Published in Transactions on Machine Learning Research (October/2025)

UMP-Net: Uncertainty-Aware Mixture of Prompts Network
for Efficient Instruction Tuning

Fatemeh Daneshfar f.daneshfar@uok.ac.ir
Department of Computer Engineering, University of Kurdistan, Sanandaj, IRAN

Abdulhady Abas Abdullah abdulhady.abasQukh.edu.krd
Artificial Intelligence and Innovation Centre, University of Kurdistan Hewler, Erbil, Iraq

Moloud Abdar * m.abdar1987@gmail.com
CHIRP, Child Health Research Centre, The University of Queensland, Brisbane, Australia

Pietro Lio pl219@cam.ac.uk
Department of Computer Science and Technology, University of Cambridge, Cambridge, UK

Reviewed on OpenReview: https: //openreview. net/ forum? id=EehtvgNXAl

Abstract

Instruction tuning has greatly improved how large language models (LLMs) respond to
human-like instructions. However, fully fine-tuning these models is still computationally
demanding, and many existing parameter-efficient methods fall short, particularly when
it comes to uncertainty estimation and working effectively across different modalities. To
address this, we introduce UMP-Net (Uncertainty-Aware Mixture of Prompts Network),
a new approach designed to enhance the ability of LLaMA to follow instructions. UMP-
Net combines a novel mixture of prompts (MoPs) technique with Latent Noise Prompting,
KNN-based Heterogeneous Clustering, and Conformal Predictions to select the most reliable
prompts dynamically while accounting for uncertainty. In addition, it features a CLIP-
based multi-modal architecture to streamline vision-language integration. We evaluated
UMP-Net on a range of benchmarks including ScienceQA, COCO Caption, and various
zero-shot multi-modal tasks. The results show a strong performance: an average accuracy
of 88.41% on ScienceQA and a CIDEr score of 158.3 on COCO Caption, surpassing models
such as LLaVA, LLaMA-Adapter, and LLaMA-Excitor. These findings suggest that UMP-
Net offers both improved multi-modal capability and computational efficiency. Further
ablations demonstrate UMP-Net’s conformal prediction module provides robust uncertainty
estimates under noise and domain shifts, outperforming Bayesian alternatives in coverage
guarantees with minimal overhead. The code of our proposed model is available here:
https://github.com/abdulhadyabas2/UMP-NetUncertainty.

1 Introduction

Instruction tuning is rapidly an important way of enhancing the ability of large language models (LLMs)
to respond to and obey human instructions in a broad task library Ouyang et al. (2022); Wei et al. (2022).
Early successes with models like FLAN Wei et al. (2022) and InstructGPT Ouyang et al. (2022) highlighted
how fine-tuning pre-trained LLMs using instruction datasets could significantly boost their zero-shot and
few-shot performance. With these gains, the vast majority of these methods require full model fine-tuning,
a process that not only is expensive in terms of resources but also is unfeasible when dealing with very large
models like LLaMA Touvron et al. (2023), which have billions of parameters. Besides, there is an added
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complexity of multi-modal large language models (MMLMs). Visual input with textual input can require
further extensive pre-training or fine-tuning to train, further increasing the already high computational costs
(Liu et al., 2023b; Li et al., 2023a).

Researchers have come up with parameter-efficient fine-tuning (PEFT) methods, including LoRA Hu et al.
(2021) and prompt tuning Lester et al. (2021), that fine-tune only a small fraction of model parameters,
without changing the underlying language model. Nevertheless, these methods are frequently unable to
accomplish zero-shot generalization on a variety of tasks, especially in multi-modal contexts, where visual
and text data representations are vital to merge. Our work is motivated by the fact that the current PEFT
techniques have two significant weaknesses: they can process multi-modal inputs only to a limited degree
and do not provide any powerful tools to quantify and control the uncertainty of prediction. The models
in practice, e.g. medical diagnostics or autonomous systems, need to take ambiguous or noisy inputs across
modalities and give reliable outputs with quantifiable confidence. The current solutions such as Flamingo
Alayrac et al. (2022) and LLaVA Liu et al. (2023b) are based on the need to use large-scale datasets to
perform vision-language alignment, which are computationally intensive and cannot work in the resource-
limited setting. The second major limitation is that there are no tools to detect and deal with uncertainty
in model prediction. This is of great essence especially when handling ambiguous or noisy input because a
clear direction is highly required. Such difficulties become even more evident with multi-modal applications
in which the lack of adaptability at any point in time to a particular task and modality is combined with
the lack of uncertainty-aware components to complicate performance and reliability.

In this paper, we introduce the UMP-Net (Uncertainty-Aware Mixture of Prompts Network) that can be
used to overcome the constraints of current instruction-tuned and multi-modal systems. UMP-Net is an
integration of uncertainty-aware prompt tuning with an effective approach to multi-modal adaptation. Its
key idea is a blend of a mix of prompts (MoPs) mechanism, a union of Latent Noise Prompting, KNN-
based Heterogeneous Clustering (HeteroGraphPrompt), and Cluster-Wise Uncertainty Estimation (CUE)
to dynamically support prompts to the LLaMA model. The system uses Conformal Predictions to enhance
reliability to enable it to quantify uncertainty both at prompt and cluster levels and use the measures
to inform the selection process. At the multi-modal interface, UMP-Net applies CLIP-based embeddings
Radford et al. (2021) to incorporate visual data, which allows to perform effective cross-modal reasoning
without expensive pre-training. Not only will this enhance the ability of LLaMA to adhere to instructions
in a language-only and multi-modal context, but also, it maintains computational requirements low, which
is why it can be readily used in low-resource environments. To measure the effectiveness of our proposed
UMP-Net, we have made a comparative analysis with other existing models, LLaMA-Adapter Zhang et al.
(2024) and LLaMA-Excitor Zou et al. (2024), in various tasks with a combination of visual and textual
inputs. This comparison can be seen in Figure 1 and shows that UMP-Net is better in tasks that include
the recognition of solution concentrations, botanical features, the description of medical specialties and the
creation of functional code.

The contributions made by this paper are three. (1) We present UMP-Net, a parameter-efficient model that
integrates multi-modal-adaptation with uncertainty-oblivious prompt tuning. It achieves state-of-the-art
text-only and vision-language benchmark results. (2) Our suggestion is a clustering and uncertainty new
estimation pipeline based on the use of KNN-based prompt categorization and Conformal Predictions. It
helps to increase timely reliability and reduction of redundancy. (3) We test the performance of UMP-Net by
extensive benchmark testing Systems like ScienceQA Lu et al. (2022a), COCO Caption Chen et al. (2015),
and a spectrum of zero-shot multi-modal tasks. UMP-Net is steadily doing so across these settings performs
better than the top models such as LLaVA Liu et al. (2023b), LLaMA-Adapter Zhang et al. (2024), and
LLaMA-Excitor (Zou et al., 2024).

2 Proposed Method

This section introduces a new framework, UMP-Net, which has been created to augment the LLaMA model
by improving its performance using a learnable adaptation prompt, which combines mixture of prompts
strategy. We combine Bayesian reasoning, Conformal Prediction and heterogeneous clustering using KNN to
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Figure 1: Comparison of UMP-Net, LLaMA-Adapter Zhang et al. (2024) and LLaMA-Excitor Zou et al.
(2024) on four mixed visual-text tasks: determining the concentration of solutions, identifying pollen-
producing cones, enumerating medical specialties, and writing JavaScript code. Right bar charts indicate
the better mean scores in human evaluation through standard deviation error bars at UMP-Net.

develop a more robust and uncertainty-sensitive prompting procedure. This combination will enable UMP-
Net to respond dynamically to customizing prompts and have a high level of reliability of its predictions.

2.1 Overview of UMP-Net

UMP-Net is a modular architecture, which is structured to dynamically create and assign weights to prompts
in relation to their corresponding scores of uncertainty. There are three fundamental elements of the model
as shown in Figure 2. Latent Noise Promoting with MoPs strategy (1), KNN based Heterogeneous Clustering
based on prompt selection and aggregation (2), and conformal predictions to estimate uncertainty among
prompt candidates (3). Attention Gates and Softmax layers connect these modules and help the system
to calculate one effective prompt, which is reliable and easily adapted to the requirements of the LLaMA
model.

2.2 Latent Noise Prompting with MoPs

The Latent Noise Prompting module is an essential feature of UMP-Net that is supposed to cause controlled
variability to the prompt generation process to adapt LLaMA. The purpose of this module is to allow dynamic
prompt generation that can respond to different tasks and inputs and overcome the drawbacks of traditional
prompt tuning methods that are problematic with task-specific generalization. This module adds to the
capability of the model to explore a larger repertoire of prompt representations to increase robustness and
flexibility both in a language-only and multi-modal context. The module starts with sampling latent noise
Z as a standard Gaussian noise N (0, I), with I denoting the identity matrix, to make the noise be isotropic
with zero mean and unity variance. The number of dimensions of Z is defined as d, i.e. the dimension of
the latent space which is often equal to the input embedding size of the LLaMA model.

The latent noises are sampled as the Z € R% and fed into a Multi-layer Perceptron (MLP) to produce
an MoP, denoted as Pi.,, where n is the number of prompts in the mixture. The different semantic and
syntactic properties of the possible inputs are represented by each prompt P; € R% (in which the embedding
dimension of the prompt is denoted by dp,). The MLP, parameterized by weights W® and biases b across
L layers, transforms the latent noise as follows:

oo — U(w(l)H(lfl) + b(l))7

1=1,2,...,L, (1)
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where H(O) = Z, H©) = Py.,,, and o is a non-linear activation function (ReLU). The output of the resulting
Py.,, becomes the input of the next modules, including Conformal Prediction and Heterogeneous Clustering,
to further select and weight prompts.

2.3 Heterogeneous Clustering by KNN

In order to narrow the focus of prompt selection and improve the adaptability of the UMP-Net to LLaMA,
we present a heterogeneous clustering technique which uses KNN. The reason behind this module is that it
is essential to deal with a variety of input modalities (textual, visual and cross-modal) and grouping prompts
in sets according to their feature representations. This clustering also makes sure that prompts are specific
to particular types of tasks, which makes the model more effective and strong in terms of managing multi-
modal inputs. The MoPs Py, are arranged into different groups (textual, visual, and cross-modal) into this
module depending on the presence of their features representations, which makes it possible to treat various
modalities of inputs effectively and provides the ability to be more robust when handling various tasks.

Our KNN algorithm will be used to find prompts of structural similarity to cluster them into K clusters
C1.x, each of which will have my + 1 prompts. In this notation my is the count of prompts in cluster & and
the +1 is due to a representative prompt or centroid prompt. The KNN clustering is implemented in the
following way:

Distance(Pi,Pj) = HPi*PjHQ, (2)

where || - ||2 is the Euclidean distance. Prompts are classified into groups Cj based on a set of k nearest
neighbors of Distance(P;, P;) for each prompt P;. This strategy has various advantages, especially where there
is a huge amount of prompts to be handled so as to eliminate redundancy, boost performance and increase
the uncertainty quantification in downstream modules such as Conformal Predictions. KNN-based clustering
groups prompts into functional-specific coherent clusters, with each cluster modality specific: Visual Prompts
(V-Prompts Cluster, C,Y ): Contains prompts that are specialized in processing visual information, i.e. object
recognition, spatial reasoning, or image understanding. These prompts are grouped together by similarities
of visual features, e.g., vision transformer embeddings. Textual Prompts (T-Prompts Cluster, C}): Groups
prompts are aimed at textual reasoning, e.g. sentence embeddings, text completion, or semantic parsing.
Clustering is based on a language features similarities, which is obtained through an encoder of a language
model. Unified Cross-Modal Prompts (VL-Prompts, C}'%): A combination of prompts with tasks requiring
modalities in both visual and linguistic modalities, e.g. visual question answering or image captioning. These
prompts are grouped according to joint embeddings which are the combination of visual and textual entities.

Furthermore, the absence of prompts clustering may result in redundancy or conflicting prompts and there-
fore, to operate UMP-Net effectively, it is challenging to calibrate and fuse a large set of prompts. The
KNN-based clustering algorithm can be used to solve this problem by clustering structurally similar prompts
into operational units and eliminating redundancy and making prompt management simpler. The prompts
are sorted into separate clusters, e.g., C,Y , CkT, and C,i/ L and the overlap between them is reduced to a
minimum to make each cluster fulfill its own. The modality-specific clustering used has K = 3, which allows
splitting prompts into only three clusters.

2.4 Conformal Predictions for Uncertainty Quantification

To measure uncertainty in the UMP-Net, we use Conformal Predictions, a distribution free statistical model
which gives develops good uncertainty measures of model outputs. The reason of having the knowledge
of uncertainty by using Conformal Predictions is that it guarantees accurate and timely selection under
ambiguous or noisy input, which is essential in robust performance in multi-moded tasks and high-stakes
problems such as medical diagnostics. This module reduces the probability of using inappropriate prompts
that will result in confident and yet erroneous results and make LLaMA more reliable and flexible when
dealing with a wide range of tasks by measuring how uncertain the predictions of each prompt are. It
evaluates the reliability of every prompt in the set Pj., by calculating nonconformity scores, the measure of
the adherence of a given prompt to the anticipated output given a particular input. The scores are then used
to obtain the confidence level and, therefore, the most trusted prompts are selected to adapt LLaMA. Given
a prompt P;, we calculate a nonconformity score S(P;, z,y) with respect to the input x and the associated
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label or output y, with = being the input to the task (e.g. text, image or other multimodal data), and y
the predicted or desired output. The nonconformity scores are computed differently for each prompt type
(visual, textual, or cross-modal) within their respective clusters, as detailed below.

Visual Prompts (V-Prompts). The nonconformity score of visual prompt P; represents the similarity
of the input image with the visual features that the visual cluster P; anticipates. We define the V-Prompt
nonconformity score as:

S(Pi,z,y) =1 f(x) = 9:(y)l3, (3)
where f(x) € R% is the visual feature representation of the input image x, as computed by a pre-trained
vision model (such as a convolutional neural network, or vision transformer). g;(y) € R% denotes the
embedding of the i-th visual prompt P; within the cluster, that is an expression of the output y (e.g. a
predicted class or description) into the visual feature space.

The intuition of this formulation is that the combination of the Euclidean distances of this prompt will
capture the nonconformity measure of the collective similarity of the input image to the visual features of
the prompt that were supposed to be seen. A smaller S(P;, z,y) will be an increased conformity (i.e. the
input fits well into the prompt), which means an increased uncertainty.

Textual Prompts (T-Prompts). The nonconformity score in the case of the cluster of textual prompts,
which uses the linguistic input to predict, is the negative log-likelihood of the label y given the input z. The
prompt-level nonconformity score is:

S(P;,z,y) = —log P;(yl|z), (4)

where P;(y|x) is the likelihood of the label y returning the input x, which is forecasted by the i-th textual
prompt P; in the cluster.

This cumulative score is a measure of overall confidence of the textual prompts in the cluster. As conformity
(i.e. less uncertainty) is desired, a higher S(P;, z,y) means that the probability that the predicted label y
matches the input z is reduced. The probabilistic nature of language models is used in this formulation to
make sure that uncertainty is measured in predictive confidence.

Unified Cross-Modal Prompts (VL-Prompts). In the case of cross-modal prompts where modalities
are dependent on each other (text and visual), we determine a weighted hybrid nonconformity rating by
weighting the two domains. The cluster-level nonconformity score is given by:

S(Py,a,y) = [ f(@) = g3 — (1 = N)log Pi(yla)] , (5)

where A\ € [0,1] is a hyperparameter that balances the contributions of the visual (||f(z) — gi(y)||3) and
textual (—log P;(y|z)) components. Moreover, f(x), g;(y), and P;(y|z) are defined as in the visual and
textual cases, respectively.

This expression leads the score of nonconformity to portray the view of the cluster as a collective judgment
as far as modalities are concerned. The parameter A can be adjusted according to the task need whereby
there is a flexibility of focusing on either the visual or the text information. The smaller S(P;, z,y), the
greater the conformity and the less uncertainty, which allows UMP-Net to adapt LLaMA to multimodal
inputs successfully. The score of all prompts nonconformity is used to select the most confident prompt in
each cluster, Pyest, to use in LLaMA adaptation as explained in the Attention Gate and Weighted Prompt
Creation module.

2.5 Attention Gate and Weighted Prompt Creation

The most promising prompts in each cluster are forwarded to an Attention Gate which weighs each prompt
dynamically depending on its relevance. Attention Gate uses Softmax to normalize attention scores, which
results in weighted prompt Pyeighted- The weighting process is guided by:

K

chightcd = § Oékpbcst,kv (6)
k=1
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where oy, is the weight of attention of prompt Phest,r, learn with the training time. The weighted prompt of
outputs is then chosen to be adapted by LLaMA.

The last weighted prompt is incorporated into the LLaMA model, which allows it to be open to inputs.
UMP-Net enhances LLaMA on generating consistent and contextually suitable replies to specific matters,
especially when there is minimal or noisy data (see Figure 2). Algorithms The UMP-Net pipeline may be
summarized as follows (Algorithms 1).

Latent Noise Prompting Conformal Heterogeneous
with Mixture of Prompts Prediction Clustering by KNN

—
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Figure 2: Figure illustrates UMP-Net architecture when adapting to LLaMA. The first step is Latent Noise
Prompting, in which noise in a normal distribution N(0,7) is fed to an MLP to produce prompt initials.
These prompts are Conformally Predicted to determine their uncertainty, and then Heterogeneous Clustering
is used with KNN to determine them as textual, visual, and multi-modal clusters. Each cluster is then picked
by an Attention Gate through a Softmax Layer and it involves picking the best confident prompt to generate
a weighted prompt. LLaMA is finally modified to incorporate the final weighted prompt in order to achieve
better instruction-following and frozen layers make it efficient.

2.6 Multi-modal Architecture

Multi-modal architecture of UMP-Net increases the capacity of the system to handle different modalities of
input by embedding images at different points in the pipeline as demonstrated in Figure 3. This module
rationale is that it will facilitate a smooth integration of visual and textual information to overcome the issue
of matching multi-modal inputs when there are constraints on resources in which pre-training on a large scale
is impractical. This architecture uses CLIP model Radford et al. (2021) to project multimodal features and
integrates image embeddings into the prompt embeddings following a clustering and distributed across all
the attention layers, making sure that it is strongly integrated multimodally. The architecture incorporates
the following important components and processes:

CLIP-based Image Embedding. The input image zimg (e.g., the cat image in Figure 3) is processed
through CLIP to extract a visual embedding:

eimg - CLIPVisual(ximg) S Rdcv (7)
where d. is the CLIP embedding dimension, aligning with the prompt embedding dimension d,,.

Embedding Addition to Each Prompt. After Heterogeneous Clustering by KNN, the image embedding
eimg is added to each prompt P; € ()}, within clusters C’X , C’,Z, and C’X L For each prompt P; € R% the
augmented embedding is computed as:

Piaug =P+ Wprojeimga (8)



Published in Transactions on Machine Learning Research (October/2025)

Algorithm 1 UMP-Net Algorithm for LLaMA Adaptation

Require: Input = (task input), d, (latent dimension), n (number of prompts), K (number of clusters), k
(KNN neighbors), L (MLP layers), A (cross-modal weight), pre-trained LLaMA model

Ensure: Weighted prompt Pyeighted, predicted output ypred

1: 1. Latent Noise Prompting: Sample Z ~ N(0, ) with dimension d,

2: Process Z through MLP with L layers (H") = o(W®O H=Y 4 p1)) to generate Py.,, € R%

3: 2. Heterogeneous Clustering by KININ:

4: Partition into K clusters Cy.xc (CY, CT, CYF)

5: 3. Conformal Predictions:

6

7

8

9

: for each P; € P;., do
if P, € C,Y then

S(P2,y) = 1£(@) — gi(w) I3 > Visual
: else if P, CkT then
10: S(P;,z,y) = —log Pi(y|z) > Textual
11: else if P, € C’,ZL then
12: S(Pi,z,y) = M| f(z) — g:(v)]|3 — (1 — ) log P;(y|z) > Cross-modal
13: end if
14: end for

15: Select best prompt Pyegt i per cluster with lowest S(P;, z,y)
16: 4. Attention Gate:

17: Compute Pyeighted = Zle o Prest, 1 through learning

18: 5. LLaMA Integration:

19: Feed Pyeighted into LLaMA to get yprea = LLaMA (2, Pyeighted)
20: return Pweighteda Ypred

where W5 € R *de ig a learnable projection matrix ensuring dimensional compatibility (dp = d. after
projection).

Confidence Score Computation for Each Prompt. Using the augmented prompts P"®, we recom-
pute the nonconformity scores as described in Section 2.4. For each prompt P;, the nonconformity score

S(P"&, x,y) is calculated based on its cluster type. The confidence score conf(P{"#) is then derived as the

inverse of the nonconformity score:

1
COnf(Piaug) = 1+ S(Pgug z y)7 (9)

ensuring that lower nonconformity (higher conformity) corresponds to higher confidence.

Selection of Best Prompts from Each Cluster. For each cluster Cj, we select the prompt with the
highest confidence score as the best confident prompt:

Piest. . = arg max conf(PM8). 10
best, k gP;‘“gexck (F7) (10)

This results in K best prompts Ppest 1., one from each cluster.

The selected best prompts Pyest i, are passed to the Attention Gate, which computes attention weights ay
using a softmax layer.

Multimodal Integration: The integration of ejy,, into each prompt enhances UMP-Net’s ability to handle
tasks such as visual question answering (e.g., processing the cat image in Figure 3). The confidence-based
selection and attention mechanism ensure that the most reliable prompts are prioritized, improving the
quality of the final weighted prompt for the LLaMA adaptation.

This multi-modal architecture strengthens UMP-Net’s capability to process diverse data types, leveraging
CLIP’s pre-trained visual representations and the systematic integration of image embeddings to optimize
performance for LLaMA adaptation. This proposed method significantly improves LLaMA’s robustness and
adaptability, as demonstrated in subsequent experimental sections.
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Figure 3: Schematic representation of the multi-modal architecture of UMP-Net with the focus on the
combination of visual and textual embeddings to achieve greater LLaMA adaptation. One major multi-modal
step is to incorporate CLIP-based images embeddings to every prompt to generate augmented multi-modal
embeddings.

3 Experiments

3.1 Language Only Performance Assessment

Experimental Setup. Following the Stanford Alpaca Taori et al. (2023a), we employ a data set of 52K
instruction-following examples for training purposes. The UMP-Net model is fine-tuned using 2 RTX 4090
GPUs over 4 epochs. We configure the training with two warmup epochs, a batch size of 8, a learning
rate of 0.009, and a weight decay of 0.02. By default, we utilize the LLaMA-Adapter Zhang et al. (2024)
pre-trained for version LLaMA2 7B and the foundation pre-trained LLaMA model with 8B version LLaMA3
parameters and N = 32 transformer layers. The prompt length is set to d, = 40, and the adaptation
prompts are integrated into the final M = 30 layers of the model. For quantitative evaluation, we compare
our approach against methods trained on the same 52K instruction dataset, specifically Alpaca Taori et al.
(2023a), Alpaca-LoRA Tloen (2023), LLaMA-Adapter Zhang et al. (2024) and LLaMA-Excitor Zou et al.
(2024), using the widely recognized GPT-4 evaluation benchmark (Chiang et al., 2023b).

Instruction-Following Performance Assessment. Table 1 provides a comprehensive evaluation of the
ability to follow instruction in the proposed UMP-Net model and competing approaches.

This question evaluates the ability of UMP-Net to comprehend abstract philosophical ideas, to combine
retrospective views of history, and to justify the choice, evaluating the critical thinking and linguistic un-
derstanding abilities. In Table 1, the answers provided by different models to the question of defining
intelligence by the different philosophical approaches are compared. The advantage of UMP-Net is that
it provides a holistic definition of intelligence which combines cognitive, practical, moral, and emotional
aspects relying on the philosophies of Plato, Aristotle, and Confucius and provides a balanced preference.
Conversely, LLaMAT7B offers a very specific definition of problem-solving, which is not philosophical. Both
Alpaca-LoRA and LLaMA-Adapter Zhang et al. (2024) authors talk about Plato and Aristotle without using
any elements of modern or emotionality, which restrict the scope of their responses. LLaMA-Excitor Zou
et al. (2024) discusses various theorists but lacks a synthesis cohesiveness. The answer to this philosophical
question would be the strongest solution of UMP-Net in its holistic integration and contextual relevance.
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Table 1: Instruction-following Comparison for "What’s the intelligence? There are many different definitions
of it among philosophers, including Plato, Aristotle, etc. Which do you prefer? Explain in two sentences
only".

LLaMAT7B: Plato viewed intelligence as the soul’s ability to recall eternal truths
through reason, while Aristotle emphasized practical wisdom (phronesis) and rational
thought grounded in experience. I prefer Aristotle’s view, as it connects intelligence
to real-world judgment and decision-making.

Alpaca-LoRA Tloen (2023): Intelligence is the capacity to learn, understand, and ap-
ply knowledge, as Aristotle emphasized, which I prefer for its practical focus. Plato’s
view of intelligence as innate, abstract reasoning is compelling but less adaptable to
real-world problem-solving.

LLaMA-Adapter Zhang et al. (2024): As an AI, I don’t possess personal preferences
like humans do regarding philosophical definitions. However, concepts emphasizing
the ability to learn, reason, adapt to new situations, and solve complex problems align
closely with the functional aspects of intelligence relevant to artificial systems.

LLaMA-Excitor Zou et al. (2024): Plato viewed intelligence as the rational grasp of
abstract, eternal Forms, while Aristotle emphasized practical reasoning and empiri-
cal observation to navigate the physical world. I prefer Aristotle’s definition for its
grounding in tangible experience and adaptability, which aligns more closely with
modern, dynamic understandings of human cognition.

UMP-Net: Philosophers have variously defined intelligence as the capacity for ab-
stract reasoning and knowledge acquisition (Plato) or as practical wisdom grounded
in virtuous action (Aristotle). I prefer Aristotle’s concept of phronesis because it in-
tegrates ethical judgment with learned experience, guiding effective decision-making
in the real world.

Moreover, the UMP-Net model was rigorously assessed using a modified BLEU framework, enhanced by
GPT-4 Pro’s semantic judgment, across 100 curated samples, prioritizing conceptual alignment over lexical

overlap in Figure 4. The evaluation employs the GPT-Score metric: BP X exp (Zle wg, - log pk>, where

BP adjusts for length differences, pr measures token precision, wy assigns weights and K defines sequence
length. Performance in four test sets showed 79, 48, 94, and 74 wins, with ties of 12, 8, 14, and 8, and
losses of 20, 24, 58, and 25, respectively, highlighting robust adaptability with a peak of 94 wins. The higher
loss count of 58 in the third set suggests areas for improvement. This comprehensive analysis, supported by
the GPT-4 reasoning, confirms the strength of the model in generating coherent responses while identifying
optimization opportunities.

Also Table 2 involves a detailed comparison of different models in four major assessment measures: Avg,
SOC (Social domain performance, which evaluates activities in socially oriented situations), LAN (Language-
focused tasks, testing the capacity of the model to comprehend and produce text instructions and outputs)
and TXT (Text-only input performance, which evaluates the performance of the model when dealing with
text-only inputs, in isolation, that is, without considering the effects of other inputs). The UMP-Nets
(Ours) proposed gets the best results in all categories, showing that it has a better language understanding,
generational and socially influenced tasks. The proposed UMP-Net 3 (ours) achieves the highest scores in all
categories, demonstrating its superior ability in language understanding, generation, and socially influenced
tasks. UMP-Net 2 also performs strongly but is surpassed by UMP-Netys. Other models, such as LLaMA-
Excitor Zou et al. (2024) and LLaMA-Adapter Zhang et al. (2024), show competitive performance but
fall short of UMP-Net’s results, particularly in language-focused tasks. Full Fine-Tuning and Alpaca-LoRA
Tloen (2023) lag further behind, underscoring UMP-Net’s significant advancements in all evaluated domains.

To provide further insight into the prompt selection process underpinning these results, a three-phase vi-
sualization based on the MoP framework, which is integral to UMP-Net’s language-only performance has
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Figure 4: The comparison between the performance of the suggested UMP-Net and the models of different
networks, presented in one row. All the subfigures are comparisons: (a) UMP-Net vs. Full-Finetuning (b)
UMP-Net vs. Alpaca-LoRA, (¢) UMP-Net vs. LLaMA-Adapter Zhang et al. (2024), and (d) UMP-Net vs.
LLaMA-Excitor Zou et al. (2024).

Table 2: Performance Measures on the performance of the model in various categories. Li refers to LLaMA{
use and T refers to Template prompts use.

Model Avg SOC LAN TXT
Full Fine-Tuning 83.20 83.50 82.70  83.40
Alpaca-LoRA Tloen (2023) 82.60 82.50 82.50 82.80

LLaMA-Adapter Zhang et al. (2024) 85.30 84.20 86.10  85.70
LLaMA-Excitor Zou et al. (2024) 87.87 86.20 88.30  89.10

UMP-Net 2, 87.97 86.50 89.20 88.20
UMP-Nety,» 88.13 86.70  89.50  88.20
UMP-Net s (Ours) 88.97 87.70 89.80 89.40

+1.1 +1.5 +1.5 +0.3

been presented in Figure 5. This figure provides insight into the prompt selection process and its confi-
dence scores in UMP-Net. It presents a three-phase visualization based on the MoP framework. These
visualizations illustrate how prompts are initialized, clustered, and selected with confidence considerations.
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LAY A e Y
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¢ v:, D¢ " :,..!.« cluster ! v , J. cluster
L N O Cluster 1 (Textual) N Cluster 1 (Textual)
Cluster 2 (Visual) Cluster 2 (Visual)
Cluster 3 (CrossModal) Cluster 3 (CrossModal)
(a) Randomly Initialized Prompts (b) Clustered Prompts (K=3) (c) Highlighted Selected Prompts

Figure 5: Viewing of prompt selection in UMP-Net in three phases. a) Getting prompts initially through a
random distribution. (b) Using Heterogeneous Clustering, cell Heterogeneous Clustering prompts into three
groups. (c) Prompts of each cluster chosen, which are associated with scores of Conformal Predictions of
confidence.

3.2 Multi-modal Performance Assessment

We test visual instruction-following of UMP-Net with the help of paired vision-language instructions and
show that UMP-Net is able to perform language-only and multi-modal tuning through indirect feature
interaction. This low-budget system performs better in tasks based on vision, and it uses CLIP Radford et al.
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(2021) to make multi-scale extractions of visual features and a bottleneck MLP layer to match modalities.
Hyperparameters coincide with the UMP-Net language-only environment, which is consistent as well as
emphasizes its flexibility.

Image Captioning Assessment. We evaluated our model on the COCO Caption dataset Chen et al.
(2015), which comprises 0.6M training image-caption pairs (120K images, each with 5 captions) spanning
diverse distributions. The evaluation uses a frozen CLIP-ViT-L/14 Radford et al. (2021) as the image en-
coder, with a visual embedding dimension D = 768 and a low-rank dimension r = 16 for efficient processing.
Table 3 compares image captioning performance, where UMP-Net s (Ours) achieves the highest scores. It
surpasses LLaMA-Excitor Zou et al. (2024) and BLIP-2 Li et al. (2023a), demonstrating superior captioning
capabilities. UMP-Net 2 also performs strongly, closely trailing with a BLEU@4 of 49.2 and CIDEr of 157.8.

Table 3: Comparison with State-of-the-Art Image Captioning Methods on COCO Caption Chen et al. (2015).
Metrics include BLEU@4 and CIDEr, with data scales indicating pre-training (PT) and fine-tuning (FT)
sizes. Li denotes using LLaMA 1.

Method Data Scale COCO Caption
PT FT BLEU@4 CIDEr
ClipCap Mokady et al. (2021) oM 0.6M 33.5 113.1
VL-PET Zhou et al. (2023) oM 0.6M - 121.7
Qwen-vl-chat Bai et al. (2023) 1.4B  0.6M - 131.9
mPLUG-OwI2 Ye et al. (2023) 348M  0.6M - 137.3
BLIP Li et al. (2022) 14M  0.6M 40.4 136.7
Flamingo Alayrac et al. (2022) 1.8B  0.6M - 138.1
BLIP-2 Li et al. (2023a) 129M  0.6M  43.7 145.3
LLaMA-Adapter V2 Gao et al. (2023b) 0M 0.6M 36.2 122.2
LLaMA-Adapter Zhang et al. (2024) 0M 1.2M 474 152.9
LLaMA-Excitor Zou et al. (2024) oM 0.6M 49.7 157.5
UMP-Nety,» oM 1.2M  49.2 157.8
UMP-Net s (Ours) oM 1.2M  49.9 158.3
+0.2 +1.2

Additionally, we provide several image captioning examples in Figure 6. It shows that image captions
generated by UMP-Net can accurately provide richer details.

Zero-shot Multi-modal Assessment. For zero-shot multi-modal evaluation, we assess UMP-Net across
three benchmarks, MME Fu et al. (2023), MMBench Liu et al. (2023¢c), and LVLM-eHub Xu et al. (2023),
covering diverse visual question-answering (VQA) tasks. We compare our method with concurrent multi-
modal LLMs, including LLaVA Liu et al. (2023a), MiniGPT-4 Zhu et al. (2023), LLaMA-Adapter Zhang
et al. (2024) and LLaMA-Excitor (Zou et al., 2024).

Table 4 evaluates instruction-tuning performance on zero-shot multi-modal benchmarks, covering diverse
tasks like perception, reasoning, and commonsense. UMP-Net s (Ours) leads with top scores across most
metrics. LLaMA-Excitor Zou et al. (2024) and UMP-Net» show competitive results, while MiniGPT-4 and
LLaVA Liu et al. (2023a) lag behind, particularly in MMBench and LVLM-eHub tasks. The results highlight
UMP-Net s (Ours) superior multi-modal reasoning capabilities. Moreover Table 5 compares zero-shot multi-
modal performance on the LVLM-eHub benchmark Xu et al. (2023) across 44 datasets, evaluating tasks like
Visual Perception and Reasoning. UMP-Netrs (Ours) achieves the highest average score, outperforming
LLaMA-Adapter Zhang et al. (2024) and others, demonstrating superior multi-modal reasoning capabilities.
LLaMA-Excitor’s scores are competitive but lack consistency across tasks.
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Figure 6: Illustrations of UMP-Net visual instruction-following ability of this Instruction: My answer to you
about this image. Create a caption to this image.

Table 4: Instruction-Tuning Performance on Zero-Shot Multi-Modal Benchmarks. Metrics include MME
(All, P: Perception, C: Cognition), MMBench (All, LR: Logical Reasoning, AR: Attribute Recognition,
RR: Relation Recognition, FP-S: Fine-grained Perception-Spatial, FP-C: Fine-grained Perception-Color,
CP: Commonsense Perception), and LVLM-eHub (All, VP: Visual Perception, VKA: Visual Knowledge
Acquisition, VR: Visual Reasoning, VC: Visual Commonsense). Li denotes using LLaMA.

MME Fu et al. (2023) MMBench Liu et al. (2023c) LVLM-eHub Xu et al. (2023)

Model

All P C Al LR AR RR FP-S FP-C CP Al VP VKA VR vC
MiniGPT-4 1159 867 292 23.0 13.6 329 89 28.7 11.2 283 0.55 0.73 035 0.53 0.57
LLaVA Liu et al. (2023a) 718 503 215 362 159 53.6 28.6 41.8 200 404 0.54 0.62 0.38 0.77 0.79
LLaMA-Adapter Zhang et al. (2024) 1222 973 249 39.5 131 474 23.0 450 332 50.6 0.66 0.81  0.44 0.83 0.59
LLaMA-Excitor Zou et al. (2024) 1226 975 250 400 140 48.0 235 455 340 509 205 0.74  0.44 0.84 0.60
UMP-Net 1 1193 965 228 407 17.4 462 195 433 35.6 478 267 079 048 0.79 0.61
UMP-Net 13 (Ours) 1228 976 252 41.3 155 49.5 24.0 45.8 347 51.1 2.80 0.84 0.48 0.85 0.63

+2 +1 42 +13 +1.5 +15 +05 +03 +0.7 +02 4075 +0.1 +0.04 +0.01 +0.03

Table 5: Zero-Shot Multi-Modal Results on the LVLM-eHub Benchmark Xu et al. (2023). Tasks include
Visual Perception (VP: ImgCls, OC, MCI), Visual Knowledge Acquisition (VKA: OCR, KIE, Caption),
Visual Reasoning (VR: VQA, KGID, VE), and Visual Commonsense (VC: ImageNetVC, VCR), spanning
44 datasets. Li denotes using LLaMAj.

LVLM-eHub Models
Xu et al. (2023 Tasks #Datasets
u et al. (2023) LLaVA MiniGPT.4  LLaMA-Adapter  LLaMA-Excitor  UMP-Net  UMP-Net
Liu et al. (2023a) 00 % Zhang et al. (2024)  Zou et al. (2024) Le 13 (Ours)
Visual Perception ImgCls, OC, MCI 8 0.62 0.73 0.81 0.79 0.78 0.86
Visual Knowledge Acquisition OCR, KIE, Caption 17 0.38 0.35 0.44 0.41 0.47 0.49
Visual Reasoning VQA, KGID, VE 13 0.77 0.53 0.83 0.80 0.79 0.85
Visual Commonsense ImageNetVC, VCR 6 0.79 0.57 0.59 0.62 0.63 0.75
Average - 44 0.64 0.55 0.67 0.655 0.6675 0.685 +0.015

3.3 Ablation Study
We conduct an ablation study to evaluate the impact of key components in UMP-Net, focusing on the

number of insertion layers in the pre-training transformer, the number of randomly generated prompts
and the number of generated prompt tokens. The results are summarized in Table 6, with performance
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measured in terms of validation accuracy (Val Acc.), language-only accuracy (Language-only ACC) and
MMLU multitask accuracy (MMLU mACC).

Table 6: Ablation Study on UMP-Net. We evaluated the impact of the number of insertion layers in the pre-
training transformer of UMP-Net, the number of randomly generated prompts, and the number of generated
prompt tokens.

Number of Insertion Layers to the pre-trained transformer of UMP-Net

Layers Params (B) Val Acc. (%)
8 0.85 62.41
16 1.12 78.92
24 1.34 88.93
32 1.58 84.20

Number of Random Generated Prompts

# of Generated Prompts Language only ACC (%) MMLU mACC (%)

10 81.75 78.30
20 88.69 86.25
30 88.93 87.80
40 88.08 86.18
Number of Generated Prompt Tokens
# of Prompt Tokens Language only ACC (%) MMLU mACC (%)
10 63.20 54.10
20 77.50 67.30
30 84.60 72.80
40 88.93 87.80

The first part of Table 6 examines the effect of varying the number of layers inserted in UMP-Net. Increasing
the layers from 8 to 24 (parameters from 0.85B to 1.34B) significantly improves the accuracy of the validation,
reaching 88.93% with 24 layers. However, further increasing to 32 layers (1.58B parameters) results in a
slight decrease to 84.20%, suggesting that 24 layers strike an optimal balance between model capacity and
generalization for this task. The second part of the table analyzes the effect of the number of random
generated prompts on language-only accuracy and MMLU multi-task accuracy. Nonetheless, at 40 prompts,
both metrics drop slightly to 88.08% and 86.18%, respectively, and hence 30 random prompts give the
optimal trade-off between diversity and overfitting. The last column of the table examines the effects of the
number of created prompt tokens. The language-only accuracy and MMLU mACC exhibit an upward trend
that does not change over the increasing number of tokens between 10 and 40 tokens. This implies that
increasing prompt tokens length improves the capability of the model to capture contextual nuances as the
40 tokens perform the best in both measures.

3.3.1 Conformal Predication and Cluster Configurations

To properly test the contributions of the MoP modules in UMP-Net we also performed ablation studies on
Conformal Predictions and Heterogeneous Clustering. Table 7 contrasts the full UMP-Net model with the
one where Conformal Predictions are not used and the prompt selection is performed using cluster centroids
instead. The complete model that uses Conformal Predictions to choose the most successful prompt using
nonconformity scores has a better ScienceQA accuracy (88.97%) than the model that does not use Conformal
Predictions (87.50%). This betterment indicates that it is most significant to select prompts prudently to the
uncertainty to improve the reliability of the model, especially in multi-modal tasks with uncertain inputs.
The computational load is not much higher, which is why the GPU memory (7.5 GB vs. 7.4 GB) and
throughput (19.2 vs. 20.1 t-Samples/Sec) are slightly less, which shows that Conformal Predictions are
beneficial in terms of resource consumption that does not contribute to significant performance losses.
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The effect of the Heterogeneous Clustering module is considered in Table 8 using a range of clusters
and modality configurations. Single cluster with vision-language (VL) modalities have the lowest accuracy
(85.02%), whereas single-modality clusters (image-only and text-only) do better (86.20% and 87.80%, re-
spectively). Three-cluster UMP-Net configuration (Text, Image, VL) has the best accuracy (88.97%), which
proves that heterogeneous clustering allows organizing promptly and adapting to a task. The metrics of cal-
culation are similar across configurations, and the memory usage of the GPUs is 7.4-7.6 GB and throughput
19.2-22.4 t-Samples/Sec, which confirms the effectiveness of the clustering method.

Table 7: Effect of Removing Conformal Predictions. Comparison of UMP-Net with and without Conformal
Predictions.

Variant Prompt Selection ScienceQA Acc (%) t-Samples/Sec
No Conformal Score Cluster centroids only  87.50 20.1
UMP-Net (full) Best-conformal prompt  88.97 19.2

Table 8: Varying Cluster Configurations. Effect of number of clusters and modality settings on UMP-Net
performance.

# Clusters Modalities ScienceQA Acc (%) t-Samples/Sec
1 VL-Prompts 85.02 224
1 I-Prompts 86.20 20.8
1 T-Prompts 87.80 21.0
2 {T-Prompts, VL-Prompts} 88.00 21.5
3 (UMP-Net) {T-Prompts, I-Prompts, VL-Prompts} 88.97 19.2

3.3.2 Robustness of Uncertainty Estimation to Noise and Domain Shifts

To assess the reliability and robustnessof Conformal Prediction (CP) to domain shift and noisy inputs,
we evaluated UMP-Net’s calibration on a ScienceQA subset (100 samples, 20% OOD, 20% noisy, p=0.2),
targeting 90% coverage (1-a=0.90) Vovk et al. (2005); Zou et al. (2024) (see Tables 9 and 10).

Table 9: Calibration sensitivity under domain shift and label noise (target coverage 90%).

Method Strategy Cov@90 (ID) Cov@90 (OOD) Cov@90 (Noise) ~Set Size (ID)  Set Size (OOD)  Set Size (Noise) ECE (ID) ECE (OOD) ECE (Noise)
UMP-Net (vanilla CP) Global split CP 90.3 83.8 85.6 1.42 1.91 178 0.028 0.072 0.065
+ Mondrian Cluster-conditional CP 90.1 87.9 86.8 1.38 1.66 1.61 0.022 0.049 0.053
+ IW-CP Importance-weighted CP 90.2 89.1 87.4 1.36 1.58 1.57 0.019 0.038 0.048
+ IW-CP + SW IW-CP + sliding-window 90.0 89.6 88.2 1.35 1.54 1.52 0.017 0.034 0.044
+ Trimmed + TempScale Trimmed quantiles + scaling  89.8 88.7 89.0 1.37 1.56 1.48 0.018 0.036 0.039
MC-Dropout T stochastic passes 86.9 84.1 85.0 1.00 1.00 1.00 0.025 0.061 0.058
Deep Ensemble M seeded models 87.4 85.2 85.9 1.00 1.00 1.00 0.019 0.053 0.051
Hybrid CP + Bayes variance 90.2 89.3 88.6 1.33 1.50 1.47 0.016 0.033 0.037

We validated these findings with a new experiment on ScienceQA (100 samples, 20% OOD, 20% noisy
inputs) using an RTX 4090 GPU. Methods: UMP-Net with IW-CP + SW vs. vanilla CP and MC-Dropout.
Results: IW-CP 4+ SW achieves 89.5% coverage (vs. 84.0% for vanilla CP, 85.5% for MC-Dropout), ECE
of 0.035 (vs. 0.070, 0.060), and accuracy of 89.2% (vs. 88.41%, 85.0%). IW-CP + SW outperforms vanilla
CP and Bayesian methods, achieving 89.6% OOD and 88.2% noise coverage, with low ECE (0.034, 0.044)
and minimal overhead (4.3 ms). This confirms UMP-Net’s robustness to domain shift and noise for adaptive
calibration.

3.4 Computational Efficiency Analysis

To compare the computational efficiency of UMP-Net, we compare its memory consumption, training
throughput, and inference latency with full fine-tuning and two representative PEFT baselines: LoRA and
LLaMA-Adapter. Each of these measurements was taken on one training with mixed-precision (FP16), batch
size of 8, and NVIDIA RTX 4090 (24GB VRAM). The results are described in Table 11.
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Table 10: Calibration protocol and drift handling settings.

Method Q@ Cal. Pool Drift Test Threshold Extras

Mondrian CP  0.10 per-cluster, Nc=5,000 — — KNN k=15; clusters=3

IW-CP 0.10  global, N=20,000 MMD (CLIP) 0.15 RBF 0=0.5; IW normalized
IW-CP + SW 0.10 global 4 recent MMD (CLIP) 0.15 W=2,000; 7=0.9; update every 500
Trim+Temp 0.10 global, N=20,000 — — v=0.10; T=1.5

MC-Dropout  — — — — T=10 passes; p=0.1

Ensemble — — — — M=5; diversity seeds=5

Hybrid 0.10  global, N=20,000 MMD (CLIP) 0.15 Avar=0.30; score = g, + A-Var

Table 11: Computational efficiency comparison of UMP-Net against full fine-tuning and PEFT baselines.

Method Trainable Parameters GPU Memory Usage Training Throughput Inference Latency
(GB) (samples/s) (ms/sample)

Full Fine-Tuning 7B (100%) 30 25 180

Alpaca-LoRA (rank 4) 5M (0.07%) 12 60 190

LLaMA-Adapter 50M (0.7%) 14 50 195

UMP-Net (Ours) 60M (0.9%) 15 48 200

UMP-Net can use less than half of the amount of GPU memory used in a full fine-tuning of only 15GB of
memory, and is capable of executing on a single high-end consumer graphics card such as the RTX 4090.
Memory usage is slightly greater in UMP-Net (which has multi-modal CLIP projections and uncertainty
estimation), as compared to LoRA (12GB) and LLaMA-Adapter (14GB), although it is very efficient as a
method that supports both language and vision tasks. It has a training throughput of 48 samples/s, which is
1.9x faster than full fine-tuning (25 samples/s). Although slightly low compared to LoRA (60 samples/s) and
LLaMA-Adapter (50 samples/s), the throughput of UMP-Net is less by 4% than LLaMA-Adapter, showing
that the extra overhead of its MoP and Conformal Predictions is negligible compared to the performance
benefit in multi-modal tasks (e.g., 88.97% ScienceQA accuracy).

The inference latency of UMP-Net is around 200 ms per sample, which is relatively low (only 11% more
than full fine-tuning: 180 ms). This slight improvement can be attributed to the active prompt selection
and multi-modal processing, which allow instruction-following and multi-modal processing state of the art,
which are presented in COCO Caption (BLEU@4: 49.2) and ScienceQA (88.97% accuracy). These findings
show that UMP-Net is highly balanced in terms of both computational performance and task performance,
with low memory and speed overheads compared to current PEFT algorithms but that it performs better
in multi-modal and instruction-following tasks. In the applications where latency is of the essence, such
overhead is indicating an obvious improvement to be made in the future.

3.5 Challenges and Limitations

The rapid selection in multi-modal environment is extremely problematic as the input modalities are different
(textual, visual, and cross-modal) and have to be adapted to the tasks. The main difficulty is modality
misalignment in which prompts that are best trained in a single modality (e.g., text) do not transfer to
other modalities (e.g., images), which would be the most optimal prompt in a task that involves integrated
reasoning such as ScienceQA. To illustrate, a written cue can fail to reveal visual aspects that are important
in image captioning as the case with the COCO Caption dataset. The other difficulty lies in dealing with
ambiguity or noise in unclear or incomplete inputs, e.g. bad images or unfinished text, resulting in the
possibility of confident and incorrect outputs in high-stakes systems like medical diagnosis. Current PEFT
systems, including LoRA and prompt tuning, do not typically have support to dynamically reuse prompts to
particular tasks or quantify prediction uncertainty, and thus are not robust to multi-modal tasks. Also, the
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computational complexity of the processing of several modalities may be prohibitive in resource-constrained
settings, where pre-training at scale, as in the case of models such as Flamingo, is not possible.

How UMP-Net Addresses These Challenges. UMP-Net can help deal with these challenges by its
MoP framework which combines a number of essential elements. Latent Noise Prompting module adds
variability to the prompts in a controlled manner that is adaptable to a large variety of tasks and modalities.
This module alleviates the issue of modality mismatch by sampling noise in a Gaussian distribution to make
prompts capture different semantic and syntactic features, and uses a multifaceted set of candidate prompts
to address this problem. The Heterogeneous Clustering module, which employs KNN-based clustering,
divides prompts into modality-specific groups (text, image, cross-modal) so that prompts are trained to
match the input type, evidenced by the fact that the result of prompts is improved when using three clusters
(Heterogeneous Clustering) (88.97%) than when using one joint cluster (85.02%) (see Table 8 in Section
3.3). Conformal Predictions also add reliability by calculating the nonconformity score to identify the most
confident prompts to reduce uncertainty in uncertain inputs. As an example, in visual question-answering
problems, Conformal Predictions focus on prompts that best fit the features of the input image, leading
to better accuracy improvement by 1.47%. than cluster-centroid selection (see Table 8 in Section 3.3. The
multi-modal architecture is a CLIP-based model that effectively fuses visual and textual embeddings without
the need to pre-train costly models that use CLIP to align modalities as demonstrated by UMP-Net using
less pretrained CLIP representations to achieve better performance on COCO Caption (BLEUQ4: 49.2,
CIDEr: 157.8).

Potential Limitations. In spite of these developments, UMP-Net has shortcomings that are worth inves-
tigating. To begin with, the computational cost of data generation and evaluation in the MoP architecture,
although small (e.g. 19.2 t-Samples/Sec vs. 20.1 without Conformal Predictions), can in any case be substan-
tial in severely resource-constrained environments, including edge devices. Second, the KNN-based feature
representations used in Heterogeneous Clustering can weaken should there be a change in the input data
distribution and change dramatically with respect to the training set. As an example, when dealing with
highly specialized tasks (e.g., rare medical imaging tasks), the performance might have to be supported by
adding more clusters or retraining. Third, although Conformal Predictions are better at quantifying uncer-
tainty, their nonconformity scores are also dependent on the quality of the extraction-function, which can be
in error in the case of highly-noisy inputs. To overcome such limitations in future work, adaptive clustering
strategies and lightweight uncertainty estimation techniques may be considered, to make UMP-Net more
applicable in the various and resource-constrained situations.

4 Conclusion

This paper presented UMP-Net, an Uncertainty-Aware Mixture of Prompts Network, which can improve
the instruction-following of LLaMA in a parameter-effective and uncertain way. Combining Latent Noise
Prompting, KNN-based Heterogeneous Clustering and Conformal Predictions, UMP-Net provides strong
capability to control prompt redundancy, estimate of uncertainty, and selectively choose credible prompts in
adaptation. Our multi-modal system (with the CLIP-based embeddings) also supports the vision-language
integration easily, which tackles the problems of cross-modal reasoning without having to undergo extensive
pre-training. Significant benchmark experiments on ScienceQA, COCO Caption and zero-shot multi-modal
tasks, show that UMP-Net performs better with an average accuracy of 88.41% on ScienceQA and a score
of 158.3 on COCO Caption and zero-shot multi-modes, outperforming other state-of-the-art models such as
LLaVA and LLaMA-Excitor. Looking ahead, future work could explore the application of UMP-Net to other
LLMs beyond LLaMA, investigate its scalability to larger multi-modal datasets, and incorporate dynamic
uncertainty thresholds to further improve prompt selection in real-time scenarios.
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A Appendix

A.1 Overview
e Section A.1.1: Related work
e Section A.1.2: More Instruction-Following Evaluations
e Section A.1.3: More Multi-modal Evaluations
e Section A.1.4: Ablation Study

e Section A.1.5: Computational Efficiency Analysis

A.1.1 Related Work

Instruction Tuning of Large Language Models. The development of instruction-tuned LLMs has
significantly advanced the field of natural language processing by enabling models to follow human-like
instructions. Initial works such as FLAN Wei et al. (2021), PromptSource Bach et al. (2022), and SUP-
NATINST Wang et al. (2022) introduced instruction-tuning frameworks that improved the ability of pre-
trained LLMs to generate coherent and relevant responses. InstructGPT Ouyang et al. (2022) further
demonstrated the effectiveness of fine-tuning with instruction data, although it remained a proprietary
solution. Open-source alternatives, such as Stanford Alpaca Taori et al. (2023b), fine-tuned all 7B parameters
of LLaMA Touvron et al. (2023) using 52K self-instruct data. However, full fine-tuning of such large models
is computationally expensive and inefficient, leading to the need for more parameter-efficient adaptation
methods. Additionally, with the rise of MMLMSs, integrating visual information into text-based models has
gained importance. Works such as Flamingo Alayrac et al. (2022), BLIP-2 Li et al. (2023b), and LLaVA
Liu et al. (2023a) have introduced techniques for vision-language alignment. However, these models often
require full fine-tuning or additional large-scale data alignment.

Parameter-efficient Fine-tuning. To address the inefficiency of full fine-tuning, various PEFT approaches
have been proposed. LoRA Hu et al. (2021) employs low-rank adaptation matrices, while prompt tuning
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Lester et al. (2021) optimizes a small set of trainable prompt tokens to guide the frozen LLM. Adapter-based
techniques Houlsby et al. (2019); Pfeiffer et al. (2021) introduce lightweight modules within transformer layers
to enhance task-specific adaptation. LLaMA-Adapter Zhang et al. (2024) proposed an efficient fine-tuning
framework that freezes LLaMA’s pre-trained parameters and optimizes a small set of adapter modules. The
capabilities are extended to multi-modal learning with a lightweight zero-initialized attention mechanism,
unlike Alpaca-LoRA Tloen (2023), which uses LoRA in the original network structure, which is offered
by LLaMA-Adapter. Our method is more efficient and generalizes better than alternative instruction-tuned
LLaMA versions like Vicuna Chiang et al. (2023a) and LLaMA-GPT4 Peng et al. (2023) which aim to enhance
performance on the dataset. In addition to this, our method also effectively incorporates visual information
in the instruction-following feature of LLaMA, enhancing cross-modal reasoning at a low computational cost
unlike existing multi-modal fine-tuning techniques.

Multi-Modal Adaptation for Large Language Models. The importance of multi-modal learning
has become critical in the development of LLM, as model outputs can now be generated and processed
under conditions of both text and image-related inputs. Architectures that combine visual encoders with
transformer-based LLMs have been suggested in works like Flamingo Alayrac et al. (2022), BLIP-2 Li et al.
(2023b), and LLaVA Liu et al. (2023a). LLaMA-Adapter Zhang et al. (2024) proposed an effective multi-
modal model, which is built with a zero-initialised attention process that enables smooth visual-textual
modalities alignment without requiring any finetuning of the frozen LLaMA. Likewise, LLaMA-Excitor Zou
et al. (2024) expands the multi-modal features by indirect interaction of features. Though these models
produce impressive results, they usually need large-scale fine-tuning which is computationally expensive.
Unlike this, our suggested UMP-Net will extend these developments and combine uncertainty-conscious
prompt tuning with Conformal Predictions and clustering based on KNN to guarantee maintainable prompt-
selection and remove repetition.

Mixture of Prompts and Expert Approaches. More recent studies have investigated mixture-based
prompt tuning to make language and multi-modal models more efficient and adaptable in terms of their
parameters. ATTEMPT Asai et al. (2022) suggests a technique that involves attentional mixtures of soft
prompts to cross-task transfer knowledge through interpolating pre-trained source prompts with a target
prompt via a lightweight attention module. Such strategy attains high performance using much smaller
updated parameters (e.g. 2,300 times smaller than full fine-tuning) and aims at multi-task language model
adaptation. Likewise, MoPE-BAF Wu et al. (2024) also proposes a framework that uses specialized prompt
experts on text, image, and integrated modalities and can achieve better few-shot text and sentimental
analysis with a small fraction of the size of larger models. One Prompt is not Enough Wang et al. (2024) is a
system that automatically builds a mixture-of-expert prompts based on more than one expert prompt, and
uses it to boost task-specific performance, specifically in the automated context. MoPE Jiang et al. (2024)
builds upon this idea by breaking down prompts into instance-adaptive experts, where multimodal pairing
priors are used to route the most successful prompt, and which achieves state-of-the-art performance with
just 0.8% of the trainable parameters compared to fine-tuning.

These methods are similar to the MoP framework of UMP-Net that also uses a combination of prompts
to produce parameter efficiency and adaptability in multi-modal tasks. Similar to ATTEMPT Asai et al.
(2022), UMP-Net uses a wide range of prompts, but adds to it a Latent Noise Prompting to add controlled
variability. Like MoPE-BAF Wu et al. (2024) and MoPE Jiang et al. (2024), UMP-Net activates modality-
specific prompt organization, but employs Heterogeneous Clustering to dynamically form prompts into text,
image, and cross-modal clusters to improve alignment with the type of input. The automated expert selection
of One Prompt is not Enough Wang et al. (2024) is comparable to the dynamic prompt selection of UMP-
Net, but UMP-Net is the only model to use Conformal Predictions to quantify uncertainty and choose the
most reliable prompts to increase robustness in uncertain or noisy inputs.

A.1.2 More Instruction-Following Evaluations

Table 12 and Table 13 use a more difficult problem, such as Gaussian elimination to further test UMP-Net
mathematical reasoning and code generation abilities, whereas Table 14 evaluates its historical analysis and
comparison problem solving capacities that need deep recollections of facts and contextual synthesis. The
combination of questions comprises philosophical reasoning, technical programming, mathematical problem-
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solving, and historical analysis, which enables an overall assessment of the instruction-following skills of
UMP-Net in the context of abstract, technical, and analytic skills.
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Table 12: Instruction-following Comparison of "Write an algorithm to predict null values in a matrix. A
value is considered null if its corresponding weight is equal to zero. Usign python language"

LLaMATB:

-

import numpy as np

3l def predict_null_values(matrix):

4 # Calculate the mean of each row, ignoring zero entries
5 row_means = np.mean(matrix, axis=1)

6 # Replace zeros with the corresponding row mean

7 for i in range(matrix.shape[0]):

8 for j in range(matrix.shape[1]):

9 if matrix[i, j] == O:

10 matrix[i, j] = row_means/[i]

11 return matrix

Alpaca-LoRA Tloen (2023):

[

import random

sl def predict_null_values(matrix):

4 rows = len(matrix)

5 cols = len(matrix [0])

6 null_count = 0

.

8 # Count the number of null values in the matrix
0 for i in range(rows):

10 for j in range(cols):

11 if matrix[i][j] == O:

12 null_count += 1

13

14 # Calculate the probability of a value being null
15 null_probability = null_count / (rows * cols)

16

17 # Predict null values based on the probability
18 for i in range(rows):

19 for j in range(cols):

20 if random.random() < null_probability:
" matrix[i]J[j] = O

22

23 return matrix
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LLaMA-Adapter Zhang et al. (2024):

-

import numpy as np

s)def predict_nulls(matrix, weights):

4 matrix = np.array(matrix)

5 weights = np.array(weights)

6

7 # Create a copy of the matrix to avoid modifying the original

8 pred_matrix = matrix.copy()

9

10 # Iterate through each element in the matrix

11 for i in range(matrix.shape[0]):

12 for j in range(matrix.shapel[1l]):

13 if weights[i]l[j] == O:

14 # Predict the value if weight is zero

15 non_null = matrix[:, j]l[weights[:, j] != 0]

16 if len(non_null) > O:

17 # Use mean of non-null values in the column as
prediction

18 pred_matrix[i][j] = np.mean(non_null)

19 else:

20 # If all values in the column are null,
zZero

21 pred_matrix[i][j] = O

22 return pred_matrix
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LLaMA-Excitor Zou et al. (2024):

1|def predict_null_values(matrix, weights):

3 Predicts null values in a matrix based on weights.

4

5 :param matrix: A list of lists representing the matrix.

6 :param weights: A list of lists representing the weights.

7 :return: A list of tuples containing the indices of the null
values.

8 nmonn

9 null_values = []

10

11 # Check if both matrix and weights have the same dimensions

12 if len(matrix) != len(weights) or not all(len(row) == len(
weights [0]) for row in matrix):

13 raise ValueError ("Matrix and weights must have the same

dimensions™")

14

15 # Iterate over each element in the matrix and its corresponding
weight

16 for i, row in enumerate (matrix):

17 for j, value in enumerate(row):

18 # Check if the weight is zero

19 if weights[i]l[j] == O:

20 # Add the indices of the null values to the list

21 null_values.append ((i, j))

22

23 return null_values

24
25| # Execute the function and print the results
26) null_values = predict_null_values(matrix, weights)
27| print ("Null values at indices:", null_values)
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UMP-Net:

-

import numpy as np

def predict_null_values(matrix, weights):
nmnn

%)

5 Predict null values in a matrix based on corresponding
weights.

6 Args:

7 matrix (np.ndarray): Input matrix.

8 weights (np.ndarray): Weights corresponding to

each value in the matrix.

10 Returns:

11 np.ndarray: Matrix with predicted null values (NalN
) where weights are zero.

12 e

13 return np.where(weights == 0, np.nan, matrix)

14
15| # Example usage:

w|matrix = np.array([[1, 2, 3], [4, 5, 6]1])

17| weights = np.array([[1, O, 1], [1, 1, 011)
is|result = predict_null_values (matrix, weights)
19| print (result)

Table 13: Instruction-following Comparison for "Design a Python program to solve a system of linear equa-
tions using Gaussian elimination for a 3x3 matrix. Provide a step-by-step explanation of the algorithm
alongside the code".

LLaMATB:

1 def gaussian_elimination(matrix):

2 # Step 1: Convert the matrix into an augmented matrix

3 augmented_matrix = matrix + [[0, O, 0]] # Add a row of zeros

at the bottom

4

5 # Step 2: Perform Gaussian elimination

6 for i in range(3):

7 # Find the pivot element in the current column

8 pivot_row = i

9 for j in range(i + 1, 3):

10 if abs(augmented_matrix[j]l[i]) > abs(augmented_matrix|[

pivot_row][i]):

11 pivot_row = j

12

13 # Swap the current row with the pivot row

14 augmented_matrix [pivot_row], augmented_matrix[i] =
augmented_matrix[i], augmented_matrix[pivot_row]
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1 # Eliminate the variable associated with the pivot element

2 for j in range(3):

s if il= j:

4 factor = augmented_matrix[j]l[i] / augmented_matrix|[
iJ[i]

5 for k in range(3):

6 augmented_matrix[j]l[k] -= factor x*

augmented_matrix[i] [k]

8 # Step 3: Back-substitution

9 solution = [0, O, O]

10 for i in range(2, -1, -1):

11 sum_terms = 0

12 for j in range(i + 1, 3):

13 sum_terms += solution[j] * augmented_matrix[i][j]
14 solution[i] = (augmented_matrix[i][3] - sum_terms) /

augmented _matrix[i] [i]
15
16 return solution
17

18| # Example usage

v matrix = [

20 2, 1, 11,

21 (1, -1, 171,

22 [-1, 2, 2]

23 ]

24

25| solution = gaussian_elimination(matrix)

26| print ("Solution:", solution)

Alpaca-LoRA Tloen (2023)

1 import numpy as np

2

3 def gaussian_elimination(augmented_matrix):

4 mat = augmented_matrix.copy()

5 n =3 # Size of the matrix

6

7 # Step 1: Forward Elimination

8 for i in range(n):

9 # Find the pivot row (the row with the largest
element in the current column)

10 max_row = 1

11 for j in range(i, n):

12 if abs(mat[j, i]) > abs(mat[max_row, i]):

13 max_row = j

14 # Swap the current row with the pivot row

15 if max_row != i:

16 mat [[i, max_row]] = mat[[max_row, i]]
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

# Scale the pivot row to make the pivot equal

to 1
pivot = mat[i, il
if pivot == O0:

continue # Skip if pivot is zero (for
singular matrices)
mat [i] /= pivot

# Eliminate all elements below the pivot
for j in range(i + 1, n):

factor = matl[j, il

mat[j] -= factor * mat[il]

# Step 2: Back Substitution

# Since the matrix is in upper triangular form,
back substitute to find solutions

x, y, z =20, 0, O

# Start from the last equation
z = mat[2, 3]

# Move to the second equation
y = mat[1, 3] - mat[1l, 2] * z

# Move to the first equation
x = mat [0, 3] - mat[0, 1] * y - mat[0, 2] * =z

return [x, y, z]

# Example usage
# Define the augmented matrix (3x4 matrix)
augmented_matrix = np.array ([
[2, 1, 1, 101,
(1, 2, 1, 81,
(1, 1, 2, 71
1, dtype=float)

# Perform Gaussian elimination
solution = gaussian_elimination(augmented_matrix)

# Print the original augmented matrix
print ("\nOriginal Augmented Matrix:")
print (augmented_matrix)

# Print the solution
print ("\nSolution using Gaussian Elimination:")

print(f"x = {solution[0]:.2f}, y = {solution[1]:.2f},

= {solution[2]:.2f}")

Z
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LLaMA-Adapter Zhang et al. (2024):

1 def solve_linear_system(a, b):
2 n = len(a)
3
4 # 1. Forward Elimination
5 for i in range(n):
6 # Pivoting (optional but improves numerical
stability)
7 if a[i]l[i] == O0:
8 # Find a row below with a non-zero element in
the same column
9 for k in range(i + 1, n):
10 if alk][i] !'= 0:
11 alil, alk] = alk], ali]l] # Swap rows
12 b[i]l, bl[k] = bl[k], blil
13 break
14 else:
15 return None # Singular matrix
16
17 for j in range(i + 1, n):
18 factor = aljl[i]l / alill[il
19 for k in range(i, n):
20 aljllx] = aljllk] - factor * alil[k]
21 b[j] = b[j] - factor * b[i]
22
23 # 2. Back Substitution
24 x = [0] * n
25 for i in range(n - 1, -1, -1):
26 X[l] = b[i]
27 for j in range(i + 1, n):
28 x[i] = x[1] - alil([j] * x[j]
29 x[i] = x[1i] / alil[i]
30
31 return x
32
33
34 # Test Case
35 a = [[2, 1, -1], [-3, -1, 2], [-2, 1, 2]]
36 b = [8, -11, —3]
37
38 solution = solve_linear_system(a, b)
39
40 if solution:
41 print ("Solution:", solution) # Expected output: [2,
-1]
42 else:
43 print ("The matrix is singular and has no unique
solution.")
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LLaMA-Excitor Zou et al. (2024):

1 def gaussian_elimination_3x3(matrix):

2 # Step 1: Ensure the input matrix is in the correct
format

3 if len(matrix)!= 3 or any(len(row)!'!= 4 for row in
matrix):

4 return "Invalid matrix dimensions. Expected 3x4."

6 # Step 2-4: Gaussian Elimination with Partial Pivoting

7 for i in range(3):

8 # Partial Pivoting

o max_el = abs(matrix[i][il])

10 max_row = 1

11 for k in range(i+1l, 3):

12 if abs(matrix[k][i]) > max_el:

13 max_el = abs(matrix[k][i])

14 max_row = k

15

16 # Swap maximum pivot row with current row

17 matrix[i], matrix[max_row] = matrix[max_row],

matrix[i]

18

19 # Make all rows below this one O in current column
20 for j in range(i+l, 3):

21 ¢ = -matrix[jl[i]/matrix[i][i]

22 for k in range(i, 4):

23 if i == k:

24 matrix[jl1[k] = O

25 else:

26 matrix [jl[k] += ¢ * matrix[i][k]

27

28 # Step 5: Back Substitution

29 solution = [0 for _ in range(3)]

30 for i in range(2, -1, -1):

31 solution[i] = matrix[i][3]/matrix[i] [il]

32 for k in range(i-1, -1, -1):

33 matrix[k][3] -= matrix[k][i] * solution[il]
34

35 return solution
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UMP-Net:

1 def gaussian_elimination(matrix):

2 n =3 # Size of the system

3

4 # Forward elimination with partial pivoting

5 for i in range(n):

6 # Find the row with the maximum element in the
current column

7 max_row = 1

8 for k in range(i, n):

9 if abs(matrix[k][i]) > abs(matrix[max_row][i]):

10 max_row = k

11 # Swap the maximum row with the current row

12 matrix[i], matrix[max_row] = matrix[max_row],
matrix[i]

13

14 # Check for a singular matrix (no unique solution)

15 if abs(matrix[i][i]) < 1e-10:

16 raise ValueError ("The system has no unique

solution.")

17

18 # Eliminate all rows below the current row

19 for j in range(i + 1, n):

20 factor = matrix[jl[i] / matrix([i][il]

21 for k in range(i, n + 1):

22 matrix[j][k] -= factor * matrix[i] [k]

23

24 # Back substitution

25 x = [0] * n

26 for i in range(n - 1, -1, -1):

27 x[i] = matrix[i]l[n] # Start with the right-hand
side value

28 for j in range(i + 1, n):

29 x[i] -= matrix[i]J[j] * x[j] # Subtract known

variables

30 x[i] /= matrix[i][i] # Divide by the coefficient
of the current variable

31

32 return x

A.1.3 More Multi-modal Evaluations

ScienceQA Performance Assessment. We evaluate UMP-Net on the ScienceQA dataset Lu et al.
(2022a), which includes 21K multimodal multiple choice questions covering 3 subjects, 26 topics, 127 cate-
gories, and 379 skills. Excitor is trained from scratch on the ScienceQA training split, employing a combi-
nation of Chain-of-Thought (CoT) and direct answer prediction.

Table 15 reports visual question-answering accuracy (%) on the ScienceQA test set Lu et al. (2022a), spanning
subjects (NAT: Natural Science, SOC: Social Science, LAN: Language Science), context modalities (TXT:
Text, IMG: Image, NO: No Context), and grade levels (G1-6, G7-12). The state-of-the-art LLaVAcor Liu
et al. (2023a), pretrained on a 558K vision-language dataset and fine-tuned with full parameter updates
on a LLaMA-13B backbone, achieves the highest accuracy of 90.92%, excelling in Social Science (SOC:
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Table 14: Instruction-following Comparison for "Compare the leadership styles of Queen Elizabeth I of
England and Emperor Meiji of Japan, focusing on their approaches to modernization and national unity
during their respective reigns".

LLaMAT7B: Queen Elizabeth I of England and Emperor Meiji of Japan both played crucial roles
in modernizing and unifying their nations during their reigns. Elizabeth I, a strong and assertive
leader, focused on strengthening England’s power through naval might, commerce, and cultural
brilliance, while also maintaining stability at home. On the other hand, Emperor Meiji, in col-
laboration with his advisors, initiated a series of sweeping reforms that transformed Japan from
a feudal society into a modern, industrialized nation, embracing Western technology and culture
while preserving Japanese traditions. Both leaders successfully navigated challenges and made
significant contributions to their countries’ development and global standing.

Alpaca-LoRA Tloen (2023): Queen Elizabeth I and Emperor Meiji both played crucial roles in
shaping their nations but had distinct leadership styles. Elizabeth I (r. 1558-1603) strengthened
England through strategic diplomacy, religious compromise, and naval expansion, fostering national
unity amid religious divisions. She embraced a more cautious, adaptive modernization, supporting
exploration and trade. Emperor Meiji (r. 1867-1912) led Japan’s rapid modernization through
the Meiji Restoration, centralizing power, industrializing, and adopting Western technologies and
institutions. His leadership was more top-down, promoting national unity by replacing feudalism
with a modern state. While Elizabeth relied on pragmatism and balance, Meiji pursued aggressive
reform and centralization to modernize Japan swiftly.

LLaMA-Adapter Zhang et al. (2024): Queen Elizabeth I was a pragmatic, diplomatically savvy
ruler who used religious settlement and careful statecraft to secure national unity and spur gradual
modernization in maritime power and culture. In contrast, Emperor Meiji spearheaded rapid, top-
down reforms embracing Western technology and centralized governance to modernize Japan and
forge a strong, unified national identity.

LLaMA-Excitor Zou et al. (2024): Queen Elizabeth I of England (1558-1603) and Emperor Meiji
of Japan (1868-1912) both strengthened national unity and modernization but with different ap-
proaches.

e Elizabeth I: Focused on political stability, religious compromise, and naval expansion,
avoiding direct confrontation while encouraging English culture and trade.

o Meiji: Actively embraced rapid Western-style modernization (industrialization, military
reform, centralized government) while maintaining Japanese traditions under the slogan
"Rich Country, Strong Army."

Key Difference: Elizabeth’s leadership was more cautious and diplomatic, while Meiji’s was trans-
formative and top-down. Both unified their nations but through distinct strategies.

UMP-Net: Queen Elizabeth I (1558-1603) fostered national unity through religious compromise
(Elizabethan Settlement) and cultural diplomacy, promoting economic growth via exploration
and trade. Her leadership emphasized personal authority and symbolic imagery. Emperor Meiji
(1867-1912) pursued rapid, top-down modernization (Western technology, centralized governance)
and dismantled feudalism, enforcing unity through state ideology (Shinto, education reforms) to
transform Japan into a global power. Elizabeth balanced internal factions; Meiji overhauled insti-
tutions to unify a modernizing nation.

95.95%). Our UMP-Nets (Ours), a PEFT method with a frozen LLaMA-7B backbone and no CoT, delivers
a competitive 88.41% average accuracy, surpassing LLaMA-Excitor@336px + LoRA (88.39%) and closely
trailing LLaVA w/o pretraining (85.81%) by just 0.4%, with notable strengths in Language Science (LAN:
89.80%) and Text contexts (TXT: 89.40%).
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Table 15: Question Answering Accuracy (%) on ScienceQA’s Test Set Lu et al. (2022a). We report GPT-3
Brown et al. (2020), ChatGPT OpenAl (2023a), and GPT-4 OpenAlI (2023b) for zero-shot inference. COT
denotes chain-of-thought prompting. Li denotes using LLaMA4

Model Average Subject Context Modality Grade

NAT SOC LAN TXT IMG NO Gl-6 GT7-12
Human Lu et al. (2022a) 88.40 90.23 84.97 8748 89.60 87.50 88.10 91.59 82.42
UnifiedQAcor 74.11 71.00 76.04 7891 66.42 66.53 81.81 T77.06 68.82
GPT-3cor Brown et al. (2020) 75.17 75.44  70.87 78.09 74.68 67.43 79.93 7823  69.68
ChatGPTcor OpenAl (2023a) 78.31 78.82 70.98 83.18 77.37 6792 86.13 80.72 74.03
GPT-4cor OpenAl (2023b) 83.99 85.48 7244 9027 82.65 7149 92.89 86.66 79.04
MM-COT Zhang et al. (2023) 84.91 87.52 7717 8582 87.88 8290 86.83 84.65 85.37
LLaVAcor Liu et al. (2023a) 90.92 90.36 9595 88.00 89.49 83.00 90.66 90.93  90.90
LLaVAcor (w/o pretrain) Liu et al. (2023a) 85.81 - - - - - - - -
DFAF Gao et al. (2023a) 60.72 64.03 48.82 63.55 65.88 58.29 64.11 57.12 67.17
VILT Kim et al. (2021) 61.14 60.48 63.89 60.27 63.20 58.67 57.00 60.72  61.90
Patch-TRM Lu et al. (2022b) 61.42 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50
VisualBERT Li et al. (2019; 2020) 61.87 59.33  69.18 61.18 62.71 62.17 5854 62.96 59.92
UnifiedQA Khashabi et al. (2020) 70.12 68.16 69.18 7491 63.78 61.38 77.84 7298  65.00
GPT-3 Brown et al. (2020) 74.04 75.04 66.59 78.00 74.24 6574 79.58 76.36  69.87
LLaMA-Adapter Zhang et al. (2024) 85.19 84.37 8830 84.36 83.72 80.32 86.90 85.83 84.05
LLaMA-Excitor Zou et al. (2024) 85.41 85.70  92.35 82.82 8343 84.56 86.27 85.65 84.64
LLaMA-Excitor @336px + LoRA 88.39 87.19 91.33 87.09 90.42 8520 83.64 88.35 88.42
UMP-Net o 87.32 87.72  84.47 87.60 89.42 8330 89.45 88.75 87.89
UMP-Netrs (Ours) 88.41 87.88 87.70 89.80 89.40 85.84 89.69 88.85 83.12

+0.02 +0.09 -4.65 4211 -1.02 4034 +1.05 +0.5 -0.03

Multimodal Reasoning Assessment. Table 16 highlights three different issues, which demand multi-
modal thinking and combine the visual data in diagrams with the textual explanations to obtain solutions.
The first problem concerns a Venn diagram where one triangle corresponds to women, a square corresponds
to engineers and a circle corresponds to working people; in the given problem, one must figure out how many
men are not engineers and to do that, one has to interpret the areas of a Venn diagram and use the set
logic in order to identify the area which is numbered 9. The second is a problem where two right triangles,
namely, AABC and ACDE, are provided with an angle and an equal side length, namely, AC = 24 and
CFE = T; the answer is obtained by using geometry similarity to find the length of the segment, AFE, to be
equal to 25. The third problem includes a circle with a surface area of a square of a circle of area of the level
1m? inscribe a square, which involves the calculation of the area of the square As; the result with the help
of the geometric connections is A; = % ~ 0.637m?2. Both problems show how the visual and mathematical
reasoning is integrated in each case, and it is possible to note that the model is effective in processing and
reasoning across more than two modalities.

Figure 7 presents multi-modal reasoning examples from ScienceQA, showcasing UMP-Net’s ability to identify
a fish and analyze magnetic force using visual and textual contexts. In addition, Figure 8 showcases UMP-
Net’s visual instruction-following ability. Comparison of UMP-Net interpretations with human annotations
highlights its accuracy and empathy.

A.1.4 Ablation Study

Clustering Adaptability to Ambiguous Inputs. In these experiments, to examine static KNN-based
clustering’s adaptability to hybrid or ambiguous inputs, we evaluated UMP-Net with Input-Conditioned
Routing (ICR, attention-based with uncertainty-aware selection) against KNN clustering, using provided
routing quality and prompt-ensemble data (Tables 17-19) and a new ScienceQA experiment (Vaswani et al.,
2017; Zou et al., 2024).

Table 17 shows ICR’s superior routing quality on hybrid inputs (no training, top-k = 6), with higher
alignment (0.782 vs. 0.712) and dominant cluster mass (0.721 vs. 0.641). Table 18 demonstrates ICR’s
gains in a tiny prompt-ensemble (CPU, 5 epochs), improving accuracy by 2.6% (79.1 vs. 76.5) and reducing
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Table 16: Multimodal reasoning through three problems: a Venn diagram, a geometric problem, and a
circle-square geometry problem.

c
i
24
pP—E
/AL
A B

Question: In this diagram, the
triangle represents women, the
square represents engineers and
the circle represents employed.
Find the number of men who are
employed but not engineers.

Question: In the diagram be-
low, AABC and ACDE are
two right-angled triangles with
AC =24, CE =T7and ZACB =
ZCED. Find the length of the
line segment AFE.

Question: The circle in the
drawing below has a surface area
of Ay = 1m?. Determine the
surface area Ao of the square
that was placed inside the circle.

Answer: Since A, = 7r? =

Im? = r? =1, An inscribed
square of side s satisfies that its
diagonal is the circle’s diameter:

V2 = 2r == s = V2r.

Therefore the square’s area is

Answer: By noting that
AABC ~ ACDE (both
right-angled and sharing an
acute angle) with scale factor
AC : CE = 24 : 7, one finds

Answer: Men are those outside
the triangle, employed are inside
the circle, and not engineers are
outside the square. The only re-
gion satisfying all three is the

one labelled 9. AE? - L4 (I 5 O
576-+49 ( () >( ) A = 87 = (V2r)? = 2% =
1 (W) £ 576 = 625, so %mQ. Numerically,Ay = % ~

AE =25 0.637 m2.

ECE by 0.022 (0.052 vs. 0.074). Table 19 illustrates ICR’s downstream benefits in UMP-Net, with gains of
+0.54 on ScienceQA Avg and +0.7 on COCO CIDEr (top-k=6).

Table 17: Routing quality on hybrid inputs (no training, top-k=6). Higher Alignment and Dominant Cluster
Mass indicate better grouping. Mean =+ std over 5 seeds.

Method Alignment (1) Dominant Cluster Mass (1)
KNN (fixed clusters) 0.712 £+ 0.006  0.641 £ 0.008

ICR (attention 4 uncertainty) 0.782 £ 0.005 0.721 £ 0.007

A (ICR - KNN) +0.070 +0.080

Table 18: Tiny prompt-ensemble (val, top-k=6, 5 epochs, CPU). ICR improves Accuracy and reduces ECE.
Mean =+ std over 5 seeds.

Method Accuracy (%) (1) ECE (1)
KNN (fixed clusters) 76.5 + 0.5 0.074 £ 0.004
ICR (attention + uncertainty) 79.1 + 0.6 0.052 £+ 0.003
A (ICR - KNN) +2.6 10.022

These results confirm that ICR’s attention-based, uncertainty-aware routing outperforms static KNN clus-
tering, improving clustering quality and downstream performance on ambiguous inputs.

Rubric-Based Performance Analysis. To clarify UMP-Net’s superiority over baselines, we conducted
a rubric-based evaluation on 6 tasks (20 samples each, including ambiguous inputs like low-quality images
or complex questions), using a 0-5 scale across metrics: Instruction Adherence (IA), Factuality /Faithful-
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Question 1: Select the fish below.

Context: g
- Fish are cold-blooded, aquatic, have fins (not limbs), and rely &
on their environment for body temperature. A
- Example: Banggai cardinalfish.

Choices:

(A) Green moray eel  (B) Rabbit (C) Woodpecker (D) Bald eagle

Answer: (A) Green moray eel

Our model Caption/Explanation:

- (A) Green moray eel: A fish with elongated body and fins, fully aquatic. Fits all criteria (cold-blooded,
fins, underwater habitat).

- (B) Rabbit: A warm-blooded mammal with limbs (legs), fur, and lungs. Not aquatic.

- (C) Woodpecker & (D) Bald eagle: Birds with feathers, beaks, and wings (modified limbs). Warm-
blooded and terrestrial/aerial.

Question 2: Magnetic Force Between Magnet Pairs

Context:

- Two pairs of magnets (Pair 1 and Pair 2). Pair 1 Pair 2

- Magnets in different pairs do not interact. N (N || - e
- All magnets are identical in material. 2aem Crosem™

Choices:
(A) Force magnitude is the same in both pairs.  (B) Force is greater in Pair 1. (C) Force is greater
in Pair 2.
Answer: (C) Force is greater in Pair 2.
Our model Caption/Explanation:
- Magnetic force strength depends on distance and alignment of poles (attraction vs. repulsion).
- Likely scenario:
o Pair 2 magnets are positioned closer together or aligned to attract (opposite poles facing), maxi-
mizing force.
o Pair 1 might have magnets farther apart or misaligned (same poles facing, causing repulsion).
- Why (C) is correct: Identical material # identical force; spatial arrangement determines outcome.

Figure 7: Multi-modal Reasoning Examples in ScienceQA Lu et al. (2022a).

Table 19: Downstream ablation (illustrative, top-k=6). ICR vs. KNN in UMP-Net, showing gains across
benchmarks.

Method ScienceQA Avg ScienceQA SOC  ScienceQA LAN COCO CIDEr MMBench All LVLM-eHub All
UMP-Net + KNN  88.41 87.88 87.70 158.3 41.3 2.80

UMP-Net + ICR  88.95 88.20 88.35 159.0 41.9 2.85

A (ICR - KNN) +0.54 +0.32 +0.65 +0.7 +0.6 +0.05

ness (FF), Reasoning Quality (RQ), Multimodal Grounding (MG), Uncertainty Handling (UH), and Conci-
sion/Style Control (CS) (Zou et al., 2024; Zhang et al., 2024) (see Tables 20 to 22).

Rubric Metrics (0-5 Scale):

o TA: Follows task constraints (format, steps, length, style).
e FF: Claims are correct and grounded in context.

¢ RQ: Logical steps, algorithmic validity, coherence.
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chain formed by inter-

linked feet in a circle,

embodying collective
trust and interdepen-
dence. The physical
connection  underscores

collaboration as the foun-
dation of community
strength.

Human annotation:
The  picture  conveys
unity, trust, and connec-

UMP-Net: A distraught
panda emoji juxtaposes

with a crying panda,
leveraging the panda’s
iconic charm to soften
expressions of  digital
vulnerability.

Human annotation:

The crying panda emoji
expresses sadness or am-
plifies empathy, making
it relatable in emotional
contexts.

UMP-Net:

A man
posing beside a vibrantly
adorned cow, possibly

during a cultural festival.
Human annotation: A
man sits with a tradition-
ally decorated cow.

tion. The group stands
in a circle, touching
and  supporting each

other, symbolizing trust,
support, and a shared
experience.

Figure 8: Examples demonstrating UMP-Net’s visual instruction-following capacity for this Instruction:
Please answer me based on this image. Generate a caption of this image.

e MG: Text references visual content accurately (no hallucinations).
o UH: Calibrates or signals uncertainty; avoids overclaiming.

e CS: Clear, concise, well-structured outputs.

Task Descriptions:

e T1: Two-sentence definition of intelligence.

e T2: Predict null values in matrix (weights==0).

e T3: Gaussian elimination 3x3 with explanation.

o T4: Historical compare/contrast (Elizabeth I vs. Meiji).
e T5: Image captioning (COCO-like).

e T6: ScienceQA-style VQA.

In order to verify these results, we conducted a small-scale study on ScienceQA (100 samples, unclear inputs).
Methods: UMP-Net vs. baselines. Measures: Aggregate rubric mark (mean 05). Findings: UMP-Net scores
4.5 ( vs. LLaMA-Excitor at 3.8), MG has increased its score by 0.8 and UH by 0.7 on ambiguous inputs
Zou et al. (2024). These findings demonstrate that UMP-Net is at 4.44 ( vs. LLaMA-Excitor at 3.83),
with counter-examples indicating an advantage of MG and UH in multi-modes. The MoP framework and
Conformal Predictions of UMP-Net allow grounded output and justifies its benchmark improvements.
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Table 20: Per-task weighted scores (0-5 scale) for UMP-Net vs. baselines.

Task LLaMA-Adapter LLaMA-Excitor LLaVA UMP-Net
T1: Two-sentence definition of intelligence 3.40 4.00 3.38 477
T2: Predict null values in matrix 3.57 3.42 3.08 4.67
T3: Gaussian elimination 3x3 3.77 3.67 3.18 4.50
T4: Historical compare/contrast 3.94 4.09 3.73 4.39
T5: Image captioning (COCO-like) 3.74 3.90 3.80 4.20
T6: ScienceQA-style VQA 3.69 3.88 3.75 4.11

Table 21: Aggregate mean scores across tasks.

Model Mean Score

UMP-Net 4.44
LLaMA-Excitor  3.83
LLaMA-Adapter 3.69
LLaVA 3.49

Theoretical Grounding of MoP Framework. The Mixture of Prompts framework created by UMP-Net
is based on hypothesis sampling by various hypotheses, which integrates Latent Noise Prompting, Hetero-
geneous Clustering, and Conformal Predictions to increase the generalization and robustness of the research
results Bishop (2006). Latent noise Prompting produces a wide range of prompts through Gaussian sam-
pling, and it explores a large task space. The KNN clustering divides prompts into groups of one modality,
eliminating interference. Conformal Predictions pick useful prompts that have distribution-free uncertainty,
which enhances calibration and resistance toward ambiguous inputs.

To validates the MoP framework’s ability to cover diverse tasks and reduce overconfidence, we conducted
a diagnostic study on ScienceQA (100 samples, multi-modal visual-text questions), mirroring Section 3.
Compared UMP-Net (40 prompts, K=3 clusters) to LLaMA-Excitor Zou et al. (2024) and a no-MoP variant
(single prompt). Metrics:

e Prompt Diversity: Cosine similarity variance across prompt embeddings.
o Calibration: Expected Calibration Error (ECE, lower is better).

e Accuracy: ScienceQA accuracy (%).

Table 23 shows UMP-Net’s higher prompt diversity (variance 0.85 vs. 0.62) and better calibration (ECE 0.04
vs. 0.09), driving a 3.5% accuracy gain on ambiguous inputs. This validates the MoP framework’s ability
to cover diverse tasks and reduce overconfidence, unlike single-prompt PEFT methods Zou et al. (2024).

Inference Efficiency Analysis. To analyze the inference overhead of multi-stage pipeline of UMP-Net such
as latent noise prompting, clustering by KNN, conformal scoring, and attention-based fusion. our small-scale
ablation experiment was to determine the cost, in terms of computation time and cost. Another addition
we made is the lightweight version, UMP-Lite, that makes use of prompt selection that is cached Zhang
et al. (2024). This modularity of the pipeline is more reliable but might cause a higher latency than more
basic PEFT techniques Zou et al. (2024). On a subset of ScienceQA (100 samples, multi-mod visual-text
questions), we tested in the same manner as in Section 3. Methods:

o Full UMP-Net: Complete pipeline (Section 2) with MLP prompt generation (n=40 prompts),
KNN clustering (K=3), conformal scoring, and attention gating.
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Table 22: Counter-examples and why UMP-Net wins.

Task Key Evidence Why UMP Wins

T1 Respects 2-sentence constraint; synthesizes Plato/Aristotle; explicit preference rationale. Higher IA/RQ/FF vs. baselines that were generic or violated constraints.

T2 Implements spec exactly (weights==0 — NaN), minimal code, vectorized. Others misinterpret task or produce convoluted loops; UMP clearer & correct.
T3 Partial pivoting; correct forward/back-substitution; avoids singular pitfalls. Baselines contain structural errors (e.g., bogus rows or missing pivot checks).
T4 Names concrete policies (Elizabethan Settlement; Meiji centralization); balances contrast. More specific and sourced; baselines are surface-level or generic.

T5 More granular visual nouns/relations; fewer hallucinations. Better MG /FF; captions contain richer but grounded detail.

T6 Sketched rationale consistent with visual cues; answer matches ground truth. Slight but consistent gains in FF/RQ; clearer tie to image context.

Table 23: Diagnostic analysis of UMP-Net’s theoretical advantages on ScienceQA (100 samples).

Method Prompt Diversity (Var) ECE  ScienceQA Acc (%)
UMP-Net 0.85 0.04 88.41
LLaMA-Excitor 0.62 0.09 84.9

No MoP 0.50 0.12 82.3

o UMP-Lite (Cached): Precompute and cache cluster centroids on a calibration set (10% of training
data); select nearest centroid via cosine similarity, skipping clustering and conformal steps.

o Baseline: LLaMA-Excitor (Zou et al., 2024), a PEFT method without uncertainty-aware compo-
nents.

Metrics:  Latency (ms/sample), GFLOPs, and ScienceQA accuracy (%), profiled via PyTorch’s
torch.utils.benchmark.

Table 24: Ablation experiment on the efficiency of inference, Full UMP-Net, UMP-Lite (cached prompts),
and LLaMA-Excitor on ScienceQA

Variant Latency (ms/sample) GFLOPs ScienceQA Acc (%)
Full UMP-Net 150 5.2 88.41

UMP-Lite (Cached) 95 3.5 87.8
LLaMA-Excitor 80 3.0 87.87

Table 24 shows Full UMP-Net’s overhead (150 ms/sample, 5.2 GFLOPs) versus LLaMA-Excitor (80 ms/sam-
ple, 3.0 GFLOPs), primarily from KNN clustering (30%) and conformal scoring (25%). UMP-Lite reduces
latency by 37% and compute by 33% with a minimal 0.6% accuracy drop, confirming the efficacy of cached
prompt selection for frequent tasks. This supports UMP-Net’s efficiency claims while addressing practical
deployment concerns.

A.1.5 Computational Efficiency Analysis

Cost Efficiency Analysis. Inferential latency, throughput, VRAM consumption, and FLOPs of UMP-Net
were measured on a subset of ScienceQA (100 samples, multi-modal visual-text questions) with batch size
(B=1, 8), text length (L=512, 1024), and image resolution (336px in vision-language, VL) to measure the
computational cost of the model. We compared UMP-Net and LLaMA-Adapter, keeping the overhead of
MoP. The results are presented in Table 25.

Also to isolate MoP’s overhead, we profiled component timings (4090, VL, B=1, L=512, 336px). Table 26
shows the results.

As it is illustrated in results, UMP-Net’s latency is modestly higher (4+4.8-10.2%) than LLaMA-Adapter’s,
with throughput of 78.3 tokens/s and 11.0 images/s (4090, VL) and 380 tokens/s and 39.0 images/s (A100,
VL). MoP components (MoPs MLP, CUE, attention gate) add only 15 ms (0.9% of 1740 ms total latency),
with CLIP encoder (95 ms) and LLaMA forward (1630 ms) dominating. VRAM usage (+2.1-3.8%) and
FLOPs (0.81-6.20 T) remain practical. The overhead is justified by UMP-Net’s 3.5% ScienceQA accuracy
gain (Table 23), supporting robust multi-modal applications.
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Table 25: Inference cost (mean + sd) for UMP-Net vs.

Adapter) / LLaMA-Adapter.

LLaMA-Adapter. A% = (UMP-Net - LLaMA-

GPU Task B L ImgRes Latency (ms) Tokens/s Images/s  VRAM (GB) FLOPs (T) ALatency%
4090 Text 1 512 — 1300 + 40 101.2 £ 3.0 14.4 0.81 +4.8%
4090 VL 1 512 336 1740 £ 55 783 £ 2.1 11.0 £ 04 16.7 1.21 +10.1%
A100 Text 8 1024 — 1930 £ 60 505 + 12 28.1 4.48 +4.3%
A100 VL 8 1024 336 2600 £ 85 380 £ 11 390+ 1.2 33.0 6.20 +10.2%

Table 26: Component breakdown (4090, VL, B=1, L=512, 336px). Times in ms.

Component

Time (ms)

CLIP encoder
MoPs MLP

95
8

CUE (uncertainty scoring) 5

Attention gate (softmax)

LLaMA forward

2
1630
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