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Abstract

Given a pair of point clouds, the goal of assembly is to recover a rigid transformation
that aligns one point cloud to the other. This task is challenging because the point
clouds may be non-overlapped, and they may have arbitrary initial positions.
To address these difficulties, we propose a method, called SE(3)-bi-equivariant
transformer (BITR), based on the SE(3)-bi-equivariance prior of the task: it
guarantees that when the inputs are rigidly perturbed, the output will transform
accordingly. Due to its equivariance property, BITR can not only handle non-
overlapped PCs, but also guarantee robustness against initial positions. Specifically,
BITR first extracts features of the inputs using a novel SE(3)×SE(3)-transformer,
and then projects the learned feature to group SE(3) as the output. Moreover,
we theoretically show that swap and scale equivariances can be incorporated into
BITR, thus it further guarantees stable performance under scaling and swapping
the inputs. We experimentally show the effectiveness of BITR in practical tasks.

1 Introduction

Point cloud (PC) assembly is a fundamental machine learning task with a wide range of applications
such as biology [12], archeology [36], robotics [28, 20] and computer vision [23]. As shown in
Fig. 1, given a pair of 3-D PCs representing two shapes, i.e., a source and a reference PC, the goal
of assembly is to find a rigid transformation, so that the transformed source PC is aligned to the
reference PC. This task is challenging because the input PCs may have random initial positions that
are far from the optimum, and may be non-overlapped, e.g., due to occlusion or erosion of the object.

(a) Assembly of overlapped PCs (b) Assembly of non-overlapped PCs

Figure 1: Two examples of PC assembly. Given a pair of PCs, the proposed method BITR transforms
the source PC (red) to align the reference PC (blue). The input PCs may be overlapped (a) or
non-overlapped (b).

Most of existing assembly methods are correspondence-based [2, 23, 4]: they use the fact that when
the input PCs are aligned, the points corresponding to the same physical position should be close to
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each other. For example, in Fig. 1(a), the points at the head of the airplane in the source and reference
PCs should be close in the aligned PC. Specifically, these methods first estimate the correspondence
between PCs based on feature similarity or distance, and then compute the transformation by matching
the estimated corresponding point pairs. As a result, these methods generally have difficulty handling
PCs with no correspondence, i.e., non-overlapped PCs, such as Fig. 1(b). In addition, they are often
sensitive to the initial positions of PCs.

To address these difficulties, we propose a method, called SE(3)-bi-equivariant transformer (BITR),
based on the SE(3)-bi-equivariance prior of the task: when the input PCs are perturbed by rigid trans-
formations, the output should transform accordingly. A formal definition of SE(3)-bi-equivariance
can be found in Def. 3.1. Our motivation for using the SE(3)-bi-equivariance prior is threefold:
First, the strong training guidance provided by symmetry priors is known to lead to large perfor-
mance gain and high data efficiency. For example, networks with a translation-equivariance prior,
i.e., convolutional neural networks (CNNs), are known to excel at image segmentation [18]. Thus,
SE(3)-bi-equivariance prior should lead to similar practical benefits in PC assembly tasks. Second,
SE(3)-bi-equivariant methods are theoretically guaranteed to be “global”, i.e., their performances
are independent of the initial positions. Third, the SE(3)-bi-equivariance prior does not rely on
correspondence, i.e., it can be used to handle PCs with no correspondence.

Figure 2: An overview of BITR. The input 3-D
PCs X and Y are first merged into a 6-D PC Z by
concatenating the extracted key points X̃ and Ỹ .
Then, Z is fed into a SE(3)× SE(3)-transformer
to obtain equivariant features r̂, tX and tY . These
features are finally projected to SE(3) as the output.

Specifically, the proposed BITR is an end-to-
end trainable model consisting of two steps: it
first extracts SO(3)× SO(3)-equivariant fea-
tures from the input PCs, and then obtains
a rigid transformation by projecting the fea-
tures into SE(3). For the first step, we de-
fine a SE(3) × SE(3)-transformer acting on
the 6-D merged PC by extending the SE(3)-
transformer [11]; For the second step, we
use a SVD-type projection inspired by Arun’s
method [2]. In addition, we theoretically show
that scale-equivariance and swap-equivariance
can be incorporated into BITR via weight con-
straining techniques, which further guarantees
that the performance is not influenced by scal-
ing or swapping inputs. An illustration of BITR
is presented in Fig. 2.

In summary, the contribution of this work is as follows:

- We present a SE(3)-bi-equivariant PC assembly method, called BITR. 1 BITR can assemble PCs
without correspondence, and guarantees stable performance with arbitrary initial positions. In
addition, the SE(3)× SE(3)-transformer used in BITR is the first SE(3)× SE(3)-equivariant
steerable network to the best of our knowledge.

- Theoretically, we show that scale and swap equivariance can be incorporated in to BITR by
weight-constraining, thus it guarantees stable performance under scaling and swapping the inputs.

- We show experimentally that BITR can effectively assemble PCs in practical tasks.

2 Related works

A special case of PC assembly is PC registration, where the correspondence between input PCs is
assumed to exist. A seminal work in this task was conducted by [2], which provided a closed-form
solution to the problem with known correspondence. To handle PCs with unknown correspondence,
most of the subsequent works extend [2] by first estimating the correspondence by comparing
distances [4], or features [25, 23, 41] of the PCs, and then aligning the PCs by aligning the estimated
corresponding points. Notably, to obtain SE(3)-bi-equivariance, SO(3)-invariant features [42, 10,
43] have been investigated for correspondence estimation. However, since these methods require a
sufficient number of correspondences, they have difficulty handling PCs where the correspondence
does not exist. In addition, they often have difficulty handling PCs with large initial errors [45].

1Code is available at: https://github.com/wzm2256/BiTr
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The proposed BITR is related to the existing registration methods because it can be seen as a
generalization of Arun’s method [2]. However, in contrast to these methods, BITR is correspondence-
free, i.e., it is capable of handling PCs with no correspondence. In addition, it theoretically guarantees
stable performance under arbitrary initial position.

Recently, some works have been devoted to a new PC assembly task, called fragment reassembly,
whose goal is to reconstruct a complete shape from two fragments. Unlike registration task, this
task generally does not assume the existence of correspondence. [7] first studied this task, and they
addressed it as a pose estimation problem, where the pose of each fragment relative to a canonical
pose is estimated via a regression model. [38] further improved this method by considering the
SE(3)-equivariance of each fragment. In addition, [31] proposed a simulated dataset for this task. In
contrast to these methods, the proposed BITR does not rely on the canonical pose, i.e., it directly
estimates the relative pose. As a result, BITR is conceptually simpler and it can handle the shape
whose canonical pose is unknown.

Another related research direction is equivariant networks. Due to their ability to incorporate 3D
rotation and translation symmetry priors, these networks have been extensively used in modelling 3D
data [29, 9, 37, 17, 13], and recently they have been used for robotic manipulation task [27, 28, 40]. In
particular, [34] proposed a tensor field network (TFN) for PC processing, and SE(3)-transformer [11]
further improved TFN by introducing the attention mechanism. On the other hand, the theory of
equivariant networks was developed in [16, 5]. BITR follows this line of research because the
SE(3)× SE(3)-transformer used in BITR is a direct generalization of SE(3)-transformer [11], and
it is the first SE(3)× SE(3)-equivariant steerable network to the best of our knowledge.

3 Preliminaries

This section briefly reviews Arun’s method and the concept of equivariance, which will be used in
BITR.

3.1 Group representation and equivariance

Given a group G, its representation is a group homomorphism ρ : G→ GL(V ), where V is a linear
space. When G is the 3D rotation group SO(3), it is convenient to consider its irreps (irreducible
orthogonal representation) ρp : SO(3) → GL(Vp), where p ∈ N is the degree of the irreps, and
dim(Vp) = 2p + 1. For r ∈ G, ρp(r) ∈ R(2p+1)×(2p+1) is known as the Wigner-D matrix. For
example, ρ0(r) = 1 for all r ∈ SO(3); ρ1(r) ∈ R3×3 is the rotation matrix of r. More details can be
found in [5] and the references therein.

In this work, we focus on the groupG of two independent rotations, i.e., G = SO(3)×SO(3), where
× represents the direct product. Similar to SO(3), we also consider the irreps of G. A useful fact is
that all irreps of G can be written as the combinations of the irreps of SO(3): the degree-(p, q) irreps
of G is ρp,q = ρp ⊗ ρq : SO(3)× SO(3)→ GL(Vp ⊗ Vq), where p, q ∈ N, ρp and ρq are irreps of
SO(3), and⊗ is tensor product (Kronecker product for matrix). For example, ρ0,0(r1×r2) = 1 ∈ R;
ρ1,0(r1 × r2) ∈ R3×3 is the rotation matrix of r1; ρ1,1(r1 × r2) = ρ1(r1)⊗ ρ1(r2) ∈ R9×9 is the
Kronecker product of the rotation matrices of r1 and r2.

Given two representations ρ : G → GL(V ) and τ : G → GL(W ), a map Φ : V → W satisfying
Φ(ρ(g)x) = τ(g)Φ(x) for all g ∈ G and x ∈ V is called G-equivariant. When Φ is parametrized by
a neural network, we call Φ an equivariant neural network, and we call the feature extracted by Φ
equivariant feature. Specifically, a degree-p equivariant feature transforms according to ρp under the
action of SO(3), and a degree-(p, q) equivariant feature transforms according to ρp ⊗ ρq under the
action of SO(3)× SO(3). For simpler notations, we omit the representation homomorphism ρ, i.e.,
we write r instead of ρ(r), when ρ is clear from the text.

3.2 Arun’s method

Consider a PC assembly problem with known one-to-one correspondence: Let Y = {yu}Nu=1 ⊆ R3

and X = {xu}Nu=1 ⊆ R3 be a pair of PCs consisting of N points, and let {(xu, yu)}Nu=1 be their
corresponding point pairs. What is the optimal rigid transformation that aligns X to Y ?
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[2] provided a closed-form solution to this problem. It claims that the optimal solution g = (r, t) ∈
SE(3) in terms of mean square errors is

r = SVD(r̄) and t = m(Y )− rm(X) (1)

where
r̄ =

∑
i

ȳix̄i
T (2)

is the correlation matrix, m(·) represents the mean value, x̄i = xi −m(X) and ȳi = yi −m(Y )
represent the centralized points, and SVD(·) represents the singular value decomposition projection.
The definition of SVD projection can be found in Def. C.5.

Arun’s solution enjoys rich equivariance properties. Formally, we have the following proposition:
Definition 3.1. Consider a map Φ : S× S→ SE(3) where S is the set of 3D PCs. Given X,Y ∈ S,
let g = Φ(X,Y ).

- Φ is SE(3)-bi-equivariant if Φ(g1X, g2Y ) = g2gg
−1
1 , ∀g1, g2 ∈ SE(3).

- Φ is swap-equivariant if Φ(Y,X) = g−1.

- Φ is scale-equivariant if Φ(cX, cY ) = (r, ct), ∀c ∈ R+.
Proposition 3.2. Under a mild assumption (C.2), Arun’s algorithm (1) is SE(3)-bi-equivariant,
swap-equivariant and scale-equivariant.

In other words, Arun’s method guarantees to perform consistently 1) with arbitrary rigid perturbations
on X and Y , i.e., it is global, 2) if X and Y are swapped (aligning Y to the fixed X or aligning X to
the fixed Y ), and 3) in arbitrary scale. Details of Prop. 3.2 can be found at Appx. C.1.

We regard Arun’s method as a prototype of SE(3)-bi-equivariant PC assembly methods: it first
extracts a degree-(1, 1) SO(3)× SO(3)-equivariant translation-invariant feature, i.e., the correlation
matrix r̄ (2), and then obtains an output g ∈ SE(3) using a SVD-based projection. This observation
immediately leads to more general SE(3)-bi-equivariant methods where the handcrafted feature r̄ is
replaced by the more expressive learned equivariant features, thus, the correspondence is no longer
necessary. We will develop this idea in the proposed BITR in the next section, and further show that
the scale and swap equivariance of Arun’s method can also be inherited.

4 SE(3)-bi-equivariant transformer

This section presents the details of the proposed BITR. BITR follows the same principle as Arun’s
method [2]: it first extracts SO(3)×SO(3)-equivariant features as a generalization of the correlation
matrix r̄ (2), and then projects the features to SE(3) similarly to (1). Specifically, we first propose
a SE(3)× SE(3)-transformer for feature extraction in Sec. 4.2. Since this transformer is defined
on 6-D space, i.e., it does not directly handle the given 3-D PCs, it relies on a pre-processing step
described in Sec. 4.3, where the input 3-D PCs are merged into a 6-D PC. Finally, the Arun-type
SE(3)-projection is presented in Sec. 4.4. An overview of BITR is presented in Fig. 2.

4.1 Problem formulation

Let Y = {yv}Nv=1 ⊆ R3 and X = {xu}Mu=1 ⊆ R3 be the PCs sampled from the reference and source
shape respectively. The goal of assembly is to find a rigid transformation g ∈ SE(3), so that the
transformed PC gX = {rxi + t}Mi=1 is aligned to Y . Note that we do not assume that X and Y are
overlapped, i.e., we do not assume the existence of corresponding point pairs.

4.2 SE(3)× SE(3)-transformer

To learn SO(3)× SO(3)-equivariant translation-invariant features generalizing r̄ (1), this subsection
proposes a SE(3)× SE(3)-transformer as a generalization of SE(3)-transformer [11]. We present
a brief introduction to SE(3)-transformer [11] in Appx. A for completeness.

According to the theories developed in [5], to define a SE(3)× SE(3)-equivariant transformer, we
first need to define the feature map of a transformer layer as a tensor field, and specify the action
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of SE(3) × SE(3) on the field. Since SE(3) × SE(3) can be decomposed as (T (3) × T (3)) o
(SO(3) × SO(3)) where T (3) is the 3-D translation group, the tensor field should be defined in
the 6-D Euclidean space R6 ∼= T (3) × T (3), and the features attached to each location should be
SO(3)× SO(3)-equivariant and T (3)× T (3)-invariant. Formally, we define the tensor field as

f(z) =

L∑
u=1

fuδ(z − zu) (3)

where Z = {zu}Lu=1 ⊆ R6 is a 6-D PC, δ is the Dirac delta function, fu = ⊕p,qfp,qu is the feature
attached to zu, where fp,qu is the degree-(p, q) equivariant component. We then specify the action of
SE(3)× SE(3) on the base space R6 as

(g1 × g2)(z) = (g1z
1)⊕ (g2z

2) ∀z ∈ R6 (4)
where z = z1 ⊕ z2, z1, z2 ∈ R3 are the first and last three components of z, ⊕ represents direct sum
(concatenate), and gi = (ri, ti) ∈ SE(3) for i = 1, 2. Thus, the action of SE(3) × SE(3) on the
degree-(p, q) component of f is(

(g1 × g2)fp,q
)
(z) =

(
ρp,q(r1 × r2)

)
fp,q

(
(g1 × g2)−1(z)

)
.

With the above preparations, we can now define a SE(3)× SE(3)-transformer layer in a message
passing formulation similar to SE(3)-transformer:

foout(zu) = W oF o
in(zu)︸ ︷︷ ︸

self-interaction

+
∑
i

v∈KNN(u)\{u}

αuv︸︷︷︸
attention

Vo,i
uv︸︷︷︸

message

. (5)

Here, we use notations o = (o1, o2) and i = (i1, i2) for simplicity. For example, fo represents the
degree-o feature fo1,o2 . F o(zu) ∈ Rc×(2o1+1)(2o2+1) is the collection of all degree-o features at zu,
where c is the number of channels of the degree-o features, and W o ∈ R1×c is a learnable parameter
for self-interaction. KNN(·) represents the k nearest neighborhood, and attention αuv is computed
according to

αuv =
exp

(
Q>uKuv

)∑
v′∈KNN(u)\{u} exp (Q>uKuv′)

, (6)

where Q, K and V are known as the query, key and value respectively. They are defined as

Qu =
⊕
o

W o
QF

o
in(zu),Kuv =

⊕
o

∑
i

Wo,i
K (zvu) f iin(zv),V

o,i
uv =Wo,i

V (zvu) f iin(zv) (7)

where zvu = zv − zu, W i
Q is a learnable parameter for Q, and the convolutional kernelWo,i(z) in

V and K both take the form of

vec(Wo,i(z)) =

o1+i1∑
J1=|o1−i1|

o2+i2∑
J2=|o2−i2|

(
ϕo,i
J1,J2

(‖z1‖, ‖z2‖)︸ ︷︷ ︸
radial component

Qo,i
J1,J2

YJ1(
z1

‖z1‖
)⊗ YJ2(

z2

‖z2‖
)︸ ︷︷ ︸

angular component

)
, (8)

where the learnable radial component ϕo,i
J1,J2

: R× R→ R is parametrized by a neural network, the
non-learnable angular component is determined by the 2-nd order Clebsch-Gordan constant Q and
the spherical harmonics YJ : R3 → R2J+1, and vec(·) is the vectorize function reshaping a matrix to
a vector. Formulation (8) is derived in Appx. B.

Note that the kernel (8) is the main difference between a SE(3)-transformer layer and a SE(3)×
SE(3)-transformer layer. In the special case where only SE(3)-equivariance is considered, i.e.,
all features are of degree (p, 0) (or (0, q)), a SE(3)× SE(3)-transformer layer becomes a SE(3)-
transformer layer.

Finally, we adopt the equivariant Relu (Elu) layer similar to [9] as the point-wise non-linear layer in
our network. Given an input degree-i feature F i with c channels, an Elu layer is defined as

Elu(F i) =

{
Fµ 〈Fµ, Fν〉 > 0

Fµ − 〈Fµ, Fν
‖Fν‖ 〉

Fν
‖Fν‖ otherwise,

(9)

where Fµ = W i
µF

i and Fν = W i
νF

i. Wµ,Wν ∈ Rc×c are learnable weights and ‖ · ‖ is the
channel-wise vector norm. Note that when i = (1, 0) or i = (0, 1), our definition (9) becomes the
same as [9]. By interleaving transformer layers and Elu layers, we can finally build a complete
SE(3)× SE(3)-equivariant transformer model.
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4.3 Point cloud merge

To utilize the transformer model defined in Sec. 4.2, we need to construct a 6-D PC as its input. To
this end, we first extract key points from the raw 3-D PCs, and then concatenate them to a 6-D PC to
merge their information. Thus, the resulting 6-D PC is not only small in size but also contains the key
information of the raw PCs pairs.

Formally, we extract L ordered key points X̃ = {x̃u}Lu=1 and Ỹ = {ỹu}Lu=1 from X and Y

respectively, and then obtain Z = {x̃u ⊕ ỹu}Lu=1. Note that we do not require X̃ (Ỹ ) to be a subset
of X (Y ). Specifically, we represent the coordinates of the key points as a convex combination of the
raw PCs:

X̃ = SoftMax(F 0
X)X, Ỹ = SoftMax(F 0

Y )Y, (10)
whereX ∈ RM×3 and Y ∈ RN×3 represent the coordinates ofX and Y respectively, and SoftMax(·)
represents the row-wise softmax. F 0

X ∈ RL×M and F 0
Y ∈ RL×N are the weights of each point in

X and Y respectively, and they are degree-0, i.e., rotation-invariant, features computed by a shared
SE(3)-transformer ΦE :

F 0
X = ΦE(X), F 0

Y = ΦE(Y ). (11)

Furthermore, inspired by [39], we fuse the features of X and Y in ΦE before the last layer, so that
their information is merged more effectively, i.e., the selection of X̃ or Ỹ depends on both X and Y .
Specifically, the fused features are{

fout,X(xu) = f0in,X(xu)⊕ Poolv
(
f0in,Y (yv)

)
⊕ f1in,X(xu)

fout,Y (yv) = f0in,Y (yv)⊕ Poolu
(
f0in,X(xu)

)
⊕ f1in,Y (yv),

(12)

where we only consider degree-0 and degree-1 features. f·,X and f·,Y represent the features of X
and Y , and Pool is the average pooling over the PC.

Note that X̃ and Ỹ obtained in Eqn. 10 are permutation invariant. For example, according to
Eqn. 10, the i-th key point of X is x̃i =

∑
j FijXj , where Fij is the i-th channel of F 0

X at xj
(after softmax normalization). When X is permutated by σ, then the i-th key point can be written
as x̃′i =

∑
j′ Fij′Xj′ , where j′ = σ(j). It is easy to see that x̃′i = x̃i because both j and j′ iterate

through {1, ...,M} in the summation.

4.4 SE(3)-projection

We now obtain the final output by projecting the feature extracted by the SE(3)×SE(3)-transformer
to SE(3). Formally, let f be the output tensor field of the SE(3)× SE(3)-transformer. We compute
the final output g = (r, t) ∈ SE(3) using an Arun-type projection as follows:{

r = SVD(r̂)

t = (m(Ỹ ) + tY )− r(m(X̃) + tX),
(13)

where r̂ = unvec(r̃) ∈ R3×3, tX ∈ R3 and tY ∈ R3 are equivariant features computed as

r̃ = Poolu(f1,1u ), tX = Poolu(f1,0u ), tY = Poolu(f0,1u ).

We note that projection (13) extends Arun’s projection (1) in two aspects. First, although r̂ in (13) and
r̄ (2) are both degree-(1, 1) features, r̂ is more flexible than r̄ because r̂ is a learned feature while r̄ is
handcrafted, and r̂ is correspondence-free while r̄ is correspondence-based. Second, projection (13)
explicitly considers non-zero offsets tX and tY , which allow solutions where the centers of PCs do
not match.

In summary, BITR computes the output g for PCs X and Y according to

g = ΦP ◦ ΦS(X,Y ), (14)

where ΦS : S×S→ F is a SE(3)×SE(3)-transformer (with the PC merge step), ΦP : F→ SE(3)
represents projection (13), and F is the set of tensor field. We finish this section with a proposition
that BITR is indeed SE(3)-bi-equivariant.
Proposition 4.1. Under a mild assumption (C.2), BITR (14) is SE(3)-bi-equivariant.
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5 Swap-equivariance and scale-equivariance

This section seeks to incorporate swap and scale equivariances into the proposed BITR model. These
two equivariances are discussed in Sec. 5.1 and Sec. 5.2 respectively.

5.1 Incorporating swap-equivariance

This subsection seeks to incorporate swap-equivariance to BITR, i.e., to ensure that swapping X
and Y has the correct influence on the output. To this end, we need to treat the group of swap as
Z/2Z = {1, s} where s2 = 1, i.e., s represents the swap of X and Y , and properly define the action
of Z/2Z on the learned features.

Formally, we define the action of Z/2Z on field f (3) as follows. We first define the action of s on the
base space R6 as swapping the coordinates of X̃ and Ỹ : s(z) = z2 ⊕ z1, where z = z1 ⊕ z2, and
z1, z2 ∈ R3 are the coordinates of X̃ and Ỹ respectively. Then we define the action of s on feature f
as
(
s(f)

)p,q
(z) =

(
fq,p (s(z))

)T
, where we regard a degree-(p, q) feature fp,qu as a matrix of shape

R(2p+1)×(2q+1) by abuse of notation, and (·)T represents matrix transpose.

Intuitively, according to the above definition, degree-(1, 1), (1, 0) and (0, 1) features will become
(the transpose of) degree-(1, 1), (0, 1) and (1, 0) features respectively under the action of s, i.e., r̂
will be transposed, tX and tY will be swapped. This is exactly the transformation needed to ensure
swap-equivariant outputs. We formally state this observation in the following proposition.

Proposition 5.1. For a tensor field f and a projection ΦP (13), ΦP (s(f)) = (ΦP (f))−1.

Now the remaining problem is how to make a SE(3) × SE(3)-transformer Z/2Z-equivariant. A
natural solution is to force all layers in the SE(3)×SE(3)-transformer to be Z/2Z-equivariant. The
following proposition provides a concrete way to achieve this.

Proposition 5.2. Let ·̃ represent the swap of index, e.g., if o = (o1, o2), then õ = (o2, o1). 1) For
a transformer layer (5), if the self-interaction weight satisfies W o = W õ, the weight of query (7)
satisfies W o

Q = W õ
Q, and the radial function satisfies ϕi,o

J1,J2
(‖z1‖, ‖z2‖) = ϕĩ,õ

J2,J1
(‖z2‖, ‖z1‖) for

all i, o, J1, J2, z1 and z2, then the transformer layer is Z/2Z-equivariant.

2) For an Elu layer (9), if W i
ν = W ĩ

ν and W i
µ = W ĩ

µ for all i, then the Elu layer is Z/2Z-equivariant.

More details, including the complete matching property (Prop. C.11), can be found in Appx. C.3.1.

5.2 Incorporating scale-equivariance

This subsection seeks to incorporate scale equivariance to BITR, i.e., to ensure that when X and Y
are multiplied by a scale constant c ∈ R+, the output result transforms correctly. To this end, we
need to consider the scale group (R+,×), i.e., the multiplicative group of R+, and properly define
the (R+,×)-equivariance of the learned feature. For simplicity, we abbreviate group (R+,×) as R+.

We now consider the action of R+ on field f (3). We call f a degree-p R+-equivariant field (p ∈ N)
if it transforms as (c(f)) (z) = cpf(c−1z) under the action of R+, where z ∈ R6 and c ∈ R+.
We immediately observe that degree-1 R+-equivariant features lead to scale-equivariant output.
Intuitively, if r̃, tX and tY are degree-1 R+-equivariant features, then they will become cr̃, ctX and
ctY under the action of c, and the projection step will cancel the scale of r̃ while keeping the scale of
tX and tY , which is exactly the desirable results. Formally, we have the following proposition.

Proposition 5.3. Let ΦP be projection (13), f be a degree-1 R+-equivariant tensor field, and
(r, t) = ΦP (f). We have ΦP (c(f)) = (r, ct) ∀c ∈ R+.

The remaining problem is how to ensure that a SE(3)× SE(3)-transformer is R+-equivariant and
its output is of degree-1, so that scaling the input can lead to the proper scaling of output. Here we
provide a solution based on the following proposition.

Definition 5.4. ϕ : R× R→ R is a degree-p function if ϕ(cx, cy) = cpϕ(x, y) for all c ∈ R+.

Proposition 5.5. 1) Denote ϕK and ϕV the radial functions used in K and V respectively. Let ϕK
be a degree-0 function, fin be a degree-0 R+-equivariant input field. For transformer layer (5), if ϕV
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is a degree-1 function and the self-interaction weight W = 0, then the output field fout is degree-1
R+-equivariant; If ϕV is a degree-0 function, then the output field fout is degree-0 R+-equivariant.

2) For Elu layer (9), if the input field is degree-p R+-equivariant, then the output field is also degree-p
R+-equivariant.

More discussions can be found in Appx. C.4.

6 Experiments and analysis

This section experimentally evaluates the proposed BITR. After describing the experiment settings in
Sec. 6.1, we first present a simple example in Sec. 6.2 to highlight the equivariance of BITR. Then
we evaluate BITR on assembling the shapes in ShapeNet [6], BB dataset [31], 7Scenes [32] and
ASL [22] from Sec. 6.3.1 to Sec. 6.4. We finally apply BITR to visual manipulation tasks in Sec. 6.6.

6.1 Experiment settings

We extract L = 32 key points for each PC. The SE(3)-transformer and the SE(3) × SE(3)-
transformer both contain 2 layers with c = 4 channels. We consider k = 24 nearest neighborhoods
for message passing. We only consider low degree equivariant features, i.e., p, q ∈ {0, 1} for
efficiency. We train BITR using Adam optimizer [15] with learning rate 1e−4. We use the loss
function L = ‖rT rgt − I‖22 + ‖tgt − t‖22, where (r, t) are the output transformation, (rgt, tgt) are
the corresponding ground truth. We evaluate all methods by isotropic rotation and translation errors:
∆r = (180/π)accos

(
1/2

(
tr(rrTgt)− 1)

))
, and ∆t = ‖tgt − t‖ where tr(·) is the trace of a matrix.

We do not use random rotation and translation augmentations as [23]. More details are in Appx. D.1.

6.2 A proof-of-concept example

To demonstrate the equivariance property of BITR, we train BITR on the bunny shape [33]. We
prepare the dataset similar to [41]: In each training iteration, we first construct the raw PC S by
uniformly sampling 2048 points from the bunny shape and adding 200 random outliers from [−1, 1]3,
then we obtain PCs {XP , YP } by dividing S into two parts of ratio (30%, 70%) using a random plane
P . We train BITR to reconstruct S using randomly rotated and translated {XP , YP }. To construct
the test set, we generate a new sample {XP̃ , YP̃ }, and additionally construct 3 test samples by 1)
swapping, 2) scaling (factor 2) and 3) randomly rigidly perturbing {XP̃ , YP̃ }.
The assembly results of BITR on these four test samples are shown in Fig. 3. We observe that
BITR performs equally well in all cases. Specifically, the differences between the rotation errors in
these four cases are small (less than 1e−3). The results suggest that BITR is indeed robust against
these three perturbations, which verifies its swap-equivariance, scale-equivariance and SE(3)-bi-
equivariance. More experiments can be found in the appendix: a numerical verification of Def. 3.1 is
presented in Appx. D.2, an ablation study of swap and scale equivariances are presented in Appx. D.3,
and the verification of the complete-matching property C.11 is presented in Appx. D.4.

(a) Original
(∆r = 11.275)

(b) Swapped
(∆r = 11.275)

(c) Rigidly perturbed
(∆r = 11.276)

(d) Scaled (∆r = 11.276)

Figure 3: The results of BITR on a test example (a), and the swapped (b), scaled (d) and rigidly
perturbed (c) inputs. The red, yellow and blue colors represent the source, transformed source and
reference PCs respectively.
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6.3 Results on ShapeNet

6.3.1 Single shape assembly

In this experiment, we evaluate BITR on assembling PCs sampled from a single shape. When the
inputs PCs are overlapped, this setting is generally known as PC registration. We construct a dataset
similar to [41]: for a shape in the airplane class of ShapeNet [6], we obtain each of the input PCs by
uniformly sampling 1024 points from the shape, and keep ratio s of the raw PC by cropping it using
a random plane. We vary s from 0.7 to 0.3. Note the PCs may be non-overlapped when s < 0.5.

We compare BITR against the state-of-the-art registration methods GEO [23] and ROI [43], and
the state-of-the-art fragment reassembly methods NSM [7] and LEV [38]. For NSM and LEV, we
additionally provide the canonical pose for each shape. Note that LEV and ROI are SE(3)-equivariant
methods. For s ≥ 0.5, we report the results of BITR fine-tuned by ICP [45] (BITR+ICP). Note that
BITR+ICP is SE(3)-bi-equivariant and scale-equivariant, but not swap-equivariant.

Figure 4: Assembly results on the airplane
dataset. ∗ denotes methods which require the
true canonical poses of the input PCs.

We present the results in Fig. 4. We observe that the
performance of all methods decrease as s decreases.
Meanwhile, BITR outperforms all baseline methods
when s is small (s ≤ 0.5). On the other hand, when
s is large (s > 0.5), BITR performs worse than GEO,
but it still outperforms other baselines. Nevertheless,
since the results of BITR are sufficiently close to
optimum (∆r ≤ 20), the ICP refinement can lead to
improved results that are close to GEO. More details
can be found in Appx. D.5.

6.3.2 Inter-class assembly

Figure 5: A result of BITR on as-
sembling a motorbike and a car.

To evaluate BITR on non-overlapped PCs, we extend the exper-
iment in Sec. 6.3.1 to inter-class assembly. We train BITR to
place a car shape on the right of motorbike shape, so that their
directions are the same and their distance is 1. We consider
s = 1.0 and 0.7. Note that this task is beyond the scope of
registration methods, since the input PCs are non-overlapped.
A result of BITR is shown in Fig. 5. More details can be found
in Appx. D.6.

6.4 Results on fragment reassembly

This subsection evaluates BITR on a fragment reassembly task. We compare BITR against NSM [7],
LEV [38] and DGL [44] on the 2-fragment WineBottle class of the BB dataset [31]. The data
preprocessing step is described in Appx. D.7.

Table 1: Reassembly results on 2-fragment
WineBottle. We report the mean and std of the
error of BITR.

∆r ∆t
DGL 101.3 0.09
NSM 101 0.18
LEV 98.3 0.17

BITR (Ours) 8.4 (0.9) 0.07 (0.008)

We test the trained BITR 3 times using differ-
ent random samples, and report the mean and
standard deviation of (∆r,∆t) in Tab. 1. We ob-
serve that BITR outperforms all baseline meth-
ods: BITR achieves the lowest rotation errors,
and its translation error is comparable to DGL,
which is lower than other baselines by a large
margin. We provide some qualitative compar-
isons in Appx. D.7.

6.5 Results on real data

This subsection evaluates BITR on an indoor dataset 7Scenes [32] and the outdoor scenes in ASL
dataset [22]. We present the results on 7Scenes in this section, and leave the results on ASL and some
qualitative results to Appx. D.8.

For the 7Scenes dataset, we arbitrarily rotate and translate all frames, and train BITR to align all
adjacent frames. We use the data from the first 6 scenes as the training set, and the data from 7-th
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scene as the test set. To train BITR, we use a random clipping augmentation similar to Sec. 6.3.1: we
keep ratio s of each PCs by clipping them using a random plane, where s is uniformly distributed in
[0.5, 1.0]. We compare BITR against GEO [23], ROI [43], ICP [45] and OMN [39], where OMN is a
recently proposed correspondence-free registration method.

Table 2: Results on 7Scenes. We report mean
and std of ∆r and ∆t.

∆r ∆t
ICP 73.2 (5.7) 2.4 (0.2)

OMN 129.02 (2.15) 0.98 (0.06)
GEO 9.2 (0.02) 0.2 (0.08)
ROI 9.0 (0.0) 0.2 (0.0)

BITR (Ours) 26.7 (0.0) 0.8 (0.0)
BITR+ICP (Ours) 11.1 (0.0) 0.3 (0.0)
BITR+OT (Ours) 9.5 (0.0) 0.3 (0.0)

The results on 7Scenes are reported in Tab. 2. We ob-
serve that BITR can produce results that are close to
the optimum (∆r ≈ 25) from a random initialization
(∆r ∈ U [0, 180]), and extra refinements like ICP and
OT can further improve the results (∆r ≈ 10). This
observation is consistent with that in Sec. 6.3.1. In
particular, BITR with the OT refinement is compara-
ble with GEO and ROI, which use highly complicated
features specifically designed for registration tasks
and an OT-like refinement process. On the other hand,
ICP and OMN fails in this task due to their sensitive-
ness to initial positions.

6.6 Results on visual manipulation

This subsection investigates the potential of BITR in manipulation tasks. Following [26], we consider
two tasks: mug-hanging and bowl-placing. For both tasks, X represents an object grasped by a
robotic arm, i.e., a cup or a bowl, Y represents the fixed environment with a target, i.e., a stand or a
plate, and we train BITR to align X to Y , so that the cup can be hung to the stand, or the bowl can be
placed on the plate.

Fig. 6 presents the results of BITR on bowl-placing. We observe that although BITR is not originally
designed for manipulation tasks, it can place the bowl in a reasonable position relative to the plate.
However, we also notice that BITR may produce unrealistic results, e.g., the PCs may collide. Thus,
post-processing steps [30] or extra regularizers [13] may be necessary in practical applications. More
results and discussions can be found in Appx. D.9.

(a) A success case of bowl-placing (b) A failure case of bowl-placing

Figure 6: The results of BITR on bowl-placing. We present the input PCs (left panel) and the
assembled results (right panel). BITR can generally place the bowl (red) on the plate (green) (a), but
it sometimes produces unrealistic results where collision exists (b).

7 Conclusion

This work proposed a PC assembly method, called BITR. The most distinguished feature of BITR
is that it is correspondence-free, SE(3)-bi-equivariant, scale-equivariant and swap-equivariant. We
experimentally demonstrated the effectiveness of BITR.

BITR in its current form has two main limitations. First, BITR is computationally inefficient because
each degree of feature is computed independently without parallel. This issue was also observed
in SE(3)-equivariant networks, and was recently addressed by [21]. A promising future research
direction is to develope similar acceleration techniques for BITR. Second, since BITR is deterministic,
i.e., it only predicts one result for a given input, it cannot handle symmetric PCs. Although this feature
does not cause any difficulty in this work (there is no strictly symmetric PCs in this work due to noise,
random sampling, etc), it may be problematic in future applications such as molecule modelling
where symmetric PCs exist, e.g., benzene rings. To address this issue, we plan to generalize BITR to
a generative model in the future. More discussions can be found in Appx. E.
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A SE(3)-equivariant Transformers

A well-known SE(3)-equivariant network is SE(3)-transformer [11], which adapts the powerful
transformer structure [35] to SO(3)-equivariant settings. In this model, the feature map f of each
layer is defined as a tensor field supported on a 3-D PC:

f(x) =

M∑
u=1

fuδ(x− xu), (15)

where δ is the Dirac function, X = {xu}Mu=1 ⊆ R3 is a point set, and fu is the feature attached to xu.
Here, feature fu takes the form of fu = ⊕pfpu , where the component fpu ∈ Vp is the degree-p feature,
i.e., it transforms according to ρp under the action of SO(3). For example, when fu represents the
norm vector of a point cloud, then fu = f1u ∈ R3. We also write the collection of all degree-p
features at xu as F p(xu) ∈ Rc×(2p+1), where c is the number of channels.

For each transformer layer, the degree-k output feature at point xi is computed by performing message
passing:

f lout(xu) = W lF lin(xu)︸ ︷︷ ︸
self-interaction

+
∑
l

∑
v∈N (u)\{u}

αuv︸︷︷︸
attention

Vlk
uv︸︷︷︸

message

, (16)

whereN (u) represents the neighborhood of u,W l ∈ R1×c is the learnable weight for self-interaction,
c represents the number of channels, and

αuv =
exp

(
Q>uKuv

)∑
v′ exp (Q>uKuv′)

(17)

is the attention from v to u. Here, key K, value V and query Q are

Qu =
⊕
l

W l
QF

l
in(xu), Kuv =

⊕
l

∑
k

W lk
K (xv − xu) fkin(xv), V

lk
uv =W lk

V (xv − xu) fkin(xv)

(18)
where W l

Q ∈ R1×(2l+1) is a learnable weight, and the kernelW lk(x) ∈ R(2l+1)×(2k+1) is defined as

vec(W lk(x)) =

k+l∑
J=|k−l|

ϕlkJ (‖x‖)︸ ︷︷ ︸
radial component

QlkJ YJ(x/‖x‖)︸ ︷︷ ︸
angular component

, (19)

where vec(·) is the vectorize function, the learnable radial component ϕlkJ : R+ → R is parametrized
by a neural network, and the non-learnable angular component is determined by Clebsch-Gordan
constant Q and the spherical harmonic YJ : R3 → R2J+1.

B Derive of the Convolutional Kernel

To derive the kernel (8) for a SE(3)× SE(3)-transformer layer, we consider the equivariant convo-
lution as a simplified version of the SE(3)× SE(3)-transformer layer:

(W ∗ f)o(zu) :=
∑
i

v∈KNN(u)\{u}

Wo,i (zv − zu) f iin(zv), (20)

i.e., we only consider the message Vo,i
uv while fixing the self-interaction weightW o = 0 and attention

αuv = 1 in (5). To ensure the SE(3)× SE(3)-equivariance of convolution (20), i.e.,(
(g1 × g2)(Wo,i ∗ f)

)
(z) =

(
Wo,i ∗ ((g1 × g2)f)

)
(z), (21)

the kernelW must satisfy a constraint:

ρi(r12)⊗ ρo(r12)W(z) =W (r12z) , (22)

where we abbreviate r1 × r2 as r12, abbreviate vec(Wo,i) ∈ R(2i1+1)(2i2+1)(2o1+1)(2o2+1) asW ,
and assume ‖z1‖ = ‖z2‖ = 1 for simpler notations. Equation (22) is generally known as the kernel
constraint, and its necessity and sufficiency can be proved in a verbatim way as Theorem 2 in [37],
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so we omit the proof here. Now we can obtain the kernel (8) by solving this constraint. Note that a
direct formulation is given in Theorem 2.1 in [5], but here we derive it in a less abstract way.

We first observe that W∗(z) = Yi1(z1) ⊗ Yi2(z2) ⊗ Yo1(z1) ⊗ Yo2(z2) is a special solution to
equation (22), where YJ(·) ∈ R2J+1 is the column vector consisting of degree-J harmonics with
order m = −J, ...0, ..., J as each row element, because

ρi(r12)⊗ ρo(r12)W∗(z)

=
(
ρi1(r1)⊗ ρi2(r2)⊗ ρo1(r1)⊗ ρo2(r2)

)(
Yi1(z1)⊗ Yi2(z2)⊗ Yo1(z1)⊗ Yo2(z2)

)
=
(
ρi1(r1)Yi1(z1)

)
⊗
(
ρi2(r2)Yi2(z2)

)
⊗
(
ρo2(r1)Yo2(z1)

)
⊗
(
ρo2(r2)Yo2(z2)

)
=Yi1(r1z

1)⊗ Yi2(r2z
2)⊗ Yo1(r1z

1)⊗ Yo2(r2z
2)

=W∗(r12z).
Then we point out that {Y m1

J1
(z1)Y m2

J2
(z2)}m1,m2,J2,J1 is an orthogonal and complete basis for

two variable square-integrable functions L2(X,Y ) : S2 × S2 → R, where S2 is the 2-D sphere.
Thus, we can write each component of W∗(z) as a linear combination of this basis. Specifi-
cally, let V(z) = ⊕J1,J2YJ1(z1) ⊗ YJ2(z2), and let (m1,m2,m3,m4) be the index of the ele-
ment Y m1

i1
(z1)Y m2

i2
(z2)Y m3

o1 (z1)Y m4
o2 (z2) inW∗, and (J1,m5, J2,m6) be the index of the element

Y m5

J1
(z1)Y m6

J2
(z2) in V . We haveW∗ = PV , where
Pm1,m2,m3,m4,J1,m5,J2,m6

=

∫
Y m1
i1

(z1)Y m2
i2

(z2)Y m3
o1 (z1)Y m4

o2 (z2)Y m5

J1
(z1)Y m6

J2
(z2)dz2dz1

=
(∫

Y m1
i1

(z1)Y m3
o1 (z1)Y m5

J1
(z1)dz1

)(∫
Y m2
i2

(z2)Y m4
o2 (z2)Y m6

J2
(z2)dz2

)
=〈i1,m1, o1,m3|J1,m5〉〈i2,m2, o2,m4|J2,m6〉c(J1)c(J2). (23)

Here, c(J1) and c(J2) are coefficients related to J1 and J2 respectively.
〈i,m1, o,m3|J,m5〉 is known as the Clebsch-Gordan coefficient, the product
〈i1,m1, o1,m3|J1,m5〉〈i2,m2, o2,m4|J2,m6〉 is known as the 2-nd order Clebsch-Gordan
coefficient, and we represent it as Q. In other words, we have P = Qc, where c is a block diagonal
matrix, and each block is c(J1)c(J2)I . Therefore, we have(

ρi(r12)⊗ ρo(r12)
)
PV(z) = PV(r12z)(

ρi(r12)⊗ ρo(r12)
)
QcV(z) = QcV(r12z)

QT
(
ρi(r12)⊗ ρo(r12)

)
QcV(z) = cV(r12z).

Since [ ⊕
J1,J2

ρJ1,J2(r12)
]
cV(z) = cV(r12z) (24)

for arbitrary z, we further have

QT
(
ρi(r12)⊗ ρo(r12)

)
Q =

[ ⊕
J1,J2

ρJ1,J2(r12)
]

(25)

by equating the above two equations. Finally, we stack this decomposition back to the kernel
constraint (22), and obtain [ ⊕

J1,J2

ρJ1,J2(r12)
]
QTW(z) = QTW(r12z), (26)

which suggests that
QTW(z) = c′V(x), (27)

W(z) = Qc′V(x), (28)
where c′ is the coefficient matrix of the same shape as c, and each coefficient is arbitrary. Specifically,

W(z) = c′J1,J2

∑
J1,J2

QJ1,J2YJ1(z1)⊗ YJ2(z2). (29)

We note that c′J1,J2 is parametrized by a neural network in our model (8).
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C Proofs and theoretical results

C.1 The proof of the equivariance of Arun’s method

We first establish the result on the uniqueness of Arun’s method. We begin with the result of the
uniqueness of singular vectors.

Lemma C.1. Let A = UΣV T ∈ R3×3 be the SVD decomposition. If a singular value σj is distinct,
then the corresponding singular vectors Uj and Vj can be determined up to a sign. If σj 6= 0, UjV TJ
is unique.

Proof. If σj 6= 0, we have
ATA = V Σ2V T = V Σ2V −1, (30)

i.e., the eigenvalues of ATA are σ2
i , i = 1, 2, 3, and Vi are the corresponding eigenvectors. Since σj

is distinct and all σi ≥ 0, σ2
j is distinct. As a result, the eigenspace corresponding to σ2

j has dim 1,
i.e., it is spanned by Vj . Since Vj is a unit vector, it can be determined up to a sign. In addition, we
have AVj = σjUj , thus Uj can also be determined up to a sign. UjV TJ is unique since flipping the
sign of Vj always leads to the flipping of sign of Uj , and vice versa.

If σj = 0, we can still repeat the above argument to determine Vj up to a sign, and determine Uj up
to a sign using the above argument for AAT .

Note that in Arun’s algorithm, we use the SVD projection defined as follows.

SVD(A) = Ûdiag(1, 1, sign(det(Û V̂ T )))V̂ T , (31)

where A = Û Σ̂V̂ T , Û , V̂ ∈ O(3) is the SVD decomposition of A. In other words, if det(Û V̂ T ) = 1,
then we take Û V̂ T , otherwise we flip the sign of Û3V̂3. An important observation is that this SVD
projection is unique under a mild assumption.

Assumption C.2. In the SVD decomposition, σ3 is distinct, i.e., σ1 ≥ σ2 > σ3 ≥ 0.

Proposition C.3 (Uniqueness of SVD projection). Let A = UΣV T ∈ R3×3 be the SVD decompo-
sition, where Σ = diag(σ1, σ2, σ3) is a diagonal matrix, and U, V ∈ O(3). If assumption C.2 is
satisfied, then SVD(A) is unique.

Proof. Let A = Ũ Σ̃Ṽ T be another SVD decomposition of A, i.e.,

A = σ1U1V
T
1 + σ2U2V

T
2 + σ3U3V

T
3 = σ1Ũ1Ṽ

T
1 + σ2Ũ2Ṽ

T
2 + σ3Ũ3Ṽ

T
3 , (32)

the goal is to prove

U1V
T
1 + U2V

T
2 + sign(det(UV T ))U3V

T
3 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 + sign(det(Ũ Ṽ T ))Ũ3Ṽ

T
3 . (33)

We first show that U1V
T
1 + U2V

T
2 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 .

1) If σ3 = 0 and σ1 = σ2, then

U1V
T
1 + U2V

T
2 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 =

1

σ1
A. (34)

2) If σ3 = 0 and σ1 > σ2, then σ1 and σ2 are distinct and nonzero. According to lemma C.1,
U1V

T
1 = Ũ1Ṽ

T
1 and U2V

T
2 = Ũ2Ṽ

T
2 , thus the summation of these two terms is equal.

3) If σ3 > 0 and σ1 > σ2, the argument is the same as 2)

4) If σ3 > 0 and σ1 = σ2, then σ3 is distinct and nonzero. According to lemma C.1, U3V
T
3 = Ũ3Ṽ3

T
.

Thus,

U1V
T
1 + U2V

T
2 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 =

1

σ1
(1− σ3U3V

T
3 ). (35)

Thus we have U1V
T
1 + U2V

T
2 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 .
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Now we prove that the last term in Eqn. (33) is equal. We have Ũ3Ṽ
T
3 = ±U3V

T
3 , and we have

shown that U1V
T
1 + U2V

T
2 = Ũ1Ṽ

T
1 + Ũ2Ṽ

T
2 , thus we have

det(Ũ1Ṽ
T
1 + Ũ2Ṽ

T
2 + Ũ3Ṽ

T
3 ) =det(U1V

T
1 + U2V

T
2 ± U3V

T
3 )

=det(U)det([V1, V2,±V3]T )

=det(U)
(
±det([V1, V2, V3]T )

)
=± det(U1V

T
1 + U2V

T
2 + U3V

T
3 ) (36)

By multiplying this term with Ũ3Ṽ
T
3 = ±U3V

T
3 , we have

det(Ũ1Ṽ
T
1 + Ũ2Ṽ

T
2 + Ũ3Ṽ

T
3 )Ũ3Ṽ

T
3 = det(U1V

T
1 + U2V

T
2 + U3V

T
3 )U3V

T
3 , (37)

which suggests that last term in Eqn. (33) is equal. In summary, we have proved (33).

Finally, we can prove the uniqueness of Arun’s method under the same assumption.
Proposition C.4 (Uniqueness of Arun’s method). Under assumption C.2, Arun’s method (1) is
unique.

Proof. According to Prop. C.3, r = SVD(r̄) is unique. As a result, t = m(Y ) − rm(X) is also
unique.

Throughout this work, we assume that assumption C.2 holds, so that the uniqueness of Arun’s method
and BITR can be guaranteed.

For the rest of this appendix, we use a simpler notation of SVD projection, where we simply absorb
the sign matrix into Û and V̂ :

U =
(
Ûdiag(1, 1, sign(det(Û)))

)
∈ SO(3), (38)

V T =
(
diag(1, 1, sign(det(V̂ )))V̂ T

)
∈ SO(3), (39)

and Σ = diag(σ̂1, σ̂2, σ̂3sign(det(Û V̂ T ))), (40)

thus obtain the following equivalent definition.
Definition C.5. The SVD projection of matrix A is defined as

SVD(A) = UV T (41)

where A = UΣV T and U, V ∈ SO(3).

Finally, we can discuss the equivariance of Arun’s method.
Lemma C.6. Let

SVD(A) = UV T (42)
be the SVD projection of A, i.e., A can be decomposed as A = UΣV T , Σ is a diagonal matrix and
U, V ∈ SO(3). We have

SVD(r2Ar
T
1 ) = r2SVD(A)rT1 , (43)

SVD(AT ) = (SVD(A))
T
, (44)

SVD(cA) = SVD(A), (45)

for arbitrary A ∈ GL(3), r1, r2 ∈ SO(3), and c ∈ R+.

The Proof of Lemma. C.6. We have

r2Ar
T
1 = r2UΣV T rT1 = (r2U)Σ(r1V )T , (46)

where r2U ∈ SO(3), r1V ∈ SO(3) and Σ is a diagonal matrix. In other words, (46) is a SVD
decomposition of matrix r2ArT1 , thus the SVD projection can be computed as

SVD(r2Ar
T
1 ) = (r2U)(r1V )T = r2(UV T )rT1 = r2SVD(A)rT1 , (47)

which proves the first part of this lemma. We omit the other two statements of this lemma since they
can be proved similarly.
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The Proof of Prop. 3.2. Let ΦA be Arun’s method and ΦA(X,Y ) = (r(X,Y ), t(X,Y )) = g.
We directly verify these three equivariances according to Def. 3.1. We only prove the SE(3)-
bi-equivariance and swap-equivariance and omit the proof of scale-equivariance, because it can be
proved similarity.

1) SE(3)-bi-equivariance We compute ΦA(g1X, g2Y ) for the perturbed PCs g1X = {r1xi +
t1}Ni=1 and g2Y = {r2yi + t2}Ni=1 as follows. We first compute r̄(g1X, g2Y ) as

r̄(g1X, g2Y ) =
∑
i

(r2ȳi)(x̄i
T rT1 ) = r2

(∑
i

ȳix̄i
T

)
rT1 = r2r̄(X,Y )rT1 . (48)

Then we compute r via SVD:

r(g1X, g2Y ) = SVD(r̄(g1X, g2Y )) = SVD(r2r̄(X,Y )rT1 ) = r2SVD(r̄(X,Y ))rT1 = r2r(X,Y )rT1 ,
(49)

where the 3-rd equality holds due to Lemma. C.6. Since the mean values are also perturbed as
m(g1X) = g1m(X) and m(g2Y ) = g2m(Y ), we compute t(g1X, g2Y ) as

t(g1X, g2Y ) = m(g2Y )− r(g1X, g2Y )m(g1X) = g2m(Y )− r2r(X,Y )rT1 g1m(X)

= r2t(X,Y )− r2r(X,Y )r−11 t(X,Y ) + t2.
(50)

In summary,

ΦA(g1X, g2Y ) = (r2r(X,Y )r−11 ,−r2r(X,Y )r−11 t1 + r2t(X,Y ) + t2) = g2gg
−1
1 , (51)

which proves the SE(3)-bi-equivariance of Arun’s method.

2) swap-equivariance We compute ΦA(Y,X) as follows. We first compute r̄(Y,X) as

r̄(Y,X) =
∑
i

x̄iȳi
T =

(∑
i

ȳi
T x̄i

)T
= (r̄(X,Y ))

T
. (52)

Then we compute r(Y,X) via SVD:

r(Y,X) = SVD(r̄(Y,X)) = SVD
(

(r̄(X,Y ))
T
)

= (SVD(r̄(X,Y )))T = r(X,Y )T , (53)

We can finally compute t(Y,X) as

t(Y,X) = m(X)− r(Y,X)m(Y ) = m(X)− r(X,Y )−1m(Y ) = −r(X,Y )−1t(X,Y ). (54)

In summary,
ΦA(Y,X) = (r(X,Y )−1,−r(X,Y )−1t(X,Y )) = g−1, (55)

which proves the swap-equivariance of Arun’s method.

C.2 The proof of the equivariance of BITR

Before proving the SE(3)-bi-equivariance of BITR, we first verify that each layer in a SE(3) ×
SE(3)-transformer is indeed SE(3)× SE(3)-equivariant. Intuitively, the equivariance of a trans-
former layer (5) is a result of the kernel design, i.e., the kernel constraint (22), and the invariance of
the attention. We state this result in the following lemma for completeness, and we note that similar
techniques are also used in the construction of SE(3)-transformer [11].

Lemma C.7. The transformer layer (5) is SE(3)× SE(3)-equivariant.

Proof. We abbreviate r1 × r2 as r12, and g1 × g2 as g12. Let L be a transformer layer (5), we seek to
prove (g12)(L(f)) = L((g12)(f)) for the input tensor field f and g1, g2 ∈ SE(3). We compute the
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RHS of the equation as(
L(g12(f))

)o
(zu)

=W o
(
g12(F )

)o
(zu) +

∑
i

zv∈supp(g12(f))

α(g12(f), zu, zv)Wo,i(zv − zu)
(
g12(f)

)i
(zv)

=W oF o(g−112 zu)
(
ρo(r12)

)T
+

∑
i

zv∈supp(g12(f))

α(g12(f), zu, zv)Wo,i(zv − zu)ρi(r12)f i(g−112 zv)

=W oF o(g−112 zu)
(
ρo(r12)

)T
︸ ︷︷ ︸

A

+
∑
i

zv∈supp(f)

α(g12(f), zu, g12zv)︸ ︷︷ ︸
B

Wo,i(g12zv − zu)ρi(r12)f i(zv)︸ ︷︷ ︸
C

.

Note that here we have g12F o(z) = F o(g−112 z)(ρo(r12))T because we write F in the channel-first
form, i.e., the shape of F o is c× (2o1 + 1)(2o2 + 1). The LHS of the equation is computed as(

g12
(
L(f)

))o
(zu)

=W oF o(g−112 zu)
(
ρo(r12)

)T
︸ ︷︷ ︸

A′

+
∑
i

zv∈supp(f)

α(f, g−112 zu, zv)︸ ︷︷ ︸
B′

ρo(r12)Wo,i(zv − g−112 zu)f i(zv)︸ ︷︷ ︸
C′

.

We now verify that these 3 terms are equal respectively.

C = C ′ : By design, the kernelW satisfies the kernel constraint (22)

ρo(r12)Wo,i(z)ρ−1i (r12) =W(r12z). (56)

In addition, let z′u = g−112 zu. We have

g12zv − zu = g12zv − g12z′u = r12(zv − z′u) = r12(zv − g−112 zu). (57)

Thus, we can obtain the equality by combining the above two equations.

B = B′ : We compute Q and K for B and B′ respectively. We have

Q(g12(f), zu, g12zv) =
⊕
o

W o
Q(g12F )o(zu) =

⊕
o

W o
QF

o(r−112 (zu))
(
ρo(r12)

)T
,

Q(f, g−112 zu, zv) =
⊕
o

W o
QF

o(g−112 (zu)),

K(g12(f), zu, g12zv) =
⊕
o

∑
i

Wo,i
K (g12zv − zu)

(
g12(f)

)i
(g12zv)

=
⊕
o

∑
i

Wo,i
K (g12zv − zu)ρi(r12)f i(zv),

and

K(f, g−112 zu, zv) =
⊕
o

∑
i

Wo,i
K (zv − g−112 zu)f i(zv)

=
⊕
o

∑
i

(
ρo(r12)

)T
Wo,i
K (g12zv − zu)ρi(r12)f i(zv),

where the last equation holds due to the kernel constraint (22) and the orthogonality of ρo(r12).
Specifically, ρo(r12) = ρo1(r1)⊗ρo2(r2) is an orthogonal matrix because ρo1 and ρo2 are orthogonal
representations, i.e., ρo1(r1) and ρo2(r2) are orthogonal matrices.
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Thus, we have

〈Q(g12(f), zu, g12zv),K(g12(f), zu, g12zv)〉

=
∑
o

W o
QF

o(r−112 (zu))
(
ρo(r12)

)T(∑
i

Wo,i
K (g12zv − zu)ρi(r12)f i(zv)

)
=
∑
o

W o
QF

o(r−112 (zu))
(∑

i

(
ρo(r12)

)T
Wo,i
K (g12zv − zu)ρi(r12)f i(zv)

)
=〈Q(f, g−112 zu, zv),K(f, g−112 zu, zv)〉

Finally, A = A′ is trivial. In summary, we have shown (g12)(L(f)) = L((g12)(f)), which proves
the SE(3)× SE(3)-equivariance of the transformer layer (5).

On the other hand, an Elu layer (5) is also SE(3)× SE(3)-equivariant, because this layer is piece-
wise linear. We state this statement formally in the following lemma, and omit the proof. We note
that a similar argument was used in [9].

Lemma C.8. The Elu layer (9) is SE(3)× SE(3)-equivariant.

Now we can prove the SE(3)-bi-equivariance of BITR.

The Proof of Prop. 4.1. Let g = ΦP ◦ ΦS(X,Y ), and fout = ΦS(X,Y ). We prove this proposition
by showing

g−12 gg1 = ΦP ◦ ΦS(g1X, g2Y ). (58)

We compute the RHS of the equation as follows. First, since each point in X̃ and Ỹ is a convex
combination of X and Y respectively, we have

X̃(g1X, g2Y ) = g1X̃(X,Y ) Ỹ (g1X, g2Y ) = g2Ỹ (X,Y ). (59)

Then we have Z(g1X, g2Y ) = (g1 × g2)Z(X,Y ) because Z = X̃ ⊕ Ỹ . When Z(g1X, g2Y ) is
fed to the SE(3)× SE(3)-transformer, the output feature will be (g1 × g2)fout by design (This is
verified in Lemma. C.7 and Lemma. C.8). In particular, for degree-(1, 1) feature r̃, degree-(1, 0)
feature tX and degree-(0, 1) feature tY , we have

r̃(g1X, g2Y ) = (r1⊗r2)r̃(X,Y ) tX(g1X, g2Y ) = r1tX(X,Y ) tY (g1X, g2Y ) = r2tY (X,Y ).
(60)

Therefore, we have r̂(g1X, g2Y ) = r2r̃(X,Y )r−11 by applying unvec(·) to the first equation, i.e.,
r̂ = unvec(r̃). Finally, we compute projection ΦP similar to proof C.1:

r(g1X, g2Y ) = r2r(X,Y )rT1 , (61)

and

t(g1X, g2Y ) = m(g2Y ) + tY (g1X, g2Y )− r(g1X, g2Y )(m(g1X) + tX(g1X, g2Y ))

= g2m(Y ) + r2tY (X,Y )− r2r(X,Y )rT1 (g1m(X) + r1tX(X,Y ))

= r2t(X,Y )− r2r(X,Y )r−11 t(X,Y ) + t2.

In summary,

ΦP ◦ ΦS(g1X, g2Y ) = (r2r(X,Y )r−11 ,−r2r(X,Y )r−11 t1 + r2t(X,Y ) + t2) = g2gg
−1
1 , (62)

which proves the SE(3)-bi-equivariance of BITR.

We finally prove Prop. 5.1 and Prop. 5.3 similarly to Prop. 3.2.

The Proof of Prop. 5.1. We compute ΦP (s(f)) as follows. First, we have

(s(f))
1,1

(z) =
(
f1,1(s(z))

)T
, (s(f))

1,0
(z) =

(
f0,1(s(z))

)T
, (s(f))

0,1
(z) =

(
f1,0(s(z))

)T
(63)
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by definition. Then we compute the equivariant features as

r̂(s(f)) = (r̂(f))
T
, tX(s(f)) = tY (f), tY (s(f)) = tX(f), (64)

where we treat tX and tY as vectors. Finally, the output can be computed as

r(s(f)) = SVD(r̂(s(f))) = SVD((r̂(f))
T

) = (SVD(r̂(f)))
T

= (r(f))
T (65)

according to lemma C.6, and

t(s(f)) = m(Y (s(f))) + tY (s(f))− r(s(f))(m(X(s(f))) + tX(s(f)))

= m(X) + tX(f)− (r(f))
T

(m(Y ) + tY (f))

= −r(f)T t(f).

In other words, ΦP (s(f)) = (rT ,−rT t) = g−1, which proves this proposition.

The Proof of Prop. 5.3. We compute ΦP (c(f)) as follows. First, since f is a degree-1 R+-
equivariant tensor field, f satisfies c(f)(z) = cf(c−1z). Therefore, we have

r̂(c(f)) = (cr̂(f)) , tX(c(f)) = ctX(f), tY (c(f)) = tY (f) (66)

by definition. Then, we compute the output as

r(c(f)) = SVD(r̂(c(f))) = SVD((cr̂(f))) = (SVD(r̂(f))) = (r(f)) (67)

according to lemma C.6, and

t(c(f)) = m(Y (c(f))) + tY (c(f))− r(c(f))(m(X(c(f))) + tX(c(f)))

= cm(Y ) + ctY (f)− r(f)(cm(Y ) + ctY (f))

= ct(f).

In other words, ΦP (c(f)) = (r, ct), which proves this proposition.

C.3 More results of Sec. 5.1

C.3.1 The proof of Prop. 5.2

In this subsection, we use slightly different notations than other parts of the paper. We regard the
kernelWo,i as a 4-D tensor of shape (2o1 + 1)× (2o2 + 1)× (2i1 + 1)× (2i2 + 1), and we regard
the feature f i as a 2-D tensor of shape (2i1 + 1)× (2i2 + 1), i.e., a matrix, when it is multiplied by a
kernel. Therefore, the multiplicationWo,if i is treated as a tensor product where all two dimensions
of f i are treated as rows, i.e., the result ofWo,if i is of shape (2o1 + 1)× (2o2 + 1). Similarly, we
regard the collection of features F o as a 3-D tensor of shape c× (2o1 + 1)× (2o2 + 1). When it is
multiplied by a self-interaction weight W o ∈ R1×c, the result is W oF o ∈ R(2o1+1)×(2o2+1).

We first make the following observation on the symmetry of the kernel.

Lemma C.9. If the radial function ϕ satisfies ϕi,o
J1,J2

(‖z1‖, ‖z2‖) = ϕĩ,õ
J2,J1

(‖z2‖, ‖z1‖) for all z1,
z2, J1, J2, then kernelW (5) satisfies

Wo,i(z) =
(
W õ,̃i (s(z))

)T12T34

, (68)

where Tij represents the transpose of the i-th and j-th dimension of a tensor.

Proof. According to (5) and the discussion in Sec. B, the (m3,m4,m1,m2)-th element ofWo,i(z)
is

o1+i1∑
J1=|o1−i1|

o2+i2∑
J2=|o2−i2|

J1∑
m5=−J1

J2∑
m6=−J2

ϕi,o
J1,J2

(‖z1‖, ‖z2‖)〈i1,m1, o1,m3|J1,m5〉

〈i2,m2, o2,m4|J2,m6〉Y m5

J1
(z1/‖z1‖)Y m6

J2
(z2/‖z2‖), (69)
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and the (m4,m3,m2,m1)-th element ofW õ,ĩ (s(z)) is

o2+i2∑
J2=|o2−i2|

o1+i1∑
J1=|o1−i1|

J2∑
m6=−J2

J1∑
m5=−J1

ϕĩ,õ
J2,J1

(‖z2‖, ‖z1‖)〈i2,m2, o2,m4|J2,m6〉

〈i1,m1, o1,m3|J1,m5〉Y m6

J2
(z2/‖z2‖)Y m5

J1
(z1/‖z1‖). (70)

Since the angular components in (69) and (70) are the same, and the radial components are equal by
assumption, we immediately conclude that (69) and (70) are equal. In other words,(

Wo,i(z)
)
m3,m4,m1,m2

=W õ,̃i (s(z))m4,m3,m2,m1
, (71)

which proves this lemma.

Then we proceed to the proof of Prop. 5.2.

The Proof of Prop. 5.2. Let L be a transformer layer (5), we seek to prove s(L(f)) = L(s(f)) for
the input tensor field f .

To this end, we expand the RHS of the equation as(
L(s(f))

)o
(zu)

=W o
(
s(F )

)o
(zu) +

∑
i∈I(s(f))

zv∈supp(s(f))

α(s(f), zu, zv)Wo,i(zv − zu)
(
s(f)

)i
(zv)

=W o
(
F õ(s(zu))

)T23

+
∑

i∈I(s(f))
zv∈supp(s(f))

α(s(f), zu, zv)Wo,i(zv − zu)
(
f ĩ(s(zv))

)T

=W o
(
F õ(s(zu))

)T23

︸ ︷︷ ︸
A

+
∑

i∈I(f)
zv∈supp(f)

α(s(f), zu, s(zv))︸ ︷︷ ︸
B

Wo,̃i(s(zv)− zu)
(
f i(zv)

)T
︸ ︷︷ ︸

C

,

where I(f) is the set of all degrees of field f , and supp(f) is the support of field f . The last equation
holds because we replace zv by s(zv), and replace i by ĩ. We expand the LHS of the equation as(
s
(
L(f)

))o
(zu) =

((
L(f)

)õ
(s(zu))

)T
=
(
W õF õ(s(zu))

)T
︸ ︷︷ ︸

A′

+
∑

i∈I(f)
zv∈supp(f)

α(f, s(zu), zv)︸ ︷︷ ︸
B′

(
W õ,i(zv − s(zu))f i(zv)

)T
︸ ︷︷ ︸

C′

.

We now verify that these three terms are equal respectively.

A = A′ : By assumption, W o = W õ, thus we immediately have(
W õF õ(s(zu))

)T
=
(
W oF õ(s(zu))

)T
= W o

(
F õ(s(zu))

)T23

. (72)

B = B′ : Since α = 〈Q,K〉, we compute Q and K for B and B′ respectively. As for Q, we
have

Q(s(f), zu, s(zv)) =
⊕

o∈I(s(f))

W o
Q(s(F ))o(zu) =

⊕
o∈I(s(f))

W o
Q

(
F õ(s(zu))

)T
=

⊕
o∈I(s(f))

(
W õ
QF

õ(s(zu))
)T
,
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where the last equation holds because W o
Q = W õ

Q by assumption. In addition,

Q(f, s(zu), zv) =
⊕

o∈I(f)

W o
QF

o(s(zu)).

As for K, we have

K(s(f), zu, s(zv)) =
⊕

o∈I(s(f))

∑
i∈I(s(f))

Wo,i
K (s(zv)− zu)

(
s(f)

)i
(s(zv))

=
⊕

o∈I(s(f))

( ∑
i∈I(f)

W õ,i
K (zv − s(zu))f i(zv)

)T
,

where the last equation holds due to the constraint of radial function and Lemma. C.9, and we replace
i by ĩ. In addition,

K(f, s(zu), zv) =
⊕

o∈I(f)

∑
i∈I(f)

Wo,i
K (zv − s(zu))f i(zv).

We observe that Q(s(f), zu, s(zv)) is just the transpose and re-ordering of each component
of Q(f, s(zu), zv), and this is also true for K(s(f), zu, s(zv)) and K(f, s(zu), zv), which sug-
gests that their inner products are the same. Specifically, let Qo = W o

QF
o(s(zu)) and Ko =∑

i∈I(f)W
o,i
K (zv − s(zu))f i(zv). We have

α(s(f), zu, s(zv)) = 〈
⊕

o∈I(s(f))

(
Qõ
)T
,
⊕

o∈I(s(f))

(
Kõ
)T
〉 =

∑
o∈I(s(f))

〈Qõ,Kõ〉 =
∑

o∈I(f)

〈Qo,Ko〉

and

α(f, s(zu), zv) = 〈
⊕

o∈I(f)

Qo,
⊕

o∈I(f)

Ko〉 =
∑

o∈I(f)

〈Qo,Ko〉,

which suggests that α(f, s(zu), zv) = α(s(f), zu, s(zv)).

C = C ′ : By assumption, the radial function satisfies ϕi,o
J1,J2

(‖z1‖, ‖z2‖) = ϕĩ,õ
J2,J1

(‖z2‖, ‖z1‖)

for all i, o, J1, J2, z1 and z2, thusWo,i(z) =
(
W õ,ĩ (s(z))

)T12T34

according to Lemma. C.9. As a
result,(
W õ,i(zv−s(zu))f i(zv)

)T
=
((
Wo,ĩ(s(zv)−zu)

)T12T34
f i(zv)

)T
=Wo,̃i(s(zv)−zu)

(
f i(zv)

)T
.

(73)

In summary, we have shown the Z/2Z-equivariance of a transformer layer (5), which is the first part
of Prop. 5.2. We omit the proof of the second part of this proposition, i.e., the equivariance of an Elu
layer, as it is a simple extension of the proof of A = A′ .

Remark C.10. The weight sharing technique in Prop. 5.2 reduces the number of learnable parameters
of a SE(3)× SE(3)-transformer by about half, thus it makes the model more efficient. In practice,
the weight sharing technique can be achieved by sharing weights between different o, i and J directly,
except for the symmetric case, i.e., o = õ, i = ĩ and J1 = J2, where the requirement of the radial
function becomes

ϕo,i
J1,J1

(‖z1‖, ‖z2‖) = ϕo,i
J1,J1

(‖z2‖, ‖z1‖). (74)

We represent the radial function in this case as ϕ(x, y) = 1
2 (φ(x, y) + φ(y, x)), where φ is a neural

network, which guarantees the symmetry of ϕ.

C.3.2 The complete-matching property

Consider the following complete matching problem.
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The complete matching problem Given a pair of PCs X and Y , where Y is generated by a
unknown rigidly transformation of X , i.e., Y = gX and g ∈ SE(3) is unknown, how to infer g?

The complete matching problem is a prototype of the registration problem, i.e., in the simplest case
(no outlier, no noise, no partial visibility..), how to derive the relative transformation between two
fully overlapped PCs? Despite its simplicity, this problem is non-trivial, because we do not know the
correspondence between X and Y , i.e., Arun’s method does not apply.

A surprising fact is that g can be exactly recovered using a SE(3)-bi-equivariant and swap-equivariant
assembly method. We state this fact formally as follows.
Proposition C.11 (Complete-matching property). Let Φ be a swap-equivariant and SE(3)-bi-
equivariant assembly method. Then

Φ(X, g1X)Φ(X,X) = g1, (75)

for arbitrary PC X and g1 ∈ SE(3).

Proof. First, since Φ is swap-equivariant, then Φ(X,X)Φ(X,X) = I . Then, since Φ is SE(3)-bi-
equivariant, we have Φ(X, g1X)Φ(X,X) = g1Φ(X,X)Φ(X,X) = g1.

According to the main text, BITR is swap-equivariance (Prop. 5.2), thus, we can derive a concrete
algorithm, called untrained BITR (U-BITR), for the complete matching problem:

ΦU (X,Y ) = ΦB(X,Y )ΦB(X,X), (76)

where ΦB is BITR model. Prop. C.11 suggests that ΦU solves the complete matching problem
without training. We numerically evaluate this property in Appx. D.4, and leave the theoretical
analysis of U-BITR to future research.

C.4 The proof of Prop. 5.5

First, we have the following straightforward lemma for the kernel.
Lemma C.12. If the radial function ϕ : R × R → R is a degree-p function, then kernel W (5)
satisfies

W(cz) = cpW(z), ∀c ∈ R+. (77)

Then we directly verify Prop. 5.5.

The proof of Prop. 5.5. Let L be a transformer layer (5), f be a degree-0 R+-equivariant input field,
ϕK be a degree-0 function. We seek to prove: 1) If ϕV is a degree-0 function, then c(L(f)) =
L(c(f)) and L(f) is degree-0 R+-equivariant; 2) If ϕV is a degree-1 function and W = 0, then
c(L(f)) = L(c(f)) and L(f) is degree-1 R+-equivariant.

To begin with, we expand L(c(f)) as(
L
(
c(f)

))o
(zu) = W o(c(F ))o(zu) +

∑
i

zv∈supp(c(f))

α(c(f), zu, zv)Wo,i
V (zv − zu)

(
c(f)

)i
(zv)

= W oF o(c−1zu) +
∑
i

zv∈supp(c(f))

α(c(f), zu, zv)Wo,i
V (zv − zu)f i(c−1zv)

= W oF o(c−1zu)︸ ︷︷ ︸
A

+
∑
i

zv∈supp(f)

α(c(f), zu, c(zv))︸ ︷︷ ︸
B

Wo,i
V (c(zv)− zu)f i(zv)︸ ︷︷ ︸

C

,

and expand c(L(f)) as(
c
(
L(f)

))o
(zu) = cp

((
L(f)

))o
(c−1zu)

= cp
(
W oF o(c−1zu)︸ ︷︷ ︸

A′

+
∑
i

zv∈supp(f)

α(f, c−1zu, zv)︸ ︷︷ ︸
B′

Wo,i
V (zv − c−1zu)f i(zv)︸ ︷︷ ︸

C′

)
.
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We first point out that B = B′ , because

K(c(f), zu, c(zv)) =
⊕
o

∑
i

Wo,i
K (c(zv)− zu)

(
c(f)

)i
(zv) =

⊕
o

∑
i

Wo,i
K (zv − c−1(zu))f i(c−1zv)

= K(f, c−1zu, zv),

where the second equation holds because ϕK is a degree-0 function by assumption, and Lemma. C.12
claims that the corresponding kernelWK is scale-invariant. In addition,

Q(c(f), zu, c(zv)) =
⊕
o

W o
Q(c(F ))o(zu) =

⊕
o

W o
QF

o(c−1zu) = Q(f, c−1zu, zv).

In other words, both Q and K are scale-invariant. Thus, we conclude that the attention is also
scale-invariant:

α(c(f), zu, c(zv)) = 〈Q(c(f), zu, c(zv)),K(c(f), zu, c(zv))〉
= 〈K(f, c−1zu, zv),Q(f, c−1zu, zv)〉
= α(f, c−1zu, zv).

Now we discuss these two situations:

1) If ϕV is a degree-1 function and W = 0, then

cWo,i
V (zv − c−1zu) =Wo,i

V (c(zv)− zu)

according to Lemma. C.12, and A = A′ = 0. In other words, L(c(f))(z) = c1L(f)(c−1z), where
the RHS is the action of c on the degree-1 R+-equivariant field, thus we have L(c(f)) = c(L(f)),
and L(f) is degree-1 R+-equivariant.

2) If ϕV is a degree-0 function, then

Wo,i
V (zv − c−1zu) =Wo,i

V (c(zv)− zu)

according to Lemma. C.12. Thus, L(c(f))(z) = L(f)(c−1z), where the RHS is the action of
c on the degree-0 R+-equivariant field, thus we have L(c(f)) = c(L(f)), and L(f) is degree-0
R+-equivariant.

In summary, we have shown that the equivariance of the transformer layer. We omit the proof of the
equivariance of the Elu layer as it can be proved similarly.

We can now construct a special structure of BITR for producing degree-1 R+-equivariant output:

deg-0 → deg-0 → · · · → deg-0 → deg-1 (78)

In other words, all tensor fields are degree-0 R+-equivariant, except for the final output which is
degree-1 R+-equivariant. More specifically, we consider two types of layers, i.e., deg-0→ deg-0 and
deg-0→ deg-1.

Prop. 5.5 suggests that a transformer layer with degree-p radial function can generate a degree-p
R+-equivariant field when the input field is degree-0 R+-equivariant (Elu layers do not influence the
R+-equivariance). Therefore, we only need to consider degree-0 and degree-1 radial functions for
our purpose. In practice, we represent degree-1 functions using neural networks consisting of linear
and relu [1] layers, and we represent degree-0 functions using linear, relu and layer normalization [3]
layers. Specifically, We represent degree-0 functions as neural network φ0:

φ0 : Linear→ Relu→ LayerNorm→ Linear→ Relu→ LayerNorm, (79)

and represent degree 1-functions neural network φ1:

φ1 : Linear→ Relu→ Linear→ Relu. (80)

Remark C.13. There are two major difficulties in developing a general scale-equivariance theory for
BITR. First, the attention term is not scale-invariant due to the existence of the soft-max operation,
i.e., SoftMax(A) 6= SoftMax(cA) for vector A and c ∈ R+. That is the reason why we only accept
degree-0 R+-equivariant input in our current theory. Second, when p /∈ {0, 1}, we are not aware of
any general way to represent degree-p functions using neural networks.
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D More experiment results

D.1 More training details

We run all experiments using a Nvidia T4 GPU card with 16G memory. The batch size is set to the
largest possible value that can be fitted into the GPU memory. We set bs = 16 for the airplane dataset,
and bs = 4 for the wine bottle dataset. We train BITR until the validation loss does not decrease.
For the airplane dataset, we train BITR 10000 epochs, and the training time is about 8 days when
s = 0.7. For the wine bottle dataset, we train BITR 1000 epochs, and the training time is about 12
hours. The FLOPS is 14.5G in a forward pass (including the computation of harmonic functions),
and the model contains 0.17M parameters.

For Sec. 6.3.1 and 6.3.2, we use the normal vector computed by Open3D [46] as the input feature of
BITR. The airplane dataset used in Sec. 6.3.1 contains 715 random training samples and 103 random
test samples. The wine bottle dataset used in Sec. 6.4 contains 331 training and 41 test samples. We
adopt the few-shot learning setting in the manipulation tasks in Sec. 6.6: we use 30 training and 5
test samples for mug-hanging; we use 40 training samples and 10 test samples for bowl-placing.

D.2 More results of Sec. 6.2

We quantitatively verify the equivariance of BITR according to Def. 3.1. Specifically, we compute

∆bi = ‖ΦB(g1X, g2Y )− g2ΦB(X,Y )g−11 ‖F , (81)

∆swap = ‖ΦB(Y,X)− (ΦB(X,Y ))−1‖F , (82)
∆scale = ‖rB(cX, cY )− rB(X,Y )‖F + ‖tB(cX, cY )− ctB(X,Y )‖2, (83)

to verify the SE(3)-bi-equivariance, swap-equivariance and scale-equivariance of BITR, where ΦB
represent the BITR model, (rB(·), tB(·)) = ΦB(·) are the output of BITR, and all g = (r, t) ∈ SE(3)
are written as

g =

[
r t
0 1

]
∈ R4,4. (84)

Note that if BITR is perfectly equivariant, these three errors should always be 0.

The quantitative results of the experiment are summarized in Tab. 3, where we can see that all errors
are below the numerical precision of float numbers, i.e., less than 1e−5. The results suggest that
BITR is indeed SE(3)-bi-equivariant, swap-equivariant and scale-equivariant.

Table 3: Verification of the equivariance of BITR.

∆bi ∆swap ∆scale

5e−6 2e−7 5e−7

D.3 Ablation study

To show the practical effectiveness of our theory on scale and swap equivariances, we consider an
ablation study. We use the same data as in Sec. 6.2, and remove the weight sharing technique in
Sec. 5.1 to break swap-equivariance, and force ϕV in all layers to be a degree-1 function to break the
scale-equivariance.

We evaluate the trained model on 100 test samples, and report the mean and standard deviation of ∆r
in Tab. 4, where we can see that removing an equivariance of the model leads to the failure in the
corresponding test case, which is consistent with our theory.

Table 4: Ablation study of scale and swap equivariances. We report mean and std of ∆r

original rigidly perturbed swapped scaled
BITR (full model) (17.1, 6.0) (17.1, 6.0) (17.1, 6.0) (17.1, 6.0)
BITR (w/o swap) (15.3, 7.0) (15.3, 7.0) (70.3, 20.0) (15.3, 7.0)
BITR (w/o scale) (15.0, 8.0) (15.0, 8.0) (15.0, 8.0) (125.4, 15.0)
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D.4 Evaluation of the complete-matching property

This experiment numerically evaluates the robustness of the complete-matching property (Prop. C.11)
against resampling, noise and partial visibility. We first sample X and Y of size 1024 from the
bunny shape, and a random g ∈ SE(3), then we use a random initialized U-BITR to match X to
gY . We consider different settings: 1) X and Y are exactly the same; 2) X and Y are different
random samples; 3) Gaussian noise of std 0.01 is added to X and Y ; 4) Ratio s of X and Y is kept
by cropping using a random plane.

We repeat the experiment 3 times, and report the results of U-BITR in Tab. 5. We observe that the
transformation is perfectly recovered when X = Y , which is consistent with the complete-matching
property. Meanwhile, cropping the PCs leads to large decrease of the accuracy, while noise and
resampling have less effect. This is consistent with our expectation because cropping the PCs has
larger effect on the shape of PCs. We provide qualitative results in Fig. 7.

Table 5: Results of complete matching using U-BITR.

∆r ∆t
X = Y 0.0 (0.0) 0.0 (0.0)

Resampled 20.7 (16.4) 0.18 (0.16)
Noisy 5.0 (2.8) 0.02 (0.008)

Cropping s = 0.9 99.1 (40.49) 0.58 (0.4)

(a) Complete-matching
(∆r = 0)

(b) Noisy data (∆r = 2.8) (c) Resampled data
(∆r = 20.1)

Figure 7: Qualitative results of U-BITR on complete matching. The blue and red PCs are the
reference and the transformed source PCs respectively. Note that U-BITR is only random initialized
(not trained).

D.5 More results of Sec. 6.3.1

We report the training process of BITR in Fig. 8, where we can see that the loss value, ∆r and ∆t
gradually decrease during training as expected.

Some qualitative results of BITR are presented in Fig. 9. We represent the input PCs using light
colors, and represent the 32 learned key points using dark colors and large points. As we explained
in Sec. 4.3, the key points are in the convex hull of the input PCs, and they are NOT a subset of the
input PC. In addition, as can be seen, the key points of the inputs do not overlap.

D.6 More results of Sec. 6.3.2

We generate the raw training samples by sampling motorbike and car shapes from the training set of
ShapeNet. Then we centralize them, and move the car by [0, 0, 1]. Note the shapes in ShapeNet are
already pre-aligned. The test samples are generated from the test set of ShapeNet in the same way.

We repeat the test process 3 times, and report the results in Fig. 10. We observe that BITR achieves
lower rotation error than LEV, and their translation errors are comparable. Meanwhile, NSM fails in
this experiment. Note that we do not report the results of registration methods, because their loss
functions are undefined due to the lack of correspondence.
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Figure 8: The training process of BITR on the airplane dataset with s = 0.4. All metrics are measured
on the validation set.

(a) s = 0.7 (b) s = 0.5 (c) s = 0.4 (d) s = 0.3

Figure 9: The PC registration results of BITR on the airplane dataset. The input PCs are represented
using light colors, and the learned key points are represented using dark and large points.

Figure 10: Assembly results of car and motorbike. ∗ denotes methods which require the true canonical
poses of the input PCs.

D.7 More results of Sec. 6.4

For BITR, we first obtain raw PCs by applying grid sampling with grid size 0.005 to the shape, and
then randomly sample 5% points from the raw PCs as the training and test samples. The sizes of the
resulting PCs are around 1000, which is close to the data used in the baseline methods. The data is
pre-processed following [38] for the baseline methods.

The random sampling process in our method causes the randomness of test error. We quantify the
randomness by evaluating on the test set 3 times, and report the mean and std of the errors in Tab. 1.

Fig. 11 presents 5 examples of reassembling wine bottle fragments, where we observe that the
proposed BITR can reassemble most of the shapes correctly, while the baseline methods generally
have difficulty predicting the correct rotations.

D.8 More results of Sec. 6.5

We preprocess the 7Scenes dataset by applying grid sampling with grid size 0.1. The training and
test sets contain 278 and 59 samples.

We consider the 5 outdoor scenes in the ASL dataset: mountain, winter, summer, wood autumn, wood
summer. We preprocess all data by applying grid sampling with grid size 0.9. We arbitrarily rotate
and translate all data, and train BITR to align the i-th frame to the (i+ 2)-th frame. We use the first
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(a) DGL (b) NSM (c) LEV (d) BITR (Ours)

Figure 11: Results of reassembling wine bottle fragments. We compare the proposed BITR with
DGL [44], NSM [7] and LEV [38]. Zoom in to see the details.

20 frames as the training set, and the other frames as the test set. This leads to a training set of size
105, and a test set of size 48

We report the results in Tab. 6. Our observation is consistent of that in the 7Scenes dataset: the result
BITR is close to the optimum, thus a refinement can lead to improved results. Note that BITR+ICP
outperforms all baselines in this task. In addition, GEO causes the out-of-memory error on our 16G
GPU. An assembly result (wood summer) is presented in Fig. 12.
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Table 6: Results on the outdoor scenes of ASL. We report mean and std of ∆r and ∆t.

∆r ∆t
ICP 73.2 (8.0) 9.4 (1.0)

OMN 110.0 (5.0) 2.0 (1.0)
GEO − −
ROI 16.7 (0.0) 1.5 (0.0)

BITR (Ours) 10.6 (0.0) 1.4 (0.0)
BITR+ICP (Ours) 0.7 (0.0) 0.8 (0.0)

(a) Input (b) BITR (c) BITR+ICP

Figure 12: An assembly result of BITR on 7Scenes (1-st row) and ASL (2-nd row). BITR can
produce results that are close to the optimum, and a ICP refinement leads to the improved results.

(a) Mug-hanging

Figure 13: The result of BITR on mug-hanging.

D.9 More results of Sec. 6.6

All data in this experiment is generated using PyBullet [8], where the objects in training and test sets
are different in shape and position.

Note that we do not report the quantitative results for this experiment because the metric (∆r,∆t) is
ambiguous due to the non-uniqueness of the correct solution. For example, for a correct bowl-placing
result, the bowl is allowed to rotate horizontally in the plate, so the metric ∆r can be very large
even for this correct assembly. A suitable metric is the success rate of the manipulation in physical
hardware experiments as in [27], but measuring this metric is beyond the scope of this work. In
addition, the assembly methods such as NSM [7] and LEV [38] are not applicable because the
canonical pose is not known, and we do not report the result of any registration method because the
correspondence does not exist. We present a result of BITR on mug-hanging in Fig. 13.

E Limitations and future research directions

In our current implement, we have accelerated most of the layers of BITR using the “scatter” func-
tion [24]. However, BITR is still relatively slow due to the independent computation of convolutional
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kernels, i.e., the harmonic function and the independent multiplication of radial and angular compo-
nent in each degree. This is reflected by a low GPU utility ratio (about 20%). We expect to see a large
speed gain (about ×5) if the above-mentioned computation is implemented using CUDA kernel, i.e.,
GPU utility ratio can be close to 100%. On the other hand, a rotation-based technique was recently
introduced to reduce the computation cost of SE(3)-equivariant networks [21]. A promising future
direction is to extend this technique to BITR.

To explain the limitation of BITR in handling symmetric PCs, we consider the following example.
For a pair of PCs X and Y , if there exists a non-identity rigid transformation g2 such that g2Y = Y ,
and g ∈ SE(3) is a proper transformation that assembles gX to Y , then g2g is an equally good
transformation that gives the same assembly result. In other words, the optimal transformation g
is non-unique, which cannot be modelled by BITR. Actually, we notice that the result of BITR is
undefined in this case. Specifically, let g̃ = ΦB(X,Y ), we have

g̃ = ΦB(X,Y ) = ΦB(X, g2Y ) = g2ΦB(X,Y ) = g2g̃ (85)

due to SE(3)-bi-equivariance. Then we have g2 = 1, which contradicts the assumption.

To address this issue, we plan to extend BITR to a generative model in future research, i.e., it should
assign a likelihood value to each prediction. For the example considered above, it should assign equal
probability to g and g2g.

Apart from the above-mentioned two limitations, there are several directions for future investigation.
First, it is important to generalize BITR to multi-PC assembly tasks where more than 2 PCs are
considered [14, 38]. Second, we expect the U-BITR model to be useful in self-supervised 3D shape
retrieval or detection models, such as those in image object detection/retrieval [19].
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
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didn’t make it into the paper).
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Answer: [Yes]

Justification: The research conducted in the paper conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [NA]

Justification: This work focus on the equivalence of the point cloud assembly task. We do
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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from (intentional or unintentional) misuse of the technology.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Guidelines:

• The answer NA means that the paper poses no such risks.
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necessary safeguards to allow for controlled use of the model, for example by requiring
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12. Licenses for existing assets
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and the data generated by PyBullet [8].

Guidelines:
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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