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ABSTRACT

Reasoning distillation, a cost-effective approach for enhancing student model per-
formance, has attracted increasing attention. It typically leverages a large teacher
model to generate reasoning paths, which are then used to fine-tune a student
model so that it mimics the teacher’s behavior in training contexts. However, pre-
vious approaches have lacked a detailed analysis of the origins of the distilled
model’s capabilities. It remains unclear whether the student can maintain consis-
tent behaviors with the teacher in novel test-time contexts, or whether it regresses
to its original output patterns, raising concerns about the generalization of dis-
tillation models. To analyse this question, we introduce a cross-model Reason-
ing Distillation Provenance Tracing framework. For each action (e.g., a sentence)
produced by the distilled model, we obtain the predictive probabilities assigned by
the teacher, the original student, and the distilled model under the same context.
By comparing these probabilities, we classify each action into four categories: (i)
teacher-originated actions, (ii) student-originated actions, (iii) pre-existing actions
in both models not enhanced by distillation, and (iv) pre-existing actions boosted
through distillation. By systematically disentangling the provenance of each ac-
tion, we experimentally demonstrate that, in test-time contexts, the distilled model
can indeed generate teacher-originated actions, which correlate with and plausibly
explain observed performance on distilled model. Building on this analysis, we
further propose a teacher-guided data selection method. Unlike prior approach that
rely on heuristics (e.g., selecting data most aligned with the student’s original dis-
tribution), our method directly compares teacher—student divergences on the train-
ing data, providing a principled selection criterion. We validate the effectiveness
of our approach across multiple representative teacher models (Deepseek, QwQ,
GPT-0SS-120B) and diverse student models (Qwen2.5-7B-Instruct, Qwen4-4B-
Base, Qwen3-8B-Base, Qwen3-4B-Instruct-2507). The results highlight the util-
ity of our provenance-tracing framework and underscore its promise for reasoning
distillation. We hope to share Reasoning Distillation Provenance Tracing, along
with our insights into reasoning distillation, with the community.

1 INTRODUCTION

The rapid development of reinforcement learning (RL) techniques (Schulman et al |2017; [Shao
et al.|[2024; |/ Ahmadian et al.,|2024) and resulting large-scale reasoning models (DeepSeek-Al,2025;
OpenAlL 2025} Team, [2025b)) has accelerated the growth of distillation researches, especially reason-
ing distillation (Zhao et al., 2025} |Guha et al. |2025). Early work on reasoning distillation focused
on creating high-quality open-source datasets (Zhao et al., 2025;|Guha et al., 2025; NVIDIAL |2025),
and recent studies have focused on curating and filtering distillation samples to improve efficiency
and performance (Zhang et al., 2025} [Li et al.,2025). However, these approaches primarily focus on
model performance and fail to provide an explanatory analysis of the sources of the model’s output
in test-time contexts. As a result, it remains unclear whether the student model has successfully
inherited the knowledge and reasoning logic from the teacher model, raising concerns about the
generalization of distillation models (Hinton et al., 2015b)).

Concretely, as illustrated in Figure [I] reasoning distillation involves two main steps. First, specific
contexts (e.g., high-quality questions, or high-quality questions augmented with partially generated
answers) are provided to the teacher model, which then produces the next action via sampling.
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Second, these context—action pairs are used to train the student model, encouraging it to reproduce
the teacher’s actions under the same contexts. At test time, however, the distilled student faces
new contexts. It remains unclear whether the student will continue to follow the teacher’s behavior

instead of falling back on its original output distribution.

To analyse the above problem, we propose a cross-
model Reasoning Distillation Provenance Tracing frame-
work. Concretely, we evaluate three open-source dis-
tilled models: DeepSeek-Distill-Qwen-7B (DeepSeek-
Al [2025), DeepSeek-R1-0528-Qwen3-8B (DeepSeek-
Al 2025), and LIMO-v2 model (Ye et al.| 2025). To
analyze the patterns in distilled models’ outputs under
test contexts, we collect multiple responses from them
on GPQA-D (Rein et al., [2024) and AIME24. Each re-
sponse is re-input into the distilled model, the correspond-
ing teacher model, and the original student model. This
procedure allows us to obtain, under the same test sce-
nario, the probability assigned by each model to the next
action produced by the distilled model. By comparing
these probabilities, we can naturally trace the provenance
of every action. For example, if the teacher model as-
signs significantly higher probability to an action than the
original student model does, we can attribute that action
to teacher-originated actions, since the distilled model’s
ability to produce it mainly derives from teacher model’s
knowledge transferred during distillation. For further de-
tails about other action types, see Section

To this end, we observe that distilled models can re-
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Figure 1: Motivation. In reasoning dis-
tillation, the student model learns in the
training stage to produce actions con-
sistent with the teacher model within
the training context. However, at test
time, it remains unclear whether the dis-
tilled model will continue to output ac-

tions aligned with the teacher model in-
stead of degrading to the outputs of the
student model, raising concerns about
the generalization of distillation models
(Hinton et al., |2015b).

produce teacher-originated actions in new test contexts.
Moreover, these actions are correlated with correct re-
sponses on the test set, which helps explain the gener-
alization gains achieved through distillation. This obser-
vation further motivates our training design: we hypoth-
esize that when the training data contains a higher proportion of teacher-originated actions, the
distilled model attains better final performance. To validate this hypothesis, we propose a teacher-
guided data selection strategy that compares the probabilities assigned by the teacher and student
models on the training data and prioritizes examples that contain more teacher-originated actions.
We then evaluate its effectiveness across multiple settings, including representative teacher models
from different families (DeepSeek-R1-671B (DeepSeek-Al,2025), QwQ-32B (Team,2025b)), GPT-
0SS-120B (OpenAll 2025)) and various student models (Qwen2.5-7B-Instruct, Qwen4-4B-Base,
Qwen3-8B-Base, Qwen3-4B-Instruct-2507).

Our contributions can be summarised as follows: (1) We propose Reasoning Distillation Provenance
Tracing, a systematic method to disentangle the origins of each action, through fine-grained catego-
rization into teacher-originated, student-originated, shared, and boosted actions. This offers a prin-
cipled approach for analyzing whether distillation genuinely transfers reasoning ability or merely
reinforces pre-existing patterns. (2) Through analysis on reasoning benchmarks, we show that dis-
tilled models can generate teacher-originated actions even in unseen test scenarios. These actions
are correlated with correctness, offering a quantitative explanation for why reasoning distillation im-
proves generalization. (3) Building on the provenance analysis, we introduce a teacher-guided data
selection strategy that prioritizes training samples rich in teacher-originated actions. Unlike heuristic
method, our approach leverages explicit teacher—student divergence as a selection criterion. Experi-
ments across diverse teacher—student pairs demonstrating performance gains in our settings.

2 RELATED WORK

2.1 REASONING DISTILLATION

Distilling the reasoning abilities of large reasoning models has been an important problem since
their emergence (Kim & Rush|, 20165 [Ho et al.| 2023} Ko et al.| 2024} [2025)). DeepSeek (DeepSeek-
All 2025) pioneered this line of work by showing that supervised fine-tuning on the outputs of
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a reasoning teacher, which is also the approach we focus on in this paper, can dramatically en-
hance the reasoning abilities of smaller models. Numerous subsequent projects (e.g., HuggingFace

OpenR1 (Hugging Face| 2025), OpenThoughts (Guha et al 2025)), a-m-team (Zhao et all, [2023)),
NVIDIA AceReason (Liu et al] [2025b), Alibaba OmniThought (Guha et all 2025), LIMO

[2025)), Tencent DeepMath (He et al] [2025)) have devoted substantial effort to constructing
large-scale corpora of challenging reasoning problems paired with teacher responses, using rig-
orous quality filtering, correctness checks, and diversity-aware curation. Most recently, GRAPE
(Zhang et al} 2025)) preferentially selects examples whose likelihoods best match the student’s cur-
rent distribution, thereby steering training toward data that is already well aligned with the student.
Rather than focusing solely on artificially designed rules and heuristic rules, we aim to quan-
tify the sources of a distilled model’s capabilities and introduce a data selection criterion that
focuses on sentences whose probabilities indicate stronger teacher-originated behavior. This
provenance-aware criterion complements prior student-only selection and provides an explicit
cross-model signal for reasoning transfer.

2.2 MODEL AUDITING

Another closely related area is model auditing, a growing line of work that studies
[Shmatikov] 2019} [Carlini et al] 2022} [Dekoninck et al [2024) auditing generative models to under-
stand what data they memorize and to attribute outputs back to underlying data sources. In contrast,
our work targets model-level provenance in a distillation setting: rather than asking whether
specific data are memorized, we aim to trace which upstream models are the sources of a given
output, shifting the focus from data membership to the lineage of the models themselves.

Due to page limitations, we provide further discussions on related work in the Appendix [A-6]
3  REASONING DISTILLATION PROVENANCE TRACING

In this section, we first provide necessary notations in Subsection [3.1] and introduce Reasoning
Distillation Provenance Tracing in Subsection[3.2] We then apply Reasoning Distillation Provenance
Tracing to three widely used open-source models (Deepseek-Distill-Qwen-7B, DeepSeek-R 1-0528-
Qwen3-8B and LIMO-v2 model) and present the results of the analysis in Subsection[3.3]

3.1 NOTATIONS

Specifically, let M7 denote the teacher model, Mg the student model, and {Q?, ..} a set of high-
quality training questions, where Q% ... denotes the i-th question. Reasoning distillation first sam-
ples responses from My on {Q:, ...}, yielding the training set Dirgin = {(Q%,.;n, ")} Where
Ti = {a@ )lj = 1,- -+, L;} denotes the trajectory for the i-th question, consisting of L; actions gen-
erated by M. The student model Mg is then trained by minimizing the cross-entropy loss between
its predicted next-token-actions and the teacher’s actions in trajectory 7; under the same context
(e.g., input (Q%, i, g1y, a(;,2)), output a; 3)). This ensures that distilled model Mp produces
reasoning trajectories mimicking to those of M7 when presented with the same context.

3.2 METHOD

As stated in the Section [T} our goal is to analyze whether the distilled model M, can still produce
actions similar to those of the teacher model M7 in new contexts. The most direct approach is to
input the same context into both models (M and M p) and compare their actions. Yet this approach
faces two challenges. First, reasoning outputs are typically long, and even when segmented step by
step, the number of sentences remains large. Iteratively truncating at each sentence boundary and
re-input both models to generate new actions is prohibitively expensive. Second, it is difficult to
accurately evaluate the similarity between the newly generated actions of the two models.

To address these issues, we shift perspective and instead sample exclusively from the distilled model
Mp on the test set {Q:,,,}. We first obtain the trajectory on test set Dyesr = {(Qt..;,7%)}. Sub-
sequently, we feed 7% back into the three models (M, Mg, and Mp) and analyse each component
action ag, ;- For each action, since token-level comparison is sometimes difficult due to possible
vocabulary mismatches between M and Mp. We use a coarser alternative, comparing at the sen-
tence level. In this way, we define the probability of producing a(; ;) as the geometric mean of
per-token probabilities p(; jy = exp(mean(log(py))), where pj. denote the probability of k-th token

contained with the sentence a; ;).
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<think> Okay, so Alice and Bob are playing this

. So n=12 is L.\n\n n=13: Take 1, opponent gets 12 So, the number of losing positions up to 2024 is
f:::v‘;:‘he;;‘;ci‘ ;’f;‘t‘;’ll(‘::: m‘g‘:’e"“t;;“::ho (losing). Take 4, opponent gets 10 (losing). So the number of n where n =0 or 2 mods, which is
e theglast token wins. T n’ee T ﬁgl:ue ot n=}4 ?s ‘W.\n\n n=15: Take 1, opponent glels.l4 equal to the number of n <2024 where n =0 or 2
oo i e A S (wmnmg} Take 4, opponent gets 11 (winning). mod5.\n\n. So, how many numbers §2024 are =0
ot o e b n:atler how Alice So r}=15 is L.\n\n nflﬁz Take 1, opponent gets 15 mod5? That's ﬂoor(2924/5)=404, since
B8 ErmYokayiEo B‘ob s (losing). Son=16 is \\’:\j1\n n=17: Take 1, 5><404:2020,\.n\n Similarly, numbers =2 mods5:

= dl > £ Alice's moves. So. first. opponent gets 16 (winning). Take 4, opponent Let's see, starting from 2,7,12,..., up to <2024.\n\n
strategy, regardiess o ) ’ ? gets 13 (winning). Son=17isL... The last term less than or equal t02024 is...

maybe I should figure out...

Figure 2: An illustration of analysis using Reasoning Distillation Provenance Tracing. The hori-
zontal axis denotes the action position (i.e., the sentence order), while the vertical axis shows the
probability assigned by different models (indicated by colored curves in the foreground) in produc-
ing that action under the same context. The background colors indicate the action types. Some
example of different action types are also shown at the top for illustration, where the blank spaces
indicate the segmentation boundaries of the response.

For each a(; ;), we can obtain three output probabilities under the same context: pa_ 7 from M,

pa i) from Mg, and pg 7 from Mp. As shown in Figure the blue line corresponds to pfi i) the
to p(Di)j), and the green line to p%’;)j).

Overall, since the trajectory 7° is sampled from the distilled model Mp, the orange curve (pg j))

tends to be the largest on average. Furthermore, four distinct patterns can be observed. Specifically:

Pre-existing actions in both models not enhanced by distillation (hereafter referred to as
Shared Sentence ): This includes actions such as those between the 54th and 68th steps, where
the output probabilities of all models are nearly identical. These actions are originally present in
both the teacher and the student models, and distillation does not further increase their probabilities.

Pre-existing actions boosted through distillation (hereafter referred to as Boosted Sentence ):
Similar to the first type, paj) and pf’i ) remain close, but p@j) differs significantly (and is typically
higher in practice, since trajectories are sampled from Mp). These actions also exist in both the
teacher and student models prior to distillation, but their probabilities are amplified through training
with distilled data.

Student-originated actions (hereafter referred to as Student Sentence ) and teacher-originated

actions (hereafter referred to as Teacher Sentence ): When there is a large discrepancy between
pi. ) and paj), the distilled model Mp still outputs the action, suggesting the action is more con-
sistent with the model assigning higher likelihood. Note that a Teacher Sentence does not imply that
the action is entirely absent from the student model, but rather that it is primarily originated from
the teacher. The same applies to a Student Sentence.

3.3 ANALYSIS ON OPEN-SOURCE MODELS

In this subsection, we apply Reasoning Distillation Provenance Tracing to DeepSeek-Distill-Qwen-
7B (Ds-7B), DeepSeek-R1-0528-Qwen3-8B (Ds-8B) and LIMO-v2 model to analyze the source
of each sentence produced by the distilled models in new testing context. Specifically, we sample
the open-source models on two commonly used reasoning benchmarks: AIME24 and GPQA-D.
AIME24 uses 16 completions per question, and GPQA-D uses 8.

For each completed response, we segment the output according to the following rules: (1)
Special tokens (e.g., <think>) are treated as individual actions, as they carry specific se-
mantics and represent important behavior. (2) For the remaining text, we split sentences
using the pattern: punctuation + optional whitespace + uppercase letter, corresponding to:
re.compile (r’ ([.2!'}\11) ([\s\nl+) ([A-Z])’). This segmentation procedure covers
most common English sentence structures.
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Figure 3: Analysis results on open-source models. We apply Reasoning Distillation Provenance
Tracing to Deepseek-Distill-Qwen-7B and DeepSeek-R1-0528-Qwen3-8B, analyzing the probabil-
ity of producing different actions at each action position on two reasoning benchmarks (AIME24
and GPQA-D). The x-axis denotes the action index, and the y-axis shows the probability of produc-
ing that action.

Then, we feed the sampled trajectories back into the corresponding teacher and student models
to obtain the output probability for each token, and consequently (by taken geometric average of
token probability), the probability for each action (pfi i) p(DZ. i) and pz; j)). We then define Agp =

pfm) — paj), Arp = paj) — p@yj) and Arg = pz,j) - p(5;7j). Using two thresholds, « and 3, we
can perform the tracing provenance:

Shared Sentence, if(|Asp| < a A |[Arp| < a A |Arg| < @),

Teacher Sentence, else if(Arg > (),

Student Sentence, else if(— Arg > ),

Boosted Sentence, else if(|Arg| < 3).

where pg._ ) pfi’ ) and p{i’ 7 denote the probabilities assigned to action a; ;) by the distilled model
Mp, the student model Mg, and the teacher model My, respectively. We follow the evaluation
order: Shared — Teacher — Student — Boosted. The role of « is to filter out relatively small
probability differences (such as those between sentences 55 and 65 in Figure [2) to prevent them
from influencing the analysis. [ helps to more clearly differentiate between various action types,
and its value can be determined adaptively. Due to page limitations, the selection of « and 3 is
detailed in Appendix[A.2]

Based on this classification scheme, we compute, for each action position, the proportion of each
action type and interpret this proportion as the probability of outputting that action type at the given
position. For example, for all answers at the third action position (i.e., the third sentence), we
calculate the proportion of actions belonging to Teacher Sentence and treat it as the probability that
the model outputs Teacher Sentence at that position. It is worth noting that the number of actions
varies across different answers; therefore, we focus primarily on the earlier action positions,
where sufficient data is available to yield reliable statistics. In addition, we compute the average
number of tokens for all actions at each position, and, at 4k-token intervals, mark in the action
positions corresponding to the average number of tokens required to reach that position. The results
are shown in Figure [3]and Figure [

We observe three phenomena (see Appendix [A.3]for more analyses) that help explain the observed
benefits of reasoning distillation in novel test-time settings:

(1) Higher Teacher Sentence probability in the early inference stage.

As shown in Figure 3] and Figure ] the light-green line (- ) exhibits larger values in the early
action index, meaning that the probability of outputting a Teacher Sentence is relatively high in
the early stages of inference. We attribute this to two factors. First, the student model lacks the
ability to properly generate the token <think>, and subsequent steps may be influenced by the
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Figure 4: Analysis results on LIMO-v2 model (Ye et al}[2025). We apply Reasoning Distillation
Provenance Tracing to LIMO-v2 model, analyzing the probability of producing different actions at
each action position on two reasoning benchmarks (AIME24 and GPQA-D). Since LIMO-v2 model
uses multiple teacher models, we tried different teacher models on all samples. The x-axis denotes
the action index, and the y-axis shows the probability of producing that action.

first action. However, this effect is limited, as evidenced by the rapid increase in the probability
of Boosted Sentence (i.e., the light-yellow line () rises sharply in the early phase.). Figure [2]
and Figure [T1] further illustrate this point, showing that other actions typically emerge after only a
few steps. Second, we observe that many early actions focus on analyzing the input and planning
subsequent steps. We hypothesize that forcing such behavior early on may be a unique pattern of the
teacher model, which explains why Teacher Sentences are more likely to appear at the beginning of
inference.

(2) Student-internal patterns are often activated but not uniformly beneficial during reasoning
distillation.

In LIMO-v2 paper, the authors found that if a model already contains sufficient reasoning knowl-
edge, reasoning distillation can activate it with minimal data scale and yield strong performance. In
this work, we find that reasoning distillation not only activates reasoning knowledge, but also trig-
gers other latent patterns embedded within the Boosted Sentence. As shown in Figure 3]and Figure
[ we observe that the mean of the pointwise sum of the light-green () and light-yellow () lines
exceeds 0.7, indicating that at each position the predicted action is likely to be one of these two ac-
tion types. This means that, in distilled models, the majority of output action types are either Teacher
Sentences or Boosted Sentences. More Teacher Sentences originate from the student model learning
directly from the teacher model. And more Boosted Sentences suggests that reasoning distillation
consistently activates student-internal patterns.

To analyze how reasoning distillation helps in novel contexts, we further conduct a quantitative
analysis of action-type probabilities in correct versus incorrect responses. As shown in Figure [4]
on LIMO-v2 model, Boosted Sentences emerge in later stages with consistently high probability in
correct responses across different teacher models (i.e., in later stages, the light-yellow solid line ()
remains above the light-yellow dashed line (  )). In the early stages, correct responses are more
likely to rely on Teacher Sentences (i.e., the light-green solid line () stays above the light-green
dashed line (- - -)). However, Figure 3] also reveals the opposite trend in smaller models: Boosted
Sentences consistently appear with higher probability in incorrect responses. This suggests that not
all student-internal patterns are worth activating. The authors of LIMO-v2 paper also find that small
models (e.g., 7B) trained with the same method fail to achieve good performance. Taken together
with our findings, one concludes that reasoning distillation often activates internal patterns in student
model, but not all of these activations are beneficial.

(3) Teacher sentences are highly correlated with performance gains.

As shown in Figure [3] across different models (DeepSeek-R1-0528-Qwen3-8B and DeepSeek-
Distill-Qwen-7B) and test sets (AIME24 and GPQA-D), Teacher Sentence tends to be assigned
higher probabilities to correct answers (i.e., the light-green solid line () stays above the light-
green dashed line ( )). This result is also intuitive: since the teacher model achieves higher
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performance on the test sets, the student model benefits from producing outputs more aligned with
the teacher, thereby increasing its likelihood of answering correctly.

It remains an open question whether Teacher Sentence is equally beneficial for larger models, and we
believe further experimentation is needed. Although Figure |4 clearly shows that Teacher Sentence
assigns higher probabilities to correct answers in the early stages (while probabilities for correct and
incorrect answers converge in later stages), the evidence is limited. LIMO-v2 dataset contains only
800 samples, designed primarily to activate student-internal patterns and validate conclusions in the
original paper. Thus, it is unclear whether, at larger training scales, Teacher Sentence would still
yield significantly higher probabilities for correct answers in the mid-to-late stages.Due to resource
constraints, this work focuses on models of 8B parameters or fewer. We hope to validate our findings
on larger models in future work.

In summary, our Reasoning Distillation Provenance Tracing shows that in new test settings,
distilled models not only produce sentences originating from the teacher, but these Teacher
Sentence are especially prominent in early reasoning phases and associated with answer cor-
rectness. At the same time, reasoning distillation can also activate patterns already latent
within the student (Boosted Sentences), whose contributions vary by model size and reasoning
phases, and are not uniformly beneficial.

4 BEYOND EXPLANATION, GUIDING TRAINING IN REVERSE:
TEACHER-GUIDED DATA SELECTION

Building on the analysis in Section[3] a natural training insight is: if we can increase the proportion
of Teacher Sentence in the training data and explicitly leverage teacher-student divergences
to select examples, we may front-load and amplify the observed generalization benefits. There-
fore, in this section, we first propose a teacher-guided data selection method in Section[4.1] Then we
validate its effectiveness across multiple teacher—student pairs and reasoning benchmarks in Section

42

4.1 TEACHER-GUIDED DATA SELECTION
To validate our hypothesis, the first question we must
fEne address is: how can Reasoning Distillation Provenance
() Houriti Tracing be applied prior to training? At this stage, we
only have access to the teacher model and the student
model. Nevertheless, even with only these two models,
it is still possible to reliably distinguish between Teacher
Logits Sentences and Student Sentences. Specifically:

Teacher (1) Sample
Model
(2) Re-Input

Student

Model Logits

Teacher | (1) Sample

Model C 2

ommon Sentence if(|A <
Training (3) Teacher- (| TS| > 5)7
Dataset guided selection

(2) Re-Input Teacher Sentence  else if(Args > ),

Student
Model

Logits Student Sentence  else if( — Arg > ).

where Common Sentence subsumes the previously de-
Figure 5: Comparison between teacher-  fined Shared Sentence and Boosted Sentence. Through
guided data selection and the previous this approach, we are able to effectively filter training data
method (Zhang et al.} 2025). to include more Teacher Sentence before training. Specif-
ically, for each question with multiple responses from the same teacher model, we count the number
of Teacher Sentences in each response and prioritize for training the response with the largest count.

As shown in Figure [5] the previous method (Zhang et al.l 2025) feeds the training data into the
student model before training, computes heuristics metrics based on the logits of student model, and
selects samples that more aligned with the student model’s original distribution. In contrast, our
proposed method provides a clearer objective for data selection: prioritizing samples where
the teacher and student models differ the most.

Moreover, our method introduces only an acceptable additional cost in practice. (1) When one
wishes to sample responses, similar to the previous method (Zhang et all [2025), our approach
incurs no extra overhead, since logits can be obtained directly during sampling. (2) When one
wishes to leverage existing open-source distillation datasets for filtering, some additional cost is
required. However, it is important to note that re-feeding the generated sequences into the model to
extract logits only requires a single forward pass, which is significantly faster than token-by-token
generation. Given sufficient GPU memory, we consider the additional time cost to be acceptable.

7
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4.2 EXPERIMENTS

We aim to evaluate the effectiveness of teacher-guided data selection across diverse training settings.
To this end, we conduct experiments with three distinct teacher models (Deepseek-R1-671B, QwQ-
32B, and GPT-OSS-120B) and four student models: Qwen3-4B-Base, Qwen3-8B-Base, Qwen2.5-
7B-Instruct, and Qwen3-4B-Instruct-2507. We use two high-quality reasoning datasets, AceReason-
1.1-SFT (Liu et al.l 2025b) and OpenThought3-1.2M (Guha et al.| [2025). Each question in these
datasets is paired with multiple candidate answers sampled from the teacher model. Further de-
tails are provided in Appendix For each question, we then select a single response using one
of three strategies: (i) random selection, which performs similarly to vanilla reasoning distillation
(’Vanilla™); (ii)) GRAPE (Zhang et al., [2025) (“GRAPE”); and (iii) our method (“Ours”). All strate-
gies yield training sets of identical size.

For evaluation, we select four widely adopted benchmarks known for their challenging reasoning
demands: AIME24, AIME25, MATHS00 (Lightman et al., 2023), and OlympiadBench (He et al.,
2024])). We report the accuracy results.

4.2.1 MAIN EXPERIMENTS

As shown in Tables |1} our method achieves the best performance. On average, it improves results
by 1.7%-2.5%.

Table 1: Comparison with different data selection strategy. Each experimental setting is denoted as
Teacher Model + Student Model + Data Source.

[ AIME24 AIME25 MATH500 OlympiadBench | Average
Deepseek-R1 + Qwen3-4B-Base + AceReason-1.1-SFT

Vanilla 44.4 333 91.2 55.9 56.2
GRAPE (Zhang et al.|[2025) | 43.0 34.1 88.6 54.8 55.1
Ours 493,49 379,46 90.8_ ¢4 56.6.0.7 58.7 25
Deepseek-R1 + Qwen3-8B-Base + AceReason-1.1-SFT
Vanilla 55.1 39.9 91.2 57.5 60.9
GRAPE (Zhang et al.|[2025) | 54.2 38.1 91.8 58.4 60.6
Ours 573,22 415,16 928,16 587112 62.6,1 7
OwQ-32B + Qwen2.5-7B-Instruct + OpenThought3-1.2M
Vanilla 43.5 35.6 89.8 55.1 56.0
GRAPE (Zhang et al.|[2025) | 47.5 34.6 91.4 54.8 57.1
Ours 48-1+4.6 36-3+0_7 90.0+0_2 56.3+1_2 57.7+1_7
GPT-OSS-120B + Qwen3-4B-Instruct-2507 + AceReason-1.1-SFT
Vanilla 75.9 62.5 93.6 64.0 74.0
GRAPE (Zhang et al.|[2025) | 76.8 66.5 92.6 62.5 74.6
Ours 77.9_*_2‘0 68.3_*_5‘8 94.6.{.1‘0 64.9_'.0‘9 76.44.2‘4

Table 2: Influence of different selection metrics.

AIME24  AIME25 MATH500 OlympiadBench | Average
Maximize Absolute Count 49.3 379 90.8 56.6 58.7
Longest 48.1 37.5 90.0 559 57.9
Relative Proportion 46.9 35.0 88.8 55.1 56.4
Vanilla 44.4 333 91.2 55.9 56.2
Minimize Absolute Count 42.9 35.2 87.8 54.2 55.0

4.2.2 ABLATION EXPERIMENTS

o ol ol (1) How to Leverage Teacher Sentences for Data Se-
; lection? We generally aim to include more Teacher Sen-

tences in training data, where “more” can be interpreted

in two ways: by the absolute count of Teacher Sentences

within a response (“Maximize Absolute Count”) or by

e e e emee e their relative proportion (“Relative Proportion”). Figure
E] shows that, across most action positions in correct re-
sponses, Teacher Sentences receive higher output proba-
bilities from the distilled model. This observation sug-
gests two principles for effective data selection: (i) choose responses that contain as many reasoning
actions as possible (“Longest”) so that the training signal can influence the maximum number of
action positions, and (ii) increase the absolute number of those actions that correspond to Teacher

Figure 6: Illustration of 3 selection for
the first training setting.
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Sentences (“Maximize Absolute Count”) to raise the model’s probability of producing them at those
positions.

To compare these metrics, we conduct an ablation study using Deepseek-R1 as the teacher, Qwen3-
4B-Base as the student, and AceReason-1.1-SFT as the data source. The results in Table[2]show that
Maximize Absolute Count yields the best performance, whereas Minimize Absolute Count
performs the worst, indirectly corroborating our hypothesis.

Table 3: Impact of different 3 values on accuracy.

AIME24 AIME25 MATHS00 OlympiadBench | Average
£ =0.05 479 37.1 89.8 57.0 58.0
B8=0.1 493 37.9 90.8 56.6 58.7
8 =0.15 46.3 37.5 90.2 56.3 57.6

(2) How to determine 5? In Section [3] we describe how to set § at test time. Here, we assess
whether the same procedure is effective on the training data. We conduct validation experiments
using DeepSeek-R1 as the teacher model, Qwen3-4B-Base as the student model, and AceReason-
1.1-SFT as the training data source. As shown in Figure[6] before training we observe that 5 = 0.1
produces the cleanest partition, with minimal overlap across action types. As shown in Table 3] the
optimal 3 determined before training achieved the best results in the ablation experiment. Moreover,
other near-optimal (3 also outperform the Vanilla baseline, indicating that performance is not highly
sensitive to the choice of 8. Together, the post-training results, along with the pre-training
analysis, consistently support our data-driven (3-selection strategy as a principled, training-
free, and effective approach. For further discussion, see Appendix

(3) Effects in different domain. To evaluate the ef-
fectiveness of our method in different domain, we used
GPT-0OSS-120B to sample 10k questions from Open-
ScienceReasoning_2 (NVIDIA Corporation, [2024), gen-
erating nine candidate responses per question. We then Fos
selected a single response for training using different se-
lection strategies. Results are reported in Table[d] We find

that our method is effective in the scientific domain and, B s 3
compared to GRAPE, exhibits stronger generalization in

math domain. Analysis on the test set further indicates

Figure 7: Analysis results of the

that the Teacher Sentence in science shares commonali-
ties with that in mathematics, which we hypothesize helps
explain why training on scientific data can improve per-

first training setting (Deepseek-R1 +

Qwen3-4B-Base
SFT) on AIME24.

+ AceReason-1.1-

formance on the math test set. Additional analyses are provided in Appendix
Table 4: Comparison with different data selection strategy on scientific domain.

[ GPQA-D | AIME24 AIME25 MATH500 OlympiadBench
GPT-OSS-120B + Qwen3-4B-Base + OpenScienceReasoning_ 2

Vanilla 39.9 242 24.6 85.8 44.0
GRAPE (Zhang et al.|[2025) | 40.9 24.6 22.1 84.2 443
Ours 42-9+3 0 25.2+1_0 24-8+0.2 87'4+l.6 48.0+4_0

(4) Does the distilled model increase the probability of outputting the Teacher Sentence? We
apply the Reasoning Distillation Provenance Tracing framework to our trained models. The re-
sults are shown in Figure [/} Compared with the Vanilla baseline, within the range where estimates
are statistically reliable (e.g., the first 800 action indices), our method increases the probability of
outputting the Teacher Sentence and correspondingly decreases that of the Student Sentence.

5 CONCLUSION

In this work, we address a fundamental yet under-explored question in reasoning distillation: does
the distilled model truly inherit the teacher’s pattern, or does it revert to its prior patterns when con-
fronted with new contexts? To answer this, we introduce Reasoning Distillation Provenance Tracing,
observe phenomena and quantify the evidences that help explain the observed benefits of reasoning
distillation in novel test-time settings. Building on these insights, we propose a teacher-guided data-
selection strategy and demonstrate its effectiveness on multiple settings. We hope our provenance-
tracing framework will inspire future research on cross-model behavior analysis, domain-aware data
selection, and more reliable distillation protocols for complex reasoning tasks.
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A APPENDIX

A.1 FUTURE WORK

Future work will pursue three directions: (1) when more logits information is available, combine
sequential probability matching methods to improve our data selection; (2) expand beyond the small-
model regime studied here, imposed by resource constraints, to evaluate the effectiveness of our
data-selection strategy on larger models; and (3) move past the single-teacher setting to investigate
principled approaches to data selection when training with ensembles of diverse teacher models.

A.2 HOW TO DETERMINE « AND f3
A.2.1 HOW TO DETERMINE «

For «, it is used to filter out relatively small probability differences that would otherwise affect the
analysis. To obtain a relatively objective threshold, we asked 10 annotators to judge the magnitude
of probability differences. For each annotation, the annotators were shown an output-probability line
chart similar to that in Figure 2] Given all the sentences in the response, we asked them to identify
those whose probability differences could be regarded as relatively negligible, such as sentences
55-65 in Figure 2] After we explained the definitions of the four sentence types and the goal of
our analysis, the annotators manually selected the sentences that appeared more likely to be Shared
Sentences, and we then derived the final rounded value of o = 0.1 from their judgments.
Threshold=0.1 Threshold=0.15 . Threshold=0.2

The histograms of .,
the proportion of .|
actions

Action output
probability

Figure 8: Illustration of g selection for Deepseek-Distill-Qwen-7B on AIME24.

A.2.2 HOW TO DETERMINE [

055 55378 The parameter [ serves primarily to facilitate a clearer
separation of the relative proportions of different ac-
tion types, enabling more effective provenance analysis.
Specifically, for each trajectory, we compute the propor-
tion of sentence attributed to each action type (e.g., in
trajectory 1, 60% of sentences are labeled as Teacher
Sentence; in trajectory 2, 70%). We then construct his-
tograms showing the distribution of these proportions
across all samples for each action type (e.g., plotting the
distribution of Teacher Sentence proportions using values
0.05 0.10 0.15Tme5h0|dov20 0.25 0.30 such as [067 07’ ])

Overlap Area

Figure 9: Illustration of 3 selection pro- Intuitively, we choose 3 to maximize the separation be-
cess. tween the distributions of different action types, so that

their overlap is minimized, particularly for the action
types that dominate in frequency. As shown in Figure [§] for instance, when 5 = 0.15, the his-
togram reveals that most samples exhibit a clear predominance of Teacher Sentence, providing a
clean characterization of the model’s output behavior. In contrast, when 8 = 0.2, the distribu-
tions of Teacher Sentence and Boosted Sentence exhibit significant overlap, indicating that samples
within the overlapping region are sensitive to minor fluctuations and may be ambiguously classified.
A similar problem also exists with 5 = 0.1.
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Algorithm 1 Search for Optimal

Require: teacher model M7, student model Mg, batch of data D
Ensure: optimal threshold 5*
1: Feed D into M7 and Mg to obtain sentence-level output probabilities.
2: Following Section[d.2.2] partition sentences and get sentence-level probabilities into: Common
Sentence set C, Teacher Sentence set 7, Student Sentence set S.

3: best overlap: O* + 400

4: best 8: p* < None

5: for 8 € {0.05,0.10,...,1.0} do

6:  Compute the histogram overlap between S and C under threshold 3, denote it as O; .
7:  Compute the histogram overlap between C and 7 under threshold 5, denote it as Os.
8:  Current overlap O < O; + O

9: if O < O* then

10: O*«+ 0
11: BB

12 endif

13:  if mean(C) > mean(7) then
14: break

15:  endif

16: end for

17: return (3*

Therefore, for Deepseek-Distill-Qwen-7B on AIME24, we set 5 = 0.15. For the experiments in
Section we evaluate all values of /3 in the range [0.05, 0.2] with a step size of 0.05. The
final selected thresholds are: 3 = 0.1 for Deepseek-Distill-Qwen-7B on GPQA-D, 5 = 0.1
for DeepSeek-R1-0528-Qwen3-8B on AIME24, 5 = 0.15 for DeepSeek-R1-0528-Qwen3-8B on
GPQA-D, § = 0.1 for LIMO-v2 model on AIME24 when using QwQ-32B as teacher model,
B = 0.2 for LIMO-v2 model on GPQA-D when using QwQ-32B as teacher model, 5 = 0.15 for
LIMO-v2 model on AIME24 when using Deepseek-R1 as teacher model, and 8 = 0.1 for LIMO-v2
model on AIME24 when using Deepseek-R1 as teacher model.

In fact, threshold selection is also an adaptive procedure rather than a manually specified parameter
that must be tuned via repeated training runs, which makes it fundamentally different from hyperpa-
rameter selection in neural networks. Taking the training-time pipeline as an example, we perform
the search using Algorithm [I] For the four training configurations in Table [T} the chosen /3 values
are 0.1, 0.1, 0.15, and 0.2, respectively. In addition, we show how this algorithm selects the value
0.2 for Table[T] Setting 4, as illustrated in Figure 9]

A.2.3 SENSITIVITY ANALYSIS

We also illustrate threshold selection on first training setting (DeepSeek-R1 + Qwen3-4B-Base +
AceReason-1.1-SFT) in Figure [§] The corresponding quantitative results are reported in Table [3]
As can be seen, the threshold identified as optimal before training also yields the best performance
after training. The post-training metrics in Table [3] and the pre-training visualizations in Figure [6]
demonstrate that the proposed method is purely data-driven, requires no additional training, and is
practically applicable. Near-optimal 3 also outperform the Vanilla baseline, indicating that perfor-
mance is not highly sensitive to the choice of £3.

Additionally, we examine the sensitivity of our analysis to the choice of 3. As shown in Figure|[§]
the relative trends and distinctions in action-type output probability between correct and incorrect
samples remain consistent across different /3 values, suggesting that our main conclusions are robust
to the [3 setting.
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Ds-7B on AIME24 Ds-8B on AIME24

92.3%

79.6%

73.9%

64.2%
62.7%
59.2%

04 37.1%
2.6%

20.2%

31%

0.4%| 01% 0.2%

Teacher Sentence Student Sentence Boosted Sentence Shared Sentence Teacher Sentence Student Sentence Boosted Sentence Shared Sentence

Figure 10: Differences across action types. Using SEAL’s behavioral categorization, we classify all
actions and report the proportion of behavior types within each action type.

A.3 MORE ANALYSIS RESULTS

A.3.1 ALTHOUGH DISTILLED MODELS GENERALLY EXHIBIT SUBSTANTIALLY STRONGER
LONG-CONTEXT GENERATION CAPABILITIES, THE SOURCES OF THESE
IMPROVEMENTS ARE NOT UNIFORM ACROSS MODELS.

As shown in Figure 3] within DeepSeek-Distill-Qwen-7B, once the sequence length exceeds ap-
proximately 4K tokens, the generated outputs are quickly transformed into Teacher Sentence. In
contrast, this behavior is not observed in DeepSeek-R1-0528-Qwen3-8B or LIMO-v2 model. We
attribute this discrepancy to differences in the underlying student model: DeepSeek-Distill-Qwen-
7B is distilled from Qwen2.5-Math-7B 2024), which has an effective context length
of approximately 4K tokens. Beyond this limit, the model’s outputs predominantly reflect patterns
inherited from the teacher model. By comparison, DeepSeek-R1-0528-Qwen3-8B and LIMO-v2
model are based on Qwen3-8B-Base and Qwen2.5-32B-Instruct, respectively. These
models support substantially longer effective context lengths and thus avoid this limitation.

A.3.2 WHAT BEHAVIORS ARE INCLUDED IN DIFFERENT ACTION TYPES?

We categorize each action using SEAL 2025)), which defines three types of behaviors:
execution, reflection, and transition. Execution refers to steps that directly advance problem solv-
ing, reflection denotes verification, checking, or questioning of the existing reasoning process, and
transition represents an intentional change in the current reasoning direction or strategy. Special
tokens are excluded from the statistics. The results are shown in Figure[I0} from which we make the
following three observations.

(1) Both student models exhibit a certain degree of reflection and transition, and reasoning dis-
tillation further activates and strengthens these behaviors. Specifically, Student Sentences already
contain reflection and transition behaviors, while Boosted Sentences display more of these behav-
iors than Student Sentences and Shared Sentences after distillation. Although there remains a gap
between RL and reasoning distillation, this observation is similar with prior work
2023}, [Gandhi et al, 2023), which suggests that reflection and transition abilities are already latent
in student models and that RL/Reasoning distillation as a post-training method serves to activate
them. (2) The vast majority of Shared Sentences are Execution. (3) The student model of Deepseek-
R1-0528-Qwen3-8B (Ds-8B) shows stronger reflective ability than the student model of Deepseek-
Distill-Qwen-7B (Ds-7B), as evidenced by the higher proportion of reflection behaviors in Student
Sentences.

A.3.3 TEACHER SENTENCES ACROSS DOMAINS

As illustrated in Figure[T1] we further examine the characteristics of Teacher Sentences across do-
mains. In mathematics, Teacher Sentences primarily consist of explicit mathematical operations,
followed by checks of these operations and validations of the solution logic. In science, they more
often involve inspections of reasoning chains and targeted recall of relevant knowledge. Despite
these differences, we observe common patterns: when reasoning stalls, Teacher Sentences prompt
the recall of key facts and encourage reflective adjustments to the reasoning process. We hypothe-

15



Under review as a conference paper at ICLR 2026

<think>
\nFirst, | need to ize 5-isopropyl-3,4-di -1-ene Using ring-closing metathesis (RCM). ] Ds-8B on GPQA-D
RCM is a reaction that forms a ring from a diene by eliminating ethene, typically requiring a diene with specific or substitution to form the desired ring sizeAnn)

The target molecule is 5-isopropyl-3,4-dimethylcyclohex-1-ene. ]

It a cyclohexene ring with a double bond at position 1, and substituents at positions 3,4, and 5: isopropyl at 5, and methyl groups at 3 and 4.n\n)

In ring-closing metathesis, the diene precursor should be such that when it is, it forms a ring with the correct substituents and the double bond in the correct position.\nin)
The target is a cyclohexene, so the ring-closing should form a six-membered ring.

In RCM, the ring size is determined by the number of atoms in the chain between the two ends of the diene. ]

For a six-membered ring, the diene should have a chain with four atoms or groups that will form the ring, but in is, it's the diene that closes the ring.\n\n)

Recall how RCM works: for example, a diene like 1,6-heptadiene can form cyclohexene. |

The general idea is that the diene has two double bonds, and metathesis between them forms a ring and ethene.\n\n]

For a six-membered ring cyclohexene, the diene should be such that the two ends are connected by a chain that, when the double bonds react, forms the six-member ring.\n\n]
In standard RCM, for a cyclohexene, the diene is typically a 1,6-diene with substituents on the chain.\n\n]

But in this case, the target is 5-isopropyl-3,4-dimethylcyclohex-1-ene. ]

Let's number the ring.\n\n]

‘Assume the cyclohexene ring has the double bond between C1 and C2. )

Then substituents: methyl at C3 and C4, isopropyl at C5.\n\n]

In standard naming, cyclohexene with double bond between C1-C2, so C1 and C2 are sp2, C3-C6 are spl\n\n]

Substituents: methyl at C3 and C4, isopropyl at C5.\n\n]

Now, for RCM to form this ring, the diene precursor should have the two ends that will become C1 and C2 of the ring, and the chain connecting them should be such that after is, the ring is formed. \n\n]
In RCM, the double bonds are internal, and metathesis forms a new double bond in the ring.\n\n]

Typically, for a cyclohexene via RCM, the diene is a 1,6-diene where the two ends are the groups that will be part of the ring.\n\n)

For example, to make cyclohexene, you might have a diene like CH2=CH-CH2-CH2-CH2-CH=CH2, but that's Symmelr\c,\n\n]

But here, there are i \n\n!

So, for the ring-closing to form a six-member ring, the diene should have the two double bonds separated by three atoms.n\n)

In a six-member ring, there are six atoms. ]

[When you form the ring via RCM, the two ends of the diene become adjacent in the ring-\n\n)

Standard way: for RCM to give a cyclohexene, the diene should be a 1,6-diene with the two ends being the groups that are not part of the double bonds.\n\n)

<think>

\nThe prlblem involves a triangle with circumcenter O and incenter I. ] Ds-8B on AIME24
IA is perpendicular to OI, circumradius is 13, and inradius is 6. ]

I need to find the product AB times AC. ]

First, | recall some properties of the circumcenter and incenter.\n\n]

The circumcenter O is the center of the circumcircle, which passes through all three vertices, and its radius is given as 13. ]
The incenter | is the center of the incircle, tangent to all three sides, with radius 6. ]

Also, 1A is perpendicular to Ol\n\n]

IA is the line from | to A, and it's perpendicular to the line joining O and I. ]

| need to find AB * AC, which is the product of two sides from A.\n\n]

| remember that in any triangle, the distance between O and | is given by \( 01”2 = R(R - 2r) \), where R is the circumradius and r is the inradius. ]
Let me verify that.\n\n)

Yes, the standard formula is \( 01°2 = R(R - 2r) \). ]

Here R=13, r=6, 50 \(0I"2 = 13(13 - 12) = 13 \times 1 = 13). ]

So Ol s sqrt(13).\n\n|

Now, there's a condition that IA is perpendicular to OI. ]

IA is the distance from | to A, but it's a line, so probably the line 1A is perpendicular to the line OI.\n\n]

In the context, it says "IA perpendicular to OI", so | think it means the line or lines are i mm]

Now, | need to relate this to the sides. ]

| recall that in a triangle, the distance from incenter to a vertex can be expressed in terms of the sides and angles.\n\n]

Let me denote the triangle as ABC, with sides opposite to A,B,C as a,b,c respectively. ]

S0 AB = ¢, AC = b, BC = a.\n\n]

Figure 11: Comparison of Teacher Sentences across domains. Teacher Sentences are highlighted in

Table 5: Training config.

Qwen3-4B-Base Qwen3-8B-Base  Qwen3-4B-Instruct-2507 Qwen2.5-7B-Instruct

learning_rate Se-5 Se-5 Se-5 8.0e-5
cutoff_len 32k 64k 64k 16k
epoch 6 6 6 5
batchsize 32 32 32 512
Ir_scheduler_type cosine_with_min_Ir  cosine_with_min_Ir cosine_with_min_Ir cosine
min_Ir le-5 le-5 le-5 0
warmup_ratio 0.1 0.1 0.1 0.1

size that these shared behaviors explain why training on scientific-domain data containing a higher
proportion of Teacher Sentences can also benefit performance on mathematics test sets.

A.4 MORE DISCUSSIONS

A.4.1 A NEW PERSPECTIVE ON UNDERSTANDING MODELS

Most existing approaches [Lee et al.| (2025); [Liu et al| (20254) to understanding model outputs oper-
ate in a human-centric semantic space. They typically seek to decompose intermediate activations
or outputs into human-interpretable units, such as natural language concepts, symbolic structures,
or predefined semantic categories. While this line of work has yielded valuable insights, it implic-
itly assumes that model behavior is best understood by mapping it onto human-designed semantic
structures.

We agree that semantic/structure-level analyses are important. But we believe that decomposing
the outputs of a reasoning model into human-interpretable semantic units is not the only way to
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understand model behavior. Instead, our method offers a novel and complementary perspective: we
construct a decomposition that is naturally induced by the model itself and directly ties its outputs to
performance on the test set. This model-centric view allows us to analyze how different components
of the model’s output contribute to its empirical performance, without requiring a predefined set of
human-interpretable semantic units.

A.4.2 ALIGNMENT OF OUTPUT DISTRIBUTIONS

In the distillation setting, we define better reasoning as closer alignment with the teacher
model’s output distribution. The goal of reasoning distillation is therefore twofold: (i) the
student model should learn the teacher model’s output distribution, and (ii) this alignment
should yield better performance on the test set. In addition to the existing analysis of the second
point (in main text), we further examine the first point. To examine (i), we construct three sets of
sentences: the teacher model’s outputs on the training set, the teacher model’s outputs on the test
set, and the distilled student model’s outputs on the test set. For each set, we feed every response
into both the teacher model and the distilled student model, compute the difference between the
output probabilities for each sentence, and then aggregate these differences to obtain the empirical
distribution histogram of probability discrepancies.

Train Data 40 Train Data
30 Teacher Test Data Teacher Test Data
Student Test Data Student Test Data

(a) Vanilla (b) Ours

Figure 12: Distribution of output probability differences. “Train Data”, “Teacher Test Data”, and
”Student Test Data” represent the outputs of the teacher model on the training set, the outputs of
the teacher model on the test set, and the outputs of the distilled student model on the test set,
respectively.

The results, shown in the Figure [I2] compare two different data-filtering strategies. Under both
strategies, the probability discrepancy is small on the training data (the teacher’s outputs on the
training set), which is expected because the training data are well fitted. The discrepancy on the
teacher’s outputs on the test set is slightly larger, indicating that, although the queries in the training
and test sets differ, the student model still largely follows the teacher model’s output distribution
when evaluated on the teacher’s context. Remarkably, when evaluated on the distilled model’s own
context on the test set, our method achieves an even smaller probability discrepancy than on the train-
ing data. This strongly suggests a high degree of alignment with the teacher’s output distribution.
It is important to note that the teacher distribution is not directly observable. We only approximate
it indirectly via the probabilities assigned to sentences under different contexts. The fact, that the
smallest probability discrepancy occurs on the distilled model’s own outputs on the test set, indicates
that our method allows the student model, in its own generation context, to closely align with the
teacher model’s output distribution.

A.5 TRAINING DETAILS

For the OpenThought3-1.2M dataset, we used only the mathematical problems and randomly sam-
pled 50k questions. For each question, the official dataset provides 16 responses generated by QwQ;
from these, we randomly selected 8 responses to form our initial training set.

For the AceReason-1.1-SFT dataset, we first randomly sampled 50k mathematical questions. For
each question, the official dataset provides multiple responses generated by R1. We then addition-
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ally generated 1-5 responses per question using GPT-OSS-120B (configured with Reasoning:
high). Together, the R1 and GPT-OSS-120B responses served as our initial training set.

The training configuration is provided in Table[3]

A.6 RELATED WORK

A.6.1 LLM DISTILLATION

Knowledge Distillation. Knowledge distillation was first introduced by (Hinton et al 2013a)) as a
technique for transferring the dark knowledge of a teacher model to a lightweight student model via
soft labels, thereby enabling substantial model compression while preserving most of the original ac-
curacy. Subsequent works [2014} [Zagoruyko & Komodakis| 2016)) has extended this framework
from multiple perspectives, for example by distilling feature layers or intermediate representations
and by introducing relational or structural distillation, so that the student not only mimics the output
distribution but also aligns the structural properties of the hidden representation space. Later works
(Ko et al} 2024} [2023)) further improve alignment by approximating sequence-level KL divergence,
leading to more effective distillation. In practice, knowledge distillation has been
widely applied to tasks such as image classification, object detection, and natural language process-
ing, and has become one of the mainstream approaches for model compression and acceleration.

Reasoning Distillation. Distilling the reasoning abilities of large language models has been an im-
portant problem since their emergence (Kim & Rush| 2016}, [Ho et al] 2023} [2024; [2025).
Before the advent of large-scale reasoning models such as O1 (Jaech et al} [2024), traditional rea-
soning distillation methods primarily transferred capabilities by aligning intermediate features or
output probabilities between teacher and student models (Kim & Rushl 2016}, [Ho et al.] 2023}

et al] [2025)). To teach reasoning more explicitly, prior work (Hsieh et al.| 2023} [Kim & Rush|
2016} [Ho et al. [2023} [Ko et al.l 2024} [2023)) constructs responses that include detailed reasoning
traces and trains the student on these signals, thereby strengthening its mastery of reasoning. In
the era of large-scale reasoning models such as R1 (DeepSeek-All [2025)) and QwQ [2025D),
which naturally exhibit chain-of-thought reasoning and achieve strong performance, distilling their
capabilities into smaller models has become an effective and practical path toward improved effi-
ciency. DeepSeek (DeepSeek-All [2023)) pioneered this line of work by showing that supervised
fine-tuning on the outputs of a reasoning teacher, which is also the approach we focus on in this
paper, can dramatically enhance the reasoning abilities of smaller models. Numerous subsequent
projects (e.g., OpenR1 (Hugging Face] [2023]), OpenThoughts [2025)), a-m-team (Zhao
et al| 2025), NVIDIA AceReason (Liu et al.| [2025b), OmniThought [2025), LIMO (Ye|
et al.| [2023), DeepMath (He et al.| [2025)) have devoted substantial effort to constructing and refining
large-scale corpora of challenging reasoning problems paired with teacher responses, using rigorous
quality filtering, correctness checks, and diversity-aware curation. Most recently, GRAPE
scores candidate responses with the student model and preferentially selects examples
whose likelihoods best match the student’s current distribution, thereby steering training toward data
that is already well aligned with the student. Rather than focusing solely on artificially designed
rules and heuristic rules, we view reasoning distillation as a capability-transfer problem from
teacher to student. We aim to quantify the sources of a distilled model’s capabilities: given a
context, which actions in a trajectory from distilled model are more likely to originate from
the teacher’s behavior rather than the student’s existing tendencies? Building on this perspec-
tive, we introduce a data selection criterion that jointly compares teacher-student output dis-
tributions and focuses on sentences whose probabilities indicate stronger teacher-originated
behavior. This provenance-aware criterion complements prior student-only selection in the
following way: it provides an explicit cross-model signal for reasoning transfer. In Section [4]
we show that provenance-aware selection outperforms student-only alignment in our settings.

A.6.2 MODEL AUDITING

Another closely related area is model auditing, a growing line of work that studies
[Shmatikov] 2019}, [Carlini et al] 2022}, [Dekoninck et all 2024) auditing generative models to un-
derstand what data they memorize and to attribute outputs back to underlying data sources. For
example, prior work (Song & Shmatikov] [2019) shows that rare tokens in the training data tend to
be memorized by text generation models, and uses shadow models together with an audit classifier
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(e.g., an SVM on token-rank features) to distinguish whether a user’s data was included in training.
Separately, subsequent work (Carlini et al.}[2022)) formalizes extractability as the ability of a model,
given a prefix, to greedily regenerate the exact suffix from the training set, and systematically studies
how repetition and sequence length affect the fraction of such extractable sequences. In contrast,
our work targets model-level provenance in a distillation setting: rather than asking whether
specific data are memorized, we aim to trace which upstream models are the sources of a given
output, shifting the focus from data membership to the lineage of the models themselves.

A7 LLM USAGE

We used Qwen3 for polishing, followed by manual refinement.
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