et al. (2024), we use the most recent window size tokens as the observation
window to analyze how different local contexts influence attention allocation patterns. In all exper-
iments, we fix window size = 8. kernel size denotes the size of the 1D pooling window used to
smooth local fluctuations in the attention weights before ranking tokens; we set kernel size = 5 in
our experiments. layer budget denotes the per-layer KV-cache capacity. As shown in List 1, Com-
pressKV is smoothly compatible with FlashAttention-family kernels: we only compress the KV
cache during the prefill stage, while subsequent attention computations simply invoke the standard
FlashAttention2 kernel on the compressed KV cache, without any modification to the kernel itself.

Listing 1: Implementation of CompressKV in pseudo PyTorch style.

d e f c o m p r e s s k v u p d a t e k v (
s e l f , k e y s t a t e s , q u e r y s t a t e s , v a l u e s t a t e s , n u m k e y v a l u e g r o u p s , l a y e r i d x , )
bsz , num heads , q l e n , head dim = q u e r y s t a t e s . shape
num kv heads = k e y s t a t e s . shape [ 1 ]
# do n o t compress i f unde r bu dge t
l a y e r b u d g e t = s e l f . m a x c a p a c i t y p r o m p t l a y e r a d a p t i v e [ l a y e r i d x ]
i f q l e n < l a y e r b u d g e t :

r e t u r n k e y s t a t e s , v a l u e s t a t e s
# g a t h e r i m p o r t a n t heads f o r t h i s l a y e r
i m p o r t a n t h e a d c l = t o r c h . t e n s o r ( s e l f . i m p o r t a n t h e a d s [ l a y e r i d x ] , )
# p r o j e c t t o t h e KV heads c o r r e s p o n d i n g t o i m p o r t a n t que ry heads
k e y s t a t e s i m p = g e t i m p o r t a n t h e a d k v ( k e y s t a t e s , n u m k e y v a l u e g r o u p s , i m p o r t a n t h e a d c l

)
# l o c a l a t t e n t i o n window ove r t h e l a s t w indow s ize t o k e n s
q win = q u e r y s t a t e s [ : , i m p o r t a n t h e a d c l , − s e l f . w indow s ize : , : ]
a t t n w e i g h t s = c o m p u t e a t t n ( q win , k e y s t a t e s i m p , a t t n m a s k s ) . sum ( dim = −2)
# Apply 1 D p o o l i n g f o r c l u s t e r i n g
a t t n c a c h e = poo l1d ( a t t n w e i g h t s , k e r n e l s i z e = k e r n e l s i z e , padd ing = k e r n e l s i z e / / 2

, s t r i d e =1) . mean ( dim =1)
# s e l e c t top −k h i s t o r i c a l t o k e n s a c c o r d i n g t o po o l ed s c o r e s
bu dg e t = l a y e r b u d g e t − s e l f . w indow s ize
i n d i c e s = a t t n c a c h e . t opk ( budget , dim = −1) . i n d i c e s # [ bsz , b udg e t ]
# expand i n d i c e s t o f u l l KV heads and head dim
i n d i c e s = i n d i c e s . unsqueeze ( 1 ) . unsqueeze ( −1) # [ bsz , 1 , budget , 1 ]
i n d i c e s = i n d i c e s . expand ( −1 , num kv heads , −1 , head dim )
# compress p a s t p a r t o f t h e KV cache
k p a s t = k e y s t a t e s [ : , : , : − s e l f . window size , : ]
v p a s t = v a l u e s t a t e s [ : , : , : − s e l f . window size , : ]
k p a s t c o m p r e s s = k p a s t . g a t h e r ( dim =2 , i n d e x = i n d i c e s )
v p a s t c o m p r e s s = v p a s t . g a t h e r ( dim =2 , i n d e x = i n d i c e s )
# a lways keep t h e most r e c e n t window s ize t o k e n s
k c u r = k e y s t a t e s [ : , : , − s e l f . w indow s ize : , : ]
v c u r = v a l u e s t a t e s [ : , : , − s e l f . w indow s ize : , : ]
k e y s t a t e s = t o r c h . c a t ( [ k p a s t c o m p r e s s , k c u r ] , dim =2)
v a l u e s t a t e s = t o r c h . c a t ( [ v p a s t c o m p r e s s , v c u r ] , dim =2)
r e t u r n k e y s t a t e s , v a l u e s t a t e s

d e f a t t n f o r w a r d ( s e l f , h i d d e n s t a t e s , . . . . . , p a s t k e y v a l u e : O p t i o n a l [ Cache ] = None ) :

bsz , q l e n , = h i d d e n s t a t e s . s i z e ( )
. . .
# u p d a t e KV cache wi th CompressKV d u r i n g p r e f i l l
i f p a s t k e y v a l u e i s n o t None :

i f p r e f i l l
k e y s t a t e s c o m p r e s s , v a l u e s t a t e s c o m p r e s s = c o m p r e s s k v u p d a t e k v (

k e y s t a t e s , q u e r y s t a t e s , v a l u e s t a t e s , s e l f . n u m k e y v a l u e g r o u p s , s e l f . l a y e r i d x ,
)
p a s t k e y v a l u e . u p d a t e ( k e y s t a t e s c o m p r e s s , v a l u e s t a t e s c o m p r e s s , s e l f . l a y e r i d x , . .
)

e l s e : # d e c o d i n g s t e p , j u s t append new t o k e n
k e y s t a t e s , v a l u e s t a t e s = p a s t k e y v a l u e . u p d a t e ( k e y s t a t e s , v a l u e s t a t e s , s e l f .

l a y e r i d x , c a c h e k w a r g s
)

# c o r e F l a s h A t t e n t i o n 2 c a l l
a t t n o u t p u t = f l a s h a t t e n t i o n f o r w a r d ( q u e r y s t a t e s , k e y s t a t e s , v a l u e s t a t e s , . . . )
a t t n o u t p u t = a t t n o u t p u t . r e s h a p e ( bsz , q l e n , −1) . c o n t i g u o u s ( )
a t t n o u t p u t = s e l f . o p r o j ( a t t n o u t p u t )
r e t u r n a t t n o u t p u t , p a s t k e y v a l u e

30


	Introduction
	Background and Related Work
	KV‐Cache Basics
	KV Cache Compression

	CompressKV
	Observations and Insights
	Semantic Retrieval Head Identification Standards
	Token Selection Driven by Semantic Retrieval Heads
	Error-Aware Layer-Adaptive Cache Allocation

	Experiments
	Evaluation on LongBench Benchmark
	Evaluation on Needle In A Haystack
	Semantic Retrieval Heads: Causal Ablation and Head-Agnostic Gains
	Evaluation of Latency and Peak Memory
	Ablation Studies

	Conclusion
	LLM Usage Statement
	Dataset Details
	More Implementation Details
	Detailed Description of Error‑Aware Layer‑Adaptive Cache Allocation

	Orthogonal Integration with Head-Level Budget Allocation Methods
	Orthogonal Integration with Prefilling-Stage Acceleration Methods
	Comprehensive Results on the LongBench Dataset
	Head visualization
	Detailed Results for Needle-in-a-Haystack Evaluation
	Comprehensive Masking‑Based Ablation of Different Head Types
	Orthogonal Integration with Quantizaiton
	Comparison with D2O
	Additional Ablation on Layer-wise Budget Allocation and Adaptive number of SRH 
	Ablation on Layer-wise Budget Allocation
	Adaptive-k SRH Selection

	Throughput
	Evaluation on LongBench V2
	CompressKV Pseudo Code

