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Figure 1: Samples of the SISPI dataset for social bias assessment in cross-modal text-image retrieval models. We show 8 relevant
images for two text queries: “A photo of a CEO” (top row) and “A photo of a nurse” (bottom row). Images shown for each query
are generated with Stable Diffusion XL [62] using the same initial seed, so that the joint distribution of unprotected attributes
(background, lighting, pose, etc.) is roughly equal across protected attribute (ethnicity and gender) groups.

Abstract
In this paper, we study social bias in cross-modal text-image re-
trieval systems, focusing on the interaction between textual queries
and image responses. Despite the significant advancements in cross-
modal retrieval models, the potential for social bias in their re-
sponses remains a pressing concern, necessitating a comprehensive
framework for assessment and mitigation. We introduce a novel
framework for evaluating social bias in cross-modal retrieval sys-
tems, leveraging a new dataset and appropriate metrics specifically
designed for this purpose. Our dataset, Social Inclusive Synthetic
Professionals Images (SISPI), comprises 49K images generated using
state-of-the-art text-to-image models, ensuring a balanced repre-
sentation of demographic groups across various professional roles.
We use this dataset to conduct an extensive analysis of social bias
(gender and ethnic) in state of the art cross-modal retrieval deep
models, including CLIP, ALIGN, BLIP, FLAVA, COCA, and many
others. Using diversity metrics, grounded in the distribution of dif-
ferent demographic groups’ images in the retrieval rankings, we
provide a quantitative measure of fairness, facilitating a detailed
analysis of models’ behavior. Our work sheds light on biases present
in current cross-modal retrieval systems and emphasizes the impor-
tance of training data curation, providing a foundation for future
research and development towards more equitable and unbiased
models. The dataset and code of our framework is publicly available
at https://sispi-benchmark.github.io/.
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1 Introduction
Cross-modal retrieval systems enable the retrieval of information
across different modalities. The text-image retrieval task involves
using a text query to find matching images, and vice versa. Such
systems have gained significant momentum in recent years as a
response to the challenge of searching for data in increasingly larger
multi-modal databases.

State-of-the-art deep learning cross-modal retrieval models [1,
45–47, 63] achieve remarkable performance in standard bench-
marks, such as MS-COCO [52] and Flickr30k [84]. As reliance on
these systems increases in a myriad of widespread applications, it
is crucial to identify and quantify potential social biases – such as
incorrectly and consistently portraying certain activities or roles
as predominantly associated with a particular ethnicity and/or gen-
der – reinforcing non-inclusive stereotypes. Understanding and
addressing these biases is essential to ensure these systems are
fair, unbiased, and representative of the diverse users they serve.
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Efforts like implementing fairness metrics, creating new datasets,
and conducting diversity audits are steps towards mitigating these
biases.

Although social biases are being increasingly studied in different
areas of machine learning [4, 6, 11, 12, 21, 28, 32, 67, 76, 78] and
information retrieval [2, 16, 23, 42, 58, 60, 61, 86], there is lack of a
standard procedure to measure them systematically in cross-modal
image-text retrieval models. One of the main challenges in this
regard is the difficulty of obtaining an adequate large collection of
diverse image-text pairs. Manually crafting a perfectly balanced
dataset across various demographic groups, roles, and activities is
a complicated task. Furthermore, even if such a dataset could be
assembled, it could inadvertently contain visual artifacts – such as
variations in background, human pose, clothes’ color, etc. – that
might affect the models’ performance for different protected demo-
graphic groups [57].

In this paper, we propose a novel solution to address the afore-
mentioned challenges by using synthetically generated data to mea-
sure social bias in cross-modal retrieval models. We take inspiration
from related work that uses synthetic faces to benchmark face anal-
ysis [3] and recognition [50] systems. We build on their ideas, but
address the specificities of cross-modal text-image retrieval models.
By leveraging state of the art text-to-image generative models [62],
we create a realistic, diverse, and balanced synthetic dataset of
text-image pairs that circumvent the limitations of manual data
collection methods. This approach allows us to precisely control
not only protected attributes (ethnicity and gender) but also the
unprotected attributes such as background settings, human poses,
and object contexts.

The contributions of this paper include: (1) Introducing a frame-
work to assess gender and ethnicity bias in cross-modal text-image
retrieval, featuring a synthetic dataset and a well-established fair-
ness metric; (2) Conducting an empirical analysis of state-of-the-art
models to evaluate social bias and its relation to training datasets;
and (3) Exploring the trade-offs between retrieval performance and
fairness, setting the stage for future work on mitigating multiple
social biases.

2 Related Work
Image-Text Retrieval. Image-text retrieval models align visual
and textual representations within a shared subspace, enabling simi-
larity calculations via simple distance metrics. Common approaches
employ metric learning losses to achieve this alignment [24, 44, 48,
53, 77].

Recently, vision-language pre-training methods [19, 54, 55, 75,
88] have advanced cross-modal representation learning by pre-
training on large and diverse datasets. This approach has not only
improved image-text retrieval but also enhanced performance across
various downstream tasks, such as visual question answering, im-
age captioning, zero-shot classification, etc. Models like CLIP [63]
and ALIGN [37] pushed the boundaries of this paradigm by scal-
ing up vision-language representation learning with contrastive
objectives on millions of (noisy) image-text pairs sourced from the
Internet.

Social bias in cross-modal retrieval. Despite recent advance-
ments in cross-modal image-text retrieval, a standard framework for

systematically assessing social bias in these models is still lacking.
This is particularly concerning as many of these models are trained
on large, uncurated datasets known to contain non-inclusive biases
and other problematic characteristics [5, 7–9, 27].

While most state-of-the-art vision-language pretraining meth-
ods acknowledge that their models are trained on noisy and bi-
ased datasets, few have rigorously assessed the impact of these
biases on model behavior [7]. Radford et al. [63] explored potential
social biases in the CLIP model within a zero-shot image classi-
fication context but did not extend this analysis to cross-modal
retrieval. Similarly, the FACET (FAirness in Computer Vision Eval-
uaTion) benchmark [31] focuses on image classification, object
detection, and segmentation, without addressing cross-modal re-
trieval. FACET includes 32k images from the Segment Anything
1 Billion (SA-1B) dataset [41], annotated with demographic labels
by experts. In contrast, the PHASE (Perceived Human Annotations
for Social Evaluation)[27] provides demographic annotations for
a 19K subset of the Conceptual Captions (CC) dataset[71], offer-
ing a more tailored approach for evaluating text-image retrieval
models. These annotations, combined with the original CC dataset,
enable assessment of model performance variations across different
demographic groups in cross-modal retrieval scenarios.

While FACET, PHASE, and similar efforts [70, 89, 90] are impor-
tant steps towards fairness evaluation, they also have limitations
due to their origin from existing real datasets. Besides the inherent
costs of manual annotations, one major issue is the demographic
imbalance. For instance, in FACET, the representation skews heavily
towards more stereotypically maleness versus femaleness annota-
tions (72% vs. 26%); and PHASE overrepresents White individuals
compared to Middle Eastern or Southeast Asian descent (2,231 vs.
16 images). Another critical aspect is the challenge of estimating
the causal effect of protected attributes on algorithmic bias. To
discern algorithmic bias from dataset biases, it is essential to main-
tain a roughly equal distribution of other non-protected attributes,
like background, lighting, and pose, across different social groups.
Achieving this balance is impossible with observational data – that
we cannot manipulate or intervene in – and all existing datasets
fall short in meeting this requirement.

Synthetic datasets. Synthetic data generation has been a key focus
in deep learning, addressing challenges in annotating data for tasks
like image segmentation [40, 65], optical flow estimation [14, 56],
OCR [30, 35, 43], and information retrieval [13, 22, 36]. Synthetic
data not only reduces manual annotation efforts but also enriches
training datasets, which is vital when real-world data acquisition is
impractical or privacy-compromised.

Synthetic data has also been instrumental in creating controlled
environments formodel evaluation. For example, the CLEVR dataset [38],
systematically generates images and questions that rigorously test
various aspects of visual reasoning in VQA. Similarly, the bAbI QA
tasks [79] are designed to test language understanding and reason-
ing via question answering. This demonstrates how synthetic data
can provide highly structured and controlled settings, enabling the
detailed assessment of models’ capabilities.

In the specific domain of fairness evaluation using synthetic
data, Balakrishnan et al. [3] and Liang et al. [50] used syntheti-
cally generated faces to benchmark face analysis and recognition
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systems respectively, revealing lower accuracy for certain demo-
graphic subgroups. The use of synthetic data in these works ad-
dresses several challenges inherent in sampling real-world datasets.
Obtaining a sufficiently large number of individuals for each pro-
tected demographic group is difficult when relying on real data.
Moreover, ensuring an equal distribution of unprotected attributes
(such as background, lighting, pose, etc.) across different groups is
crucial to avoid misinterpreting dataset biases as algorithmic biases.
This level of control is nearly impossible with observational data,
which lacks the ability to be manipulated for such specific needs.
By using a state-of-the-art Generative Adversarial Network (GAN)
with explicit control over geometry and pose they were able to
provide a more accurate and fair assessment of algorithmic perfor-
mance across diverse demographic groups. In this paper, we take
inspiration from prior works leveraging synthetic data for fairness
evaluation, but focus on text-image retrieval systems.

3 Social bias assessment in text-image retrieval
Our bias assessment framework is built around a reference text-
image dataset D = (𝑞1,I1), (𝑞2,I2), . . . , (𝑞𝑁 ,I𝑁 ), where each 𝑞𝑖
represents a textual query, and I𝑖 = 𝐼1

𝑖
, 𝐼2
𝑖
, . . . , 𝐼𝑀

𝑖
is a set of 𝑀

images relevant to 𝑞𝑖 . This dataset is structured with two specific
requirements: (1) all textual queries (𝑞𝑖 ) must use gender-neutral
language, and (2) image sets (I𝑖 ) must show a balanced represen-
tation of different demographic groups in terms of gender and
ethnicity. More formally, given a set of protected attribute values
𝐴 = {𝑎1, . . . , 𝑎𝑙 } (for gender and ethnic demographic groups), I𝑖
must have 𝑀

𝑙
images having each possible attribute value in 𝐴.

Details on how we build such a dataset are provided in the next
section.

State-of-the-art text-image retrieval models learn embedding
functions 𝜙𝑞 for the text queries and 𝜙𝐼 for the images. These
functions project their respective inputs into a shared embedding
space, aiming to position the representation of a text query 𝜙𝑞 (𝑞)
and an image 𝜙𝐼 (𝐼 ) closely together if, and only if, the image 𝐼
is relevant to the query 𝑞. The similarity between embeddings,
quantified using a similarity metric 𝑠𝑖𝑚(𝜙𝑞 (𝑞), 𝜙𝐼 (𝐼 )), guides the
retrieval of relevant images in response to a given text query. Let
𝑅(𝑞,I) denote the retrieval ranking for a query 𝑞 obtained as:

𝑅(𝑞,I) = argsort𝐼 ∈I [𝑠𝑖𝑚(𝜙𝑞 (𝑞), 𝜙𝐼 (𝐼 ))] (1)
where argsort is a sorting operation that orders the images in I in
descending order by their similarity scores.

To assess the fairness of these rankings, we can leverage our
datasetD. Considering the balanced demographic representation in
each subset I𝑖 , we apply the model to generate a retrieval ranking
𝑅(𝑞𝑖 ,I𝑖 ) for each query 𝑞𝑖 . An inclusive and fair model should
produce a ranking that mirrors the demographic balance of I𝑖 . We
evaluate this using a fairness metric based on Kullback-Leibler
divergence, comparing the model’s ranking against the expected
uniform distribution of protected attributes in I𝑖 .

Consider two discrete distributions: 𝐷𝑅 (𝑞𝑖 ,I𝑖 ) [:𝑛] and 𝐷𝑟 . The
former, 𝐷𝑅 (𝑞𝑖 ,I𝑖 ) [:𝑛] , assigns to each attribute value in 𝐴 the pro-
portion of images with that value within the top 𝑛 images of the
ranked list 𝑅(𝑞𝑖 ,I𝑖 ). Conversely, 𝐷𝑟 corresponds to the desired
uniform distribution of these attribute values. By computing the

KL-divergence between these distributions at each list position 𝑛,
we measure the deviation from the desired attribute distribution.

We adopt a normalized discounted cumulative form of this met-
ric [29, 64, 82]. This results in a non-negative metric where higher
values indicate a greater disparity between 𝐷𝑅 (𝑞𝑖 ,I𝑖 ) and 𝐷𝑟 . A
zero value, the ideal case, reflects identical distributions at every
rank position 𝑛. Formally, the normalized discounted cumulative
KL-divergence (NDKL) for 𝑅(𝑞𝑖 ,I𝑖 ) is defined as follows:

𝑁𝐷𝐾𝐿(𝑅(𝑞𝑖 ,I𝑖 )) =
1
𝑍

|𝑅 (𝑞𝑖 ,I𝑖 ) |∑︁
𝑛=1

𝑑𝐾𝐿(𝐷𝑅 (𝑞𝑖 ,I𝑖 ) [:𝑛] | |𝐷𝑟 )
log2 (𝑛 + 1) (2)

were 𝑑𝐾𝐿(𝐷1 | |𝐷2) = ∑
𝑗 𝐷1( 𝑗) log𝑒

(
𝐷1( 𝑗 )
𝐷2( 𝑗 )

)
is the KL-divergence

between distributions 𝐷1 and 𝐷2. The normalization term 𝑍 is
defined as 𝑍 =

∑ |𝑅 (𝑞𝑖 ,I𝑖 ) |
𝑛=1

1
log2 (𝑛+1)

, ensuring the metric is scaled
appropriately for comparison across different queries and rankings.
Compared with other existing fairness metrics [64], 𝑁𝐷𝐾𝐿 has the
advantage of allowing multinomial protected attributes and soft
group association, enabling a comprehensive assessment of fairness
beyond binary attributes.

4 SISPI Dataset
Creating a real dataset that meets our social bias assessment frame-
work’s criteria is challenging, requiring meticulous manual work
and making it difficult to find suitable images for certain queries. To
overcome these challenges and ensure a diverse and robust dataset,
we leverage state-of-the-art image generationmodels. Thesemodels
can produce highly realistic images from textual descriptions, prov-
ing valuable for dataset creation across various tasks [10, 17, 51, 83].
For our dataset, named SISPI (Social Inclusive Synthetic Profession-
als Images), we used the Stable Diffusion XL model [62].

To construct the text prompts for image generation, we use a tem-
plate prompt: “An image of a <ETHNICITY> <GENDER>
<PROFESSION>”. The placeholders <ETHNICITY> <GENDER>
and <PROFESSION> are substituted respectively with words from
ethnicity and gender protected attribute sets ({“asian”, “black”, “latin”,
“white”} and {“male”, “female”}) and from a comprehensive list of 194
professions provided by Saunders et al. [66] (e.g. {“engineer”, “assem-
bler”, “teacher”, . . . }), ensuring a broad and inclusive representation
of various roles, occupations, and activities. This systematic ap-
proach enables us to generate a diverse and balanced set of images
for each profession, aligning with the fair and balanced criteria of
our framework.

In total the SISPI dataset comprises 49, 664 images: for each of
the 194 professions in the list collected by Saunders et al. [66], we
create 8 prompt versions with all possible combinations of gender
and ethnicity protected attributes’ values, and generate 32 images
with each prompt (194 × 8 × 32 = 49, 664). Crucially, for each set
of 8 images corresponding to a given profession, we use the same
seed to initialize the image generation process. This approach al-
lows us to precisely control the protected attributes – i.e., ethnicity
and gender – while keeping the unprotected attributes, such as
background settings, human poses, and object contexts, consistent
across each set. This method ensures that variations in the images
are attributable primarily to the protected attributes, rather than
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Query: "A photo of a programmer"

Query: "A photo of a worker"

Figure 2: Samples of the SISPI dataset for social bias assessment in text-image retrieval systems. For each text query we show 8
relevant images that originate from the same seed.

unrelated visual artifacts. Finally, the 194 queries (one per profes-
sion) are in the same form as the prompts used to generate the
images, but protecting (hiding) the gender and ethnicity protected
attributes’ values. Figures 1 and 2 illustrate some examples of the
SISPI dataset. The dataset and code of our framework is publicly
available at https://sispi-benchmark.github.io/.

5 Experiments
In this section, we evaluate text-image retrieval models using our
bias assessment framework with the SISPI dataset and the NDKL
metric. The experiments are divided into two main parts. The first
part assesses fairness across various CLIP-based models, which dif-
fer in size, training data, and methodology. The second part expands
the analysis to include other leading retrieval architectures, pro-
viding a broader perspective on their fairness performance on the
SISPI dataset. Following these evaluations, we present an in-depth
discussion of the results, highlighting key insights, and analyzing
specific queries qualitatively. For a detailed statistical significance
analysis and additional qualitative examples, please refer to the
supplementary material.

5.1 Comparing fairness of CLIP-based models
In this experiment, we apply the SISPI-NDKL metric to various
CLIP models, including the original CLIP [63] and its extensions
OpenCLIP [20], DFN [25], MetaCLIP [33], SigLIP [87], CLIPA [49],
and EVA-CLIP [73]. These models vary significantly in architecture,
training datasets, and methods, offering a comprehensive view of
how these factors influence social bias in text-image retrieval. Our
analysis seeks to reveal key differences in fairness performance
across these models, highlighting the impact of their unique char-
acteristics.

Table 1 provides performance metrics for various CLIP-based
models of similar capacity, covering both standard retrieval metrics
and fairness assessments on the SISPI dataset. We include Nor-
malized Discounted Cumulative Gain (NDCG) and Mean Average
Precision (mAP) to measure general retrieval performance, aver-
aged over 194 queries using the full set of 49, 664 images.

In addition to retrieval metrics, we report 𝑁𝐷𝐾𝐿 fairness results,
focusing on gender, ethnicity, and their intersectional distribution.
Unlike NDCG and mAP, 𝑁𝐷𝐾𝐿 is computed specifically for image
subsets relevant to each of the 194 queries (𝑅(𝑞𝑖 ,I𝑖 )), allowing a
detailed evaluation of how each model variant handles protected
attribute distributions within its relevant results.

Overall, the NDKL fairness results suggest that all models are far
from the worst-case scenario (extreme unfairness), though there is a
clear margin for improvement. A notable gap of 0.1 in NDKL values
exists between the fairest and most unfair models (color-coded blue
and red), particularly in gender and intersectional gender-ethnicity
distributions (0.08 vs. 0.19 and 0.29 vs. 0.39, respectively).

We appreciate that models sharing the same pre-training dataset
tend to exhibit similar fairness outcomes, which is expected since
biases in the dataset are propagated and often amplified during
training, leading to biased outputs. Figure 4 shows the NDKL distri-
bution by pre-training dataset, highlighting that models pretrained
on WIT-400M [63] and MetaCLIP [33] outperform others in fair-
ness. Unfortunately, the original CLIP paper [63] provides limited
details on WIT-400M’s collection, leading to attempts to recre-
ate CLIP’s data [34, 68, 69]. Metadata-Curated Language-Image
Pre-training (MetaCLIP) [33] aims to reveal CLIP’s data curation
approach by leveraging a raw data pool and metadata (derived from
CLIP’s concepts) to create a balanced subset over the metadata
distribution. In terms of its performance in the SISPI dataset this
curation framework provides a clear advantage in comparison to
other raw/uncurated datasets.

While averaging NDKL across queries provides a broad view of
model performance, it can obscure important variations. A model
may excel in fairness on some queries but show bias on others,
with averaging masking both its strengths and weaknesses. This
observation highlights the need for diverse evaluation strategies in
fairness assessment. While average NDKL offers a useful summary,
it should be complemented with more granular analyses. To this
end, we conduct a query-by-query analysis to identify conditions
where models perform more or less fairly.

Figure 3 presents a query-by-query analysis of models trained on
three datasets: WIT-400M, MetaCLIP, and LAION400M.We selected
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Table 1: Comparative performance for CLIP variants on the SISPI Dataset. We show the average NDCG and mAP, along with
the average NDKL fairness metric for gender, ethnicity, and their joint distribution. NDKL values are color-coded to highlight
the fairest (blue) and most unfair (red) models.

Model Pre-training NDCG ↑ mAP ↑ NDKL ↓
(gender)

NDKL ↓
(ethnic) NDKL ↓

ResNet50

WIT-400M [63]

0.77 0.37 0.13 0.17 0.33
ResNet50x4 0.77 0.39 0.12 0.17 0.32
ResNet50x16 0.77 0.38 0.09 0.18 0.30
ResNet50x64 0.78 0.39 0.10 0.17 0.31
ResNet101 0.76 0.37 0.13 0.16 0.33
ViT-B-32 0.75 0.34 0.12 0.17 0.32
ViT-B-16 0.79 0.41 0.12 0.20 0.35
ViT-L-14 0.78 0.40 0.08 0.18 0.30
ViT-B-32

LAION-400M [69]

0.80 0.42 0.18 0.16 0.36
ViT-B-16 0.81 0.46 0.17 0.18 0.38
ViT-B-16-plus-240 0.82 0.48 0.16 0.16 0.35
ViT-L-14 0.82 0.48 0.16 0.16 0.34
ConvNeXt𝑏𝑎𝑠𝑒 0.80 0.44 0.17 0.19 0.39
EVA01-G-14 0.83 0.50 0.16 0.17 0.36
ViT-B-32

LAION-2B [68]

0.82 0.48 0.19 0.17 0.38
ViT-B-16 0.83 0.49 0.18 0.17 0.37
ViT-L-14 0.84 0.51 0.15 0.16 0.34
ViT-H-14 0.83 0.50 0.13 0.17 0.34
ViT-H-14-CLIPA-336 0.84 0.52 0.18 0.17 0.38
ViT-G-14 0.82 0.48 0.15 0.17 0.34
ViT-bigG-14 0.84 0.51 0.14 0.16 0.33
RoBERTa-ViT-B-32 0.82 0.47 0.19 0.15 0.37
ConvNeXt𝑏𝑎𝑠𝑒 0.83 0.49 0.16 0.18 0.37
ConvNeXt𝑙𝑎𝑟𝑔𝑒 0.84 0.51 0.18 0.18 0.38
ConvNeXt𝑥𝑥𝑙𝑎𝑟𝑔𝑒 0.85 0.53 0.17 0.17 0.37
EVA02-E-14 0.84 0.52 0.15 0.17 0.36
XLM-RoBERTa𝑏 -ViT-B-32 LAION-5B [68] 0.81 0.46 0.17 0.18 0.38
XLM-RoBERTa𝑙 -ViT-H-14 0.83 0.50 0.17 0.17 0.36
ViT-B-32

DataComp-1B [26]

0.80 0.45 0.14 0.14 0.31
ViT-B-16 0.82 0.48 0.16 0.16 0.34
ViT-L-14 0.82 0.48 0.18 0.16 0.36
ViT-L-14-CLIPA 0.83 0.51 0.19 0.16 0.37
ViT-H-14-CLIPA 0.84 0.51 0.17 0.16 0.36
ViT-B-32

MetaCLIP(400M) [33]
0.81 0.46 0.13 0.14 0.31

ViT-B-16 0.82 0.47 0.15 0.14 0.33
ViT-L-14 0.80 0.44 0.11 0.15 0.30
ViT-B-32

MetaCLIP(2.5B) [33]

0.82 0.47 0.15 0.15 0.33
ViT-B-16 0.81 0.47 0.15 0.15 0.32
ViT-L-14 0.83 0.49 0.12 0.15 0.30
ViT-H-14 0.83 0.49 0.11 0.15 0.29

ViT-B-16-SigLIP WebLi [18] 0.80 0.44 0.18 0.15 0.36
ViT-L-16-SigLIP 0.82 0.47 0.16 0.17 0.35
ViT-SO400M-14-SigLIP 0.82 0.49 0.14 0.17 0.34
ViT-B-16 DFN2B [25] 0.82 0.48 0.18 0.15 0.35
ViT-L-14 0.83 0.50 0.15 0.16 0.34
ViT-H-14 DFN5B [25] 0.84 0.52 0.16 0.16 0.35

531



SIGIR ’25, July 13–18, 2025, Padua, Italy Lluis Gomez

0.2

0.4

0.6

a
cc
o
u
n
ta
n
t

a
ct
o
r

a
ct
u
a
ry

a
d
m
in
is
tr
a
to
r

a
d
v
is
o
r

a
g
e
n
t

a
id
e

a
n
a
ly
st

a
n
n
o
u
n
ce
r

a
p
p
ra
is
e
r

a
rc
h
it
e
ct

a
rc
h
iv
is
t

a
rt
is
t

a
ss
e
m
b
le
r

a
ss
e
ss
o
r

a
ss
is
ta
n
t

a
st
ro
n
o
m
e
r

a
th
le
te

a
tt
e
n
d
a
n
t

a
u
d
it
o
r

a
u
th
o
r

b
a
b
y
si
tt
e
r

b
a
ili
ff

b
a
ke
r

b
a
rt
e
n
d
e
r

b
io
lo
g
is
t

b
o
ss

b
re
e
d
e
r

b
ro
ke
r

b
u
ild
e
r

b
u
tc
h
e
r

b
u
y
e
r

ca
p
ta
in

ca
re
ta
ke
r

ca
rp
e
n
te
r

ca
rt
o
g
ra
p
h
e
r

ca
sh
ie
r

ce
o

ch
a
u
ff
e
u
r

ch
e
f

ch
e
m
is
t

ch
ie
f

ch
ir
o
p
ra
ct
o
r

ch
o
re
o
g
ra
p
h
e
r

cl
e
a
n
e
r

cl
e
rk

cl
ie
n
t

co
a
ch

co
lle
ct
o
r

co
m
m
is
si
o
n
e
r

0.2

0.4

0.6

N
D
K
L

N
D
K
L

Figure 3: Query-by-Query Fairness Analysis for Models Trained on WIT-400M, MetaCLIP, and LAION400M Datasets. This
figure presents boxplots of NDKL values across 50 selected queries.
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Figure 4: Distribution of NDKL fairnessmetric values of CLIP
models by pre-training dataset. The concentration of similar
fairness levels within models trained on identical datasets
underscores the impact of pre-training data on bias in model
outputs.

three common architectures – VIT-B-32, VIT-B-16, and VIT-L-14
– for consistent comparison. For clarity, results for 50 queries are
shown here, while the rest can be found in the supplementary
materials.

The analysis reveals significant fluctuations in NDKL values
across queries, highlighting the variable nature of bias in text-image
retrieval models. Models pretrained on WIT-400M generally show
better fairness than those on LAION-400M, indicating potential in-
herent advantages inWIT-400M’s dataset. However, LAION-trained
models outperform WIT-trained ones in specific queries, such as
“buyer,” “choreographer,” and “coach.” The comparison betweenWIT
and MetaCLIP-trained models shows no clear winner in fairness.
WIT-trained models excel in some cases, while MetaCLIP-trained
models lead in others. This parity highlights that both datasets
have unique strengths and weaknesses, affecting fairness differ-
ently across queries.

5.2 Comparing fairness of state-of-the-art
text-image retrieval models

In this subsection, we compare CLIP with other leading text-image
retrieval models, including ALIGN [37], BLIP [45, 46], FLAVA [72],

BridgeTower [81], and COCA [85]. These models differ in their
architecture, training methods, and data.

Table 2 compares state-of-the-art models on standard retrieval
metrics (NDCG, mAP) and fairness (NDKL) using the SISPI dataset.
Notably, FLAVA models excel in NDKL fairness, while BridgeTower
models match the best CLIP models. This suggests that FLAVA and
BridgeTower models generally show less gender and ethnic bias.
However, a critical consideration at this point is the retrieval per-
formance of these models. FLAVA and BridgeTower have notably
lower NDCG and mAP values. This poor performance may lead
to models appearing fairer than they are, as random rankings can
accidentally score well on fairness metrics like NDKL due to their
statistical parity. Thus, fairness metrics should be interpreted along-
side overall model performance, as random models may achieve
high fairness scores by chance rather than actual bias reduction.

To illustrate this point more clearly, Figure 5 shows a scatter
plot of NDCG versus NDKL values for various models evaluated
in the SISPI dataset. This includes models from Tables 1 and 2, as
well as additional CLIP models trained on smaller datasets and
intermediate checkpoints from DataComp and CommonPool.
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Figure 5: Contrasting retrieval utility (NDCG) and fairness
(NDKL) in all evaluated models. Each point represents a
model, with its position indicating its performance in terms
of NDCG on the x-axis and NDKL on the y-axis.
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Table 2: Comparative performance for state-of-the-art text-image retrieval models on the SISPI Dataset. We show the average
NDCG andmAP, along with the average NDKL fairness metric for gender, ethnicity, and their joint distribution. CC: Conceptual
Captions, SBU: SBU Captions, COCO: MSCOCO Captions, VG: Visual Genome. †FLAVAmodel was pretrained on public available
70M image and text pairs (including CC, VG, SBU, RedCaps, Wikipedia, and a custom filtered subset of YFCC100M).

Model Pre-training NDCG ↑ mAP ↑ NDKL ↓
(gender)

NDKL ↓
(ethnic) NDKL ↓

CLIP ViT-L-14 WIT-400M 0.78 0.40 0.08 0.18 0.30
ALIGN COYO-700M[15] 0.82 0.47 0.18 0.15 0.36
BLIP𝐵𝑎𝑠𝑒

CC + SBU + COCO + VG
+ LAION-127M

0.77 0.38 0.18 0.17 0.37
BLIP𝐿𝑎𝑟𝑔𝑒 0.79 0.42 0.20 0.15 0.37
BLIP2𝐵𝑎𝑠𝑒 0.78 0.41 0.18 0.17 0.38
BLIP2𝐿𝑎𝑟𝑔𝑒 0.78 0.40 0.15 0.17 0.36
FLAVA † 0.65 0.19 0.06 0.11 0.21
BridgeTower𝐵𝑎𝑠𝑒 CC + SBU + COCO + VG 0.66 0.22 0.13 0.13 0.30
BridgeTower𝐿𝑎𝑟𝑔𝑒 0.67 0.25 0.14 0.12 0.30
COCA ViT-B-32 LAION-2B 0.82 0.47 0.18 0.16 0.37
COCA ViT-L-14 0.83 0.50 0.17 0.16 0.36

Figure 5 clearly illustrates two key findings of our study thus
far: (1) the impact of training data on model fairness, and (2) the
trade-off between retrieval effectiveness and fairness–highlighting
the challenge of balancing high performance with fairness.

Regarding the impact of training data, we observe that models
trained with the same dataset (points of the same color) tend to
cluster together in the plot. This clustering indicates that the choice
of training data significantly influences both retrieval performance
and fairness metrics. Notice that for datasets such as “commonpool”
(blue),“datacomp”(dark violet) and “laion” (orange), distinct clusters
emerge that correspond to different dataset scales (small, medium,
large, x-large). On the other hand, the “other” datasets (olive green)
form a broad category where clustering is not expected due to their
diverse origins.

Finally, to better understand the observed trade-off between re-
trieval metrics (e.g., NDCG and mAP) and fairness (NDKL), we con-
sider an extreme hypothetical case: a retrieval model that assigns
random vectors to each query and image. Such a model would ex-
hibit very poor retrieval performance but achieve an almost perfect
NDKL fairness score, as all images would have an equal chance of
appearing in any ranking position regardless of protected attributes
(i.e. gender and ethnicity). This example illustrates that weaker re-
trieval models might appear more “fair” simply due to their lack of
differentiation in attribute values. Based on this insight, the optimal
model would be positioned closest to the bottom-right corner of
the plot, balancing high retrieval performance with fairness. In our
case, the CLIP ViT-H-14 model trained on MetaCLIP(2.5B) achieves
the best balance, with an NDKL score of 0.29 and an NDCG of 0.83.

6 Discussion
While our experimental evaluation provides a quantitative perspec-
tive on fairness in text-image retrieval models, it is crucial to delve
deeper into the qualitative aspects and practical implications of
the findings. This section addresses key questions that arise from
our analysis, offering concrete examples and actionable insights to
better understand how biases manifest in retrieval models.

Do text-image retrieval models reproduce non-inclusive stereo-
types?

To address this question, we analyze specific queries with high
NDKL scores. Figure 6 presents the top-8 retrieved images using
the CLIP ViT-H-14 pretrained on MetaCLIP-2.5B (our best model)
for the queries “babysitter” (NDKL = 0.57), “secretary” (NDKL =
0.54), and “hunter” (NDKL = 0.53). The demographic distribution in
the top-ranked images is noticeably skewed toward stereotypical
representations, reinforcing the association of certain roles with
specific genders and ethnicities. For instance, all top-8 retrieved
images for “babysitter” and “secretary” depict women, whereas all
images for “hunter" featuremen. Furthermore, amajority of “hunter”
and “secretary” images portray non-white individuals, while most
“babysitter” images predominantly exclude black individuals.

In Table 3, we present a list of professions with the highest and
lowest NDKL scores across attributes for two different models. Ad-
ditional qualitative examples are provided in the supplementary
material. Figure 7 shows the distribution of NDKL values across
gender, ethnicity, and intersectional fairness for all evaluated mod-
els with𝑚𝐴𝑃 > 0.4. Overall, we appreciate consistent trends where
certain professions exhibit higher bias across various models and
training datasets, reinforcing the presence of deeply ingrained soci-
etal stereotypes in text-image retrieval systems. Although some of
the evaluated models achieve lower average NDKL scores compared
to others, our analysis indicates that all models exhibit significant
biases for certain queries.

Does the text-to-image generative model introduce bias in the
SISPI dataset?

We generated images for different demographic groups using
the same initial seeds to ensure that the joint distribution of unpro-
tected attributes remained approximately equal across groups. This
approach effectively mitigates demographic artifacts and biases po-
tentially introduced by SDXL, ensuring that performance variations
primarily reflect controlled attributes. Upon manual inspection of
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Figure 6: Qualitative results for CLIP VIT-H-14 model pretrained on MetaCLIP-2,5B. We show the top-8 retrieved results for the
text queries “A photo of a babysitter” (top row), “A photo of a secretary” (top row), “A photo of a hunter” (bottom row). The
NDKL values for these particular queries are 0.57, 0.54, and 0.53 respectively.

Table 3: Professions with the highest and lowest NDKL scores across attributes for two different CLIP models.

CLIP ViT-H-14 MetaCLIP-2.5B CLIP ViT-H-14 LAION-2B

(gender) (ethnic) (all) (gender) (ethnic) (all)

more
bias

secretary (0.44)
babysitter (0.42)
installer (0.40)
hunter (0.39)
nurse (0.36)

host (0.46)
helper (0.44)
dancer (0.38)

pensioner (0.33)
planner (0.31)

babysitter (0.57)
secretary (0.54)
hunter (0.53)
mover (0.53)
host (0.52)

miner (0.45)
nurse (0.45)

secretary (0.45)
builder (0.42)
farmer (0.41)

bailiff (0.44)
author (0.39)
dancer (0.38)
warden (0.35)
curator (0.35)

secretary (0.66)
builder (0.60)
roofer (0.57)
miner (0.56)
worker (0.56)

less
bias

analyst (0.02)
collector (0.02)
client (0.02)
teacher (0.02)
bartender (0.02)

roofer (0.07)
electrician (0.07)
lawyer (0.07)
optician (0.06)

pathologist (0.06)

lawyer (0.16)
veterinarian (0.16)
paramedic (0.16)
analyst (0.16)

psychiatrist (0.15)

salesperson (0.02)
editor (0.02)

representative (0.02)
professor (0.02)
performer (0.02)

customer (0.08)
magistrate (0.08)
legislator (0.08)

chiropractor (0.07)
logistician (0.07)

employee (0.18)
fundraiser (0.18)

representative (0.18)
lawyer (0.17)

paramedic (0.14

the generated data, we removed a few professions where the gen-
erator produced skewed stereotypical representations for certain
demographic groups.

As part of the quality control process during the generation
stage, we used the SDXL configuration for photo-realistic images
(excluding illustrations, etc.). Additionally, we evaluated the quality
of the synthetic data across different demographic groups using an
aesthetic prediction method [74] trained on the Aesthetic Visual
Analysis dataset [59]. The results showed no significant differences
across groups, e.g. with scores of 6.61 for males’ images and 6.47
for females’ images on a scale of 1 to 10.

Do SISPI results generalize to real data?
While the SISPI dataset provides a controlled environment for

evaluating fairness in text-image retrieval models, the extent to
which these results generalize to real-world data requires careful

consideration. SISPI is synthetically generated to ensure demo-
graphic balance and control over unprotected attributes, allowing
for precise bias measurement. However, real-world data is inher-
ently more complex, with uncontrolled factors such as cultural
influences, regional variations, noise, and inherent biases present
in web-scraped datasets.

We acknowledge the gap between synthetic and real-world data,
a gap shared with other existing synthetic benchmarks [3, 38, 50,
79, 80] that have been instrumental in analyzing and improving
the performance of machine learning models in different tasks. As
observed in prior synthetic benchmarks, some degree of general-
izability can be expected if the features leveraged by models to
perform well on synthetic data are representative of those found
in real-world data. In this work, we assume that current text-to-
image models generate sufficiently realistic features to represent
demographic groups as they appear in real data.
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Figure 7: NDKL Value Distributions Across Evaluated Models. The figure presents the kernel density estimation (KDE) distribu-
tions of NDKL values for gender, ethnicity, and overall fairness across different models with𝑚𝐴𝑃 > 0.4. Each subplot represents
the distribution of NDKL values across queries for the respective attribute.

To support this assumption, we evaluated a state-of-the-art fair
face attribute classifier [39] on the SISPI dataset. Table 4 presents
the obtained results. Since the classifier was trained on real-world
data, its high accuracy across all demographic attributes suggests
that SDXL generates sufficiently realistic features to represent de-
mographic groups as they appear in real-world contexts.

Table 4: FairFace [39] Attribute Classifier Accuracy on the
SISPI Dataset.

Metric Accuracy

Overall Gender Accuracy 99.35%
Overall Race Accuracy 96.82%
Per-Class Gender Accuracy

Male 99.36%
Female 99.34%

Per-Class Race Accuracy
Asian 99.39%
White 94.82%
Black 98.94%
Latin 94.12%

Furthermore, our qualitative analysis indicates that biases ob-
served in SISPI (e.g., overrepresentation of certain demographics in
professional roles such as “babysitter”, or “hunter”) are recognizable
reflections of societal stereotypes that also manifest in real-world
datasets, albeit with additional noise and variability. These find-
ings demonstrate that SISPI serves as a valuable benchmarking
tool, but caution should be exercised when extrapolating results to
real-world applications.

Additionally, our synthetic approach (akin to other synthetic
benchmarks) allows to isolate model behavior regarding specific
attributes without interference from other variables, thus offering
controlled insights not achievable with real data, though real-world
datasets indeed exhibit more complex biases.

In summary, we stress that fairness on SISPI is not an end goal in
itself. SISPI provides a reliable framework for comparative fairness
assessment across models, yet its findings should be complemented
with evaluations on real-world datasets.

7 Ethical Considerations
In this study, we have adopted broad ethnic categories – “Asian,”
“White,” “Black,” and “Latin” – and gender categories of “Male” and
“Female.” While these are common in demographic research for
their simplicity, they inherently oversimplify complex identities.

Ethnic Categorization: These categories encompass diverse cul-
tures and histories, and terms like “Asian” oversimplify the rich
diversity within each group. They also vary in perception and defi-
nition across regions.
Gender Categorization: The binary gender categories used here
do not capture all gender identities. We acknowledge and respect
non-binary and transgender identities.
Cultural Sensitivity and Inclusivity: We approach these classifi-
cations with sensitivity and acknowledge their limitations. Individ-
uals’ self-identification may be more nuanced, and we are open to
feedback for improving our practices.
We made efforts to adhere to ethical practices in dataset generation
by using consistent initial seeds for different demographic groups,
ensuring a roughly equal distribution of unprotected attributes.
This approach aims to minimize demographic artifacts and dataset
biases. However, we acknowledge that the text-to-image generation
model used may still introduce unintended biases that we have not
been able to detect through manual inspection.

8 Conclusions
Our work introduces a novel framework for assessing gender and
ethnicity bias in cross-modal text-image retrieval methods and
underscores the value of synthetic datasets like SISPI for evaluating
fairness. Our framework provides insights that are not attainable
from previously existing frameworks that are based on real data.

In our experiments, we found that the choice of pre-training
data significantly affects bias propagation, highlighting the need
for careful dataset curation to ensure equitable model behavior.
Our analysis also reveals trade-offs between retrieval metrics and
fairness measures. Finally, we show that while average NDKL offers
valuable insights, more detailed analyses – including NDKL dis-
tributions and query-by-query evaluations and qualitative results
– provide a deeper understanding of model performance. Overall,
our analysis indicates that all evaluated text-image retrieval mod-
els exhibit significant bias for certain queries, reproducing deeply
ingrained non-inclusive stereotypes.

In summary, our research advocates for a nuanced, multi-faceted
approach to fairness evaluation in cross-modal retrieval. By making
our dataset and code publicly available, we aim to set the stage for
future research into unbiased retrieval systems.
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