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ABSTRACT

Reasoning distillation, a cost-effective approach for enhancing student model per-
formance, has attracted increasing attention. It typically leverages a large teacher
model to generate reasoning paths, which are then used to fine-tune a student
model so that it mimics the teacher’s behavior in training contexts. However, pre-
vious approaches have lacked a detailed analysis of the origins of the distilled
model’s capabilities. It remains unclear whether the student can maintain consis-
tent behaviors with the teacher in novel test-time contexts, or whether it regresses
to its original output patterns, raising concerns about the generalization of dis-
tillation models. To analyse this question, we introduce a cross-model Reason-
ing Distillation Provenance Tracing framework. For each action (e.g., a sentence)
produced by the distilled model, we obtain the predictive probabilities assigned by
the teacher, the original student, and the distilled model under the same context.
By comparing these probabilities, we classify each action into four categories: (i)
teacher-originated actions, (ii) student-originated actions, (iii) pre-existing actions
in both models not enhanced by distillation, and (iv) pre-existing actions boosted
through distillation. By systematically disentangling the provenance of each ac-
tion, we experimentally demonstrate that, in test-time contexts, the distilled model
can indeed generate teacher-originated actions, which correlate with and plausi-
bly explain observed performance on distilled model. Building on this analysis,
we further propose a teacher-guided data selection method. Unlike prior approach
that rely on heuristics (e.g., selecting data most aligned with the student’s original
distribution), our method directly compares teacher–student divergences on the
training data, providing a principled selection criterion. We validate the effective-
ness of our approach across multiple representative teacher models (Deepseek-
R1-671B, QwQ-32B, GPT-OSS-120B) and diverse student models (Qwen2.5-7B-
Instruct, Qwen4-4B-Base, Qwen3-8B-Base, Qwen3-4B-Instruct-2507). The re-
sults highlight the utility of our provenance-tracing framework and underscore
its promise for reasoning distillation. We hope to share Reasoning Distillation
Provenance Tracing, along with our insights into reasoning distillation, with the
community.

1 INTRODUCTION

The rapid development of reinforcement learning (RL) techniques (Schulman et al., 2017; Shao
et al., 2024; Ahmadian et al., 2024) and resulting large-scale reasoning models (DeepSeek-AI, 2025;
OpenAI, 2025; Team, 2025b) has accelerated the growth of distillation researches, especially reason-
ing distillation (Zhao et al., 2025; Guha et al., 2025). Early work on reasoning distillation focused
on creating high-quality open-source datasets (Zhao et al., 2025; Guha et al., 2025; NVIDIA, 2025),
and recent studies have focused on curating and filtering distillation samples to improve efficiency
and performance (Zhang et al., 2025; Li et al., 2025). However, these approaches primarily focus on
model performance and fail to provide an explanatory analysis of the sources of the model’s output
in test-time contexts. As a result, it remains unclear whether the student model has successfully
inherited the knowledge and reasoning logic from the teacher model, raising concerns about the
generalization of distillation models (Hinton et al., 2015).

Concretely, as illustrated in Figure 1, reasoning distillation involves two main steps. First, specific
contexts (e.g., high-quality questions, or high-quality questions augmented with partially generated
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answers) are provided to the teacher model, which then produces the next action via sampling.
Second, these context–action pairs are used to train the student model, encouraging it to reproduce
the teacher’s actions under the same contexts. At test time, however, the distilled student faces
entirely new contexts. It remains unclear whether the student will continue to follow the teacher’s
behavior instead of falling back on its original output distribution.

Figure 1: Motivation. In reasoning dis-
tillation, the student model learns in the
training stage to produce actions con-
sistent with the teacher model within
the training context. However, at test
time, it remains unclear whether the dis-
tilled model will continue to output ac-
tions aligned with the teacher model in-
stead of degrading to the outputs of the
student model, raising concerns about
the generalization of distillation models
(Hinton et al., 2015).

To analyse the above problem, we propose a cross-
model Reasoning Distillation Provenance Tracing frame-
work. Concretely, we evaluate three open-source dis-
tilled models: DeepSeek-Distill-Qwen-7B (DeepSeek-
AI, 2025), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-
AI, 2025), and LIMO-v2 (Ye et al., 2025). To analyze the
patterns in distilled models’ outputs under test contexts,
we collect multiple responses from them on GPQA-D
(Rein et al., 2024) and AIME24. Each sampled response
is re-input into the distilled model, the corresponding
teacher model, and the original student model. This pro-
cedure allows us to obtain, under the same test scenario
and contextual environment, the probability assigned by
each model to the next action produced by the distilled
model. By comparing these probabilities, we can natu-
rally trace the provenance of every action. For example,
if the teacher model assigns significantly higher proba-
bility to an action than the original student model does,
we can attribute that action to teacher-originated actions,
since the distilled model’s ability to produce it mainly de-
rives from teacher model’s knowledge transferred during
distillation. For further details about other action types,
see Section 3.

To this end, we observe that distilled models can repro-
duce teacher-originated actions in entirely new test con-
texts. Moreover, these actions are correlated with correct
responses on the test set, which helps explain the gener-
alization gains achieved through distillation. This obser-
vation further motivates our training design: we hypothesize that when the training data contains a
higher proportion of teacher-originated actions, the distilled model attains better final performance.
To validate this hypothesis, we propose a teacher-guided data selection strategy that compares the
probabilities assigned by the teacher and student models on the training data and prioritizes exam-
ples that contain more teacher-originated actions. We then evaluate its effectiveness across multi-
ple settings, including representative teacher models from different families (DeepSeek-R1-671B
(DeepSeek-AI, 2025), QwQ-32B (Team, 2025b), GPT-OSS-120B (OpenAI, 2025)) and various stu-
dent models (Qwen2.5-7B-Instruct, Qwen4-4B-Base, Qwen3-8B-Base, Qwen3-4B-Instruct-2507).

Our contributions can be summarised as follows: (1) We propose Reasoning Distillation Provenance
Tracing, a systematic method to disentangle the origins of each action, through fine-grained catego-
rization into teacher-originated, student-originated, shared, and boosted actions. This offers a prin-
cipled approach for analyzing whether distillation genuinely transfers reasoning ability or merely
reinforces pre-existing patterns. (2) Through analysis on reasoning benchmarks, we show that dis-
tilled models can generate teacher-originated actions even in unseen test scenarios. These actions
are correlated with correctness, offering a quantitative explanation for why reasoning distillation im-
proves generalization. (3) Building on the provenance analysis, we introduce a teacher-guided data
selection strategy that prioritizes training samples rich in teacher-originated actions. Unlike heuristic
method, our approach leverages explicit teacher–student divergence as a selection criterion. Experi-
ments across diverse teacher–student pairs demonstrating performance gains in our settings.

2 RELATED WORK
Large-scale reasoning models have shown strong performance, and distilling their capabilities into
smaller models is an effective and practical path to improved efficiency. Early efforts emphasized
high-quality data construction, curating open-source corpora that expose models to step-by-step
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reasoning signals Zhao et al. (2025); Guha et al. (2025); NVIDIA (2025). More recent lines of work
recognize that many strong reasoners are obtained via reinforcement learning (RL) and therefore
study hybrid SFT–RL training. Importance-weighted SFT explicitly integrates RL feedback into
supervised updates Qin & Springenberg (2025), while Dynamic Fine-Tuning (DFT) analyzes the
objective gap between SFT and RL and adapts reward weights during training to better align the
two losses Wu et al. (2025). In parallel, data selection has emerged as a complementary lever.
Representative approaches Zhang et al. (2025); Li et al. (2025) such as GRAPE (Zhang et al., 2025)
score candidate responses with the target (student) model and preferentially select examples whose
likelihoods best match the student’s current distribution, thereby steering training toward data that
is already aligned with the student. Rather than focusing solely on efficiency and performance,
we view reasoning distillation as a capability-transfer problem from teacher to student. We
aim to quantify the sources of a distilled model’s capabilities: given a context, which actions
in a trajectory from distilled model are more likely to originate from the teacher’s behavior
rather than the student’s existing tendencies? Building on this perspective, we introduce a data
selection criterion that jointly compares teacher–student output distributions and focuses on
sentences whose probabilities indicate stronger teacher-originated behavior. This provenance-
aware criterion complements prior student-only selection in the following way: it provides an
explicit cross-model signal for reasoning transfer. In Section 4, we show that provenance-aware
selection outperforms student-only alignment in our settings.

3 REASONING DISTILLATION PROVENANCE TRACING

In this section, we first provide necessary notations in Subsection 3.1 and introduce Reasoning
Distillation Provenance Tracing in Subsection 3.2. We then apply Reasoning Distillation Provenance
Tracing to three widely used open-source models (Deepseek-Distill-Qwen-7B, DeepSeek-R1-0528-
Qwen3-8B and LIMO-v2) and present the results of the analysis in Subsection 3.3.

3.1 NOTATIONS

Specifically, let MT denote the teacher model, MS the student model, and {Qi
train} a set of high-

quality training questions, where Qi
train denotes the i-th question. Reasoning distillation first sam-

ples responses from MT on {Qi
train}, yielding the training set Dtrain = {(Qi

train, τ
i)},where

τi = {a(i,j)|j = 1, · · ·, Li} denotes the trajectory for the i-th question, consisting of Li actions gen-
erated by MT . The student model MS is then trained by minimizing the cross-entropy loss between
its predicted next-token-actions and the teacher’s actions in trajectory τi under the same context
(e.g., input (Qi

train, a(i,1), a(i,2)), output a(i,3)). This ensures that distilled model MD produces
reasoning trajectories mimicking to those of MT when presented with the same context.

3.2 METHOD

As stated in the Section 1, our goal is to analyze whether the distilled model MD can still produce
actions similar to those of the teacher model MT in new contexts. The most direct approach is to
input the same context into both models (MT and MD) and compare their actions. Yet this approach
faces two challenges. First, reasoning outputs are typically long, and even when segmented step by
step, the number of sentences remains large. Iteratively truncating at each sentence boundary and
re-input both models to generate new actions is prohibitively expensive. Second, it is difficult to
accurately evaluate the similarity between the newly generated actions of the two models.

To address these issues, we shift perspective and instead sample exclusively from the distilled model
MD on the test set {Qi

test}. We first obtain the trajectory on test set Dtest = {(Qi
test, τ

i)}. Sub-
sequently, we feed τ i back into the three models (MT , MS , and MD) and analyse each component
action a(i,j). For each action, since token-level comparison is sometimes difficult due to possible
vocabulary mismatches between MT and MD. We use a coarser alternative, comparing at the mini-
mal sentence level. In this way, we define the probability of producing a(i,j) as the geometric mean
of per-token probabilities p(i,j) = exp(mean(log(pk))), where pk denote the probability of k-th
token contained with the sentence a(i,j).

For each a(i,j), we can obtain three output probabilities under the same context: pT(i,j) from MT ,
pS(i,j) from MS , and pD(i,j) from MD. As shown in Figure 2, the blue line corresponds to pS(i,j), the
orange line to pD(i,j), and the green line to pT(i,j).
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Figure 2: An illustration of analysis using Reasoning Distillation Provenance Tracing. The hori-
zontal axis denotes the action position (i.e., the sentence order), while the vertical axis shows the
probability assigned by different models (indicated by colored curves in the foreground) in produc-
ing that action under the same context. The background colors indicate the action types. Some
example of different action types are also shown at the top for illustration, where the blank spaces
indicate the segmentation boundaries of the response.

Overall, since the trajectory τ i is sampled from the distilled model MD, the orange curve (pD(i,j))
tends to be the largest on average. Furthermore, four distinct patterns can be observed. Specifically:

Pre-existing actions in both models not enhanced by distillation (hereafter referred to as
Shared Sentence ): This includes actions such as those between the 54th and 68th steps, where

the output probabilities of all models are nearly identical. These actions are originally present in
both the teacher and the student models, and distillation does not further increase their probabilities.

Pre-existing actions boosted through distillation (hereafter referred to as Boosted Sentence ):
Similar to the first type, pT(i,j) and pS(i,j) remain close, but pD(i,j) differs significantly (and is typically
higher in practice, since trajectories are sampled from MD). These actions also exist in both the
teacher and student models prior to distillation, but their probabilities are amplified through training
with distilled data.

Student-originated actions (hereafter referred to as Student Sentence ) and teacher-originated
actions (hereafter referred to as Teacher Sentence ): When there is a large discrepancy between
pS(i,j) and pT(i,j), the distilled model MD still outputs the action, suggesting the action is more con-
sistent with the model assigning higher likelihood. Note that a Teacher Sentence does not imply that
the action is entirely absent from the student model, but rather that it is primarily originated from
the teacher. The same applies to a Student Sentence.

3.3 ANALYSIS ON OPEN-SOURCE MODELS

In this subsection, we apply Reasoning Distillation Provenance Tracing to DeepSeek-Distill-Qwen-
7B (Ds-7B), DeepSeek-R1-0528-Qwen3-8B (Ds-8B) and LIMO-v2 to analyze the source of each
sentence produced by the distilled models in a new testing context. Specifically, we sample the
open-source models on two commonly used reasoning benchmarks: AIME24 and GPQA-D. For
AIME24, we sample 16 completions per question, and for GPQA-D, we sample 8 completions per
question.

For each completed response, we segment the output according to the following rules: (1)
Special tokens (e.g., <think>) are treated as individual actions, as they carry specific se-
mantics and represent important behavior. (2) For the remaining text, we split sentences
using the pattern: punctuation + optional whitespace + uppercase letter, corresponding to:
re.compile(r’([.?!}\]])([\s\n]+)([A-Z])’). This segmentation procedure covers
most common English sentence structures.

Then, we feed the sampled trajectories back into the corresponding teacher and student models
to obtain the output probability for each token, and consequently (by taken geometric average of
token probability), the probability for each action (pS(i,j), p

D
(i,j) and pT(i,j)). We then define ∆SD =

4
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Figure 3: Analysis results on open-source models. We apply Reasoning Distillation Provenance
Tracing to Deepseek-Distill-Qwen-7B (Ds-7B) and DeepSeek-R1-0528-Qwen3-8B (Ds-8B), ana-
lyzing the probability of producing different actions at each action position on two reasoning bench-
marks (AIME24 and GPQA-D). The x-axis denotes the action index, and the y-axis shows the prob-
ability of producing that action. Above the plot, we additionally annotate the average cumulative
token count up to certain action index.
pS(i,j) − pD(i,j), ∆TD = pT(i,j) − pD(i,j) and ∆TS = pT(i,j) − pS(i,j). Using two thresholds, α and β, we
can perform the tracing provenance:

Shared Sentence, if(|∆SD| ≤ α ∧ |∆TD| ≤ α ∧ |∆TS | ≤ α),
Teacher Sentence, else if(∆TS > β),
Student Sentence, else if( −∆TS > β),
Boosted Sentence, else if(|∆TS | < β).

where pD(i,j), p
S
(i,j) and pT(i,j) denote the probabilities assigned to action a(i,j) by the distilled model

MD, the student model MS , and the teacher model MT , respectively. We follow the evaluation or-
der: Shared → Teacher → Student → Boosted. For α, we performed a manual binary classification
of all actions from 100 responses, considering whether the differences among the output probabili-
ties across the three models were sufficiently small. The average probability difference for Shared
Sentence was found to be 0.097. Therefore, we set α = 0.1. β is determined through a data-driven
approach; see Appendix A.2.

Based on this classification scheme, we compute, for each action position, the proportion of each
action type and interpret this proportion as the probability of outputting that action type at the given
position. For example, for all answers at the third action position (i.e., the third sentence), we
calculate the proportion of actions belonging to Teacher Sentence and treat it as the probability that
the model outputs Teacher Sentence at that position (this corresponds to the value of the point with
x = 3 on the Teacher Sentence curve in the figure). It is worth noting that the number of actions
varies across different answers; therefore, we focus primarily on the earlier action positions,
where sufficient data is available to yield reliable statistics. In addition, we compute the average
number of tokens for all actions at each position, and, at 4k-token intervals, mark in the action
positions corresponding to the average number of tokens required to reach that position. The results
are shown in Figure 3 and Figure 4.

We observe three phenomena (see Appendix A.3 for more analyses) that help explain the observed
benefits of reasoning distillation in novel test-time settings:

(1) Higher Teacher Sentence probability in the early inference stage.
As shown in Figure 3 and Figure 4, the light-green line (—) exhibits larger values in the early
action index, meaning that the probability of outputting a Teacher Sentence is relatively high in
the early stages of inference. We attribute this to two factors. First, the student model lacks the
ability to properly generate the token <think>, and subsequent steps may be influenced by the
first action. However, this effect is limited, as evidenced by the rapid increase in the probability
of Boosted Sentence (i.e., the light-yellow line (—) rises sharply in the early phase.). Figure 2
and Figure 10 further illustrate this point, showing that other actions typically emerge after only a
few steps. Second, we observe that many early actions focus on analyzing the input and planning
subsequent steps. We hypothesize that forcing such behavior early on may be a unique pattern of the
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Figure 4: Analysis results on LIMO-v2 (Ye et al., 2025). We apply Reasoning Distillation Prove-
nance Tracing to LIMO-v2, analyzing the probability of producing different actions at each ac-
tion position on two reasoning benchmarks (AIME24 and GPQA-D). Since LIMO-v2 uses multiple
teacher models, we tried different teacher models on all samples. The x-axis denotes the action in-
dex, and the y-axis shows the probability of producing that action. Above the plot, we additionally
annotate the average cumulative token count up to certain action index.

teacher model, which explains why Teacher Sentences are more likely to appear at the beginning of
inference.

(2) Student-internal patterns are often activated but not uniformly beneficial during reasoning
distillation.
In LIMO-v2, the authors found that if a model already contains sufficient reasoning knowledge,
reasoning distillation can activate it with minimal data scale and yield strong performance. In this
work, we find that reasoning distillation not only activates reasoning knowledge, but also triggers
other latent patterns embedded within the Boosted Sentence. As shown in Figure 3 and Figure 4,
we observe that the mean of the pointwise sum of the light-green (—) and light-yellow (—) lines
exceeds 0.7, indicating that at each position the predicted action is likely to be one of these two
action types. This means that, in distilled models, the majority of output action types are either
Teacher Sentences or Boosted Sentences. More Teacher Sentences originate from the student model
learning directly from the teacher model. And more Boosted Sentences suggests that reasoning
distillation consistently activates student-internal patterns.
To analyze how reasoning distillation helps in novel contexts, we further conduct a quantitative
analysis of action-type probabilities in correct versus incorrect responses. As shown in Figure 4,
on LIMO-v2, Boosted Sentences emerge in later stages with consistently high probability in correct
responses across different teacher models (i.e., in later stages, the light-yellow solid line (—) remains
above the light-yellow dashed line (- - -)). In the early stages, correct responses are more likely to
rely on Teacher Sentences (i.e., the light-green solid line (—) stays above the light-green dashed
line (- - -)). However, Figure 3 also reveals the opposite trend in smaller models: Boosted Sentences
consistently appear with higher probability in incorrect responses. This suggests that not all student-
internal patterns are worth activating. The authors of LIMO-v2 also find that small models (e.g., 7B)
trained with the same method fail to achieve good performance. Taken together with our findings,
one concludes that reasoning distillation often activates internal patterns in student model, but not
all of these activations are beneficial.

(3) Teacher sentences are highly correlated with performance gains.
As shown in Figure 3, across different models (DeepSeek-R1-0528-Qwen3-8B and DeepSeek-
Distill-Qwen-7B) and test sets (AIME24 and GPQA-D), Teacher Sentence tends to be assigned
higher probabilities to correct answers (i.e., the light-green solid line (—) stays above the light-
green dashed line (- - -)). This result is also intuitive: since the teacher model achieves higher
performance on the test sets, the student model benefits from producing outputs more aligned with
the teacher, thereby increasing its likelihood of answering correctly.
It remains an open question whether Teacher Sentence is equally beneficial for larger models, and we
believe further experimentation is needed. Although Figure 4 clearly shows that Teacher Sentence
assigns higher probabilities to correct answers in the early stages (while probabilities for correct
and incorrect answers converge in later stages), the evidence is limited. LIMO-v2 contains only
800 samples, designed primarily to activate student-internal patterns and validate conclusions in the
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original paper. Thus, it is unclear whether, at larger training scales, Teacher Sentence would still
yield significantly higher probabilities for correct answers in the mid-to-late stages.Due to resource
constraints, this work focuses on models of 8B parameters or fewer. We hope to validate our findings
on larger models in future work.

In summary, our Reasoning Distillation Provenance Tracing shows that in entirely new test
settings, distilled models not only produce sentences originating from the teacher, but these
Teacher Sentence are especially prominent in early reasoning phases and associated with an-
swer correctness. At the same time, reasoning distillation can also activate patterns already
latent within the student (Boosted Sentences), whose contributions vary by model size and
reasoning phases, and are not uniformly beneficial.

4 BEYOND EXPLANATION, GUIDING TRAINING IN REVERSE:
TEACHER-GUIDED DATA SELECTION

Building on the analysis in Section 3, a natural training insight is: if we can increase the proportion
of Teacher Sentence in the training data and explicitly leverage teacher–student divergences
to select examples, we may front-load and amplify the observed generalization benefits. There-
fore, in this section, we first propose a teacher-guided data selection method in Section 4.1. Then we
validate its effectiveness across multiple teacher–student pairs and reasoning benchmarks in Section
4.2.
4.1 TEACHER-GUIDED DATA SELECTION

Figure 5: Comparison between teacher-
guided data selection and the previous
method (Zhang et al., 2025).

To validate our hypothesis, the first question we must
address is: how can Reasoning Distillation Provenance
Tracing be applied prior to training? At this stage, we
only have access to the teacher model and the student
model. Nevertheless, even with only these two models,
it is still possible to reliably distinguish between Teacher
Sentences and Student Sentences. Specifically:

Common Sentence if(|∆TS | ≤ β),

Teacher Sentence else if(∆TS > β),

Student Sentence else if( −∆TS > β).

where Common Sentence subsumes the previously de-
fined Shared Sentence and Boosted Sentence. Through
this approach, we are able to effectively filter training
data to include more Teacher Sentence before training.

Specifically, for each question with multiple responses from teacher models, we count the number
of Teacher Sentences in each response and prioritize for training the response with the largest count.

As shown in Figure 5, the previous method (Zhang et al., 2025) feeds the training data into the
student model before training, computes heuristics metrics based on the logits of student model, and
selects samples that more aligned with the student model’s original distribution. In contrast, our
proposed method provides a clearer objective for data selection: prioritizing samples where
the teacher and student models differ the most.

Moreover, our method introduces only an acceptable additional cost in practice. (1) When one
wishes to sample responses, similar to the previous method (Zhang et al., 2025), our approach
incurs no extra overhead, since logits can be obtained directly during sampling. (2) When one
wishes to leverage existing open-source distillation datasets for filtering, some additional cost is
required. However, it is important to note that re-feeding the generated sequences into the model to
extract logits only requires a single forward pass, which is significantly faster than token-by-token
generation. Given sufficient GPU memory, we consider the additional time cost to be acceptable.

4.2 EXPERIMENTS

We aim to evaluate the effectiveness of teacher-guided data selection across diverse training settings.
To this end, we conduct experiments with three distinct teacher models (Deepseek-R1-671B, QwQ-
32B, and GPT-OSS-120B) and four student models: Qwen3-4B-Base, Qwen3-8B-Base, Qwen2.5-
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7B-Instruct, and Qwen3-4B-Instruct-2507. We use two high-quality reasoning datasets, AceReason-
1.1-SFT (Liu et al., 2025) and OpenThought3-1.2M (Guha et al., 2025). Each question in these
datasets is paired with multiple candidate answers sampled from the teacher model. Further de-
tails are provided in Appendix A.4. For each question, we then select a single response using one
of three strategies: (i) random selection, which performs similarly to vanilla reasoning distillation
(”Vanilla”); (ii) GRAPE (Zhang et al., 2025) (“GRAPE”); and (iii) our method (“Ours”). All strate-
gies yield training sets of identical size.

For evaluation, we select four widely adopted benchmarks known for their challenging reasoning
demands: AIME24, AIME25, MATH500 (Lightman et al., 2023), and OlympiadBench (He et al.,
2024). We report the accuracy results.

4.2.1 MAIN EXPERIMENTS

As shown in Tables 1, our method achieves the best performance. On average, it improves results
by 1.7%–2.5%.

Table 1: Comparison with different data selection strategy. Each experimental setting is denoted as
Teacher Model + Student Model + Data Source.

AIME24 AIME25 MATH500 OlympiadBench Average
Deepseek-R1 + Qwen3-4B-Base + AceReason-1.1-SFT

Vanilla 44.4 33.3 91.2 55.9 56.2
GRAPE (Zhang et al., 2025) 43.0 34.1 88.6 54.8 55.1
Ours 49.3+4.9 37.9+4.6 90.8−0.4 56.6+0.7 58.7+2.5

Deepseek-R1 + Qwen3-8B-Base + AceReason-1.1-SFT
Vanilla 55.1 39.9 91.2 57.5 60.9
GRAPE (Zhang et al., 2025) 54.2 38.1 91.8 58.4 60.6
Ours 57.3+2.2 41.5+1.6 92.8+1.6 58.7+1.2 62.6+1.7

QwQ-32B + Qwen2.5-7B-Instruct + OpenThought3-1.2M
Vanilla 43.5 35.6 89.8 55.1 56.0
GRAPE (Zhang et al., 2025) 47.5 34.6 91.4 54.8 57.1
Ours 48.1+4.6 36.3+0.7 90.0+0.2 56.3+1.2 57.7+1.7

GPT-OSS-120B + Qwen3-4B-Instruct-2507 + AceReason-1.1-SFT
Vanilla 75.9 62.5 93.6 64.0 74.0
GRAPE (Zhang et al., 2025) 76.8 66.5 92.6 62.5 74.6
Ours 77.9+2.0 68.3+5.8 94.6+1.0 64.9+0.9 76.4+2.4

4.2.2 ABLATION EXPERIMENTS

Figure 6: Illustration of β selection for
the first training setting.

(1) How to Leverage Teacher Sentences for Data Se-
lection? We generally aim to include more Teacher Sen-
tences in training data, where “more” can be interpreted
in two ways: by the absolute count of Teacher Sentences
within a response (“Maximize Absolute Count”) or by
their relative proportion (“Relative Proportion”). Figure
3 shows that, across most action positions in correct re-
sponses, Teacher Sentences receive higher output proba-
bilities from the distilled model. This observation sug-

gests two principles for effective data selection: (i) choose responses that contain as many reasoning
actions as possible (“Longest”) so that the training signal can influence the maximum number of
action positions, and (ii) increase the absolute number of those actions that correspond to Teacher
Sentences (“Maximize Absolute Count”) to raise the model’s probability of producing them at those
positions.
To compare these metrics, we conduct an ablation study using Deepseek-R1 as the teacher, Qwen3-
4B-Base as the student, and AceReason-1.1-SFT as the data source. The results in Table 2 show that
Maximize Absolute Count yields the best performance, whereas Minimize Absolute Count
performs the worst, indirectly corroborating our hypothesis.

(2) How to determine β? In Section 3, we describe how to set β at test time. Here, we assess
whether the same procedure is effective on the training data. We conduct validation experiments
using DeepSeek-R1 as the teacher model, Qwen3-4B-Base as the student model, and AceReason-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Influence of different selection metrics.

AIME24 AIME25 MATH500 OlympiadBench Average
Maximize Absolute Count 49.3 37.9 90.8 56.6 58.7
Longest 48.1 37.5 90.0 55.9 57.9
Relative Proportion 46.9 35.0 88.8 55.1 56.4
Vanilla 44.4 33.3 91.2 55.9 56.2
Minimize Absolute Count 42.9 35.2 87.8 54.2 55.0

1.1-SFT as the training data source. As shown in Figure 6, before training we observe that β = 0.1
produces the cleanest partition, with minimal overlap across action types. As shown in Table 3, the
optimal β determined before training achieved the best results in the ablation experiment. Moreover,
other near-optimal β also outperform the Vanilla baseline, indicating that performance is not highly
sensitive to the choice of β. Together, the post-training results, along with the pre-training
analysis, consistently support our data-driven β-selection strategy as a principled, training-
free, and effective approach. For further discussion, see Appendix A.2.

Table 3: Impact of different β values on accuracy.
AIME24 AIME25 MATH500 OlympiadBench Average

β = 0.05 47.9 37.1 89.8 57.0 58.0
β = 0.1 49.3 37.9 90.8 56.6 58.7
β = 0.15 46.3 37.5 90.2 56.3 57.6

Figure 7: Analysis results of the
first training setting (Deepseek-R1 +
Qwen3-4B-Base + AceReason-1.1-
SFT) on AIME24.

(3) Effects in different domain. To evaluate the ef-
fectiveness of our method in different domain, we used
GPT-OSS-120B to sample 10k questions from Open-
ScienceReasoning 2 (NVIDIA Corporation, 2024), gen-
erating nine candidate responses per question. We then
selected a single response for training using different se-
lection strategies. Results are reported in Table 4. We find
that our method is effective in the scientific domain and,
compared to GRAPE, exhibits stronger generalization in
math domain. Analysis on the test set further indicates
that the Teacher Sentence in science shares commonali-
ties with that in mathematics, which we hypothesize helps
explain why training on scientific data can improve per-
formance on the math test set. Additional analyses are
provided in Appendix A.3.3.

Table 4: Comparison with different data selection strategy on scientific domain.
GPQA-D AIME24 AIME25 MATH500 OlympiadBench

GPT-OSS-120B + Qwen3-4B-Base + OpenScienceReasoning 2
Vanilla 39.9 24.2 24.6 85.8 44.0
GRAPE (Zhang et al., 2025) 40.9 24.6 22.1 84.2 44.3
Ours 42.9+3.0 25.2+1.0 24.8+0.2 87.4+1.6 48.0+4.0

(4) Does the distilled model increase the probability of outputting the Teacher Sentence? We
apply the Reasoning Distillation Provenance Tracing framework to our trained models. The results
are shown in Figure 7. Compared with the Vanilla baseline, within the range where estimates are
statistically reliable (e.g., the first 800 action indices), our method increases the probability of out-
putting the Teacher Sentence and correspondingly decreases the probability of outputting the Student
Sentence.

5 CONCLUSION

In this work, we address a fundamental yet under-explored question in reasoning distillation: does
the distilled model truly inherit the teacher’s pattern, or does it revert to its prior patterns when con-
fronted with new contexts? To answer this, we introduce Reasoning Distillation Provenance Tracing,
observe phenomena and quantify the evidences that help explain the observed benefits of reasoning
distillation in novel test-time settings. Building on these insights, we propose a teacher-guided data-
selection strategy and demonstrate its effectiveness on multiple settings. We hope our provenance-
tracing framework will inspire future research on cross-model behavior analysis, domain-aware data
selection, and more reliable distillation protocols for complex reasoning tasks.
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Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Zhuang Li, Yuncheng Hua, Thuy Vu, Haolan Zhan, Lizhen Qu, and Gholamreza Haffari. Scar: Data
selection via style consistency-aware response ranking for efficient instruction-tuning of large lan-
guage models. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12756–12790, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl
synergy. arXiv preprint arXiv:2506.13284, 2025.

NVIDIA. Nvidia nemotron nano 2: An accurate and efficient hybrid mamba-transformer reasoning
model, 2025. URL https://arxiv.org/abs/2508.14444.

NVIDIA Corporation. OpenScienceReasoning-2: A Dataset for Open Scientific Reason-
ing. https://huggingface.co/datasets/nvidia/OpenScienceReasoning-2,
September 2024. Hugging Face dataset.

OpenAI. gpt-oss-120b gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Chongli Qin and Jost Tobias Springenberg. Supervised fine tuning on curated data is reinforcement
learning (and can be improved). arXiv preprint arXiv:2507.12856, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2506.04178
https://arxiv.org/abs/2508.14444
https://huggingface.co/datasets/nvidia/OpenScienceReasoning-2
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwq-32b/.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification. arXiv preprint arXiv:2508.05629, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Dylan Zhang, Qirun Dai, and Hao Peng. The best instruction-tuning data are those that fit. arXiv
preprint arXiv:2502.04194, 2025.

Han Zhao, Haotian Wang, Yiping Peng, Sitong Zhao, Xiaoyu Tian, Shuaiting Chen, Yunjie Ji, and
Xiangang Li. 1.4 million open-source distilled reasoning dataset to empower large language
model training, 2025. URL https://arxiv.org/abs/2503.19633.

11

https://arxiv.org/abs/2505.09388
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2503.19633


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FUTURE WORK

Future work will pursue three directions: (i) augment our threshold-based decision rule with a meta-
learning or reinforcement learning agent that automatically searches the validation set for optimal
β, thereby eliminating manual tuning; (ii) expand beyond the small-model regime studied here,
imposed by resource constraints, to evaluate the effectiveness of our data-selection strategy on larger
models; and (iii) move past the single-teacher setting to investigate principled approaches to data
selection when training with ensembles of diverse teacher models.

A.2 HOW TO DETERMINE THE β

The parameter β serves primarily to facilitate a clearer separation of the relative proportions of
different action types, enabling more effective provenance analysis. Specifically, for each trajectory,
we compute the proportion of sentence attributed to each action type (e.g., in trajectory 1, 60% of
sentences are labeled as Teacher Sentence; in trajectory 2, 70%). We then construct histograms
showing the distribution of these proportions across all samples for each action type (e.g., plotting
the distribution of Teacher Sentence proportions using values such as [0.6, 0.7, ...]).

Intuitively, we choose β to maximize the separation between the distributions of different action
types, so that their overlap is minimized, particularly for the action types that dominate in frequency.
As shown in Figure 8, for instance, when β = 0.15, the histogram reveals that most samples exhibit
a clear predominance of Teacher Sentence, providing a clean characterization of the model’s output
behavior. In contrast, when β = 0.2, the distributions of Teacher Sentence and Boosted Sentence
exhibit significant overlap, indicating that samples within the overlapping region are sensitive to
minor fluctuations and may be ambiguously classified. A similar problem also exists with β = 0.1.

Figure 8: Illustration of β selection for Deepseek-Distill-Qwen-7B on AIME24.

Therefore, for Deepseek-Distill-Qwen-7B on AIME24, we set β = 0.15. For the experiments in
Section 3.3, we evaluate all values of β in the range [0.05, 0.2] with a step size of 0.05. The
final selected thresholds are: β = 0.1 for Deepseek-Distill-Qwen-7B on GPQA-D, β = 0.1
for DeepSeek-R1-0528-Qwen3-8B on AIME24, β = 0.15 for DeepSeek-R1-0528-Qwen3-8B on
GPQA-D, β = 0.1 for LIMO-v2 on AIME24 when using QwQ-32B as teacher model, β = 0.2
for LIMO-v2 on GPQA-D when using QwQ-32B as teacher model, β = 0.15 for LIMO-v2 on
AIME24 when using Deepseek-R1 as teacher model, and β = 0.1 for LIMO-v2 on AIME24 when
using Deepseek-R1 as teacher model.

We also illustrate threshold selection on first training setting (DeepSeek-R1 + Qwen3-4B-Base +
AceReason-1.1-SFT) in Figure 6. The corresponding quantitative results are reported in Table 3.
For the four training configurations in Table 1, the chosen β values are 0.1, 0.1, 0.15, and 0.2,
respectively.

In summary, just as many deep learning papers require tuning multiple hyperparameters across dif-
ferent training settings, the choice of β naturally varies across different scenarios. However, the
post-training metrics in Table 3 and pre-training visualizations in Figure 6 demonstrate that
the proposed method is purely data-driven, requires no additional training, and is practically
applicable.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 9: Differences across action types. Using SEAL’s behavioral categorization, we classify all
actions and report the proportion of behavior types within each action type.

Additionally, we examine the sensitivity of our analysis to the choice of β. As shown in Figure
8, the relative trends and distinctions in action-type output probability between correct and
incorrect samples remain consistent across different β values, suggesting that our main con-
clusions are robust to the β setting. As show in Table 3, near-optimal β also outperform the
Vanilla baseline, indicating that performance is not highly sensitive to the choice of β.

A.3 MORE ANALYSIS RESULTS

A.3.1 ALTHOUGH DISTILLED MODELS GENERALLY EXHIBIT SUBSTANTIALLY STRONGER
LONG-CONTEXT GENERATION CAPABILITIES, THE SOURCES OF THESE
IMPROVEMENTS ARE NOT UNIFORM ACROSS MODELS.

As shown in Figure 3, within DeepSeek-Distill-Qwen-7B, once the sequence length exceeds ap-
proximately 4K tokens, the generated outputs are quickly transformed into Teacher Sentence. In
contrast, this behavior is not observed in DeepSeek-R1-0528-Qwen3-8B or LIMO-v2. We attribute
this discrepancy to differences in the underlying student model: DeepSeek-Distill-Qwen-7B is dis-
tilled from Qwen2.5-Math-7B (Yang et al., 2024), which has an effective context length of approx-
imately 4K tokens. Beyond this limit, the model’s outputs predominantly reflect patterns inherited
from the teacher model. By comparison, DeepSeek-R1-0528-Qwen3-8B and LIMO-v2 are based
on Qwen3-8B-Base (Team, 2025a) and Qwen2.5-32B-Instruct, respectively. These models support
substantially longer effective context lengths and thus avoid this limitation.

A.3.2 WHAT BEHAVIORS ARE INCLUDED IN DIFFERENT ACTION TYPES?

We categorize each action using SEAL (Chen et al., 2025), which defines three types of behaviors:
execution, reflection, and transition. Execution refers to steps that directly advance problem solv-
ing, reflection denotes verification, checking, or questioning of the existing reasoning process, and
transition represents an intentional change in the current reasoning direction or strategy. Special
tokens are excluded from the statistics. The results are shown in Figure 9, from which we make the
following three observations.

(1) Both student models exhibit a certain degree of reflection and transition, and reasoning dis-
tillation further activates and strengthens these behaviors. Specifically, Student Sentences already
contain reflection and transition behaviors, while Boosted Sentences display more of these behav-
iors than Student Sentences and Shared Sentences after distillation. Although there remains a gap
between RL and reasoning distillation, this observation is similar with prior work (Wang et al.,
2025; Gandhi et al., 2025), which suggests that reflection and transition abilities are already latent
in student models and that RL/Reasoning distillation as a post-training method serves to activate
them. (2) The vast majority of Shared Sentences are Execution. (3) The student model of Deepseek-
R1-0528-Qwen3-8B (Ds-8B) shows stronger reflective ability than the student model of Deepseek-
Distill-Qwen-7B (Ds-7B), as evidenced by the higher proportion of reflection behaviors in Student
Sentences.
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Figure 10: Comparison of Teacher Sentences across domains. Teacher Sentences are highlighted in
light green.

Table 5: Training config.

Qwen3-4B-Base Qwen3-8B-Base Qwen3-4B-Instruct-2507 Qwen2.5-7B-Instruct
learning rate 5e-5 5e-5 5e-5 8.0e-5

cutoff len 32k 64k 64k 16k
epoch 6 6 6 5

batchsize 32 32 32 512
lr scheduler type cosine with min lr cosine with min lr cosine with min lr cosine

min lr 1e-5 1e-5 1e-5 0
warmup ratio 0.1 0.1 0.1 0.1

A.3.3 TEACHER SENTENCES ACROSS DOMAINS

As illustrated in Figure 10, we further examine the characteristics of Teacher Sentences across do-
mains. In mathematics, Teacher Sentences primarily consist of explicit mathematical operations,
followed by checks of these operations and validations of the solution logic. In science, they more
often involve inspections of reasoning chains and targeted recall of relevant knowledge. Despite
these differences, we observe common patterns: when reasoning stalls, Teacher Sentences prompt
the recall of key facts and encourage reflective adjustments to the reasoning process. We hypothe-
size that these shared behaviors explain why training on scientific-domain data containing a higher
proportion of Teacher Sentences can also benefit performance on mathematics test sets.

A.4 TRAINING DETAILS

For the OpenThought3-1.2M dataset, we used only the mathematical problems and randomly sam-
pled 50k questions. For each question, the official dataset provides 16 responses generated by QwQ;
from these, we randomly selected 8 responses to form our initial training set.
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For the AceReason-1.1-SFT dataset, we first randomly sampled 50k questions, and then collected
1–5 responses for each using GPT-OSS-120B (configured with Reasoning: high) and DeepSeek-R1,
which together served as our initial training set.

The training configuration is provided in Table 5.

A.5 LLM USAGE

We used Qwen3 for polishing, followed by manual refinement.
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