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ABSTRACT

Recent advances in large language models (LLMs) have significantly boosted
long-context processing. However, the increasing key-value (KV) cache size
poses critical challenges to memory and execution efficiency. Most KV cache
compression methods rely on heuristic token eviction using all attention heads in
Grouped Query Attention (GQA)-based LLMs. This method ignores the different
functionalities of attention heads, leading to the eviction of critical tokens and thus
degrades the performance of LLMs.

To address the issue above, instead of using all the attention heads in GQA-based
LLMs to determine important tokens as in the previous work, we first identify the
attention heads in each layer that are not only capable of retrieving the initial and
final tokens of a prompt, but also capable of retrieving important tokens within
the text and attending to their surrounding semantic context. Afterwards, we ex-
ploit such heads to determine the important tokens and retain their correspond-
ing KV cache pairs. Furthermore, we analyze the cache eviction error of each
layer individually and introduce a layer-adaptive KV cache allocation strategy.
Experimental results demonstrate the proposed CompressKV consistently outper-
forms state-of-the-art approaches under various memory budgets on LongBench
and Needle-in-a-Haystack benchmarks. Notably, it retains over 97% of full-cache
performance using only 3% of KV cache on LongBench’s question-answering
tasks and achieves 90% of accuracy with just 0.7% of KV storage on Needle-in-
a-Haystack benchmark. Our code is available in the supplementary material.

1 INTRODUCTION

Recent advances in large language models (LLMs) (Achiam et al., 2024; |Anthropic, 2024} Dubey
et al.| [2024; Hui et al., 2025} [Wang et al., [2025) have boosted their long-context processing capabil-
ities. However, with the increasing length of texts, the resulting key-value (KV) cache size grows
linearly. The large KV cache leads to slow inference due to the attention calculation across past KV
cache. In addition, the large KV cache requires substantial memory storage, which creates a major
bottleneck in the deployment of long-context LLMs. Therefore, effective compression of KV cache
is essential for optimizing the computational efficiency and model scalability.

State-of-the-art KV cache compression focuses on quantization, low-rank approximation, and KV
cache eviction (Liu et al. [2024; Kang et al, [2024; Ge et al.| |2024; Xiao et al., [2024; [Li et al.,
2024 |Cai et al., 2025} |[Yang et al.l 2024; |Qin et al., [2025). Among such techniques, KV cache
eviction strategy where KV pairs corresponding to those unimportant tokens are eliminated and the
remaining KV pairs are kept has started to draw more and more attention.

There are different criteria to determine unimportant tokens for KV cache compression. For ex-
ample, StreaminglL.LM (Xiao et al 2024) retain the first and last tokens and neglects potentially
important tokens in the middle of the prompt. SnapKV (Li et all 2024)) clusters recent attention
scores within an observation window at the end of the prompt, either per head or per head group,
to identify and retain the important tokens receiving the highest attention values. CAKE (Qin et al.,
2025) extends SnapKV’s method by adding the attention variance in an observation window to the
eviction score, enabling it to capture tokens whose importance fluctuates over time.
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The criteria described above are effective in many scenarios in KV cache compression. However,
they treat all heads equally without examining their distinct functionalities, so that they use the sum
of the attention scores across all the attention heads to make decisions on KV cache eviction. In fact,
attention heads exhibit different functionalities. For example, in Grouped Query Attention (GQA)-
based LLMs (Ainslie et al.| 2023)), some attention heads, called Streaming Heads, exclusively focus
on the beginning and the end of a prompt (Xiao et al.| [2024; [2025). When the attention heads
within a GQA group are dominated by Streaming Heads, those heads have the largest influence on
KV cache eviction, resulting in only the initial and last tokens’ KV pairs being retained. This leads
to the eviction of crucial tokens in the middle of a prompt and thus degrades performance of LLMs.

Besides eliminating KV pairs for those unimportant tokens, state-of-the-art research also allocates
specified memory budgets to layers. For example, |Xiao et al.[(2024); |L1 et al.[(2024) allocates each
layer to a fixed number of KV pairs without considering layer difference. |Yang et al.|(2024); |Cai
et al.| (2025); |Qin et al.| (2025) allocates KV cache budget across layers based on attention distri-
butions or layer-wise statistics such as attention entropy or variance, which often require additional
online computation cost. Moreover, since attention distributions can vary significantly across differ-
ent models, limiting their generalization ability and effectiveness. Orthogonally, HeadKV (Fu et al.,
20235) and AdaKV (Feng et al., [2025)) extend to head-level budget allocation.

In this paper, we observe that certain attention heads are capable of retrieving important tokens
within the text and attending to their surrounding semantic context. We refer to these heads as Se-
mantic Retrieval Heads. Motivated by this observation, we identify such Semantic Retrieval Heads
in each layer and use them to determine the crucial tokens and share a unified set of crucial token
indices across all heads within that layer. This approach can substantially address the dominance
of Streaming Heads in KV cache evictions, so that it can enhance the performance of GQA-based
models. Furthermore, we analyze the cache eviction error of each layer individually and introduce a
layer-adaptive KV cache allocation strategy. Our contributions are as follows:

(1) We introduce a Semantic-Retrieval-driven mechanism to address streaming-head dominance in
GQA, preventing important tokens from being evicted out; The identified Semantic Retrieval Heads
then guide token importance and K'V-cache eviction. Our experimental results demonstrate Semantic
Retrieval Heads know what tokens are unimportant before generation.

(2) We estimate each layer’s compression impact by computing the Frobenius norm of the difference
between its attention-block outputs with the compressed cache and those with the full cache, dur-
ing the decoding stage. Cache budgets are then proportionally assigned across layers, prioritizing
layers with higher errors. Importantly, this analysis is performed offline and does not introduce any
additional overhead during online inference.

(3) CompressKV is validated on multiple LLMs using LongBench and Needle-in-a-Haystack
(NIAH). On LongBench, CompressKV maintains over 99% of full-cache performance with only
19% of KV budget and retains 97% of question-answering accuracy using just 3% of the cache. On
Needle-in-a-Haystack retrieval benchmark, it achieves 90% of the baseline accuracy with only 0.7%
of KV storage.

2 BACKGROUND AND RELATED WORK

2.1 KV-CACHE BASICS

The motivation of KV cache is to reduce the signification computation cost of attention evaluation.
To explain this, consider the case of a single attention head. This attention head can be evaluated
with weight matrices, denoted as Wq, Wk, Wy € R4%? and a prompt, denoted as X € Rle,
where where [ is the sequence length and d the hidden dimension. The attention evaluation includes
two phases, i.e., prefilling phase and decoding phase.

Prefilling Phase: In this phase, the query Q, key K, and value V are evaluated with the entire input
embeddings as follows
Q=XWq, K=XWg,V=XWy (1

With K, V and Q, the output of the attention can be evaluated as follows

O = Softmax(QK')V 2)
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Figure 1: Motivation. (a) The attention score distribution of a streaming head (SH). (b) The attention
score distribution of a retrieval head (RH). (c) Streaming attention heads in a GQA group dominate
the token eviction, indicating only initial and final tokens are remained. The critical tokens are
evicted.

The key K and the value V are then stored in cache memory, which is also called KV cache.

Decoding Phase: In this phase, the previously stored KV cache is used to generate new tokens and
the newly generated KV pair is then appended to the previously stored KV cache to refresh KV
cache. Specifically, at a decoding step ¢, given a new token embedding x; € R'*?, we first evaluate
the newly generated KV pairs with this new token as follows

ki =z, Wk, vi=2zWy. 3)

Afterwards, we use such new KV pairs to update the cache via
K« Concat[K, kt},V +— Concaﬁ[V, vt]. 4)

In GQA-based LLMs, query heads in a layer are partitioned into multiple groups. Multiple query
heads within the same group share the same KV cache. The shared key and value are evaluated
once per group and reused to produce the output of each head in the group. Although KV caching
removes the need to recompute keys and values at every step, the cache itself grows linearly with
prompt sequence length, becoming especially problematic for long-text tasks.

2.2 KV CACHE COMPRESSION

To alleviate the burden of KV cache storage, various KV cache compression methods, e.g., quantiza-
tion (Liu et al.,2024), low-rank approximations (Kang et al.,2024), and KV cache eviction strategy
have been proposed. In particular, KV cache eviction reduces cache size by removing KV cache
pairs of unimportant tokens without retraining. There are different eviction strategies. For example,
StreamingLLM (Xiao et al., |2024) focuses solely on retaining the first and last tokens, which only
addresses the Streaming Head scenario and neglects potentially important tokens in the middle of
the sequence. To overcome this limitation, more advanced methods have been proposed (Liu et al.,
2023} Zhang et al., [2023; [Li et al., 2024} Han et al) [2024; Oren et al., |2024). A representative
example is SnapKV (Li et al., 2024), which clusters recent attention scores, either per head or per
head group to identify important token and retain the KV cache pairs of such tokens. Besides, re-
cent approaches, including PyramidKV (Cai et al.,2025)), D20 (Wan et al., [2025), and CAKE (Qin
et al., 20235)), dynamically allocate cache budgets based on attention statistics or modeled attention
dynamics of all the layers in an LLM. Beyond layer-level allocation, HeadKV (Fu et al., |2025) and
AdaKV (Feng et al} 2025) further enhances cache budget with head-level budget allocation. Their
selection strategies for important tokens are an extended version of SnapKV’s eviction strategy.

The KV cache eviction approaches above have two major limitations. First, In GQA-based LLMs,
many prior KV cache eviction pipelines compute token importance via head-agnostic pooling (e.g.,
across heads within each GQA group) when selecting tokens for eviction, effectively treating all
attention heads equally and ignoring their functional heterogeneity; Recent work (Olsson et al.
2022; [Kwon et al., 2022} [Zheng et al.,2024; Ren et al., 2024 Wu et al.l |2025; |Todd et al., 2024;
Yin & Steinhardt, [2025} [Tang et al., 2025} |Fu et al.l [2025) has shown that different attention heads
have distinct roles. For example, some attention heads, called Streaming Heads in the state-of-the-art
research, always focus on the beginning and the end of a prompt. For example, in Figure 1(a), head 0
is such a Streaming Head since the attention scores of the initial token and the last tokens are larger
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than the remaining tokens. On the contrary, some attention heads, called Retrieval heads in [Wu
et al.[(2025)), exhibit copy-and-paste behaviors for long-context scenarios. For example, in Figure
1(b), head 1 is such a retrieval head since the attention scores of the correct answer “sandwich” are
larger. HeadKV (Fu et al.}[2025) further scores heads using retrieval and reasoning signals. In GQA-
based LLMs, Streaming Heads tend to have larger effect than the other heads for KV cache eviction,
which indicates only KV cache pairs corresponding to initial and last tokens are retained. This leads
to the eviction of crucial tokens in the middle of a prompt and thus degrades the performance of
LLMs. Figure 1(c) illustrates such an example, where Streaming Heads including head0 and head1
dominate token eviction for KV cache compression.

Second, the layer budget allocation in the previous work [Yang et al.| (2024)); |Cai et al.| (2025)); |Qin
et al.| (2025) typically relies on attention distributions or layer-wise statistics such as attention en-
tropy or variance, which often require additional online computation. Moreover, since attention dis-
tributions can vary significantly across different models, directly adopting a fixed allocation strategy
according to attention distributions may not yield optimal results.

3 COMPRESSKYV

CompressKYV includes three key components: (1) Identification of the attention heads that are capa-
ble of retrieving important tokens within the text and attending to their surrounding semantic context.
(2) Important token selection driven by such identified heads. (3) Error-aware layer-adaptive cache
allocation. In the following subsections, we will first explain our observations and insights into
identification of attention heads with specified functionalities. Afterwards, we will take advantage
of such heads to select tokens for KV cache eviction. Furthermore, different cache budgets will be
allocated to different layers.

3.1 OBSERVATIONS AND INSIGHTS

To avoid that Streaming Attention Heads dominate the KV cache eviction as illustrated in Fig-
ure|[Ifc), intuitively, Retrieval Heads instead of all attention heads can be used to identify important
tokens for KV cache eviction. Previous work typically identifies Retrieval Heads using a strict top-1
rule, indicating that those attention heads, the highest attention score of which aligns exactly with
the correct token answer during generation, are labeled as Retrieval Heads (Wu et al., [2025). This
identification technique emphasizes copy-and-paste behavior. [Tang et al.| (2025) extends copy-and-
paste identification by classifying both echo heads (copy-and-paste to the identical prior token) and
induction heads (an extension that attends to the immediately preceding token) as Retrieval Heads.
HeadKV (Fu et al., 2025) relaxes the strict top-1 criterion to a top-N hit: at each decoding step, a
head is credited if the ground-truth answer token ranks within its top-k attention weights.

Although HeadKV are more relaxed than strict top-1, this criteria still remains peak-driven, privi-
leging sharp attentions on the answer token. In long contexts where attention is sparse and skewed
towards boundary tokens—top-1 rules yield low hit rates and can under-credit attention heads whose
attention covers the answer span and its semantic neighborhood without placing a single sharp peak
on the exact answer token. In HeadKYV, if parts of the answer span do not appear within the top-k
ranked positions, heads allocating substantial attention to these tokens may not be credited. For in-
stance, in Figure 2(a), head O fails to receive credit because the relevant tokens fall outside the top-k
range despite providing coverage around the correct answer. Moreover, because the top-k threshold
in HeadKV is tied to the answer length, when answers are short, e.g., only one or two tokens, this
method returns back to the original strict top-1 regime.

To address the limitation above, we introduce Semantic Retrieval Heads (SRH), a span-aggregation
standard that credits attention heads for both copy-and-paste behaviours and deeper semantic de-
pendencies. We then use such heads to identify important tokens for KV cache eviction, thereby
preventing crucial mid-prompt evidence from being suppressed by streaming heads.

3.2 SEMANTIC RETRIEVAL HEAD IDENTIFICATION STANDARDS

Instead of requiring exact top-k hits in the traditional Retrieval Head identification, we aggregate a
head’s attention scores over the entire answer span inserted into a long context whenever the model
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Figure 2: Illustration of Semantic Retrieval Head identification versus traditional Retrieval Head
selection. Semantic Retrieval Heads capture attention over the entire answer span, addressing the
limitations of traditional methods that rely solely on copy-and-paste behavior.

generates a correct answer token as the score of this head. This evaluation is expressed with the
following equation as follows

N
SemanticRetrievalScore(h) = Z 1iy.eay Z aif?. 3)
t=1 jeA

where y; is the generated token at step ¢, A is the answer span, and a ; is head h’s attention weight
on the j-th token of A. The higher the score of a head is, the more capable of capturing semantic
information this head is.

Figure 2(b) illustrates the concept of this new identification standard. By summing over the en-
tire span, we can capture attention heads that contribute semantically relevant context even when
they never achieve top-1 attention on a single token. Aggregation over multiple tokens enables the
method to recognize heads that attend to semantic cues—such as “eat” or “a thing” around ‘“‘sand-
wich”—rather than only pure copy-and-paste patterns. For example, head 0 in Figure 2 is considered
as Semantic Retrieval Head in our new standard although it is not considered as Retrieval Head in
the traditional identification methods. For a visual comparison between Semantic Retrieval Heads
and traditional Retrieval Heads, please refer to Appendix

3.3 TOKEN SELECTION DRIVEN BY SEMANTIC RETRIEVAL HEADS

In GQA-based LLMs, for each layer, we will select top top-k Semantic Retrieval Heads with high
scores defined with equation (5) as the criterion for selecting important tokens for KV cache eviction.
All the attention heads within this layer share a common set of selected token indices determined
by these top Semantic Retrieval Heads. This concept is illustrated in Figure 3, where a layer has
two groups. In this example, Head 2 and Head 3 are top 2 Semantic Retrieval Heads. The attention
score matrices of such heads are compressed by summing over the observation window and pooling
across the token dimension. Afterwards, such compressed vectors are averaged. The tokens with
the top IV highest attention scores will be selected and their corresponding KV cache pairs will be
retained. The KV cache pairs for the remaining tokens will be evicted to compress KV cache.

3.4 ERROR-AWARE LAYER-ADAPTIVE CACHE ALLOCATION

To maximize memory efficiency under strict budget constraints, we propose an error-aware and
layer-adaptive cache allocation strategy. Instead of relying on attention statistics as in the previous
methods, this approach quantifies the compression error caused by KV cache compression, using
full-cache outputs as the reference. We specifically focus on the extreme compression setting, where
only a small fraction of tokens are retained in each layer’s KV cache. For each layer [ and decoding

step ¢, let O%ull,t and Oiomp,t denote the attention outputs using the full and compressed KV caches,
respectively:

Oéull,t = W}, Attention (QL K Vi) (6)

Oéomp)t = WZO Attention (Qi, Kéomp, Véomp) (7

where Wg) is the output projection matrix of layer I, Q! is the query, K' is the key, and V' is the
value representation at layer /. To evaluate the error incurred by compressing KV cache per layer,
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Figure 3: Illustration of the token selection driven by Semantic Retrieval Heads.

the error score for layer [ is computed and normalized as:
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where T is the total number of decoding steps,| - | denotes the Frobenius norm and € is a small
positive constant (e.g., 10~°) to prevent division by zero.

Given the normalized per-layer error scores € and total cache budget Bi,tq1, We first assign a mini-
mum allocation m and a maximum allocation M to each layer to avoid a layer either has no memory
budget or a large memory budget. The remaining budget is distributed in proportion to the error
scores. More details can be found in Appendix

4 EXPERIMENTS

Baselines and Backbone LLMs We compare CompressKV with six representative work:
StreamingLLM (Xiao et al., |2024), SnapKV (Li et al.| 2024), PyramidKV (Cai et al. [2025)),
CAKE (Qin et al, [2025)),HeadKV (Fu et al) 2025) and AdaKV (Feng et al., [2025). All meth-
ods are evaluated on state-of-the-art open-source LLMs, including Llama-3.1-8B-Instruct (Dubey
et al.l 2024),Mistral-7B-Instruct-v0.3 (Jiang et al.l 2024a), and Qwen2.5-7B-Instruct (Hu1 et al.,
2025)). In addition, we extend our evaluation to larger-scale LLMs, with detailed results provided in
the Table[T0] All evaluations are conducted in a generative setting using greedy decoding to ensure
a fair comparison across tasks. Beyond direct comparison, we further demonstrate two orthogonal
integrations: (i) CompressKV with head-level budget allocation methods in Appendix [D| and (ii)
CompressKV with prefilling-stage acceleration methods in Appendix [E]

Evaluating Tasks To evaluate CompressKV’s performance under different memory budgets,
we adopt two comprehensive benchmarks and one masking-based ablation analysis: (1) Long-
Bench (Bai et al.| 2024), which evaluates long-context understanding across 16 datasets; see Ap-
pendix [B| for more details. (2) Needle-in-a-Haystack (Kamradt, 2023), which measures the retrieval
of a target answer hidden in extended text; and (3) an ablation of retrieval head types (following Wu
et al., 2024), where we selectively disable SRH and TRH to quantify their contributions. We also
compare CompressKV with TRH vs. SRH under equal per-layer KV budgets, e.g., 256 tokens and
report results separately.

Implementation Details Our experiments evaluate CompressKV and baseline methods under total
memory budgets ranging from 128 to 2048 tokens for each layer. The KV cache budget is distributed
equally across layers for baseline methods: StreamingLLM and SnapKV, while methods such as
PyramidKV, CAKE, and CompressKYV distributes the cache differently across layers but keeps total
memory usage fixed. By contrast, HeadKV and AdaKV are head-level allocation schemes; in our
setup, to respect grouped-query attention, we allocate at the GQA-group granularity under the same
total memory. To ensure a fair comparison, tokens are evicted only during the prefilling phase. For
CompressKYV, we select the top four Semantic Retrieval Heads in each layer to identify and preserve
the most important tokens. Using the LongBench benchmark, we derive each layer’s normalized
error scores by simulating minimal-size KV compression and computing the Frobenius-norm recon-
struction error of its attention-block outputs. During budget allocation, we impose per-layer bounds
[m, M] with m = 32 and M = 3 X Byeriayer, and distribute the remaining KV pairs proportionally
to normalized errors.
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Table 1: Performance comparison of CompressKV with Streamingl. LM, SnapKV, PyramidKYV,
CAKE, HeadKV, AdaKV, and FullKV on LongBench for Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.3 and Qwen2.5-7B-Instruct. CompressKV generally outperforms other KV cache com-
pression methods across various KV cache sizes and LLMs. Best in bold

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
> Q> oS S > ®
Method Qd ' & A A & o NG C A S o o Avg.
e @ Gt @ T o 8T W o e Y o et e f
Llama3.1-8B-Instruct, KV Size = 256
StreamingLLM 23.35 2226 33.94 428 2191 2447 2335 1628  23.85 545 70.66 17.65 6.12  87.99 39.64 34.01 33.92
SnapKV 3041 3624 49.88 54.06 30.69 4595 23.64 2299 236 580 9129 4092 6.25 99.0 59.68 50.74 45.21
PyramidKV 29.02 334 4943 5479 2921  46.24 23.45 22.87 2281 58.0 89.41 39.8 6.25 985 57.42 49.16 44.36
CAKE 31.31 40.18 51.54 54.48 29.66  45.75 25.22 23.84  24.09 64.5 9149  42.06 6.14 995 59.6 51.5146.3
HeadKV(GQA) 30.55 32.41 48.36 53.72 3026 4597 23.93 2357 234 57.0  90.0 40.54 6.33  93.0 58.23 48.45 44.11
AdaKV(GQA) 2945 337 4896 5448 29.59  46.09 23.58 23.13 2327 53.0 90.79 4049 6.33 985 59.47 5031 44.45
CompressKV ~ 30.68 42,58 52.27 5437 3043 46.46 24.86 2379 2413 685 89.97  41.08 6.14 995 60.63 51.94 46.71
Llama3.1-8B-Instruct, KV Size = 1024
StreamingLLM 23.55 2899 43.17 425 21.61 2837 28.26 19.12 2637 68.0 74.02 19.41 6.19  82.58 43.65 35.49 36.95
SnapKV 3132 44.62 5251 54.65 3024 46.8 28.14 24.12 2636 69.0 92.05  42.67 6.12 995 62.06 54.99 47.82
PyramidKV 31.06 44.09 5325 54.25 3045  46.87 27.44 2346 2631 70.0 91.93 4291 6.08 995 62.03 52.75 47.65
CAKE 30.61 44.64 52.18 54.89 30.44  46.14 29.1 2428 2633 71.0 91.89  42.81 6.17 995 62.05 55.47 47.97
HeadKV(GQA) 30.6 4124 52.13 5434 3096  46.33 27.27 24.11 260 65.5 9151 43.1 6.17 985 61.84 53.17 47.05
AdaKV(GQA) 31.75 4471 52.74 54.75 31.05  46.73 279 23.86 2641 69.5  92.05 42.82 6.58 995 62.04 54.61 47.94
CompressKV ~ 30.27  45.18 53.44 5525 30.83  46.57 29.06 2434 2648 71.0 91.79  43.37 6.0 99.5 63.14 55.62 48.24
Mistral-7B-Instruct-v0.3, KV Size = 256
StreamingLLM 21.89  21.37 32.51 36.98 16.78 2543 21.85 16.89 2355 575 7238 18.24 4.0 65.0 31.63 33.53 31.22
SnapKV 2749 29.18 4892 48.0 2647 3678 22.46 22.04 2254 70.0 8944 4372 6.0 96.0 56.69 54.49 43.76
PyramidKV 2771 2823 4825 4861 2562  36.18 22.1 21.77 218 70.0 89.33 43.65 6.0 93.5 55.13 51.06 43.06
CAKE 2746  33.09 54.32 48.32 27.08 378 24.62 23.61 23.85 70.0 89.33 44.09 4.5 95.5 55.76 56.35 44.73

HeadKV(GQA) 29.15  31.66 51.03 49.09 24.88  36.64 22.46 222 2297 70.5 89.57 43.86 5.5 94.0 56.77 55.39 44.1
AdaKV(GQA) 29.08 2793 49.69 494 2607 3634 22.55 2172 22.14 70.5  89.69 44.09 6.5 94.0 56.21 54.05 43.75

CompressKV ~ 29.86 3532 52.84 49.77 27.64  38.04 24.05 2337 2326 755 89.16 4531 4.5 96.5 5647 55.31 45.43
Mistral-7B-Instruct-v0.3, KV Size = 1024

StreamingLLM 22.37  28.03 41.21 38.0 17.05 2695 27.75 19.87  27.13 715 70.34 19.02 537 685 37.95 3457 34.73

SnapKV 29.82 3649 52.64 50.33 26.88 3853 26.39 2394 2584 75.0 89.24 46.73 6.5 97.0 58.57 59.86 46.48

PyramidKV 28.14 3583 54.28 49.88 25.68  38.31 25.91 2382 2542 74.5  89.86 46.17 5.0 97.5 57.72 57.36 45.96

CAKE 2921 3686 532 48.69 27.62 3878 28.94 24.54 2698 740 88.94 46.94 5.0 98.0 58.88 59.91 46.66

HeadKV(GQA) 29.62  37.34 53.09 50.31 26.67 3828 26.44 2352 26.11 76.0 89.35 45.68 5.0 97.0 58.54 59.56 46.41
AdaKV(GQA) 29.73 37.04 53.07 50.01 2632 3754 26.27 2397 2612 755 89.49 46.25 6.5 96.5 58.62 59.16 46.38

CompressKV ~ 29.75  38.88 52.81 49.71 2848  39.04 28.26 2495 26.88 76.0 89.24 46.16 55 97.0 58.65 60.05 46.96
Qwen2.5-7B-Instruct, KV Size = 256
StreamingLLM 18.04 2145 27.37 3588 14.17  19.45 2223 1554 20.77 525 62.65 17.86 8.5 25.33 33.76 33.51 26.81
SnapKV 27.32  35.61 4931 54.66 27.11  43.67 21.93 20.88  19.33 53.0 88.04 432 8.5 98.0 55.08 56.46 43.88
PyramidKV 25.05 33.19 47.72 52.62 2528  44.05 20.14 1992 16.64 50.5 87.76 40.71 8.5 94.0 50.36 51.77 41.76
CAKE 26.56 3642 49.88 54.25 27.56 4593 2322 20.82  19.82 53.0 86.08 43.59 8.5 97.0 54.44 57.81 44.05
HeadKV(GQA) 27.62  36.57 49.71 54.96 26.82 4483 2251 2043 195 56.5 89.12 43.43 8.5 98.5 55.63 58.33 44.56
AdaKV(GQA) 27.19 3554 48.15 5434 27.8 44.7 21.74 2044 1899 535 87.65 42.5 8.5 98.0 55.04 56.65 43.8
CompressKV ~ 28.94  36.39 48.85 5445 26.65  44.13 2237 2096  19.02 655 875 42.08 8.5 98.5 53.72 57.46 44.69
Qwen2.5-7B-Instruct, KV Size = 1024
StreamingLLM 20.68  30.34 41.03 37.96 1635 2571 27.04 17.89 2339 67.0 61.54 18.18 8.5 125 39.15 364 3023
SnapKV 28.77 40.73 51.54 56.84 28.64  45.65 26.7 21.87 2284 69.0 89.57 44.35 8.5 99.5 59.65 64.85 47.44
PyramidKV 2971 3975 5222 56.39 26.09 4577 24.57 2091 2119 68.5 89.14 44.06 8.5 99.0 58.44 60.03 46.52
CAKE 2888 422 51.66 56.66 2896 4525 28.0 2198  23.09 68.5 88.73 44.85 8.5 100.0 58.95 64.15 47.52
HeadKV(GQA) 28.6 4132 52.07 57.09 2898 4532 27.39 2191 23.11 69.5 89.58 44.58 8.5 99.5  59.56 64.47 47.59
AdaKV(GQA) 28.9 40.86 52.09 56.93 2662 45.64 26.51 21.87 22.89 69.5 89.74 44.44 8.5 99.5 59.83 63.32 47.32
CompressKV ~ 29.52 42,17 51.82 57.55 295 45.17 26.96 2206  22.69 70.5 88.43 44.11 8.5 100.0 59.08 63.94 47.62

4.1 EVALUATION ON LONGBENCH BENCHMARK

Table [T] demonstrates performance comparison under two KV cache budgets—low (256) and high
(1024)—with full results across additional budgets as well as large-scale language model evaluations
reported in Appendix [F] CompressKV consistently ranks the top performers across various tasks.
The advantage of CompressKV is particularly pronounced in low-memory scenarios. CompressKV
outperforms HeadKV by 2.5 points on Llama-3.1-8B-Instruct; even in the 1024 cache budget setting
scenario, CompressKV still maintains superior accuracy. By leveraging a small number of Semantic
Retrieval Heads to accurately identify semantically important tokens, combined with an effective
adaptive layer budget allocation strategy, CompressKV achieves the best overall performance.

As illustrated in Figure f] we benchmark CompressKV on LongBench across KV cache sizes from
128 to 2048, presenting results for Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Qwen-2.5-
7B-Instruct. The evaluation metric is the average score across all LongBench datasets. SnapKV
outperforms the legacy method StreamingLLM. Despite its methodological similarities to SnapKYV,
PyramidKV underperforms in many scenarios, possibly due to its limited adaptability. CAKE
achieves better results than previous baseline methods in most cases by dynamically allocating
memory to each layer and incorporating additional computations of variance and entropy scores.
HeadKV and AdaKV (head-level allocation) perform strongly at generous budgets but degrade un-
der tight budgets. In contrast, CompressKV consistently surpasses all methods across budgets—with
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the largest margins in the low-budget regime—except for Qwen-2.5-7B-Instruct at a per-layer bud-
get of 2048 tokens, where it is on par with HeadKV; in all other model-budget combinations, Com-
pressKV attains the best average score.
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Figure 4: Average performance on 16 LongBench datasets under different KV cache budget settings
compared with various baseline methods.

4.2 EVALUATION ON NEEDLE IN A HAYSTACK

Figure [5| presents average Needle-in-a-Haystack performance across KV budgets for three
LLMs—8K-128K contexts for Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct, and 2K-32K for
Mistral-7B—showing CompressKV consistently surpasses competing methods at every budget. On
Mistral-7B-Instruct-v0.3, CompressKV, HeadKV, and CAKE achieve near lossless compression
with as few as 256 KV budget, highlighting their robustness. On Qwen-2.5-7B-Instruct, how-
ever, CAKE lags under low budgets, whereas CompressKV remains competitive. On Llama-3.1-
8B-Instruct, AdaKV and HeadKV also underperform at low budgets, while CompressKV achieves
nearly lossless performance at a 2048 KV budget (5% of the full cache) and still retains 90% of
the original performance with only 256 KV budget (0.7% capacity). Together with the LongBench
evaluation, these results show that CompressKV preserves general LLM performance across diverse
long-context tasks while delivering efficient KV-cache compression. Additional results appear in

Appendix
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Figure 5: Average performance on the Needle-in-a-Haystack benchmark under different KV cache
budget settings, in comparison with baseline methods.

4.3 SEMANTIC RETRIEVAL HEADS: CAUSAL ABLATION AND HEAD-AGNOSTIC GAINS

Following the masking-based causal test of (2025), we perform targeted ablation by mask-
ing the top 20 of these heads and comparing against traditional Retrieval Heads(TRH), as shown in
Figure[f]. Even masking a small subset of Semantic Retrieval Heads causes a sharp drop in retrieval
accuracy and a significant rise in hallucinations, underscoring their essential role in preserving fac-
tual consistency and their ability to retrieve and localize textual information. For more results, please
refer to the Appendix [ CompressKV is compatible with heterogeneous head definitions. Table 2]
compares CompressKV using TRH vs. SRH under a fixed per-layer KV budget of 256 tokens. SRH
yields a modest yet consistent average gain over TRH (+0.24). Moreover, even with TRH and with-
out dynamic budget allocation, CompressKV still surpasses most representative baselines (Table[T)),
evidencing more precise salient-token selection.

4.4 EVALUATION OF LATENCY AND PEAK MEMORY

We evaluate the end-to-end generation latency, decoding latency, and peak memory usage on Llama-
3.1-8B-Instruct, implemented with FlashAttention-2 2024), running on a single NVIDIA
A100 GPU. The evaluation spans context lengths from 4K to 128K tokens with a fixed genera-
tion length of 1024 tokens. We compare our proposed CompressKV method against a full cache



Under review as a conference paper at ICLR 2026

Table 2: LongBench accuracy under a fixed per-layer KV budget (256) comparing TRH vs. SRH.
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Figure 6: Masking different head types in Figure 7: Comprehensive evaluation of infer-
Mistral-7B-Instruct-v0.3. ence efficiency on a single NVIDIA A100 GPU.

baseline and six aforementioned KV cache eviction methods—each constrained by a KV cache bud-
get of 1024. As illustrated in Figure[7] the end-to-end generation latency and time-to-first-token in-
creases with longer context lengths for all methods. However, while the decoding latency of the full-
cache baseline consistently grows with context length, all KV cache eviction strategies—including
CompressKV—maintain nearly constant decoding latency, demonstrating their efficiency. Figure 7]
shows that with a fixed KV budget, all eviction methods (including CompressKV) have similar peak
memory, while the full-cache baseline is much higher—especially at long contexts.

4.5 ABLATION STUDIES

To evaluate the effectiveness of each part in CompressKV, we conduct a series of ablation studies
on the LongBench benchmark using Mistral-7B-Instruct-v0.3 with a fixed KV cache budget of 256.

Ablation Study on the Number of Selected Heads per Layer To quantify how many Semantic
Retrieval Heads are needed per layer, we vary per-layer SR-Head selection from 2 to 24 on Table[3]
Accuracy gains peak at 4 heads and then plateau (Top-6: —0.17; Top-12: 0.00), with 24 heads
slightly worse. Thus, 4 heads are sufficient to capture most semantic-retrieval capacity.

Table 3: Ablation studies: (Left) number of Semantic Retrieval Heads per layer; (Right) token
selection strategy and layer-aware cache allocation.

Heads per Layer | Mean Acc. (%) | A vs. Top-4 (%)

Method | Acc. (%)
Top-2 4433 -0.63
Top-4 44.96 0.00 SnapKV 43.76
Top-6 44.79 -0.17 + SRH Selection 44.96
Top-12 44.96 0.00 + SRH + Layer Alloc 45.43
Top-24 44.30 -0.66

Ablation Study on Token Selection and Layer-Wise Cache Allocation We ablate SR-Head—
driven token selection and layer-aware budget allocation on Table [3). Adding our selection to
SnapKV improves accuracy; adding layer-aware allocation yields further gains—both components
are complementary.

5 CONCLUSION

In this work, we proposed CompressKYV, a novel KV-cache compression framework for GQA-based
LLMs that (1) addresses streaming-head dominance via Semantic Retrieval Heads guide token-
importance estimation and KV eviction, evicting unimportant tokens before generation and (2) al-
locates a layer-adaptive cache budget by measuring each layer’s offline cache-eviction error. Exten-
sive experiments on LongBench and Needle-in-a-Haystack across multiple model architectures and
cache budgets confirm better performance under diverse memory constraints.
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that ChatGPT 5 (by OpenAl) was used solely as a writing assistant to polish the language and
improve the readability of the paper. It was not involved in research ideation, experimental design,
implementation, data analysis, or result interpretation.

B DATASET DETAILS

Table [] presents the LongBench benchmark used in our experiments, which consists of 14 En-
glish subtasks and 2 code-completion subtasks organized into six categories—single-document QA,
multi-document QA, summarization, few-shot learning, synthetic tasks, and code completion. Each
subtask contains 150-500 samples with input lengths ranging from 1,235 to 18,409 words. Evalua-
tion metrics include F1, Rouge-L, classification accuracy, and edit similarity.
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Table 4: An overview of the dataset statistics in LongBench.

Dataset Source Task Type Avg Len Metric Language # Samples
NarrativeQA Literature, Film Single-Document QA 18,409 F1 English 200
Qasper Science Single-Document QA 3,619 F1 English 200
MultiFieldQA-en Multi-field Single-Document QA 4,559 F1 English 150
HotpotQA Wikipedia Multi-Document QA 9,151 Fl1 English 200
2WikiMultihopQA  Wikipedia Multi-Document QA 4,887 F1 English 200
MuSiQue Wikipedia Multi-Document QA 11,214 F1 English 200
GovReport Government report Summarization 8,734 Rouge-L English 200
QMSum Meeting Summarization 10,614 Rouge-L English 200
MultiNews News Summarization 2,113 Rouge-L English 200
TREC Web question Few-shot Learning 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web Few-shot Learning 8,209 F1 English 200
SAMSum Dialogue Few-shot Learning 6,258 Rouge-L English 200
PassageCount Wikipedia Synthetic Task 11,141 Accuracy (EM) English 200
PassageRetrieval-en ~ Wikipedia Synthetic Task 9,289 Accuracy (EM) English 200
LCC Github Code Completion 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository Code Completion 4,206 Edit Sim Python/Java 500

C MORE IMPLEMENTATION DETAILS

In this section, we provide additional details of our experimental setup and a comprehensive descrip-
tion of the error-aware, layer-adaptive cache allocation algorithm used by CompressKV. To ensure
a fair comparison across all KV cache compression methods, we use identical hyperparameters: an
observation window of 8 tokens, a 1D pooling kernel of size 5, and average-pooling to aggregate
attention scores.

C.1 DETAILED DESCRIPTION OF ERROR-AWARE LAYER-ADAPTIVE CACHE ALLOCATION

Using the LongBench benchmark, we simulate an extreme compression scenario by restricting each
layer’s KV cache size to 32 tokens (approximately 0.3% of full capacity). Unlike completely skip-
ping an attention block (binary on/off), retaining a small subset of tokens allows us to explicitly
quantify the direct impact of KV cache compression on the attention outputs. This approach ef-
fectively captures fine-grained compression errors without incurring multiple forward computations
that would otherwise be necessary for evaluating the complete removal of attention blocks.

Formally, for each dataset d € D, transformer layer [, and decoding step ¢, we compute the per-layer
compression-induced reconstruction error as follows:

egll) _ Z HO

t=1

fulltHF
||Ofull illF+e

comp,t

9

where T denotes the total decoding steps, || - || represents the Frobenius norm, and € = 10~°
ensures numerical stability. Next, we perform an L1 normalization of the per-layer errors within

each dataset:
(l)

5 _
é (10)
e
Then, we average these normalized per-layer errors across all datasets:
e® 08 (11)
“ o1 5
Finally, we apply another L1-normalization across layers to obtain the final importance scores:
(1
s - &0 (12)

Yok S ek

Averaging normalized errors across all datasets ensures both generalizability and fairness: by av-
eraging errors from diverse datasets, we capture consistent trends in layer importance rather than

13
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overfitting to any single task or domain. Compared with budget allocation methods that rely solely
on attention-score distributions, our error-aware approach explicitly quantifies the impact of com-
pression on the model’s final attention outputs, resulting in a more precise and effective allocation
strategy. These normalized, dataset-averaged error scores &) guide our error-aware, layer-adaptive
cache allocation as detailed in Algorithm [T]below.

To safeguard against extreme cases, we impose per-layer bounds [m, M|, where the minimum allo-
cation m = 32 ensures that each layer receives at least a small, baseline cache allocation, preventing
any single layer from becoming completely inactive under extreme conditions. The upper bound
M = 3 X DBper1ayer prevents excessive cache allocation to any individual layer, ensuring a balanced
distribution of cache resources and maintaining overall model performance. Additionally, we plot
the performance of both the Mistral-7B-Instruct-v0.3 and Llama-3.1-8B-Instruct models under a
per-layer KV cache budget of 256 tokens as bar charts (see Figures[8), illustrating the distinct allo-
cation characteristics of each model.

Mistral-7B-Instruct-v0.3 Llama-3.1-8B-Instruct

w
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Figure 8: Per-layer KV cache allocation for Mistral-7B-Instruct-v0.3 (left) and Llama-3.1-8B-
Instruct (right) under a total budget of 256 tokens per layer.

Algorithm 1 Error-aware Layer-adaptive Cache Allocation

Require: Scores ¢, total budget By, per-layer bounds [m, M]
Ensure: Allocations B
1: B; + m,Vi

2: R < Bota — ZZ B;

3: B; < clip(B; +round(é; - R),m, M), Vi

4: A < B — ZZ B;

5: while A # 0 do

6: if A > 0 then

7: L+ {i| B; < M}

8: if £ = 0 then

9: Break

10: end if

11: j ¢ argmax;er €, Bj < B+ 1, A+ A -1
12:  else

13: L+ {i| B; >m}

14: if £ = () then

15: Break

16: end if

17: j(—argminiegéi,Bj<—Bj—1,A<—A—|—1
18:  end if

19: end while
20: return B

D ORTHOGONAL INTEGRATION WITH HEAD-LEVEL BUDGET ALLOCATION
METHODS

CompressKV is orthogonal to head-level budget allocation methods such as HeadKV
[2024b) and AdaKV 2025). To examine complementarity, we graft our components onto

these backbones:

14
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* HeadCompressKV = HeadKV + our token selection;

* AdaCompressKV = AdaKV + our token selection and error-aware, layer-wise budget allo-
cation.

Evaluated on LongBench with Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3 (Table |§]), both
HeadCompressKV and AdaCompressKV outperform their respective backbones, with the largest
gains under tight KV budgets. Consistent patterns hold on the Needle-in-a-Haystack benchmark
(Figure[9). On Llama-3.1-8B-Instruct at low KV budgets (e.g., 128 cache budget per layer), Head-
CompressKV improves over HeadKV by 6% relative accuracy, and AdaCompressKV improves over
AdaKV by 13%.

These results indicate that combining CompressKV’s token selection with error-aware budget al-
location further strengthens head-level allocation schemes by avoiding GQA-induced overwriting
during eviction and prioritizing capacity where it is most impactful—especially in the low-budget
regime.

Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3
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Figure 9: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3.

E ORTHOGONAL INTEGRATION WITH PREFILLING-STAGE ACCELERATION
METHODS

CompressKYV is orthogonal to prefilling-stage acceleration approaches such as MInference (Jiang
et al., 2024b)) and XAttention (Xu et al., 2025). While MInference and XAttention primarily speed
up long-context inference during the prefilling stage via sparse attention, CompressKV targets the
decoding stage by reducing the KV-cache footprint, thereby alleviating the memory-bound bottle-
neck and improving throughput.

To verify this complementarity, we integrate CompressKV with MInference and XAttention and
evaluate on the LongBench benchmark; results are summarized in Table [ under a KV budget of
2048 tokens per layer. For MlInference, we adopt its default configuration; for XAttention, we
use stride=8 and threshold=0.9. Across tasks, the combined variants maintain accuracy within a
narrow band relative to their prefilling-only counterparts, while enabling decoding-stage memory
reduction—collaborating that the two classes of techniques address orthogonal bottlenecks.

F COMPREHENSIVE RESULTS ON THE LONGBENCH DATASET

In Table[7} 0} we provide the detailed results corresponding to Figure[d]in the main paper. Across all
KV cache budgets, CompressKV consistently outperforms the baseline methods, with one excep-
tion: on Qwen-2.5-7B-Instruct at a per-layer budget of 2048 tokens, it performs on par with HeadK'V.
The performance advantage of CompressKV becomes especially pronounced under tight memory
constraints (i.e., smaller cache sizes). We further extend our evaluation to large-scale LLMs, in-
cluding Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct, and report the results in Table[T0] which
show consistent improvements.
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Table 5: Detailed results of integrating CompressKV with head-level allocation methods on Long-
Bench with Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3.

Single-Document QA Multi-Document QA Summarization Few-shot Learning ~ Synthetic Code
Method & J & & \ad & Av
AOYV afié <¢,©° & ‘5‘0 4\\\'\ AQQ $,°& \\\\% & 44"{:’0 &Q o"o\ £ oo R ¢
S AR R & Y & F L FSE

Llama3.1-8B-Instruct, KV Size = 256

HeadKV(GQA) 30.55 32.41 4836 53.72 3026 4597 2393 2357 234 57.0 90.0 40.54 6.33 93.0 58.2348.4544.11

AdaKV(GQA)  29.45 33.7 4896 54.48 29.59 46.09 2358  23.13 2327 53.0 90.79 4049 633 985 59.4750.3144.45

HeadCompressKV 29.73 36.42 51.56 54.54 3029 4525 2455 2345 23.67 660 89.45 40.22 6.78 99.0 59.1249.5345.6

AdaCompressKV 30.37 41.53 51.98 54.86 30.25 45.81 24.7 24.14 2368 66.5 9037 41.02 6.14 99.0 60.7 51.3146.4
Llama3.1-8B-Instruct, KV Size = 512

HeadKV(GQA) 30.92 3598 50.78 54.61 3126 46.26 2569  23.84 2462 640 91.23 4194 6.33 97.5 60.6951.2246.05

AdaKV(GQA)  30.88 38.6 520 5467 3026 46.19 2552 2358 2478 61.5 91.17 4217 6.33 99.0 61.5 52.2746.28

HeadCompressKV 29.31 39.41 52.32 553 31.18 4647 26.17  23.69 2494 685 9048 42.66 6.17 99.0 60.4452.1346.76

AdaCompressKV 30.52 44.25 52.55 55.06 31.14 47.09 2663 241 251 70.0 91.77 43.66 6.08 99.5 62.5453.7647.73
Llama3.1-8B-Instruct, KV Size = 1024

HeadKV(GQA) 30.6 41.24 52.13 5434 3096 46.33 2727 2411 26.0 65.5 91.51 43.1 6.17 98.5 61.8453.1747.05

AdaKV(GQA)  31.75 44.71 52.74 5475 31.05 46.73 27.9 2386 2641  69.5 92.05 4282 6.58 99.5 62.0454.6147.94

HeadCompressKV 30.8  43.42 52.56 54.96 29.94 46.64 2821 24.62 2587 715 9098 4347 6.08 99.5 62.4654.3147.83

AdaCompressKV 30.68 44.73 53.54 5525 309 4695 29.0 2459 26.5 71.0 91.79 4344 65 99.5 62.9955.8648.33
Mistral-7B-Instruct-v0.3, KV Size = 128

HeadKV(GQA) 27.55 27.82 47.79 47.85 2693 36.83 20.63  21.66 20.12 62.0 89.39 4328 55 90.5 53.8951.4842.08

AdaKV(GQA)  25.61 24.66 4524 47.07 2436 34.95 2045 21.08 19.84 62.0 88.86 42.06 6.5 90.0 52.5349.344091

HeadCompressKV 28.49 32.0 50.69 47.43  27.74 37.77 2147 2199 20.64 72.0 89.69 4255 55 935 52.4150.3443.39

AdaCompressKV 28.02 30.94 53.07 49.99 26.65 3691 21.4 2241 2132 72.0 89.64 4295 6.0 90.0 52.8950.7143.43
Mistral-7B-Instruct-v0.3, KV Size = 256

HeadKV(GQA) 29.15 31.66 51.03 49.09 24.88 36.64 2246 222 2297 705 89.57 4386 5.5 94.0 56.7755.3944.1

AdaKV(GQA)  29.08 27.93 49.69 49.4 26.07 36.34 2255 2172 2214 705 89.69 4409 6.5 94.0 56.2154.0543.75

HeadCompressKV 29.61 33.87 52.4 49.26 2853 37.17 2287 231 23.03 760 89.44 4418 5.0 96.5 55.7355.2845.12

AdaCompressKV 30.05 33.38 53.38 49.23  27.59 38.04 2347 2287 2327 745 8933 4389 4.0 96.0 56.1555.2445.02
Mistral-7B-Instruct-v0.3, KV Size =512

HeadKV(GQA) 29.38 33.75 53.24 5045 27.24 3744 24.5 2341 2472 750 89.52 4552 6.0 96.0 57.6857.9 45.73

AdaKV(GQA)  29.04 327 51.16 49.56 2556 37.03 24.17 2269 2411 735 89.49 4506 6.5 95.0 57.9857.4845.06

HeadCompressKV 29.06 36.55 53.31 50.81 2893 39.18 2522 2393 2484 760 89.19 4496 45 96.0 57.3157.8546.1

AdaCompressKV 30.5 36.74 53.75 49.39 27.62 38.16 2601 2419 2513 76.0 89.49 4471 55 96.0 58.0457.5246.17
Mistral-7B-Instruct-v0.3, KV Size = 1024

HeadKV(GQA) 29.62 37.34 53.09 50.31 26.67 38.28 2644 2352 26.11 76.0 89.35 4568 5.0 97.0 58.5459.5646.41

AdaKV(GQA)  29.73 37.04 53.07 50.01 2632 37.54 2627 2397 26.12 755 89.49 4625 6.5 96.5 58.6259.1646.38

HeadCompressKV 29.89 38.07 53.62 4892  29.08 38.69 27.62 2436 2631 76.0 89.46 4596 55 96.5 58.5559.9646.78

AdaCompressKV 29.83 38.86 53.1 49.18 28.56 39.06 28.06 251 26.82 76.0 89.24 4566 55 97.0 58.1760.2646.9

Table 6: Prefilling-stage accelerators and their integration with CompressKV on LongBench. Com-
bined variants maintain accuracy comparable to prefilling-only baselines while enabling decoding-
stage memory reduction, confirming orthogonality.

Single-Document QA Multi-Document QA Summarization Few-shot Learning ~ Synthetic Code
\ad & &
\od Q & o &
Method Q& J \ad Avg.
e *‘0?. cﬂé Q/é\ &Q\ Q&‘& q@;\ 331 A &Q Q\.\\%Q ‘OC/ -A&Q %@ > OQ& &£ b v
R 2R A &Y T T ESS
Mistral-7B-Instruct-v0.3, KV Size = 2048
CompressKV 294 4092 53.52 50.36 28.76 39.45 31.26 25.17 2735 76.0 88.64 47.09 55 97.5 59.2160.7247.55
Minference 29.34 41.81 53.8 49.88 289 40.16 34.96 25.69 27.82 76.0 88.59 47.63 55 98.0 59.4761.2748.05
Minference+CompressKV 27.74  40.49 53.69 51.37 28.86 39.87 31.2 2545 2732 76.0 88.89 47.53 55 98.0 59.1761.0147.63
XAttention 27.65 35.79 53.64 51.89 2791 39.11 34.46 2498 2725 745 89.0 47.3 6.5 89.5 59.4961.2146.89
XAttention+CompressKV 27.51 34.77 5291 5227 274 3873 30.67 2454 2725 745 89.27 4643 6.5 90.5 59.2761.4146.5

16



Under review as a conference paper at ICLR 2026

Table 7: Details Performance comparison of CompressKV with StreamingLLM, SnapKV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Llama-3.1-8B-Instruct.

Single-Document QA Multi-Document QA Summarization Few-shot Learning ~ Synthetic Code
\ad Q& S
\ad & J A& Q>
Method F o oo & & & £ & o & ﬁ\%& N o Ave
&g K S S & S & & W ¢ &L
S AR I S <  F ST FE

Llama3.1-8B-Instruct, KV Size = Full

FullKV 30.97 4549 53.78 5476 3142 47.13 349 2528 2748 73.0 91.65 438 6.0 99.5 63.3856.7349.08

Llama3.1-8B-Instruct, KV Size = 128

StreamingLLM 23.99 21.68 30.86 42.58  20.78 25.03 21.14 15.69 2093 435 71.07 1724 6.12 84.3337.9233.6632.28

SnapKV 27.53 28.86 48.14 54.1 28.94 45.66 2132 226 2095 515 9025 3944 63 90.0 57.21485 4258
PyramidKV ~ 27.41 27.59 46.88 54.81 28.08 4532 21.34 2248 2077 52.0 87.86 3811 6.5 94.0 53.4745.7742.02
CAKE 31.19 35.82 51.36 53.66 30.1 43.65 23.58 2322 2245 60.5 9032 40.54 6.33 99.0 57.0648.5944.84

HeadKV(GQA)29.51 32.23 47.49 53.44 29.1 4489 2211 2259 21.74 485 893 3799 6.25 97.0 54.9345.4642.66
AdaKV(GQA) 27.74 304 4835 54.63 2932 45776 21.01  22.08 20.79 47.0 8843 395 6.5 89.0 55.7646.5842.05
CompressKV ~ 30.43 3574 51.12 53.8 31.09 46.13 22.58 2342 2205 655 87.56 3943 6.28 99.0 57.3 50.1 45.1

Llama3.1-8B-Instruct, KV Size = 256

StreamingLLM 23.35 22.26 33.94 42.8 2191 2447 23.35 1628 23.85 545 70.66 17.65 6.12 87.9939.6434.0133.92

SnapKV 30.41 36.24 49.88 54.06 30.69 45.95 23.64 2299 236 58.0 91.29 4092 6.25 99.0 59.6850.74 45.21
PyramidKV ~ 29.02 334 4943 5479 2921 46.24 2345 22.87 2281 58.0 89.41 39.8 6.25 98.5 57.4249.1644.36
CAKE 31.31 40.18 51.54 5448 29.66 45.75 2522 2384 2409 645 9149 4206 6.14 995 59.6 51.5146.3

HeadKV(GQA) 30.55 32.41 4836 53.72 30.26 4597 2393 2357 234 57.0 90.0 40.54 6.33 93.0 58.2348.4544.11
AdaKV(GQA) 2945 33.7 4896 5448 29.59 46.09 23.58 2313 2327 53.0 90.79 4049 6.33 98.5 59.4750.3144.45
CompressKV ~ 30.68 42.58 5227 54.37 3043 46.46 24.86 2379 24.13 68.5 89.97 41.08 6.14 99.5 60.6351.9446.71

Llama3.1-8B-Instruct, KV Size =512

StreamingLLM 24.54 25.69 36.97 4242 2231 25.6 26.08 17.65 2576  61.0 71.94 18.6 6.5  87.7141.3935.2235.59

SnapKV 30.62 40.05 52.43 54.74 3093 46.39 2552 2342 25116 65.0 91.21 4207 6.03 99.0 61.8452.9146.71
PyramidKV 3043 39.81 5298 54.47 31.06 4631 2535 23.66 2474 645 91.84 4193 6.08 99.5 59.9751.1946.49
CAKE 3047 43.19 51.92 5424 3041 455 27.04 2421 2515 700 91.46 4228 6.33 99.5 61.5552.6847.25

HeadKV(GQA) 30.92 3598 50.78 54.61 3126 46.26 25.69  23.84 2462 640 91.23 4194 6.33 97.5 60.6951.2246.05
AdaKV(GQA) 30.88 38.6 52.0 54.67 3026 46.19 25.52 2358 2478 615 91.17 4217 6.33 99.0 61.5 52.2746.28
CompressKV ~ 30.8  44.41 53.13 5532  30.67 46.89 27.0 2392 2517 705 92.0 435  6.58 995 62.1 53.0147.78

Llama3.1-8B-Instruct, KV Size = 1024

StreamingLLM 23.55 28.99 43.17 425 21.61 28.37 28.26 19.12 2637 68.0 74.02 1941 6.19 82.5843.6535.4936.95

SnapKV 31.32 44.62 52.51 5465 3024 46.8 28.14 2412 2636 69.0 92.05 42.67 6.12 99.5 62.0654.9947.82
PyramidKV ~ 31.06 44.09 5325 54.25 3045 46.87 27.44 2346 2631 700 91.93 4291 6.08 99.5 62.0352.7547.65
CAKE 30.61 44.64 52.18 54.89  30.44 46.14 29.1 2428 2633 71.0 91.89 4281 6.17 99.5 62.0555.4747.97

HeadKV(GQA)30.6  41.24 52,13 54.34  30.96 46.33 2727 2411 260 65.5 91.51 43.1 6.17 98.5 61.8453.1747.05
AdaKV(GQA) 31.75 44.71 52.74 5475 31.05 46.73 27.9 23.86 2641  69.5 92.05 42.82 6.58 99.5 62.0454.6147.94
CompressKV ~ 30.27 45.18 53.44 5525 30.83 46.57 29.06 2434 2648 71.0 91.79 4337 6.0 99.5 63.1455.6248.24

Llama3.1-8B-Instruct, KV Size = 2048

StreamingLLM 252  37.54 4831 4474 23.09 31.47 30.61 19.51 27.15 69.0 79.5 2121 573 71.7551.9937.02 38.99

SnapKV 30.61 45.01 53.22 552 30.62 46.21 30.57 241 272 71.5 91.65 4391 6.0 99.5 63.2756.9 48.47
PyramidKV ~ 30.99 44.83 5273 54.47 3133 46.76 29.64 2392 2722 725 9192 43.04 6.55 99.5 63.1254.8948.34
CAKE 30.56 44.58 52.54 54.82 3036 46.43 30.38 2472 2724 71.5 9148 4304 6.17 99.5 63.0555.8448.26

HeadKV(GQA)30.7 44.14 532 5478  30.65 46.42 29.27 2394 2698 705 91.81 43.81 6.0 99.5 63.0155.3448.13
AdaKV(GQA) 31.08 4542 52.8 54.81 3046 46.19 30.14 2457 2722 705 91.66 4352 6.0 99.5 63.1456.5648.35
CompressKV ~ 30.83 4559 53.86 55.04 31.05 46.43 31.62 2486 27.15 72.0 91.65 43.67 6.0 99.5 63.3 56.7348.7
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Table 8: Details Performance comparison of CompressKV with Streamingl. LM, SnapKV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Mistral-7B-Instruct-v0.3.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
\ad & &
N Sy & A& ol Q>
Method 40? %Qé {(é\ &0\0 é\o\?@ < &\@ 8_& $06‘ \;\éc Q)C/ .A_&Q, $0 & & . Avg.
S AR R g Yy & F I FSS
Mistral-7B-Instruct-v0.3, KV Size = Full
FullKV 29.07 41.54 52.88 49.37 28.58 39.01 3507 2571 2773 76.0 88.59 4751 6.0 98.0 59.3560.7 47.82

Mistral-7B-Instruct-v0.3, KV Size = 128

StreamingLLM 21.06 20.03 29.31 36.98 16.77 24.14 18.97 1729 20.19 465 73.66 18.08 4.5 67.7529.4532.8629.85

SnapKV 2595 25.46 4579 4779 2527 36.47 20.63  21.02 19.96 585 89.16 4194 5.0 86.0 53.3 50.3940.79
PyramidKV ~ 24.95 2443 46.35 4577 2474 3545 2093 21.26 20.07 580 88.63 4082 6.0 89.0 50.9247.3440.29
CAKE 28.15 28.81 50.69 4827 2699 378 22.71 2337 220 63.0 89.31 4295 6.5 93.0 53.2551.8443.04

HeadKV(GQA) 27.55 27.82 47.79 47.85 2693 36.83 20.63  21.66 20.12 620 89.39 4328 55 90.5 53.8951.4842.08
AdaKV(GQA) 25.61 24.66 45.24 47.07 2436 34.95 2045  21.08 19.84 62.0 88.86 42.06 6.5 90.0 52.5349.3440.91
CompressKV ~ 28.06 31.74 52.62 49.75 2599 37.1 21.76 2253 21.58 69.0 89.89 4335 6.0 93.5 52.7451.2743.55

Mistral-7B-Instruct-v0.3, KV Size = 256

StreamingLLM 21.89 21.37 32.51 36.98 16.78 2543 21.85 16.89 2355 575 7238 1824 4.0 650 31.6333.5331.22

SnapKV 27.49 29.18 48.92 48.0 2647 36.78 2246  22.04 2254 70.0 89.44 4372 6.0 96.0 56.6954.4943.76
PyramidKV ~ 27.71 28.23 48.25 48.61 25.62 36.18 22.1 21.77 21.8 70.0 89.33 4365 6.0 93.5 55.1351.0643.06
CAKE 2746 33.09 5432 4832 27.08 37.8 24.62  23.61 23.85 70.0 89.33 44.09 45 955 55.7656.3544.73

HeadKV(GQA)29.15 31.66 51.03 49.09 24.88 36.64 2246 222 2297 705 89.57 4386 55 940 56.7755.3944.1
AdaKV(GQA) 29.08 27.93 49.69 49.4 26.07 36.34 2255  21.72 2214 70.5 89.69 44.09 6.5 940 56.2154.0543.75
CompressKV  29.86 35.32 52.84 49.77 27.64 38.04 2405 2337 2326 755 89.16 4531 45 96.5 56.475531 4543

Mistral-7B-Instruct-v0.3, KV Size = 512

StreamingLLM 21.13 22.16 34.59 37.86 16.08 26.1 25.19 18.47 2653 655 71.51 18.13 325 68.0 34.1333.7 32.65

SnapKV 29.43 3449 52.68 50.1 26.08 37.04 2397 2294 24.06 73.0 89.55 4523 55 96.5 57.9457.5445.38
PyramidKV ~ 27.87 33.32 51.53 49.63 2542 3691 24.0 2276 24.14  72.0 90.07 4449 55 96.5 57.3355.6 44.82
CAKE 29.5 35.89 53.79 49.74  27.13 39.32 26.7 23.81 2544 725 8927 4578 55 975 57.3557.7146.06

HeadKV(GQA)29.38 33.75 53.24 50.45 27.24 37.44 24.5 2341 2472 750 89.52 4552 6.0 96.0 57.6857.9 45.73
AdaKV(GQA) 29.04 327 51.16 49.56 2556 37.03 2417 2269 2411 735 8949 4506 65 95.0 57.9857.4845.06
CompressKV 2991 37.01 543 4931 2793 38.1 2635 2397 2499 760 8949 4481 7.0 96.0 58.4158.6546.39

Mistral-7B-Instruct-v0.3, KV Size = 1024

StreamingLLM 22.37 28.03 41.21 38.0 17.05  26.95 27.75 19.87 27.13  71.5 70.34 19.02 537 68.5 37.9534.5734.73

SnapKV 29.82 36.49 52.64 5033  26.88 38.53 2639 2394 2584 750 8924 4673 6.5 97.0 58.5759.8646.48
PyramidKV ~ 28.14 35.83 54.28 49.88  25.68 3831 2591 2382 2542 745 8986 46.17 5.0 97.5 57.7257.3645.96
CAKE 29.21 36.86 532 48.69 27.62 38.78 28.94 2454 2698 740 8394 4694 5.0 98.0 58.8859.9146.66

HeadKV(GQA)29.62 37.34 53.09 50.31 26.67 3828 2644 2352 26.11 760 8935 4568 5.0 97.0 58.5459.5646.41
AdaKV(GQA) 29.73 37.04 53.07 50.01 2632 37.54 2627 2397 26.12 755 89.49 4625 65 96.5 58.6259.1646.38
CompressKV  29.75 38.88 52.81 49.71 28.48 39.04 2826 2495 26.88 76.0 8924 46.16 55 97.0 58.6560.0546.96

Mistral-7B-Instruct-v0.3, KV Size = 2048

StreamingLLM 23.53 31.86 47.11 37.98 1891 29.27 30.10 2026 27.18  73.0 69.97 19.01 4.75 72.2542.8736.0736.51

SnapKV 30.54 39.94 53.16 50.18  27.29 38.49 28.47 2406 2746 76.0 8348 46.06 5.0 98.0 59.3860.3547.05
PyramidKV ~ 29.21 39.62 52.78 50.47 27.71 37.88 2846 2427 2738 750 89.86 4632 5.0 98.0 58.6059.0546.85
CAKE 2991 40.06 53.56 48.11 28.06 38.78 31.05 2490 2753 750 88.64 47.08 55 97.5 59.5660.3547.22

HeadKV(GQA)30.42 39.86 53.21 49.96 27.77 38.13 28.71 24.83 2726 76.0 89.49 4596 5.5 98.0 59.6560.5147.20
AdaKV(GQA) 30.41 40.25 5293 5031 27.67 38.71 28.96 2431 2726 76.0 8848 4625 55 98.0 59.1760.3347.16
CompressKV ~ 29.40 40.92 53.52 50.36  28.76 39.45 3126 25.17 2735 760 88.64 47.09 55 97.5 59.2160.7247.55
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Table 9: Details Performance comparison of CompressKV with StreamingLLM, SnapKYV, Pyra-
midKV, CAKE, HeadKV, AdaKV and FullKV on LongBench for Qwen2.5-7B-Instruct.

Single-Document QA Multi-Document QA Summarization Few-shot Learning ~ Synthetic Code
\ad Q& S
\ad & J A& Q>
Method F & s & @e AQ\ K %\,& N o . 9?' SRS q Avg.
& S¢S &S T
S AR I S & g ¥ ST FE S
Qwen2.5-7B-Instruct, KV Size = Full
FullKV 28.14 4376 52.61 57.7 29.67 47.19 3189 2361 2391 715 89.97 46.16 8.5  100.060.5666.8348.88
Qwen2.5-7B-Instruct, KV Size = 128
StreamingLLM 16.52 19.94 25.07 35.1 14.16 20.74 1942 1454 1698 450 62.68 179 85 29.3331.3432.7325.62
SnapKV 24.57 28.43 4692 51.78 26.54 43.94 19.64 19.99 16.54 465 87.26 4039 9.0 99.0 49.6253.4541.47
PyramidKV 21.59 27.34 4246 50.67 23.19 43.56 17.72 18.81 14.14 435 8634 3892 9.0 835 44.5446.8 38.25
CAKE 2695 33.29 47.14 53.11 2536 43.98 20.99  20.81 18.14 475 8247 4282 85 975 50.9753.2242.05

HeadKV(GQA)26.52 31.25 47.66 53.2 27.54 4328 19.67 19.99 16.86 485 8834 4122 85 98.0 50.7453.7542.19
AdaKV(GQA) 24.78 29.21 4499 52.57 2691 43.59 19.57  20.06 16.57 455 8794 412 9.0 97.5 49.6352.3741.34
CompressKV 273 32.56 48.43 53.94 2643 432 2035 20.19 17.0 56.0 85.63 4223 85 97.0 50.6252.4542.61

Qwen2.5-7B-Instruct, KV Size = 256

StreamingLLM 18.04 21.45 27.37 35.88 14.17 19.45 22.23 15.54 20.77 525 6265 1786 85 25.3333.7633.5126.81

SnapKV 27.32 35.61 4931 54.66 27.11 43.67 2193 20.88 1933 53.0 88.04 432 85 98.0 55.0856.4643.88
PyramidKV 2505 33.19 47.72 52.62 2528 44.05 20.14 19.92 16.64 505 87.76 40.71 85 94.0 50.3651.7741.76
CAKE 26.56 36.42 49.88 54.25 27.56 4593 2322 20.82 19.82 53.0 86.08 4359 85 97.0 54.4457.8144.05

HeadKV(GQA)27.62 36.57 49.71 54.96  26.82 44.83 2251 2043 195 56.5 89.12 4343 85 985 55.6358.3344.56
AdaKV(GQA) 27.19 35.54 48.15 5434 278 447 21.74 2044 1899 535 87.65 425 85 98.0 55.0456.6543.8
CompressKV 2894 36.39 4885 54.45 26.65 44.13 2237 2096 19.02 65.5 87.5 42.08 85 985 53.7257.4644.69

Qwen2.5-7B-Instruct, KV Size = 512

StreamingLLM 18.99 23.62 32.66 36.5 15.14 2227 2527 16.79 2257 595 61.28 18.18 8.5 14.0 35.4634.7927.85

SnapKV 28.52 38.99 49.77 56.46  27.73 44.58 24.09 21.06 2086 640 8891 4392 85 99.0 57.3861.0345.93
PyramidKV ~ 29.66 36.78 49.29 55.8 26.6  44.96 22.54 2047 1835 645 88.46 4223 85 99.0 53.2156.3944.8
CAKE 29.6 399 5035 5592 293 4401 2556  21.75 2135 625 8795 4444 85 995 569 60.9 46.15

HeadKV(GQA)28.13 39.26 50.52 56.47  26.68 44.57 24.9 214 21.17 650 89.2 4356 85 99.0 57.5361.8746.11
AdaKV(GQA) 29.18 39.17 49.16 55.7 26.94 43.83 24.08  21.02 2091 640 89.29 4332 85 99.0 57.2460.6845.75
CompressKV 2995 41.09 51.54 5631 28.74 45.05 24.7 21.62 2099 68.0 8795 43.88 85 985 57.1 61.3846.58

Qwen?2.5-7B-Instruct, KV Size = 1024

StreamingLLM 20.68 30.34 41.03 37.96 1635 25.71 27.04 17.89 2339 67.0 61.54 18.18 85 125 39.1536.4 30.23

SnapKV 28.77 40.73 51.54 56.84 28.64 45.65 26.7 21.87 22.84 69.0 89.57 4435 85 99.5 59.6564.8547.44
PyramidKV ~ 29.71 39.75 5222 56.39  26.09 45.77 2457 2091 21.19 685 89.14 44.06 85 99.0 58.4460.0346.52
CAKE 28.88 422 51.66 56.66 28.96 45.25 28.0 21.98 23.09 685 88.73 4485 8.5 100.058.9564.1547.52

HeadKV(GQA)28.6  41.32 52.07 57.09 28.98 4532 27.39 2191 23.11 695 89.58 4458 85 99.5 59.5664.4747.59
AdaKV(GQA) 28.9 40.86 52.09 56.93 26.62 45.64 26.51 21.87 22.89 69.5 89.74 4444 85 99.5 59.8363.3247.32
CompressKV  29.52 42.17 51.82 57.55 295 45.17 2696  22.06 22.69 705 88.43 44.11 85 100.059.08 63.94 47.62

Qwen2.5-7B-Instruct, KV Size = 2048

StreamingLLM 21.87 36.22 46.03 38.79 17.96 31.26 28.31 18.67 23.63 685 65.02 19.81 85 17.5 47.1137.7432.93

SnapKV 28.96 43.09 53.06 56.73  29.66 46.9 28.84 2213 2371 70.0 89.72 4432 85 100.060.1766.3148.26
PyramidKV 285 4227 52.58 55.5 28.36 47.21 2642 21.87 2378 71.0 89.48 443 85 99.5 59.9761.7847.56
CAKE 28.73 42.87 52.11 56.34 2947 4643 29.5 22.69 23.57 70.0 89.63 4558 8.5 100.059.8666.1748.22

HeadKV(GQA)28.43 4299 5273 57.08 30.0 46.68 29.58 2247 2385 705 89.72 44.88 8.5 100.060.04 66.5548.38
AdaKV(GQA) 29.76 43.11 5293 56.39 28.14 465 28.67  22.08 238 70.5 89.72 4486 8.5 100.060.3665.3948.17
CompressKV ~ 28.48 4324 51.83 57.17 30.54 46.99 28.98 2253 2343 71.0 89.84 45.15 85  100.059.6565.4648.30
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Table 10: Performance comparison of CompressKV with StreaminglL.LM, SnapKV, PyramidKYV,
CAKE, HeadKYV, AdaKV and FullKV on LongBench for large-scale LLMs(Qwen2.5-14B-Instruct
and Qwen2.5-32B-Instruct).

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
\ad Q& &
o S & > >
T TR Y &I e T S8
R AR R S S R R SR AR
Qwen?2.5-14B-Instruct, KV Size = Full
FullKV 30.11 4521 53.79 61.99 3743 5821 29.53 2341 2207 77.0 90.69 47.89 10.13 98.6761.3449.3349.8

Qwen2.5-14B-Instruct, KV Size = 256

StreamingLLM 17.32  20.57 25.08 36.12 223 25.1 20.68 1456 1949 545 6193 17.15 0.17 13.3337.9627.4525.86

SnapKV 25.03 29.88 42.89 56.9 36.21 53.83 2044 203 17.61 585 88.01 4527 727 97.5 57.1443.5 43.77
PyramidKV 232 2844 4236 5722 3556 55.12 19.45 19.56 16.11 585 87.22 4388 8.1 95.7552.7640.0842.71
CAKE 24.14 334 43.14 57.16 35.68 55.36 21.53  21.32 1845 62.0 89.21 4564 8.1 98.0 57.7 44.3844.7
HeadKV 2621 314 43.11 57.08 36.11 53.94 20.9 2075 1773 60.5 88.51 4597 8.88 95.5856.5544.2144.21
AdaKV 25.66 30.56 4298 5452  36.1 53.65 2046  20.62 17.6 57.5 8837 4472 8.05 97.0 57.2343.8543.68

CompressKV  26.11 34.99 4376 57.86 3525 55.55 20.81 21.02 17.68  72.0 88.57 4534 9.14 95.9257.4944.4345.37

Qwen2.5-14B-Instruct, KV Size = 1024

StreamingLLM 19.52 29.65 39.87 39.67 22.74 31.34 25.47 17.08 21.61 715 61.71 18.67 1.6 792 41.8327.2729.84

SnapKV 27.52 4357 5092 59.71  36.82 56.51 24.69 2198 20.71 750 9037 47.17 835 98.7560.6448.2248.18
PyramidKV ~ 27.38 42.54 51.11 59.39 36.28 56.88 23.61 21.38 20.0 755 89.88 46.17 8.95 98.4259.8345.9447.7

CAKE 28.82 44.37 51.75 60.1 36.86 57.64 26.07 2245 21.1 74.0 90.14 47.0 83  98.4260.8448.5 4852
HeadKV 27.54 441 5172 59.51 3632 57.09 2543 2224 21.0 755 90.47 4727 7.43 98.7561.74 48.66 48.42
AdaKV 2749 433 51.15 5922 374 5585 2482 21.76 2059 755 9037 47.52 777 98.5 61.3848.4748.19

CompressKV 2896 44.26 51.63 60.49 3723 56.92 2542 22,61 2083 77.0 9032 4732 891 98.4261.1447.6148.69

Qwen?2.5-32B-Instruct, KV Size = Full

FullKV 31.02 44.24 52.18 6321 3873 61.0 30.25 2359 2282 735 8778 4577 10.5 100.053.2339.26 48.57

Qwen2.5-32B-Instruct, KV Size = 256

StreamingLLM 16.65 21.13 23.6 37.32  20.02 26.09 20.28 1437 2033  53.5 62.54 1644 10.0 9.33 31.1521.7125.28

SnapKV 27.22 30.06 419 56.1 36.32 56.91 20.3 19.58 1822 635 8595 4253 10.5 99.3349.7735.6143.36
PyramidKV 2546 28.73 41.27 56.29 34.38 56.22 18.92 19.04 16.44 640 858 412 10.0 96.3347.5332.1942.11
CAKE 28.97 34.66 44.01 57.93  34.11 58095 21.5 2045 1925 67.0 84.81 4282 10.79 99.8350.6136.17 44.49
HeadKV 28.09 31.82 42.77 5724 3644 57.56 21.3 19.71 18771  64.0 87.17 4231 10.5 99.5 50.2936.9744.02
AdaKV 27.21 3098 409 56.57 3592 57.04 20.59 19.33 1827 63.0 850 4246 10.07 99.3350.3635.7443.3

CompressKV 279 3399 4452 58.76 3523 58.83 21.24 2029 1858 705 87.93 4244 11.0 99.5 50.2934.6244.73

Qwen2.5-32B-Instruct, KV Size = 1024

StreamingLLM 20.07 30.1 38.15 39.68  20.73 30.59 25.46 17.37 2227 68.0 61.9 17.32 12.0 10.9235.69 23.73 29.62

SnapKV 30.13 41.12 4947 61.84 3839 61.02 2518  21.0 21.77 740 87.84 4442 10.1 100.053.3237.8447.34
PyramidKV ~ 31.48 41.21 4895 61.16 38.85 61.12 23.15 2029 20.62 735 88.37 4423 10.5 100.051.6736.6646.98
CAKE 29.28 42.6 5001 61.98 38.02 6047 26.16 2196 2228 725 87.66 44.62 11.0 100.053.3338.2547.51
HeadKV 30.48 4259 49.41 61.66 379 6158 2637 2138 2199 735 87.84 4378 105 100.053.0537.9647.5

AdaKV 29.44 41.29 4898 61.9 3874 61.11 2512 2126 21.75 740 87.81 4462 10.1 100.053.4137.7247.33

CompressKV  31.07 439 4996 62.53 39.51 61.14 25.63 2147 2192 735 8849 4388 11.0 100.052.4637.9747.78

20



Under review as a conference paper at ICLR 2026

G HEAD VISUALIZATION

In Figures[I0] we present a comparison between traditional Retrieval Heads and Semantic Retrieval
Heads identified using Mistral-7B-Instruct-v0.3. All scores are L1-normalized across the attention
head importance distributions. Unlike traditional methods that require exact top-k attention hits, our
approach aggregates scores over entire answer spans, capturing heads that contribute semantically
relevant context even when they never achieve top-1 attention for individual tokens. For instance,
as shown in Figure layers 0 and 1 of the Mistral model have zero scores for all heads using
the traditional method, whereas our approach successfully identifies heads of lower yet meaningful
importance.

Mistral-7B-Instruct-v0.3
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Figure 10: Head visualization for Mistral-7B-Instruct-v0.3. Left: Traditional Retrieval Heads.
Right: Semantic Retrieval Heads identified.

H DETAILED RESULTS FOR NEEDLE-IN-A-HAYSTACK EVALUATION

This section provides detailed results for the Needle-in-a-Haystack evaluation referenced in the main
paper. Figures [[THI5| present the corresponding results for the Llama-3.1-8B-Instruct model under
KV cache budgets ranging from 128 to 2048. Figures[I6H20]present the performance of the Mistral-
7B-Instruct-v0.3 model under the same cache budgets. Figures 2IH25| present the corresponding
results for the Llama-3.1-8B-Instruct model under the same cache budgets. CompressKV consis-
tently achieves the highest accuracy across all settings, demonstrating its superiority over competing
compression strategies.
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Figure 11: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 128.
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Figure 12: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 256.
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Figure 13: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 512.
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Figure 14: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 1024.
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Figure 15: Needle-in-a-Haystack test results on Llama-3.1-8B-Instruct with KV cache = 2048.
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Figure 16: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 128.
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1197 Figure 17: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 256.
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1230 Figure 20: Needle-in-a-Haystack test results on Mistral-7B-Instruct-v0.3 with KV cache = 2048.
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Figure 22: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 256.
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Figure 23: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 512.
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Figure 24: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 1024.
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Figure 25: Needle-in-a-Haystack test results on Qwen2.5-7B-Instruct with KV cache = 2048.
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I COMPREHENSIVE MASKING-BASED ABLATION OF DIFFERENT HEAD
TYPES

We extend the masking analysis from the main paper by evaluating the effect of masking the top 10,
20, and 30 Semantic Retrieval Heads and the traditional Retrieval Heads in Mistral-7B-Instruct-v0.3
shown in Figure [26] Our experiments demonstrate that masking the top 30 traditional Retrieval
Heads in Mistral-7B-Instruct-v0.3 results in only a ~ 12% drop in accuracy, whereas masking the
top 30 Semantic Retrieval Heads causes a = 74% degradation. These findings underscore the critical
role of Semantic Retrieval Heads in overall model performance and validate the superiority of our
identification method over conventional head-selection approaches.
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Figure 26: Ablation on the Needle-in-a-Haystack retrieval task for Mistral-7B-Instruct-v0.3. The
left column masks the top-k retrieval heads, and the right column masks the top-k semantic retrieval
heads. Lower scores indicate heads with the greatest impact on model performance—masking them
causes the most severe drop in accuracy.

J ORTHOGONAL INTEGRATION WITH QUANTIZAITON

CompressKYV is orthogonal to KV-cache quantization approaches such as KIVI 2024).
While KIVI reduces the KV-cache by representing keys and values in low-bit precision (e.g., per-
channel/per-token quantization), CompressKV keeps full-precision KV entries but aggressively
prunes less critical tokens, thereby shortening the effective sequence length during decoding. As
a result, the two methods target different dimensions of the KV-cache bottleneck and can be nat-
urally combined. To verify this orthogonality and clarify their relative strengths, we evaluate (i)
CompressKV alone, (ii) KIVI alone, and (iii) the combined CompressKV+KIVI variant on the
LongBench benchmark; results are summarized in Table [TT] In our main setup, we parameterize
compression by the fraction of KV-cache memory saved relative to a 16-bit full-precision baseline.
Under this convention, KIVI with 2-bit quantization corresponds to a compression ratio of 0.875
(i.e., 87.5% memory saving), while an extreme 1-bit setting corresponds to a compression ratio of
0.9375. Atthe 0.875 setting, KIVI attains slightly higher average accuracy than CompressKV at the
same overall memory budget. However, when pushing to the more aggressive 0.9375 setting, KIVI
suffers a substantial performance drop, whereas CompressKV remains robust and yields markedly
better overall accuracy.

For the combined KIVI_CompressKV variant, we first apply CompressKV to discard approximately
87.5% of the least important tokens and then quantize the remaining KV entries to 2-bit. This
yields an overall compression ratio of 0.984375 (i.e., 98.4375% memory saving relative to a 16-bit
full KV cache). As shown in Table [IT] this combined scheme maintains accuracy comparable to
CompressKV alone and far exceeds pure KIVI at the same extreme compression level, indicating
that KIVI and CompressKV are complementary rather than competing techniques.
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Table 11: We compare KIVI (quantization), CompressKV (token pruning), and their combination
(KIVI+CompressKV) on Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3. “FullKV” denotes
the uncompressed 16-bit KV cache. “Compression ratio” denotes the fraction of KV-cache memory
saved relative to the 16-bit full-precision baseline (e.g., 0.875 corresponds to 2-bit quantization,
0.9375 to 1-bit, and 0.984375 to applying CompressKV with a token keep ratio of 12.5% followed
by 2-bit quantization).

Single-Document QA Multi-Document QA Summarization Few-shot Learning ~ Synthetic Code
Method < & & oS e@? y & ,@@vi Q_GQ@N %o& @zﬁ% - \{bgvv $’Q& & s N Avg.
& ¥ s Y FE Y T
Llama3.1-8B-Instruct, KV Size = Full
FullKV 30.97 4549 5378 5476 3142 47.13 349 2528 2748 73.0 91.65 438 6.0 99.5 63.3856.7349.08
Llama-3.1-8B-Instruct, Compression ratio = 0.875(2bit)

KIVI 30.85 43.95 5397 5438 30.34 46.11 3448 2533 27.16 73 9226 4343 633 99 62.0655.1548.61
CompressKV 30.89 4547 5198 5494 31.05 46.79 30.87 2498 2399 705 9132 425 6 99.5 62.3456.8648.12
Llama-3.1-8B-Instruct, Compression ratio = 0.9375(2bit)

KIVI 485 893 9.13 1226 424 1773 1344  11.17 137 36.2523.19 9.6 42 10.0628.8 26.0613.98
CompressKV 30.77 41.48 52.17 5525 30.81 46.81 2821 2405 2216 705 9093 4137 6 99.5 60.3355.7247.25

Llama-3.1-8B-Instruct, Compression ratio = 0.984375

KIVI+CompressKV 29.24  43.03 50.93 55.3 3041 46.36 3073 2491 23.65 685 91.49 41.64 636 99.5 60.4353.2247.23

Mistral-7B-Instruct-v0.3, KV Size = Full

FullKV 29.07 41.54 52.88 49.37  28.58 39.01 3507 2571 2773 76.0 8859 4751 6.0 98.0 59.3560.7 47.82

Mistral-7B-Instruct-v0.3, Compression ratio = 0.875(2bit)

KIVI 29.93 39.87 54.02 48.68  28.55 38.39 3403 2522 2742 76 88.07 4722 5.56 95.5 58.8259.5147.3

CompressKV 29.57 37.44 5328 50.38  28.86 39.04 3039 2499 2381 76 89.21 457 55 97.5 59.0960.87 46.98

Mistral-7B-Instruct-v0.3, Compression ratio = 0.9375(2bit)

KIVI 8.61 557 9.68 837 372 599 15.45 1251 1216 36 29.66 8.84 349 14.3330.3827.8814.54

CompressKV 29.14 34.81 5242 49.55 28.85 38.1 2795 2476 2194 76 89.54 4397 55 97 57.9860.4446.12

Mistral-7B-Instruct-v0.3, Compression ratio = 0.984375

KIVI+CompressKV 29.46 37.22 53 4836 272 3871 29.85 2448 23.63 76 89.42 4454 6.06 93 57.9758.2446.07

K COMPARISON WITH D20

We also compare CompressKV against D20 (Wan et al.,|2025). D20 is built on H20-style heavy-
hitter estimation and requires explicitly computing the full attention matrix in the prefill stage using
the original dense attention kernels. This design is incompatible with FlashAttention-2 (Daol |[2024),
and in practice it introduces substantial prefill slowdowns and, at long context lengths, O(L?) mem-
ory pressure that often results in out-of-memory (OOM) errors.

To obtain a practical comparison, we restrict the maximum context length to 8,192 tokens, and run
both methods on Llama-3.1-8B-Instruct on LongBench. Compression ratio denotes the fraction of
KV-cache memory saved relative to a 16-bit full-precision KV cache. Thus, keeping a global KV
budget (keep ratio) of 0.125 corresponds to a compression ratio of 1 — 0.125 = 0.875, and a budget
of 0.0625 corresponds to a compression ratio of 1 — 0.0625 = 0.9375. Table[I2]reports task-wise
scores and the average over all LongBench tasks.

At a compression ratio of 0.875, CompressKV outperforms D20 by +3.53 points on average (44.76
vs. 41.23). When we further tighten the budget to 0.0625 (compression ratio 0.9375), the gap widens
to 4+6.20 points (43.91 vs. 37.71),indicating that token-level compression with CompressKV is more
robust under aggressive compression than the heavy-hitter style selection used by D20.
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Table 12: Comparison with D20 on LongBench. We evaluate CompressKV and D20 on Llama-
3.1-8B-Instruct with maximum context length 8,192). We report results at two KV compression
ratios, following the same convention as for KIVI: compression ratio denotes the fraction of KV-
cache memory saved relative to a 16-bit full-precision KV cache. A compression ratio of 0.875
corresponds to a global KV budget (keep ratio) of 0.125, and 0.9375 corresponds to a budget of
0.0625.

Single-Document QA Multi-Document QA Summarization Few-shot Learning  Synthetic Code
\ad & S
Method X 2 & ; & N & \ad & Avg.
AQY’ & & é}@} & § &z,Q §Q& \A\\Q & Q S & g

¥ S & & M > & :
S AR R S SRR R R SR R

Llama-3.1-8B-Instruct, KV compression ratio = 0.875

CompressKV 25.16 44.16 52.30 46.56 2473 45.72 29.16 2294 23.87 675 91.51 4410 595 76.0 62.1654.2844.76
D20 25.52 32.54 41.42 45.68 2236 42.61 26.71 2278 2332 585 90.40 4125 575 745 55.8550.5441.23

Llama-3.1-8B-Instruct, KV compression ratio = 0.9375

CompressKV 25.17 41.19 51.18 47.16  24.12 45.80 27.25 22.87 2192 67.0 9085 43.05 7.22 76.0 59.9251.8143.91
D20 23.56 26.02 36.07 43.48 2091 3948 23.67 2192 21.62 51.0 89.01 3822 6.55 745 43.6243.7637.71

L ADDITIONAL ABLATION ON LAYER-WISE BUDGET ALLOCATION AND
ADAPTIVE NUMBER OF SRH

L.1 ABLATION ON LAYER-WISE BUDGET ALLOCATION

Table 13: Additional ablation on layer-wise budget allocation. We report LongBench average
accuracy (%) of Mistral-7B-Instruct-v0.3 with a fixed KV budget of 256 tokens per layer, under
different choices of dataset D used to compute layer importance scores in Eq. (9)—(12). Results are
nearly identical, indicating that our layer-wise allocation is robust to the choice of D.

Layer-score source ‘ Acc. (%)

All-tasks Average 45.43
NarrativeQA-only 45.45

Qasper-only 45.43
QMSum-only 45.38
TriviaQA-only 45.36

Here, we perform an additional ablation in which the layer scores are derived from a single dataset
rather than from the average across all tasks.

Concretely, we consider Mistral-7B-Instruct-v0.3 on LongBench with a fixed KV budget of 256
tokens per layer (the same setting as in the main ablation in Table[3). We compute layer importance
scores in five ways: (i) averaging reconstruction errors over all LongBench datasets (our default),
and (ii) using only NarrativeQA, (iii) only Qasper, (iv) only QMSum, or (v) only TriviaQA as the
dataset D for Eq. (9)—(12). In all cases, the resulting layer scores are normalized and used to allocate
the same global KV budget across layers.

Table[T3|reports task-wise scores and averages. The overall performance is virtually identical across
all variants: the average accuracy ranges from 45.36% to 45.45%, and the differences with respect
to the “All-tasks Average” profile are less than 0.08 points. This indicates that our layer-wise budget
allocation is robust to the choice of dataset used to compute layer importance and does not overfit to
a particular task; averaging over all tasks is a convenient and stable default.

L.2 ADAPTIVE-k SRH SELECTION
Here, we further evaluate an adaptive-k variant. For each layer, we first L1-normalize the SRH

scores and then select all heads whose normalized score exceeds a threshold 7, while enforcing
a minimum of 4 heads per layer. We sweep 7 € {0.001,0.002,0.003,0.004,0.006,0.007} on
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Mistral-7B-Instruct-v0.3 with a KV budget of 256 tokens per layer. As summarized in Table [T4]
all adaptive-k configurations achieve average LongBench accuracy that is very close to the fixed
top-4 baseline and do not exhibit a consistent improvement trend. This suggests that a small fixed k
is already a stable and effective design choice, and we therefore adopt top-4 SRH per layer for all
main experiments for simplicity and reproducibility.

Table 14: Ablation on adaptive-k SRH selection (Mistral-7B-Instruct-v0.3, KV budget = 256). We
compare fixed top-4 SRH per layer with adaptive-k variants using different thresholds 7 on L1-
normalized SRH scores (with a minimum of 4 heads per layer).

Method | Acc. (%)

Fixed top-4 SRH 44,96
Adaptive-k (7 = 0.001) 44 .84
Adaptive-k (7 = 0.002) 44.74
Adaptive-k (7 = 0.003) 44.75
Adaptive-k (7 = 0.004) 44.80
Adaptive-k (7 = 0.005) 44.89
Adaptive-k (7 = 0.006) 44.87
Adaptive-k (7 = 0.007) 44.88
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Figure 27: Decoding throughput vs. context length. Throughput (tokens/s) of Llama-3.1-8B-Instruct
evaluated on a single NVIDIA A100 GPU as the context length increases from 4k to 128k under
different KV-cache eviction approaches (higher is better).
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Figure[27]shows the decoding throughput (tokens/s) of Llama-3.1-8B-Instruct as a function
of context length from 4k to 128k under different KV-cache management strategies. All the setting
are same with the Section @ As expected, the FullKV baseline is the slowest configuration and
its throughput degrades noticeably as the context grows, illustrating the quadratic cost of attending
over an ever-expanding KV cache. In contrast, all KV compression and streaming-based methods
(StreamingL LM, SnapKV, PyramidKV, CAKE, HeadKV-GQA, AdaKV-GQA, and CompressKV)
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maintain a much flatter throughput curve and consistently outperform FullKV across all context
lengths.

N EVALUATION ON LONGBENCH V2

We evaluate Llama-3.1-8B-Instruct on LongBench V2(QA Tasks) using the official evaluation pro-
tocol. For all methods, we adopt chain-of-thought prompting (“cot” in Table [I3]). With a full 128k
KV cache, the FullKV baseline attains an overall accuracy of 35.8. Ata 0.75 KV Compression ratio,
StreamingLLM suffers a large degradation (22.7 overall), whereas eviction-based methods such as
SnapKV, PyramidKV, CAKE, HeadKV-GQA, AdaKV-GQA, and CompressKV substantially close
the gap to FullKV. Among these, SnapKV and CompressKV achieve the strongest overall perfor-
mance (32.2 and 32.0, respectively). At a more aggressive 0.9375 KV Compression ratio, the dif-
ferences between methods become more pronounced. Streamingl.LM drops to 18.1 overall, while
all cache-compression approaches remain in the 27-32% range. CompressKV reaches 32.2 overall
accuracy, outperforming SnapKV (31.2), PyramidKV (30.0), CAKE (27.2), HeadKV-GQA (30.2),
and AdaKV-GQA (28.2).

Table 15: Results on LongBench V2 benchmark with Llama-3.1-8B-Instruct. All results use chain-
of-thought (CoT) prompting. We report overall accuracy and breakdowns by difficulty (Easy/Hard)
and context length (Short/Medium/Long). “KV compression ratio” denotes the fraction of the orig-
inal KV cache that is removed. All numbers are accuracies in %.

Method Overall Acc. Easy Hard Short Medium Long

Llama-3.1-8B-Instruct, Full KV cache
FullKV 35.8 4277 315 406 32,6 343
KV Compression ratio = 0.75 (25% of full KV cache)
StreamingLLM 22.7 229 225 322 19.5 13.0

SnapKV 322 37.5 289 328 31.6 324
PyramidKV 30.6 349 28.0 31.1 30.2 30.6
CAKE 304 33.3 28.6 30.6 30.7 29.6
HeadKV-GQA 30.0 30.7 29.6 344 28.4 25.9
AdaKV-GQA 30.4 344 28.0 344 29.8 25.0
CompressKV 32.0 354 299 356 326 250
KV Compression ratio = 0.9375 (6.25% of full KV cache)
StreamingLLM 18.1 214 16.1 222 17.2 13.0
SnapKV 31.2 333 299 372 28.4 26.9
PyramidKV 30.0 30.7 29.6 344 27.0 28.7
CAKE 27.2 28.6 264 30.0 23.3 30.6
HeadKV-GQA 30.2 33.3 28.3 344 28.4 26.9
AdaKV-GQA 28.2 25.0 30.2 35.0 24.7 24.1
CompressKV 32.2 333 315 35.0 34.0 24.1
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O

COMPRESSKYV PSEUDO CODE

Following SnapKV |Li et al.[(2024)), we use the most recent window_size tokens as the observation
window to analyze how different local contexts influence attention allocation patterns. In all exper-
iments, we fix window_size = 8. kernel_size denotes the size of the 1D pooling window used to
smooth local fluctuations in the attention weights before ranking tokens; we set kernel_size = 5 in
our experiments. layer_budget denotes the per-layer KV-cache capacity. As shown in List[I] Com-
pressKV is smoothly compatible with FlashAttention-family kernels: we only compress the KV
cache during the prefill stage, while subsequent attention computations simply invoke the standard
FlashAttention2 kernel on the compressed KV cache, without any modification to the kernel itself.

Listing 1: Implementation of CompressKV in pseudo PyTorch style.

def

def

compress_kv_update_kv (
self ,key_states ,query_states , value_states ,num_key_value_groups,layer_idx ,)

bsz, num_heads, q-len, head_.dim = query_states.shape
num_kv_heads = key_states.shape[l]
# do not compress if under budget

layer_budget = self.max_capacity_prompt_layer_adaptive[layer_idx]
if gq-len < layer_budget:
return key._states , value_states

# gather important heads for this layer

important_head_cl = torch.tensor(self.important_heads[layer_idx], )

# project to the KV heads corresponding to important query heads

key_states_imp = get_-important_head_kv (key_states , num_key_value_groups, important_head_cl

# local attention window over the last window_size tokens

q-win = query._states|[:, important_head_cl, —-self.window_size :, :]

attn_weights = compute_attn(q-win, key_states_imp , attn_masks).sum(dim=-2)

# Apply 1 D pooling for clustering

attn_cache = poolld ( attn_weights , kernel_size = kernel_size , padding = kernel_size //2
, stride =1).mean(dim=1)

# select top-k historical tokens according to pooled scores

budget = layer_budget - self.window_size

indices = attn_cache.topk(budget, dim=-1).indices # [bsz., budget]

# expand indices to full KV heads and head_-dim

indices = indices.unsqueeze(l).unsqueeze(—-1) # [bsz, 1, budget, 1]

indices = indices.expand(-1, num_kv_heads, -1, head_dim)

# compress past part of the KV cache

k_past = key.states[:, :, : —self.window_size, :]

v_past = value_states[:, :, : —self.window_size, :]

k_past_.compress = k_past.gather(dim=2, index=indices)

v_past_.compress = v_past.gather(dim=2, index=indices)

# always keep the most recent window_size tokens

k_cur = key._states[:, :, —self.window_size :, :]

v_cur = value_states|[:, :, —self.window_size :, :]

key_states = torch.cat([k_past_compress, k_cur], dim=2)

value_states = torch.cat([v_past_.compress, v_cur], dim=2)

return key._states , value_states

attn_forward (self , hidden_states , ..... , past_key_value: Optional[Cache] = None):
bsz, q-len, - = hidden_states.size ()
# update KV cache with CompressKV during prefill
if past_key_value is not None:
if prefill
key_states_.compress , value_states_compress = compress_kv_update_kv (
key-states ,query_states ,value_states ,self.num_key_value_groups ,self.layer_idx ,
)
past_key_value.update(key_states_compress ,value_states_.compress ,self.layer_idx ,..
)
else: # decoding step, just append new token
key_states , value_states = past_key_value.update(key_states , value_states , self.
layer_idx , cache_kwargs
)
# core FlashAttention2 call
attn_output = _flash_attention_forward(query-_states ,key_states ,value_states , ...)
attn_output = attn_output.reshape(bsz, q-len, —1).contiguous ()
attn_output = self.o_proj(attn_output)

return attn_output, past_key_value
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