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ABSTRACT

Machine unlearning seeks to remove the influence of specific data or classes from
trained models to meet privacy or legal requirements. However, existing methods
often achieve only shallow forgetting: while outputs change, internal representa-
tions still retain enough information to reconstruct the forgotten data or behav-
ior. We demonstrate this vulnerability via feature and data reconstruction attacks,
showing that most unlearned features remain informative enough to recover both
model performance and raw inputs from the forget set. To address this issue, we
propose OPC (One-Point Contraction), a simple yet effective unlearning method
that contracts the output representations of forget data toward the origin. By lim-
iting representational capacity to a single point, OPC selectively erases feature-
level information associated with the forget set. Empirical evaluations on image
classification benchmarks show that OPC achieves strong unlearning efficacy and
superior robustness against recovery and reconstruction attacks. We further ex-
tend OPC to generative diffusion models, validating its effectiveness in the con-
text of conditional image generation. Applied to Stable Diffusion, OPC enables
fine-grained removal of concept-level information, achieving state-of-the-art per-
formance in generative unlearning. These results demonstrate OPC’s broad appli-
cability and its potential for precise, task-aware control of forgetting across both
discriminative and generative domains.

1 INTRODUCTION

Machine unlearning, with the aim of selectively removing the influence of specific data instances
on a given model without requiring full retraining of the model (Cao & Yang, 2015), has emerged
as a significant research frontier in deep learning (Shaik et al., 2024). The quest for effective and
efficiency methods to make models “forget” addresses technical demands for excising outdated or
erroneous data and legal compliance to recent privacy mandates such as the General Data Protection
Regulation (GDPR). However, existing methods of machine unlearning such as (Fan et al., 2024;
Thudi et al., 2022; Golatkar et al., 2020; Kurmanji et al., 2023) fail to make models “forget” the
internal feature representations of forgotten data. The residual information can be exploited to pose
privacy risks, failed compliance, and even adversarial attacks to reverse the unlearning itself.

The threat is real. Membership inference attacks (Shokri et al., 2017) on a given model demonstrated
that latent feature representations can leak information on whether individual data is used in training
the model. Moreover, recent reconstruction attacks (Bertran et al., 2024; Hu et al., 2024) success-
fully recover the data “forgotten” by the unlearned models, thereby exposing the risk of shallow
unlearning by many existing approaches.

Hence we raise a pivotal question: can machine unlearning allow models to forget beyond recovery?
Answering yes to this question will contribute to research for theoretically well-founded robust
unlearning of deep learning based models. In this work, we make four key contributions to answer
this question positively:

• Establish a theoretical foundation of how to achieve “deep feature forgetting”.

• Propose a novel unlearning algorithm, named OPC unlearning, based on one-point-
contraction (OPC) strategy theoretical uncertainty in feature representations.
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• Comprehensive empirical validation of the effectiveness of OPC, demonstrating that OPC-
unlearned model forgets much deeper than 12 existing machine unlearning methods.

• Verifying generalizability of OPC by applying it to generative diffusion models with state-
of-the-art performance on diffusion unlearning benchmark.

2 RELATED WORKS

2.1 MACHINE UNLEARNING (MU)

MU focuses on efficiently removing the influence of specific data, the forget set, from trained mod-
els, which is important for data privacy, user consent withdrawal, and regulatory compliance (e.g.,
GDPR’s “right to be forgotten”) GDPR. Methods typically aim to erase the forget set while preserv-
ing performance on the retain set. Representative approaches are summarized below, with details in
Section B.

• Classification Unlearning: Such as GA (Thudi et al., 2022), RL (Golatkar et al., 2020), BE
(Chen et al., 2023), FT (Warnecke et al., 2023), NGD (Chourasia & Shah, 2023), NegGrad+
(Kurmanji et al., 2023), EUk & CFk (Goel et al., 2022), SCRUB (Kurmanji et al., 2023),
and BT (Chundawat et al., 2023), l1-sparse (Jia et al., 2023).

• Diffusion Unlearning: Such as EDiff (Wu et al., 2025), ESD (Gandikota et al., 2023),
FMN (Zhang et al., 2024a), SHS (Wu & Harandi, 2024), CA (Kumari et al., 2023), SEOT
(Li et al., 2024), SPM (Lyu et al., 2024), SAeUron (Cywiński & Deja, 2025) and UCE
(Gandikota et al., 2024).

• Cross-domain Unlearning: Applicable methods across both domains, including SalUn
(Fan et al., 2024).

2.2 ATTACKS ON MU

MU is vulnerable to adversarial attacks. Membership inference attacks (MIA) (Shokri et al., 2017)
can reveal whether forget-set data still resembles the training or test set, indicating unlearning suc-
cess.

Reconstruction-based attacks are even more threatening, as latent features can be exploited to re-
cover forgotten data. Inversion-based methods (Hu et al., 2024) align gradients from GA-unlearned
models to reconstruct forget-set samples, highlighting limitations of shallow unlearning.

We applied this inversion attack to benchmark scenarios. As shown in Fig. 1, many methods leaked
forget-set information, while OPC effectively resisted recovery. Additional setup and results are in
Section D.3.

2.3 FEATURE MAGNITUDE AND OOD

In literature of transfer learning and OOD-detection, the role of feature norm was observed em-
pirically and employed in practice, that the features of OOD data are observed to have smaller
magnitudes (Dhamija et al., 2018; Tack et al., 2020; Huang et al., 2021) and thus able to be dis-
tinguished. This phenomenon is explained theoretically in Park et al. (2023) that the feature norms
can be considered as a confidence value of a classifier. Motivated by the role of feature norm, (Yuan
et al., 2017; Xu et al., 2019; Kumar et al., 2023) maximize the feature norm for better performance
and transferability.

GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

CI
FA

R1
0

GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

SV
H

N

Figure 1: The results of unlearning inversion attack. GT represents the ground truth image from the
forget set of each dataset and others are the results from each unlearned model.
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3 DEEP FEATURE FORGETTING WITH ONE-POINT-CONTRACTION

In this work, we introduce concept of deep and shallow forgetting in Section 3.1 and propose novel
MU method OPC in Section 3.2 which aim to seek deep forgetting.

Within this paper, we denote D be the full dataset, partitioned into four disjoint subsets:
Dr,Df ,Dval,Dtest which are retain set, forget set, validation set and test set respectively.

We assume the model mθ follows the standard encoder–predictor structure mθ = gθ ◦ fθ, where fθ
is the feature extractor and gθ the prediction head or diffusion denoiser. This decomposition allows
us to analyze changes in learned feature representations independently of the classification layer.

3.1 DEEP FEATURE FORGETTING

As listed in Section 2.2 and Fig. 1, there are attacks against MU methods, revealing vulnerabilities
to privacy leakage, which indicates that unlearned models still produce informative features on the
forget samples.

The conventional metrics of MU, which are mostly logit-level, are not capable of detecting this
vulnerability, as MU baselines with strong performance were still vulnerable. Instead, it is worth
considering the feature level, whether information about the unlearn target still survives, since prac-
titioners often exploit pretrained model encoders for transfer learning or distillation.

We found that many MU methods exhibit shallow forgetting, where the model’s predictions on the
forget set degrade but the underlying features still encode meaningful information, leaving the model
vulnerable to recovery attacks that reconstruct forgotten data from the unlearned model.

In contrast to shallow forgetting, we propose a stricter goal for MU: to completely eliminate the
detailed information content of the forget set from the model’s internal representations. We define
this as deep forgetting, where the learned features of the unlearned model are no longer informative
about the forgotten data, making the model resistant to data leakage attacks.

3.2 OUR METHOD: ONE-POINT-CONTRACTION

We propose One-Point Contraction (OPC), a simple yet effective approach for MU that contracts
the feature representations of forget samples into single point, the origin 0. This idea stems from
two insights: (1) a single point and its local neighborhood have inherently limited representational
capacity, and (2) forgotten samples should yield low-norm logits indicative of high uncertainty, in
line with how OOD samples behave.

We implement the contraction as an optimization problem to minimize the ℓ2 norm of the logits
mθ(x) for the forget samples x ∈ Df , while preserving performance on retain samples via the stan-
dard cross-entropy loss. The unlearning process would be performed by minimizing the following
loss function represents the heart of OPC unlearning:

LOPC = Ex,y∼DrLCE(mθ(x), y) + Ex,y∼Df
∥mθ(x)∥2. (1)

The core idea of OPC, forcing forget-set feature vectors to have small norms, is closely related to
prediction uncertainty. Ideally, unlearned data should be treated as unseen (OOD) samples, leading
the model to exhibit high uncertainty with small feature norms. We formalize this relationship in
the following theorem, establishing a lower bound on the predictive entropy as a function of feature
norm.

Theorem 3.1. Let C be number of classes. Suppose h = mθ(x) ∈ Br(0) where Br(0) is the
ball of radius r centered at origin. Then the entropy H(softmax(h)) of predicted probability has
following lower bound parameterized by r and C:

H∗(r, C) := min
h∈Br(0)

H(softmax(h)) > log

(
1 + (C − 1) exp

(
−
√

C

C − 1
r

))
(2)
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Proof of Theorem 3.1. The exact formula of H∗(r, C) is given by

H∗(r, C) = log

(
1 +

1

κ

)
+

log(κ(C − 1))

κ+ 1
, (3)

where κ = 1
C−1 exp

(√
C

C−1r
)

and log
(
1 + 1

κ

)
is equal to RHS of Eq. (2). For the proof of the

exact formula, we state that the space of low-entropy features and the ball Br(0) shows geometric
mismatch in q-space, where q = exp(h). Therefore, if r is small then no element in Br(0) can have
small entropy and confidently predicted. Detailed proof is in Section A.

As the feature norm r decreases, the exponential term exp
(
−
√

C
C−1r

)
approaches 1, pushing the

lower bound in Eq. (2) toward log(C), the maximum possible entropy. Conversely, as r increases,
the lower bound decreases, reflecting that more confident predictions become available.

4 EXPERIMENTS ON CLASSIFICATION

We systematically evaluate unlearning methods in terms of feature forgetting and vulnerability us-
ing image classification benchmarks. Feature forgetting is quantified via CKA in Section 4.2, mea-
suring the similarity between pretrained and unlearned representations. We further assess whether
unlearned features can be recovered through linear transformation attacks in Section 4.3, revealing
potential vulnerabilities in the forgetting process.

Overall unlearning performance is presented in Section 4.4, showing that many methods achieve
high scores on standard metrics despite exhibiting only shallow forgetting. This underscores a crit-
ical limitation of current evaluation metrics, which may overestimate unlearning effectiveness and
fail to capture whether sensitive information has truly been removed.

4.1 EXPERIMENT SETTINGS

We evaluate unlearning methods on CIFAR10 and SVHN using ResNet-18, considering two scenar-
ios: class unlearning, where Df contains classes 0, 1, and 2 (30% of classes), and random unlearning,
where 10% of training samples are randomly selected. Additional results are in Section E.

Unlike many existing works that aim to approximate a retrained model, our evaluation policy seeks
to maximize forgetting of Df while preserving performance on the retain set Dr and test set Dtest.
We do not prematurely stop unlearning when Df performance drops below that of a retrained model,
as long as the retained utility remains unaffected.

4.2 CKA: FEATURE SIMILARITY MEASUREMENT
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Figure 2: CKA similarity between the pretrained and
unlearned models on CIFAR10 (30% class unlearning).
CKA-feature and CKA-logit indicate scores computed on
fθ(x) and mθ, respectively.

We investigate the similarity between
pretrained and unlearned features to
better understand their representational
alignment. For the quantitative analysis,
we exploit CKA Cortes et al. (2012);
Kornblith et al. (2019) measurement
with Kim & Han (2023) implementa-
tion, to measure the similarity between
unlearned features and pretrained fea-
tures. Note that the CKA is invariant un-
der scaling and orthogonal transforma-
tion, which allows the measurement be-
tween distinct models, disregarding the
magnitude of the feature.

The results are visualized in Fig. 2. On
forget dataset, we could achieve near-zero similarity compared to the original features and logit with
OPC, while most of benchmark methods remains to be similar. We may consider this low similarity
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(a) Results of recovery attack on CIFAR10 30% class unlearning scenario
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(b) Results of recovery attack on SVHN 30% class unlearning scenario

Figure 3: UA and MIA score of unlearned model and FM-recovered model.

as a direct evidence of deep feature forgetting. For the retain set, the retain features from our method
and others show high similarity, which implies that OPC unlearning did not harm the models’ ability
on the retain dataset.

4.3 RECOVERY VIA FEATURE MAPPING

As shown in Section 4.2, pretrained and unlearned forget features are strongly correlated. We further
explore whether a linear transformation can map unlearned features back to pretrained ones, which
would indicate that unlearning mainly affects the prediction head.

To find the weight matrix W ∗ that maps the unlearned features to the pretrained features, we formu-
late the following ordinary least squares problem:

W ∗ = argmin
W

∑
x∈D

∥fθ0(x)−Wfθun(x)∥22, (4)

where D is a sample dataset, and θ0 and θun are the pretrained and unlearned parameters, respec-
tively.

After obtaining W ∗ by solving linear least square problem, we recover the pretrained feature by
multiplying W ∗ to unlearned feature. We denote this recovery as FM (feature mapping) recovery,
where recovered feature can be written as W ∗fθun(x). We evaluate FM-recovered features using
pretrained head gθ0 and external decoder in subsequent sections. Surprisingly, almost all MU meth-
ods were severely vulnerable under this simple attack which doesn’t require access to the train data
or gradient information.

4.3.1 PERFORMANCE RECOVERY

We use pretrained classifier head gθ0 to measure the performance of recovered features. The recov-
ered model is represented as gθ0 ◦W ∗ ◦ fθun .

Fig. 3 presents the unlearned accuracy (UA), 1− (accuracy on Df ) and MIAe (mia efficacy), under
a FM recovery attack. The detailed numbers of recovered performance including accuracies on each
dataset, and the MIA scores can be found in Table D.2, in Section D.

Our results reveal that nearly all baseline unlearning methods are vulnerable to this attack: their UA
and MIAe drops substantially, indicating that a considerable portion of the forgotten performance
on Df can be recovered with minimal effort. Surprisingly, even the retrained model exhibits non-
trivial recovery, though it remains more resistant than most unlearning baselines.

In contrast, our proposed method, OPC, demonstrates strong robustness to this recovery attack. On
CIFAR10 with class unlearning, the UA remains near 70%, which aligns with the expected UA
of random classifier. This robustness arises from OPC’s one-point contraction toward the origin,
collapsing features to a non-informative point that resists linear reconstruction.
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Figure 4: The results of DDPM decoder reconstruction. The target images are sampled from the Dr

and Df under both CIFAR10 30% class and 10% random unlearning scenario. GT represents the
ground truth image from the dataset and others are the results of reconstruction from each unlearned
model.

Table 1: Unlearning performance on 30% Class unlearning scenario

CIFAR10 Train Df Train Dr Test Df Test Dr MIAe

Pretrained 99.444 99.416 94.800 94.400 0.015
Retrain 0.000 99.981 0.000 91.700 1.000

OPC (ours) 0.000 99.606 0.000 93.143 1.000

GA (Thudi et al., 2022) 0.148 87.771 0.033 84.057 0.998
RL (Golatkar et al., 2020) 0.000 99.060 0.000 93.529 1.000

BE (Chen et al., 2023) 0.037 93.168 0.000 85.214 0.998
FT (Warnecke et al., 2023) 0.000 98.994 0.000 93.457 1.000

NGD (Chourasia & Shah, 2023) 0.000 98.498 0.000 93.071 1.000
NegGrad+ (Kurmanji et al., 2023) 0.000 98.638 0.000 93.014 1.000

EUk (Goel et al., 2022) 0.000 99.616 0.000 94.629 1.000
CFk (Goel et al., 2022) 0.170 99.759 0.167 94.929 1.000
SalUn (Fan et al., 2024) 0.000 99.743 0.000 94.786 1.000

SCRUB (Kurmanji et al., 2023) 0.000 98.060 0.000 93.457 1.000
BT (Chundawat et al., 2023) 8.578 99.502 7.533 95.286 1.000
l1-sparse (Jia et al., 2023) 0.000 99.425 0.000 94.386 1.000

SVHN Train Df Train Dr Test Df Test Dr MIAe

Pretrained 99.531 99.172 94.960 91.110 0.009
Retrain 0.000 99.997 0.000 92.440 1.000

OPC (ours) 0.011 99.612 0.009 94.142 1.000

GA (Thudi et al., 2022) 73.220 96.477 62.618 86.270 0.381
RL (Golatkar et al., 2020) 0.000 99.997 0.000 93.876 1.000

BE (Chen et al., 2023) 1.240 95.355 0.910 78.690 0.990
FT (Warnecke et al., 2023) 0.034 99.997 0.009 94.535 1.000

NGD (Chourasia & Shah, 2023) 0.000 99.997 0.000 94.854 1.000
NegGrad+ (Kurmanji et al., 2023) 0.000 97.997 0.000 91.642 1.000

EUk (Goel et al., 2022) 0.000 99.997 0.000 92.826 1.000
CFk (Goel et al., 2022) 0.000 99.997 0.000 92.945 1.000
SalUn (Fan et al., 2024) 0.000 99.990 0.000 93.910 1.000

SCRUB (Kurmanji et al., 2023) 0.008 94.995 0.000 89.129 1.000
BT (Chundawat et al., 2023) 8.633 99.210 4.904 93.437 1.000
l1-sparse (Jia et al., 2023) 0.000 98.954 0.000 92.872 1.000

4.3.2 IMAGE RECONSTRUCTION VIA DDPM DECODER

Beyond the class information, we suspect more information is retained on forget feature after un-
learning. To check how the unlearned features are informative, we applied FM-recovery and further
evaluate the recovered feature qualitatively using generative decoder, which is a generative model
trained on pretrained features to recover the input image.

In implementation of generative decoder, we exploit DDPM (Ho et al., 2020) and train it using train
dataset, to generate image x conditioned by pretrained feature fθ0(x).

The results in Fig. 4 show that, while the generative decoder produces reconstructions slightly differ-
ent from the original images, important details are preserved. For retain data, all unlearning methods
leave features largely unchanged, maintaining input information. In contrast, for forget data, only
OPC consistently removes class information and feature-level details, whereas most other methods
preserve them. This highlights the shallow forgetting common in MU: even when UA and MIA
indicate success, most methods fail to truly erase information at the feature level.

4.4 UNLEARNING PERFORMANCE

As observed in previous sections, most existing unlearning methods fail to sufficiently remove
learned information at the feature level. Here, we validate that unlearned models with shallow for-
getting and vulnerability are still effective under logit-based evaluations. Performance is measured
using accuracies on Df , Dr, and Dtest, along with the MIA-efficacy score MIAe, which quanti-
fies unlearning success. For the class unlearning scenario, Dtest is further split into test Df and test
Dr, and for element unlearning, we introduce the MIA-privacy score MIAp to assess privacy risk.
Higher MIAe and MIAp indicate successful unlearning and greater privacy risk, respectively Jia
et al. (2023).

For the class unlearning scenario, the results on both CIFAR10 and SVHN are listed in Table 1. With
the exception of GA and BT, most methods succeeded to reduce the accuracy on Df while preserving
the accuracy on Dr. The MIAe score also shows the unlearning was successfully performed.

The results on random forgetting can be found in Table 2. While most methods failed to reduce the
accuracy on Df below that of the retrained model, likely due to their stronger generalization ability,

6
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Table 2: Unlearning performance on 10% random unlearning scenario

CIFAR10 Df Dr Dtest MIAe MIAp

Pretrained 99.356 99.432 94.520 0.015 0.545
Retrain 90.756 99.995 90.480 0.149 0.577

OPC (ours) 84.244 99.190 90.930 0.627 0.570

GA(Thudi et al., 2022) 99.267 99.435 94.340 0.018 0.544
RL(Golatkar et al., 2020) 93.356 99.948 93.680 0.272 0.570

BE(Chen et al., 2023) 99.378 99.440 94.480 0.016 0.545
FT(Warnecke et al., 2023) 95.267 99.694 92.890 0.082 0.548

NGD(Chourasia & Shah, 2023) 95.133 99.654 93.280 0.081 0.544
NegGrad+(Kurmanji et al., 2023) 95.578 99.731 93.300 0.082 0.549

EUk(Goel et al., 2022) 99.044 99.854 93.670 0.017 0.540
CFk(Goel et al., 2022) 99.244 99.943 93.980 0.016 0.540
SalUn(Fan et al., 2024) 93.444 99.931 93.830 0.280 0.570

SCRUB(Kurmanji et al., 2023) 99.222 99.511 94.060 0.047 0.548
BT(Chundawat et al., 2023) 91.422 99.341 93.010 0.560 0.558
l1-sparse(Jia et al., 2023) 92.889 97.360 90.980 0.129 0.539

SVHN Df Dr Dtest MIAe MIAp

Pretrained 99.151 99.334 92.736 0.015 0.563
Retrain 92.947 99.998 92.490 0.154 0.583

OPC (ours) 7.493 99.949 92.636 1.000 0.607

GA(Thudi et al., 2022) 98.832 99.280 92.190 0.016 0.564
RL(Golatkar et al., 2020) 92.492 97.075 92.002 0.227 0.534

BE(Chen et al., 2023) 99.029 99.134 90.854 0.029 0.580
FT(Warnecke et al., 2023) 94.267 99.998 94.403 0.107 0.553

NGD(Chourasia & Shah, 2023) 94.494 99.998 94.695 0.099 0.550
NegGrad+(Kurmanji et al., 2023) 94.115 99.998 94.173 0.113 0.565

EUk(Goel et al., 2022) 98.134 99.998 92.248 0.061 0.573
CFk(Goel et al., 2022) 99.151 99.998 92.767 0.020 0.577
SalUn(Fan et al., 2024) 92.189 98.539 91.860 0.287 0.555

SCRUB(Kurmanji et al., 2023) 99.135 99.407 92.790 0.014 0.561
BT(Chundawat et al., 2023) 91.703 99.287 90.300 0.633 0.608
l1-sparse(Jia et al., 2023) 92.098 98.020 91.165 0.140 0.548

Table 3: Class unlearning of
DDPM on CIFAR-10.

Methods UA (↑) FID (↓)

Pretrained 3.60 15.67
Retrain 99.97 13.49

SalUn (Fan et al., 2024) 99.99 17.33
OPC (ours) 99.98 16.06

Table 4: Image generations of OPC for DDPM on CIFAR-10.
The forgetting class is ‘airplane’.

Methods Forgetting class: ‘Airplane’ Non-forgetting classes
I1 I2 I3 I4 C1 C2 C3 C4 C5 C6 C7 C8 C9

SalUn

OPC

the proposed OPC successfully lowered the forget accuracy even further than retraining without
causing significant degradation on Dr. The MIAp score is slightly higher for OPC, which may be
attributed to its stronger forgetting, but the gap compared to retraining is not considered significant.

5 OPC ON DIFFUSION MODELS

The core idea of OPC, collapsing model predictions to a single point (the origin), is not limited to
classification models and can be applied to various representation learning settings. As shown in
the generative decoder results (Section 4.3.2), minimizing Eq. (1) selectively removes information
from forget features, and FM-recovery helps the denoising model generate realistic images from
unlearned features.

In this section, we extend OPC to generative models, applying it to the DDPM (Ho et al., 2020)
trained on CIFAR10 and the Stable Diffusion (Rombach et al., 2022) model to evaluate its general-
izability. Implementation details are provided in Section C.2.

5.1 DDPM UNLEARNING

In this section, we aim to unlearn the DDPM model which trained on CIFAR10 to generate image
conditioned by class embedding vector, to evaluate naive approach of OPC: push features toward 0
on Df and minimize objective loss on Dr

In implementation, we consider the class embedding module of the model as fθ and replace the cross
entropy loss of Eq. (1) to DDPM loss. In contrast to classification, apply OPC loss to features, as no
prediction head is included in the model architecture. The modified loss function can be written as:

LDDPM
OPC = E(x0,c)∼Dr,t,ϵ∼N (0,1)∥ϵ−ϵθ(

√
ᾱtx0+

√
1− ᾱtϵ, fθ(c), t)∥22+E(x0,c)∼Df

∥fθ(c)∥2 (5)

where c represents the class label of image. In experiment, we consider to unlearn single class, the
”airplane” whose class label is 0, from the pretrained DDPM.

The results are in Table 3. Consistent to the results on classification model, OPC could guide to
unlearn the target class with high UA. Although we pushed the embedding of forget class toward 0,
the denoising model could generate high fidelity image from OPC-unlearned class embedding, as
FID score of Table 3 remains fine.

5.2 STABLE DIFFUSION UNLEARNING

In this section, we aim to unlearn the text-to-image Stable Diffusion (SD) model and evaluate with
UnlearnCanvas (Zhang et al., 2024b) benchmark, which requires to unlearn specific styles or object

7
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Table 5: Performance of DM unlearning methods on UnlearnCanvas, measured by UA, IRA, CRA,
and FID.

Method
Effectiveness Efficiency

Style Unlearning Object Unlearning Avg. (↑) FID (↓) Memory Storage
UA (↑) IRA (↑) CRA (↑) UA (↑) IRA (↑) CRA (↑) (GB) (↓) (GB) (↓)

ESD (Gandikota et al., 2023) 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 77.61% 65.55 17.8 4.3
FMN (Zhang et al., 2024a) 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 66.93% 131.37 17.9 4.2

UCE (Gandikota et al., 2024) 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 62.45% 182.01 5.1 1.7
CA (Kumari et al., 2023) 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 78.05% 54.21 10.1 4.2
SalUn (Fan et al., 2024) 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 92.43% 61.05 30.8 4.0
SEOT (Li et al., 2024) 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 72.91% 62.38 7.34 0.0
SPM (Lyu et al., 2024) 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 80.23% 59.79 6.9 0.0
EDiff (Wu et al., 2025) 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 82.41% 81.42 27.8 4.0

SHS (Wu & Harandi, 2024) 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 74.90% 119.34 31.2 4.0
SAeUron (Cywiński & Deja, 2025) 95.80% 99.10% 99.40% 78.82% 95.47% 95.58% 94.03% 62.15 2.8 0.2

OPC (ours) 97.50% 97.00% 98.38% 95.49% 98.38% 95.63% 97.06% 55.16 9.5 0.5

while retaining the object or style requirement in prompt, respectively. Instead of updating full dif-
fusion model, whose computation cost is expensive, we aim to edit text encoder fθ in perspective of
representation learning with low computation cost for training.

Recall Section 4.3.2, the training dynamics of minimizing OPC loss LOPC (Eq. (1)) could selec-
tively remove the details and FM-recovery layer allows to generate desired images both on forget
feature and retain feature. Motivated on this observation, we propose to use auxiliary linear classifier
heads gID and gCD for in-domain classification and cross-domain classification respectively. Those
heads would be deleted after the unlearning was performed.

The unlearning process is performed by minimizing LOPC with in-domain classifier mθ = gID ◦fθ
with in-domain class label yID together with cross-domain LCE computed on (gCD ◦ fθ)(x). In
particular, the overall loss function can be summarized as:

LSD
OPC = LOPC + E(x,yCD)∼Dr∪Df

LCE((g
CD ◦ fθ)(x), yCD) (6)

where yCD is a cross-domain class label. During unlearning, gID is trainable, while gCD remains
frozen.

After getting θun by minimizing LSD
OPC , we apply FM-recovery explained in Section 4.3 to map

fθun(x) to pretrained features, to fit the denoising network of diffusion model. Unlike in Section 4.3,
where the FM was derived from the validation set, here we construct the recovery layer W ∗ using
only the retain set to avoid mapping information from the forget set. Since FM-recovery layer W ∗ is
linear, this operation may be merged into last layer of fθ or the cross attention layer of the denoising
network ϵθ.

We follow the instruction of Zhang et al. (2024b) and report the performance of unlearned model in
UA, IRA (in-domain retain accuracy), CRA (cross-domain retain accuracy) and FID score. As sum-
marized in Table 5, OPC achieves superior results on both style unlearning and object unlearning,
while Zhang et al. (2024b) observed that no single unlearning method consistently excels across all
domains, OPC attains over 95% performance in every metric and achieves an average score exceed-
ing 97%, demonstrating robust effectiveness across domains.

Not limited on accuracies, OPC shows superior quality on generated images, with the second-best
FID score indicating high fidelity. We show examples of generated images on forget prompt in Fig. 5
and retain prompt in Fig. D.6. OPC-unlearned model successfully generates the desired object in
other style (mostly in photo) if unlearning target is style unlearning, and generates only texture
without object when the prompt requires to generate the forgotten objective.

6 DISCUSSION

A central limitation of prior MU approaches lies in their shallowness. While many methods claim
to effectively erase the influence of the forget set, our analyses in Section 4.2 and Section 4.3 reveal
that unlearned features remain highly correlated with those of the pretrained model. This residual
correlation enables substantial recovery of accuracy on the forget set and even image reconstruction
through generative decoders. Such findings indicate that conventional evaluation metrics may over-
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Figure 5: Inference examples of UnlearnCanvas unlearning

state forgetting efficacy, as shallow erasure at the logit level leaves vulnerable traces at the feature
level.

In contrast, our proposed method OPC demonstrates strong robustness. Grounded in a clear theo-
retical framework, OPC enforces contraction of forget-set features within the encoder f(·), thereby
erasing informative content rather than merely altering outputs. The empirical evidence confirms
that OPC-unlearned representations resist FM-recovery and inversion-based reconstruction attack,
establishing its effectiveness in achieving deep feature forgetting.

Finally, we show that the benefits of OPC extend beyond classification tasks. By applying OPC to
generative diffusion models, we demonstrate that auxiliary linear layers can guide in-domain forget-
ting while retaining cross-domain features, enabling selective unlearning. This extension allows for
precise control over forgotten attributes, as reflected in Table 5, where OPC uniquely achieves an
overall performance of 97%. Importantly, OPC overcomes a key limitation of prior methods: while
earlier approaches succeeded in high-frequency (style) unlearning but struggled with low-frequency
(object) forgetting, our method successfully handles both, underscoring its generality and versatility
across domains.

7 CONCLUSION

We critically examine the shallowness of unlearning delivered by existing MU methods, and in-
troduce a novel perspective of “deep feature forgetting”. To achieve deep forgetting, we propose
One-Point-Contraction (OPC) that contracts the latent feature representation of the forget set data to
the origin. Theoretical analysis shows that OPC induces representation-level forgetting, and predicts
innate resistance of OPC to adversaries such as recovery attacks and unlearning inversion. Empir-
ical validations highlight the superior performance and resistance of OPC unlearning, and reveals
the widespread shallow unlearning phenomena and the limitations of traditional set of unlearning
metrics. Moreover, we extend OPC to generative diffusion models, where it enables selective un-
learning of style and object attributes. While Zhang et al. (2024b) observed that a single unlearning
method can perform differently across various domains and no method excels in all aspects, OPC
uniquely achieves over 95% performance in every domain and 97% overall on the UnlearnCanvas
benchmark, demonstrating its generality and effectiveness beyond classification.
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A PROOF OF THEOREM 3.1

Theorem 3.1. Let C be number of classes. Suppose h = mθ(x) ∈ Br(0) where Br(0) is the
ball of radius r centered at origin. Then the entropy H(softmax(h)) of predicted probability has
following lower bound parameterized by r and C:

H∗(r, C) := min
h∈Br(0)

H(softmax(h)) > log

(
1 + (C − 1) exp

(
−
√

C

C − 1
r

))
(2)

Proof. For the clarity, we denote q = exp(h) and y = softmax(h) = q
∥q∥1

.

Let X = exp(Br(0)) in q-space and Y = softmax(Br(0)) in y-space. Since entropy function H
is concave in y-space, the minimal solution y∗ = argminH(y) must lie in the boundary of Y , ∂Y .

Since Y is a image of X under projection q 7→ q
∥q∥1

and thus H( q
∥q∥1

) = H( cq
∥cq∥1

) for all c > 0,

the condition y∗ = q∗

∥q∗∥1
∈ ∂Y would be translated to followings in q-space:

1. q∗ ∈ ∂X

2. The tangent space Tq∗X includes the origin, 0.

Since X = exp(Br(0)), the ∂X would be given by

∂X = {q|
C∑
i=1

(log qi)
2 = r2} (A.1)

and Tq∗(X) would be

Tq∗(X) = {q|
C∑
i=1

log q∗i
q∗i

(qi − q∗i ) = 0}. (A.2)

Hence, we get
∑C

i=1 log q
∗
i = 0 since 0 ∈ Tq∗X .

Therefore, we can find q∗ by solving the following constrianed optimization problem.

minimize H(
q

∥q∥1
)

subject to
C∑
i=1

log qi = 0

C∑
i=1

(log qi)
2 = r2

(A.3)

Or equlvalently in h-space:
minimize H(softmax(h))

subject to
C∑
i=1

hi = 0

C∑
i=1

h2
i = r2

. (A.4)

For better readability, we denote f(h) = H(softmax(h)) = H(y) , g1(h) =
∑C

i=1 hi and

g2(h) = − r2

2 +
∑C

i=1
h2
i

2 and assume h1 ≥ · · · ≥ hC without loss of generality.

Now let λ1 and λ2 are the the Lagrangian multipliers, then h∗ should satisfy the stationary condition
of Lagrangian, given by ∇f(h) + λ1∇g1(h) + λ2∇g2(h) = 0.
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Then, by Lemma A.1, we can write h1 = · · ·hb ≥ hb+1 = · · ·hC for some b ≤ C because his can
have no more than two values.

Now, we can find h1 and hC from g1(h) = g2(h) for each b that

h1 =

√
C − b

bC
r, hC = −

√
b

C(C − b)
r (A.5)

, which are the stationary points of Lagrangian.

Considering the characteristic of entropy, which is minimized when only one entry is large and rest
are small, the optimal b would be b = 1. This gives the minimizer

h∗ = (

√
C − 1

C
r,− r√

C(C − 1)
, · · · − r√

C(C − 1)
). (A.6)

Letting u = − r√
C(C−1)

and v =
√

C
C−1r, we can rewrite h∗ = (u+ v, u, · · · , u) and obtain

y∗ = (
ev

ev + C − 1
,

1

ev + C − 1
, · · · , 1

ev + C − 1
). (A.7)

Letting κ = ev

C−1 , the minimal entropy H(y∗) is given by

H(y∗) = − ev

ev + C − 1
(v − log(ev + C − 1)) + (C − 1)

log(ev + C − 1)

ev + C − 1

= log(ev + C − 1)− evv

ev + C − 1

= log((κ+ 1)(C − 1))− κ(C − 1) log(κ(C − 1))

(κ+ 1)(C − 1)

= log(κ+ 1) + log(C − 1)− κ

κ+ 1
(log(κ) + log(C − 1))

=
log(C − 1)

κ+ 1
+ log(

κ+ 1

κ
) +

log(κ)

κ+ 1

= log(1 +
1

κ
) +

log(κ(C − 1))

κ+ 1
.

(A.8)

Since κ > 0 and log(κ(C − 1)) = log(ev) =
√

C−1
C r > 0, we have

H(y∗) > log(1 +
1

κ
) = log(1 + (C − 1)e−v) = log(1 + (C − 1) exp(−

√
C

C − 1
r)). (A.9)

Lemma A.1. Let f(h) = H(softmax(h)) = H(y) , g1(h) =
∑C

i=1 hi and g2(h) = − r2

2 +∑C
i=1

h2
i

2 , where h = (h1, · · · , hC)
T is a variable vector. Suppose that ∇f(h) + λ1∇g1(h) +

λ2∇g2(h) = 0. If hα ≥ hβ ≥ hγ for α, β, γ ∈ [C] then at least two of them must be equal. i.e.
hα = hβ or hβ = hγ .

Proof. Consider 3 × C matrix M , whose row vectors are ∇g1, 1
2∇g2 and ∇f . and its submatrix

Mα,β,γ consist of α, β, γ=th entries. By simple differentiation, it would be

Mα,β,γ =

 1 1 1
hα hβ hγ

∂
∂hα

H(y) ∂
∂hβ

H(y) ∂
∂hγ

H(y)

 (A.10)
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Since rankM ≤ 2 by assumption, rankMα,β,γ ≤ 2 and thus we can find cα, cβ , cγ who are not all
zero, satisfying

cα + cβ + cγ = 0

cαhα + cβhβ + cγhγ = 0

cα
∂

∂hα
H(y) + cβ

∂

∂hβ
H(y) + cγ

∂

∂hγ
H(y) = 0

(A.11)

If cβ = 0, then cα = −cγ and thus hα = hβ = hγ . otherwise, letting δ = − cα
cβ

then we have
hβ = δhα + (1− δ)hγ and δ ∈ [0, 1] since hα ≥ hβ ≥ hγ .

Since ex is convex, we have δehα + (1 − δ)ehγ ≥ ehβ and S := δyα + (1 − δ)yγ ≥ yβ because
yi =

ehi∑C
j=1 ehj

.

Now we compute the ∂
∂hi

H(y). From the chain rule, we have

∂

∂hi
H(y) =

C∑
k=1

∂yk
∂hi

∂H(y)

∂yk
. (A.12)

From simple computation, ∂H(y)
∂yk

= −(1 + log(yk)) and

∂yk
∂hi

=

− ehiehk

(
∑C

j=1 ehj )2
= −yiyk if i ̸= k

ehi∑C
j=1 ehj

− e2hi

(
∑C

j=1 ehj )2
= yi − y2i if i = k

(A.13)

Therefore, we can summarize

∂

∂hi
H(y) = −yi(1 + log(yi)) +

C∑
k=1

yiyk(1 + log(yk))

= −yi log(yi)− yi(H(y)) = −yi(log(yi) +H(y)).

(A.14)

The third equation of Eq. (A.11) is now written as

δyα(log(yα) +H) + (1− δ)yγ(log(yγ) +H) = yβ(log(yβ) +H) (A.15)

were H(y) is simplified to H .

Now we suppose yα ̸= yγ and δyα log(yα) + (1− δ)yγ log(yγ) < yβ log(yβ).

Recall the S = δyα + (1− δ)yγ ≥ yβ and log(yβ) = δ log(yα) + (1− δ) log(yγ), we have

δyα log(yα) + (1− δ)yγ log(yγ) < yβ log(yβ) ≤ S log(yβ) = δS log(yα) + (1− δ)S log(yγ)
(A.16)

and thus

δ(1−δ)(yα−yγ) log(yα) = δ(yα−S) log(yα) < (1−δ)(S−yγ) log(yγ) = δ(1−δ)(yα−yγ) log(yγ).
(A.17)

This concludes that log(yα) < log(yγ) because δ > 0, 1 − δ > 0and (yα − yγ) > 0, which is
contradiction because hα ≥ hγ . Hence, yα = yγ or δyα log(yα) + (1− δ)yγ log(yγ) ≥ yβ log(yβ).

If yα = yγ then proof is finished. Otherwise, from H > 0 and δyα + (1− δ)yγ ≥ yβ we can obtain
the inequality

δyα(log(yα) +H) + (1− δ)yγ(log(yγ) +H) ≥ yβ(log(yβ) +H) (A.18)

where equality holds iff δ = 0 or δ = 1. Since we have Eq. (A.15), we conclude δ = 0 or δ = 1,
and finally hγ = hβ or hα = hβ .
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B UNLEARNING ALGORITHMS

Gradient Ascent (GA) attempts to undo learning from retain set by reversing gradient directions
Thudi et al. (2022). Random Labeling (RL) trains the model using retain set and randomly labeled
forget set Golatkar et al. (2020). Boundary Expanding (BE) pushes forget set to an extra shadow
class Chen et al. (2023). Fine Tuning (FT) continues training on retain set using standard stochastic
gradient descent (SGD) Warnecke et al. (2023). Noisy Gradient Descent (NGD) modifies FT by
adding Gaussian noise to each update step Chourasia & Shah (2023). Exact Unlearning the last k
layers (EUk) retrains only the last k layers from scratch to remove forget set information. Catas-
trophically Forgetting the last k layers (CFk), instead of retraining, continues training the last k
layers on retain set Goel et al. (2022). Saliency Unlearning (SalUn) enhances RL by freezing im-
portant model weights using gradient-based saliency maps Fan et al. (2024). Bad-Teacher (BT) uses
a student-teacher framework where the teacher is trained on full train set and the student mimics it
for retain set, while imitating a randomly initialized model, the “bad teacher”, for forget set Chun-
dawat et al. (2023). SCalable Remembering and Unlearning unBound (SCRUB), a state-of-the-art
technique, also employs a student-teacher setup to facilitate unlearning. NegGrad+ combines GA
and FT to fine-tune the model in a way that effectively removes forget set information Kurmanji
et al. (2023). l1-sparse enhances FT with l1 regularization term Jia et al. (2023). Selective Synaptic
Dampening (SSD) unlearns by dampening weights that strongly influence the Fisher information of
the forget set more than the rest of the dataset Foster et al. (2024).

For diffusion model unlearning, EDiff (Wu et al., 2025) formulates the task as a bi-level optimization
problem, ESD (Gandikota et al., 2023) adopts negative classifier-free guidance, and FMN (Zhang
et al., 2024a) proposes a re-steering loss applied only to attention layers. SalUn (Fan et al., 2024)
and SHS (Wu & Harandi, 2024) adapt parameters based on saliency maps or connection sensitivity,
while SA (Heng & Soh, 2023) replaces the original distribution of unwanted data with a surrogate
one, extended to anchor concepts in CA (Kumari et al., 2023). SPM (Lyu et al., 2024) takes another
route by introducing small linear adapters after each linear and convolutional layer to block the
propagation of undesired information.

In contrast, non–fine-tuning approaches include SEOT (Li et al., 2024), which removes unwanted
content directly from text embeddings, and UCE (Gandikota et al., 2024), which modifies cross-
attention weights through a closed-form solution. Distinct from these, SAeUron (Cywiński & Deja,
2025) leverages sparse autoencoders (SAEs) to effectively eliminate undesired concepts in text-to-
image diffusion models.

C EXPERIMENTAL SETUP DETAILS

C.1 CLASSIFICATION MODELS

In this section, we detail the experimental settings in Section 4.1. All experiments were conducted
on a machine equipped with an AMD Ryzen 9 5900X 12-Core CPU, an NVIDIA GeForce RTX
3090 GPU with 24GB of VRAM, and 64GB of TEAMGROUP UD4-3200 RAM (2 × 32GB). To
obtain the pretrained models, we trained ResNet-18 (He et al., 2016) from scratch on CIFAR-10
(Krizhevsky et al., 2010) and SVHN (Netzer et al., 2011) datasets. The pretrained model was trained
for 182 epochs with a learning rate of 0.1 on CIFAR-10, and for 200 epochs with a learning rate of

Table C.1: Table of training information on 30% Class unlearning scenario

CIFAR10 Epochs Learning rate Runtime (s)
Retrain 182 0.01 3,547.403

OPC (ours) 30 0.01 1,019.318
GA(Thudi et al., 2022) 10 0.00004 86.469

RL(Golatkar et al., 2020) 15 0.018 424.281
BE(Chen et al., 2023) 10 0.0001 87.335

FT(Warnecke et al., 2023) 20 0.035 394.531
NGD(Chourasia & Shah, 2023) 20 0.035 401.088

NegGrad+(Kurmanji et al., 2023) 20 0.035 656.626
EUk(Goel et al., 2022) 20 0.035 289.609
CFk(Goel et al., 2022) 20 0.04 281.858
SalUn(Fan et al., 2024) 20 0.02 288.443

SCRUB(Kurmanji et al., 2023) 3 0.0003 84.362
BT(Chundawat et al., 2023) 5 0.01 589.062
l1-sparse(Jia et al., 2023) 20 0.005 397.200

SVHN Epochs Learning rate Runtime (s)
Retrain 182 0.01 4,185.296

OPC (ours) 25 0.01 1,152.792
GA(Thudi et al., 2022) 5 0.000005 76.621

RL(Golatkar et al., 2020) 15 0.013 547.849
BE(Chen et al., 2023) 4 0.0000185 58.914

FT(Warnecke et al., 2023) 20 0.035 450.431
NGD(Chourasia & Shah, 2023) 20 0.035 440.530

NegGrad+(Kurmanji et al., 2023) 15 0.035 565.179
EUk(Goel et al., 2022) 20 0.035 298.624
CFk(Goel et al., 2022) 40 0.1 578.894
SalUn(Fan et al., 2024) 15 0.015 250.583

SCRUB(Kurmanji et al., 2023) 15 0.00007 580.143
BT(Chundawat et al., 2023) 8 0.01 1,366.039
l1-sparse(Jia et al., 2023) 20 0.015 455.502
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Table C.2: Table of training information on 10% random unlearning scenario

CIFAR10 Epochs Learning rate Runtime (s)
Retrain 182 0.01 4,648.831

OPC (ours) 20 0.009 610.043
GA(Thudi et al., 2022) 15 0.0001 41.759

RL(Golatkar et al., 2020) 20 0.008 560.755
BE(Chen et al., 2023) 8 0.00001 26.061

FT(Warnecke et al., 2023) 40 0.1 1,016.424
NGD(Chourasia & Shah, 2023) 40 0.1 1,032.924

NegGrad+(Kurmanji et al., 2023) 40 0.05 1,617.294
EUk(Goel et al., 2022) 40 0.1 721.451
CFk(Goel et al., 2022) 40 0.1 719.283
SalUn(Fan et al., 2024) 20 0.01 316.121

SCRUB(Kurmanji et al., 2023) 3 0.002 84.950
BT(Chundawat et al., 2023) 12 0.01 1,442.486
l1-sparse(Jia et al., 2023) 25 0.01 643.387

SVHN Epochs Learning rate Runtime (s)
Retrain 182 0.01 5,962.928

OPC (ours) 5 0.0008 197.374
GA(Thudi et al., 2022) 15 0.0001 61.970

RL(Golatkar et al., 2020) 15 0.013 553.956
BE(Chen et al., 2023) 4 0.000008 15.911

FT(Warnecke et al., 2023) 42 0.1 1,399.713
NGD(Chourasia & Shah, 2023) 40 0.1 1,329.540

NegGrad+(Kurmanji et al., 2023) 10 0.03 545.281
EUk(Goel et al., 2022) 10 0.03 220.091
CFk(Goel et al., 2022) 10 0.03 221.769
SalUn(Fan et al., 2024) 15 0.01 275.977

SCRUB(Kurmanji et al., 2023) 5 0.000038 193.303
BT(Chundawat et al., 2023) 2 0.005 337.738
l1-sparse(Jia et al., 2023) 20 0.01 670.176

Table C.3: Table of hyperparameters on unlearning scenario

Methods Hparam name Description of hyperparameters 30% Class 10% random

OPC(Ours) coeff ce weight for the cross-entropy loss on retain data, 1 0.95
coeff un weight for the norm loss on forget data 0.7 CIFAR10:0.05, SVHN:0.2

NGD(Chourasia & Shah, 2023) σ standard deviation of Gaussian noise added to gradients 10−7 10−7

NegGrad+(Kurmanji et al., 2023) α controls weighted mean of retain and forget losses 0.999 0.999

EUk(Goel et al., 2022) k Last k layers to be trained 3 3

CFk(Goel et al., 2022) k Last k layers to be trained 3 3

SalUn(Fan et al., 2024) pt sparsity ratio for weight saliency 0.5 0.5

SCRUB(Kurmanji et al., 2023)

α weight of KL loss between student and teacher. 0.001 0.001
β scales optional extra distillation loss 0 0
γ weight of classification loss. 0.99 0.99

kd T controls the softening of softmax outputs for distillation. 4 4
msteps # of maximize steps using forget data before minimize training. CIFAR10:2, SVHN:1 1

l1-sparse(Jia et al., 2023) α weight of l1 regularization 0.0001 0.0001

0.1 on SVHN. The optimizer used in our experiments was Stochastic Gradient Descent (SGD) with a
momentum of 0.9 and a weight decay of 1e-5. For learning rate scheduling, we employed PyTorch’s
MultiStepLR with milestones set at epochs 91 and 136, and a gamma value of 0.1.

For data augmentation, we applied common settings cosist of RandomCrop(32, 4) and RandomHor-
izontalFlip, from the torchvision (maintainers & contributors, 2016) library to CIFAR-10 (main-
tainers & contributors, 2016). No augmentation was used for SVHN, considering its digit-centric
nature and the presence of multiple digits in a single image, with only the center digit serving as the
target. Unless otherwise stated, we used a batch size of 256 for all training procedures, including
pretraining.

The training epochs and learning rates used for each unlearning method in Section 4.1 are listed in
Table C.1 and Table C.2. Based on these settings, the runtime of each method can also be checked.
On Class unlearning scenario, OPC generally takes longer to run. This is because, while most other
methods show degradation of accuracy on Dr and the test set test Dr as training epochs increase,
OPC shows improved accuracy with more training.

Other hyperparameters and their descriptions are provided in Table C.3.

C.2 DIFFUSION MODELS

For DDPM decoder, The model structure and training settings followed Heng & Soh (2023), with
two modifications: the addition of a hidden dimension to accept fθ0(x) as a conditioning vector, and
an increased training budget of 1.26 million iterations.

For DDPM unlearning, we used the hardware described in Section C.1. The architecture, generation
of pretrained and retrained DDPM checkpoints, and data preprocessing were implemented following
Fan et al. (2024). The evaluation code was also based on Fan et al. (2024), except for the FID score,
which followed the implementation of Seitzer (2020). Training was performed with a batch size of
64 over 40,000 iterations, with the hyperparameter coeff un set to 0.2, as specified in Table C.3.

For SD unlearning, experiments were carried out on an NVIDIA A100 80GB GPU. Only text data
(a total of 1,020 samples) was used, trained with a batch size of 64 for 1,000 epochs. In cases such as
Human and Trees, where unlearning appeared less effective, training was extended to 2,000 epochs.
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Table D.1: Unlearning performance with train-free unlearning on prediction head only

CIFAR10 Train Df Train Dr test Df Test Dr MIAe

Pretrained 99.444 99.416 94.800 94.400 0.015
Retrain 0.000 99.981 0.000 91.700 1.000

OPC-TF 0.363 99.552 0.367 95.329 1.000
RL-TF 4.785 99.552 3.933 95.314 1.000

SVHN Train Df Train Dr test Df Test Dr MIAe

Pretrained 99.531 99.172 94.960 91.110 0.009
Retrain 0.000 99.997 0.000 92.440 1.000

OPC-TF 0.019 99.369 0.018 92.926 1.000
RL-TF 1.278 99.347 0.946 92.959 1.000

The learning rate was set to 1e− 5, and optimization was performed using AdamW with parameters
β1 = 0.9, β2 = 0.999, weight decay of 1e− 2, and epsilon of 1e− 8.

To construct the pretrained auxiliary layer, we trained with a batch size of 64 using cross-entropy
loss under the same optimizer configuration as above. Training was conducted for 400 epochs, with
the objective of achieving 100% accuracy in both cases.

Finally, the UnlearnCanvas benchmark model checkpoints were obtained by following the directions
provided in Zhang et al. (2024b).

D DETAILED EXPERIMENTAL RESULTS

In this section, we list the detailed results of classifiaction model unleaning on CIFAR10 and SVHN,
and diffusion model on UnlearnCanvas which were omitted in Section 4 due to page limit.

D.1 HEAD RECOVERY OF UNLEARNED MODELS

Previous evaluation in Section 4.3 shows the existence of proper classifier head which allows the
recovery of model performance on Df , but with the oracle of pretrained model. In this section, we
aim to try the same without the pretrained model, by mapping the unlearned features directly to the
desired logits (the one-hot vector of target labels) with similar method.

We consider following linear least square problem to find the recovered prediction head:

W ∗ = argmin
W

∑
(x,y)∈D

∥Wfθun(x)− ey∥22, (D.1)

where D is a sample dataset, θun is the unlearned parameters and ey is the one-hot vector of label y
of sample x. We used Dval as sample dataset in implementation. For CIFAR10, we used normalized
features instead of fθun(x) since some models including retrained model lost performance on Dr.

D.2 TRAINING-FREE UNLEARNING

In Section 4.4, we showed that class unlearning can be achieved successfully even with minimal
forgetting at the feature level. Building on this and Section D.1, we further investigate whether class
unlearning can be performed in a train-free manner.

We hypothesize that we can make unlearned model by applying modification only on the prediction
head with similar approach, and achieve good performance on logit-based metrics, which are the
most common criteria for the MU.

In this section, we solve the least squares problem argmin
W

∑
x∈Df∪Dr

∥Wx− ŷ∥22 where ŷ = 0 if

x ∈ Df and otherwise the one-hot vector of true label ŷ = elabel. For the comparison, we also solve
least square problem with RL, by providing ŷ as the one-hot vector of random label for the forget
sample x ∈ Df .

The results are in Table D.1. The training-free unlearned prediction head shows near-zero accuracy
on Df , and even better accuracy on Dr compared to the pretrained model. The training-free head-
only unlearning with RL method also shows promising results, but the forgetting was insufficient.
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D.3 UNLEARNING INVERSION ATTACK

Recently, Hu et al. (2024) claimed the vulnerability of MU, with unlearning inversion attack, based
on gradient-inversion, on unlearned model. Surprisingly, the attacker could reconstruct the sample
image which were in the forget set Df . To visualize how the unlearning methods forget features, we
exploit Hu et al. (2024)’s method and applied it to MU benchmarks and our method, to evaluate the
vulnerability under unlearning inversion attack.

Given sample image and corresponding label (x, y) ∈ Df in forget set, the original Hu et al. (2024)
implementation takes ∇∗ as the parameter movement driven by unlearning process with single for-
get sample and find best sample x′ which makes ∇′(x′) = ∇θLCE(fθ(x

′), y) similar to ∇∗, but
unfortunately the unlearning problem setting does not meet theirs, since the forget set Df is much
larger compared to the single datapoint used in Hu et al. (2024). Hence, we introduce an oracle pro-
viding true ∇θLCE(fθ(x), y) as ∇∗ for the reconstruction, which is quite strong advantage for the
attacker and highly informative.

D.4 CLASS UNLEARNING

D.4.1 UNLEARNING INVERSION ATTACK

We provide more examples of the recovered images from the unlearning inversion attack against the
unlearned models on class unlearning scenario.

GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

(a) Reconstruction of forgotten images on CIFAR10 30% class unlearning scenario
GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

(b) Reconstruction of forgotten images on SVHN 30% class unlearning scenario

Figure D.1: The results of unlearning inversion. The target images are sampled from the forget set
Df under 30% class unlearning scenario. GT represents the ground truth image from the dataset and
others are the results of inversion attacks from each unlearned model.

The results are collected in Fig. D.1. Interestingly, almost all other unlearning methods including
retrain were vulnerable under the inversion attack, while only our method OPC was consistently
resistant. Possibly, this observation would support the loss of discriminative ability of unlearned
model induced by our one-point contraction method.
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Table D.2: Recovered performance with W ∗ and pretrained head on 30% Class unlearning scenario

CIFAR10 Train Df Train Dr test Df test Dr MIAe

Pretrained 99.444 99.416 94.800 94.400 0.015
Retrain 70.341 95.435 70.400 86.700 0.556

OPC (ours) 45.000 99.000 44.200 90.929 0.944

GA(Thudi et al., 2022) 86.622 96.010 81.733 90.500 0.283
RL(Golatkar et al., 2020) 94.356 98.711 89.233 92.086 0.121

BE(Chen et al., 2023) 99.400 99.413 94.533 93.857 0.022
FT(Warnecke et al., 2023) 90.644 98.390 87.800 92.186 0.235

NGD(Chourasia & Shah, 2023) 89.778 98.181 85.867 92.386 0.255
NegGrad+(Kurmanji et al., 2023) 87.526 97.730 84.467 91.014 0.298

EUk(Goel et al., 2022) 96.444 99.311 90.100 93.586 0.182
CFk(Goel et al., 2022) 98.711 99.613 93.000 94.386 0.080
SalUn(Fan et al., 2024) 96.081 99.432 91.333 93.314 0.092

SCRUB(Kurmanji et al., 2023) 89.444 97.651 84.633 92.257 0.255
BT(Chundawat et al., 2023) 99.304 99.438 93.133 94.329 0.041
l1-sparse(Jia et al., 2023) 95.274 99.184 89.900 93.343 0.169

SVHN Train Df Train Dr test Df test Dr MIAe

Pretrained 99.531 99.172 94.960 91.110 0.009
Retrain 88.434 96.682 88.428 87.660 0.196

OPC (ours) 51.304 99.068 50.637 90.818 1.000

GA(Thudi et al., 2022) 99.422 99.161 93.959 91.237 0.014
RL(Golatkar et al., 2020) 92.229 97.340 91.003 90.625 0.132

BE(Chen et al., 2023) 99.369 99.073 93.313 89.535 0.024
FT(Warnecke et al., 2023) 94.769 98.278 93.777 91.150 0.100

NGD(Chourasia & Shah, 2023) 94.111 97.862 93.577 91.789 0.110
NegGrad+(Kurmanji et al., 2023) 94.145 96.312 93.987 91.430 0.093

EUk(Goel et al., 2022) 96.035 98.891 93.049 90.193 0.091
CFk(Goel et al., 2022) 99.210 99.661 94.141 90.605 0.034
SalUn(Fan et al., 2024) 92.482 97.292 91.257 90.658 0.125

SCRUB(Kurmanji et al., 2023) 91.620 89.937 90.857 85.020 0.126
BT(Chundawat et al., 2023) 94.795 98.171 92.986 89.907 0.109
l1-sparse(Jia et al., 2023) 92.701 96.244 91.985 89.740 0.127

Table D.3: Recovered performance with head recovery on 30% Class unlearning scenario

CIFAR10 Train Df Train Dr test Df test Dr MIAe

Pretrained 99.607 99.571 95.067 94.114 0.082
Retrain 71.963 95.213 72.400 85.557 0.750

OPC (ours) 33.333 99.156 31.633 91.214 0.976

GA(Thudi et al., 2022) 87.096 95.305 82.400 89.871 0.413
RL(Golatkar et al., 2020) 94.207 98.679 89.333 92.071 0.246

BE(Chen et al., 2023) 99.607 99.444 94.600 93.429 0.099
FT(Warnecke et al., 2023) 90.556 98.270 87.933 91.686 0.427

NGD(Chourasia & Shah, 2023) 89.881 98.013 87.067 92.043 0.444
NegGrad+(Kurmanji et al., 2023) 86.889 97.559 84.667 90.700 0.538

EUk(Goel et al., 2022) 96.830 99.422 91.333 93.100 0.454
CFk(Goel et al., 2022) 98.644 99.800 92.867 93.829 0.292
SalUn(Fan et al., 2024) 95.956 99.406 91.500 93.200 0.208

SCRUB(Kurmanji et al., 2023) 88.956 97.048 84.367 91.457 0.453
BT(Chundawat et al., 2023) 99.481 99.495 93.500 94.029 0.175
l1-sparse(Jia et al., 2023) 94.963 99.149 89.667 92.671 0.372

SVHN Train Df Train Dr test Df test Dr MIAe

Pretrained 99.675 99.255 95.506 90.598 0.086
Retrain 89.292 96.221 89.465 85.326 0.440

OPC (ours) 47.154 99.521 45.524 91.376 1.000

GA(Thudi et al., 2022) 99.572 99.124 94.733 90.386 0.129
RL(Golatkar et al., 2020) 92.153 97.627 90.775 90.386 0.353

BE(Chen et al., 2023) 98.851 98.825 94.041 87.666 0.230
FT(Warnecke et al., 2023) 94.803 98.065 94.241 90.339 0.339

NGD(Chourasia & Shah, 2023) 94.606 97.604 94.023 90.412 0.351
NegGrad+(Kurmanji et al., 2023) 93.877 96.254 93.559 90.765 0.350

EUk(Goel et al., 2022) 95.808 98.376 93.604 88.883 0.376
CFk(Goel et al., 2022) 98.632 99.321 94.778 89.834 0.264
SalUn(Fan et al., 2024) 92.338 97.432 91.366 90.472 0.353

SCRUB(Kurmanji et al., 2023) 91.786 87.612 91.012 83.019 0.786
BT(Chundawat et al., 2023) 93.661 98.098 92.394 89.408 0.420
l1-sparse(Jia et al., 2023) 92.788 95.631 92.213 88.464 0.444

D.4.2 RECOVERY ATTACK RESULTS

We provide the results of recovery attack, including the retain accuracy, test accuracy and MIAe, in
Table D.2. And, the results of head recovery attack in Table D.3. The recovery succeeded to reduce
the forget accuracy as shown in Fig. 3 by decrease of UA, while the performance on retain classes
are preserved.

D.4.3 CKA SIMILARITY

In Fig. D.2 we provide the CKA similarity of unlearned models compared to the pretrained model,
evaluated on SVHN. Note that CIFAR10 result can be found in Section 4.2.

Similar to CIFAR10 forgetting, OPC shows similar results: the near-zero simiarity on the forget
dataset and high similarity on retain set. Unlike CIFAR10 results, most of benchmark models are
showing lower CKA similarity scores on forget dataset Df , but not significantly less than OPC.

D.5 RANDOM UNLEARNING

D.5.1 UNLEARNING INVERSION ATTACK

We provide the recovered images from the unlearning inversion attack against the unlearned models
on random unlearning scenario.

Fig. D.3 shows the results. While almost all models show the vulnerability, the OPC-unlearned
model shows the resistance.

Some forget images were recovered in CIFAR10, but this observation is may due to the imperfect
unlearning, since the forget accuracy is still high (but much less than others) in Table 2. The re-
sults on SVHN shows the high resistance of OPC, as the forgetting was extremely successful with
significant gap on forget accuracy (7.5% on OPC, > 90 on others).

D.5.2 CKA SIMILARITY

We measure the CKA similarity of features of unlearned model, compared to the pretrained model,
under random unlearning scenario and visualize in Fig. D.4.
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Figure D.2: Visualization of CKA similarity scores between pretrained model and unlearned model,
evaluated on SVHN, 30% Class unlearning scenario.

GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

(a) Reconstruction of forgotten images on CIFAR10 10% random unlearning scenario
GT pretrained retrain OPC (ours) GA RL BE FT NGD NegGrad+ EUk CFk SalUn SCRUB BT l1-sparse

(b) Reconstruction of forgotten images on SVHN 10% random unlearning scenario

Figure D.3: The results of unlearning inversion. The target images are sampled from the forget set
Df under 10% random unlearning scenario. GT represents the ground truth image from the dataset
and others are the results of inversion attacks from each unlearned model.

The main observation is consistent to the class unlearning scenario, that the forget features of OPC
is less similar, and the retain features are close to the pretrained model. The CKA similarity score
of OPC on CIFAR10 is quite larger than other scenarios, but still significantly smaller than the
benchmark methods.
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Unlike the class unlearning scenario, benchmark unlearning methods extremely high similarity and
near-zero gap was observed between the forget feature and retain features.

This may evident the forgetting is failed on almost all methods, while only OPC succeeded.
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(a) Evaluation result on CIFAR10.
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(b) Evaluation result on SVHN.

Figure D.4: Visualization of CKA similarity scores between pretrained model and unlearned model,
evaluated on 10% random unlearning scenario. CKA-feature and CKA-logit represent the CKA
score computed on fθ(x) and mθ respectively.

D.5.3 RECOVERY ATTACK RESULTS

We applied the least-square based recovery attack, the FM-recovery, on random unlearning scenario.
The recovered UA scores are depicted in Fig. D.5 and detailed results of feature mapping recovery
are shown in Table D.4. The results of head recovery attack are in Table D.5

Unlike the class unlearning, the significant recovery was not observed on benchmark unlearning
methods, due to their severe under-forgetting.

The performance recovery was observed on OPC, but we emphasize that the recovered forget accu-
racy is still advantageous in forgetting, compared to all other unlearning methods.
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Table D.4: Recovered performance with W ∗ and pretrained head on 10% random unlearning sce-
nario

CIFAR10 Df Dr Dtest MIAe

Pretrained 99.356 99.432 94.520 0.015
Retrain 90.489 99.570 89.110 0.172

OPC (ours) 87.956 99.422 91.970 0.271

GA(Thudi et al., 2022) 99.311 99.430 94.340 0.018
RL(Golatkar et al., 2020) 94.000 99.916 93.960 0.194

BE(Chen et al., 2023) 99.333 99.437 94.380 0.016
FT(Warnecke et al., 2023) 95.511 99.728 93.200 0.114

NGD(Chourasia & Shah, 2023) 96.000 99.731 93.540 0.114
NegGrad+(Kurmanji et al., 2023) 96.133 99.770 93.210 0.109

EUk(Goel et al., 2022) 99.133 99.694 93.600 0.041
CFk(Goel et al., 2022) 99.311 99.842 94.080 0.028
SalUn(Fan et al., 2024) 93.889 99.896 93.810 0.200

SCRUB(Kurmanji et al., 2023) 99.400 99.541 94.230 0.025
BT(Chundawat et al., 2023) 93.000 99.351 93.150 0.193
l1-sparse(Jia et al., 2023) 94.089 98.309 92.020 0.110

SVHN Df Dr Dtest MIAe

Pretrained 99.151 99.334 92.736 0.015
Retrain 92.826 99.978 92.390 0.141

OPC (ours) 69.862 99.184 92.225 0.913

GA(Thudi et al., 2022) 98.878 99.316 92.498 0.016
RL(Golatkar et al., 2020) 92.356 96.153 91.772 0.125

BE(Chen et al., 2023) 99.135 99.287 92.221 0.015
FT(Warnecke et al., 2023) 93.872 99.643 94.211 0.099

NGD(Chourasia & Shah, 2023) 94.373 99.589 94.353 0.092
NegGrad+(Kurmanji et al., 2023) 94.449 99.916 93.977 0.100

EUk(Goel et al., 2022) 97.952 99.975 92.425 0.059
CFk(Goel et al., 2022) 99.151 99.993 92.836 0.022
SalUn(Fan et al., 2024) 92.143 97.695 91.580 0.137

SCRUB(Kurmanji et al., 2023) 99.151 99.388 92.717 0.014
BT(Chundawat et al., 2023) 96.041 99.196 91.848 0.159
l1-sparse(Jia et al., 2023) 93.781 98.910 93.147 0.103

Table D.5: Recovered performance with head recovery on 10% random unlearning scenario

CIFAR10 Df Dr Dtest MIAe

Pretrained 99.644 99.575 94.400 0.094
Retrain 90.578 99.704 89.120 0.332

OPC (ours) 87.156 99.610 92.050 0.512

GA(Thudi et al., 2022) 99.444 99.560 94.290 0.094
RL(Golatkar et al., 2020) 93.689 99.968 93.850 0.360

BE(Chen et al., 2023) 99.622 99.565 94.390 0.096
FT(Warnecke et al., 2023) 95.711 99.812 93.060 0.227

NGD(Chourasia & Shah, 2023) 96.089 99.807 93.610 0.238
NegGrad+(Kurmanji et al., 2023) 96.378 99.840 93.390 0.227

EUk(Goel et al., 2022) 99.178 99.867 93.630 0.152
CFk(Goel et al., 2022) 99.422 99.956 94.150 0.114
SalUn(Fan et al., 2024) 93.689 99.963 93.920 0.342

SCRUB(Kurmanji et al., 2023) 99.400 99.627 94.130 0.103
BT(Chundawat et al., 2023) 92.089 99.435 93.180 0.377
l1-sparse(Jia et al., 2023) 93.933 98.358 91.960 0.200

SVHN Df Dr Dtest MIAe

Pretrained 99.287 99.441 92.663 0.149
Retrain 92.765 99.998 92.033 0.271

OPC (ours) 40.983 99.933 92.371 1.000

GA(Thudi et al., 2022) 98.908 99.385 92.244 0.153
RL(Golatkar et al., 2020) 91.506 95.713 91.000 0.405

BE(Chen et al., 2023) 99.257 99.405 91.887 0.169
FT(Warnecke et al., 2023) 94.267 99.988 94.353 0.213

NGD(Chourasia & Shah, 2023) 94.616 99.992 94.472 0.213
NegGrad+(Kurmanji et al., 2023) 94.130 99.981 93.665 0.248

EUk(Goel et al., 2022) 97.877 99.990 92.179 0.196
CFk(Goel et al., 2022) 99.302 99.990 92.406 0.173
SalUn(Fan et al., 2024) 91.066 97.481 90.731 0.429

SCRUB(Kurmanji et al., 2023) 99.257 99.508 92.628 0.148
BT(Chundawat et al., 2023) 93.159 98.773 90.988 0.566
l1-sparse(Jia et al., 2023) 93.523 98.970 92.601 0.279

D.6 DIFFUSION MODELS

Here, we present the performance of individual targets, complementing the averaged results shown
in Table 5. Detailed results can be found in Tables D.6 and D.7. As illustrated in Fig. D.6, OPC
effectively preserves performance in both style and object for the retain prompts.

E ADDITIONAL EVALUATIONS

In this section, we present additional experiments conducted to demonstrate the scalability of OPC
across different models and datasets. For the alternative model architecture, we selected ViT Doso-
vitskiy et al. (2021), specifically ViT-B-32, to reduce computational overhead. As alternative dataset,
we chose TinyImageNet Le & Yang (2015), which contain a larger number of classes and data sam-
ples.

Similar to results with ResnNet-18 on CIFAR and SVHN, OPC outperforms the benchmark methods
and shows resistance on recovery attacks. Unfortunately, the unlearning inversion attack was not
feasible since Hu et al. (2024) implementation did not work with ViT.

E.1 TINYIMAGENET WITH VIT

For the experimental setup, we selected three unlearning algorithms: FT, RL, and SalUn, from those
used in Section 4.1, and additionally included Selective Synaptic Dampening (SSD), a method that
incorporates ViT. SSD performs unlearning by dampening weights that have a higher impact on
the Fisher information of the forget set compared to the rest of the dataset Foster et al. (2024). For
data augmentation, we applied RandomCrop(64, 4) and RandomHorizontalFlip, from the torchvi-
sionmaintainers & contributors (2016) library.
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(a) Results of recovery attack on CIFAR10 10% random unlearning scenario
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(b) Results of recovery attack on SVHN 10% random unlearning scenario

Figure D.5: UA and MIA score of unlearned model and FM-recovered model.

Table D.6: Individual performance of SD on UnlearnCanvas object unlearning scenario

Object UA IRA CRA FID

Architectures 87.843 98.617 94.922 56.8003
Bears 95.294 98.555 96.863 54.3786
Birds 98.824 98.679 92.98 61.7023

Butterfly 99.216 98.163 94.843 58.502
Cats 96.863 97.771 91.843 61.6043
Dogs 99.216 98.246 97.255 52.869
Fishes 94.902 98.885 95.686 53.2249
Flame 94.51 98.122 96.118 55.6122

Flowers 94.902 98.638 97.569 54.8717
Frogs 100 97.957 97.569 55.0085

Object UA IRA CRA FID

Horses 99.608 98.122 95.373 56.5258
Human 74.51 98.596 91.196 66.3477
Jellyfish 100 98.431 96.882 55.8011
Rabbits 100 98.39 96.02 54.0326

Sandwiches 98.039 98.246 97 56.6227
Sea 91.373 98.369 96.02 53.081

Statues 100 98.597 97.451 52.6221
Towers 99.608 98.514 96.412 54.6292
Trees 85.49 98.184 93.863 57.8076

Waterfalls 99.608 98.514 96.417 54.768

Details on training procedures and runtime task are provided in Table E.1. On 10% class unlearning
scenario, the additional hyperparameters used were as follows: for OPC, {coeff ce: 1, coeff un:
0.05}, for SalUn, {pt: 0.5}; and for SSD, {dampening constant: 0.4, size scaler: 4.2}. On 10%
element unlearning scenario, for OPC, {coeff ce: 1, coeff un: 0.07}, for SalUn, {pt: 0.5}; and
for SSD, {dampening constant: 0.1, size scaler: 2}. The hyperparameters for SSD follow the
implementation described in Foster et al. (2024). The batch size was limited to 128 due to VRAM
constraints. The optimizer used in our experiments was PyTorch’s AdamW with a weight decay of
0.3. For learning rate scheduling, we employed PyTorch’s CosineAnnealingLR with a T max value
of the train’s epoch, and a eta min value of 1

100 of initial learning rate on pre-training and 0 on
unlearning.

Unlike the approach described in Section C.1, the pretrained models used here were fine-tuned
from ImageNet-pretrained weights with initial learning rate of 1e − 5 and 5 epochs, following the
methodology in Foster et al. (2024). As a result, in the context of unlearning on TinyImageNet,
retraining is no longer considered a prohibitively costly method, and cannot be the gold standard of
exact unlearning anymore. Consequently, only the efficacy of forgetting is desirable regardless the
training cost, compared to the retraining, in TinyImageNet forgetting benchmark.

E.1.1 CKA SIMILARITY

We first analyze the CKA similarity compared to the pretrained model. As depicted in Fig. E.1, the
results are consistent to the ResNet-18 results. The CKA similarities of forget features are still large
on benchmark unlearned models, while OPC-unleared model shows near-zero similarity. On retrain
set Dr, all models including OPC shows higher similarity.

The results on random unlearning scenario is similar to CIFAR10 result on random unlearning. but
however OPC show significantly different forget features compared to the benchmark unlearning
methods.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table D.7: Individual performance of SD on UnlearnCanvas style unlearning scenario

Style UA IRA CRA FID

Abstractionism 100 94.92 98.039 56.3459
Artist Sketch 94 97.06 98.588 53.9738

Blossom Season 100 96.9 98.353 54.2129
Bricks 100 95.84 98.588 54.6203

Byzantine 99 98.12 98.02 53.9902
Cartoon 95 95.92 98.275 54.3846

Cold Warm 98 98.68 98.039 55.1618
Color Fantasy 100 98.02 98.333 56.4323
Comic Etch 100 98.58 98.529 54.8655

Crayon 100 97.64 98.216 54.6655
Cubism 97 94.78 98.314 59.1373
Dadaism 100 97.5 97.765 55.4235
Dapple 100 96.82 98.667 52.3902

Defoliation 99 97.34 98.471 53.3461
Early Autumn 95 97.16 98.784 53.8521
Expressionism 100 96.62 98.353 53.5721

Fauvism 100 96.64 98.098 56.275
French 100 98.04 98.137 52.7762

Glowing Sunset 96 97.9 98.784 54.3242
Gorgeous Love 100 97.14 98.627 53.756

Greenfield 97 97.92 98.49 53.3042
Impressionism 100 98.54 98.392 54.4472

Ink Art 97 97.64 98.294 54.4843
Joy 99 93.36 98.588 58.7899

Liquid Dreams 94 97.4 98.902 53.4098

Style UA IRA CRA FID

Magic Cube 100 97.62 97.627 54.0653
Meta Physics 96 97.46 98.471 53.4481

Meteor Shower 99 96.48 98.196 52.6702
Monet 100 96.98 98.118 53.896
Mosaic 100 97 98.627 52.8538

Neon Lines 97 96.94 98.196 53.8218
On Fire 98 97.62 98.392 57.3748
Pastel 100 97.18 98.765 53.5829

Pencil Drawing 95 97.44 98.275 55.016
Picasso 100 97.16 98.627 52.8177
Pop Art 99 92.86 98.392 58.534

Red Blue Ink 100 97 98.667 54.7548
Rust 100 97.14 98.706 55.7999

Sketch 99 97.68 98.137 54.6318
Sponge Dabbed 100 97.14 98.333 55.0828
Structuralism 96 97.4 98.412 55.3737
Superstring 100 97.92 98.275 54.4378
Surrealism 94 93.6 96.941 54.6372

Ukiyoe 100 97.72 98.627 55.0374
Van Gogh 100 96.52 98.392 55.4781

Vibrant Flow 100 97.74 98.647 55.3895
Warm Love 99 97.84 98.647 52.9688

Warm Smear 96 96.8 98.569 55.6418
Watercolor 82 96.92 98.412 56.0173

Winter 65 97.5 99 53.2705
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Figure D.6: Image generation from the retain prompts in UnlearnCanvas. The row names correspond
to the target prompts, while the column names indicate the unlearn targets.

E.1.2 RECOVERY ATTACK RESULTS

We applied least square-based recovery attack on ViT with TinyImageNet, and provide the results
in ?? and Table E.3, and visualize in Fig. E.2.

In class unlearning scenario, almost all benchmarks show the vulnerability. Similar to ResNet-18
experiments, almost all unlearned models except OPC, were recovered its performance under both
feature mapping attack and head recovery attack. The retraining shows minor resistance, but the
retrained features of forget samples were informative enough to recover the model performance.

Results on random unlearning, does not show the recovery, as forgetting on all unlearning process
were imperfect and there’s nothing to recover. However, similar to ResNet-18, the recovered perfor-
mance of OPC is still superior to all others that OPC forgets more.

E.1.3 UNLEARNING PERFORMANCE

The unlearning performances summarized in Table E.4. Compared to the benchmark methods, OPC
show superior results in both class unlearning and random unlearning scenario. Similar to results
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Table E.1: Table of training information on TinyImageNet

Class 10% Epochs Learning rate
Retrain 5 0.0001

OPC (ours) 5 0.0001
RL(Golatkar et al., 2020) 10 0.00008
FT(Warnecke et al., 2023) 15 0.0001
SSD(Foster et al., 2024) Train-Free Train-Free
SalUn(Fan et al., 2024) 10 0.00008

Element 10% Epochs Learning rate
Retrain 5 0.00008

OPC (ours) 10 0.00002
RL(Golatkar et al., 2020) 5 0.00001
FT(Warnecke et al., 2023) 5 0.00004
SSD(Foster et al., 2024) Train-Free Train-Free
SalUn(Fan et al., 2024) 5 0.000008
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(b) Evaluation result on 10% random unlearning scenario.

Figure E.1: Visualization of CKA similarity scores between pretrained model and unlearned model,
evaluated on TinyImageNet. CKA-feature and CKA-logit represent the CKA score computed on
fθ(x) and mθ respectively.

with ResNet-18, although the forget features are still informative, the performance measurements
cannot catch the shallowness forgetting.
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Table E.3: Recovered performance with head recovery on TinyImageNet

Class 10% Train Df Train Dr test Df test Dr MIAe

Pretrained 97.230 96.139 93.600 94.288 0.283
Retrain 70.720 94.082 92.000 93.888 0.756

OPC (ours) 31.820 98.459 36.800 93.265 1.000

RL(Golatkar et al., 2020) 91.760 99.626 90.600 93.532 0.992
FT(Warnecke et al., 2023) 80.040 99.688 88.800 92.265 0.564
SSD(Foster et al., 2024) 83.870 95.408 92.200 94.021 0.776
SalUn(Fan et al., 2024) 91.330 99.587 90.600 93.643 0.984

Element 10% Df Dr Dtest MIAe

Pretrained 96.230 96.296 84.237 0.303
Retrain 85.890 97.749 85.497 0.354

OPC (ours) 81.370 99.407 81.236 0.863

RL(Golatkar et al., 2020) 93.250 97.533 83.497 0.542
FT(Warnecke et al., 2023) 88.930 99.576 81.076 0.335
SSD(Foster et al., 2024) 96.180 96.211 83.957 0.286
SalUn(Fan et al., 2024) 94.270 97.448 83.497 0.492
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(a) Results of recovery attack on 10% class unlearning scenario
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(b) Results of recovery attack on 10% random unlearning scenario

Figure E.2: Recovered UA scores (higher means the unlearning method is more resistant to recovery
attack) on TinyImageNet with feature map alignment (FM, orange) and head recovery (HR, green),
compared to unlearned UA (which should be 100 for a well-performing unlearning method).

Table E.4: Unlearning performance on TinyImageNet

Class 10% Train Df Train Dr test Df test Dr MIAe

Pretrained 97.830 97.541 85.200 83.685 0.105
Retrain 0.000 95.844 0.000 82.818 1.000

OPC (ours) 0.660 99.427 0.400 81.129 1.000

RL(Golatkar et al., 2020) 3.690 99.953 2.200 81.974 1.000
FT(Warnecke et al., 2023) 16.490 99.977 14.600 80.596 1.000
SSD(Foster et al., 2024) 4.730 95.800 4.800 82.263 1.000
SalUn(Fan et al., 2024) 3.240 99.941 2.000 82.040 1.000

Element 10% Df Dr Dtest MIAe MIAp

Pretrained 97.520 97.576 83.837 0.119 0.604
Retrain 85.930 98.682 85.337 0.276 0.606

OPC (ours) 83.330 99.776 81.276 0.724 0.654

RL(Golatkar et al., 2020) 93.330 98.803 82.376 0.422 0.631
FT(Warnecke et al., 2023) 89.590 99.944 80.836 0.240 0.663
SSD(Foster et al., 2024) 97.350 97.356 83.597 0.128 0.600
SalUn(Fan et al., 2024) 94.840 98.567 82.416 0.461 0.628

Table E.5: Unlearning performance with train-free unlearning on prediction head only

TinyImageNet Train Df Train Dr test Df Test Dr MIAe

Pretrained 97.830 97.541 85.200 83.685 0.105
Retrain 0.000 95.844 0.000 82.818 1.000

OPC-TF 0 97.02 0 84.574 1.000
RL-TF 0 96.978 0 84.197 1.000

E.1.4 TRAIN-FREE UNLEARNING

In class unlearning scenario, we could consider the unlearning process without training, by modify-
ing theprediction head only. Table E.5 shows the result that the head-only forgetting without training
can achieve near-perfect unlearning scores such as forget accuracy and MIAe.
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F FEATURE VISUALIZATION AND ANALYSIS

Pretrained Retrain OPC

GA RL BE

FT NGD NegGrad+

EUk CFk SalUn

SCRUB BT l1_sparse

Figure F.1: t-SNE plot of feature on CIFAR10 30% class unlearning scenario
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Pretrained Retrain OPC
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Figure F.2: t-SNE plot of feature on SVHN 30% class unlearning scenario
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Pretrained Retrain OPC
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Figure F.3: t-SNE plot of feature on CIFAR10 10% random unlearning scenario
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Figure F.4: t-SNE plot of feature on SVHN 10% random unlearning scenario

In Section 4 we investigated the shallowness of forgetting which led by existing MU methods. In-
terestingly, it was possible to find linear mapping between unlearned feature and pretrained feature,
allowing the performance recovery and forget data reconstruction. This recovery indicates that, even
after the unlearning was performed, there is a linear separability between the representation clusters
of each classes.
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Thanks to reviewer, we acknowledge the feature visualization would further provide the intuition
on separability on unlearned features and evidence of deep forgetting on information led by OPC
unlearning. In this section, we provide tSNE visualization of unlearned features on classifier exper-
iments with explanation.

On class unlearning scenario, in Figs. F.1 and F.2 we observed the separability between forget
classes, in almost all unlearned model except OPC. This clear separation of forget features induces
the vulnerability of reconstruction and often allow to revert the unlearning process, as shown in
Section 4.3. Unlike others, OPC makes unlearned features indistinguishable and hence induce the
destruction of class information Note that although the one-point contraction was performed on
logits, the class information was removed on features.

On random unlearning scenario, in Figs. F.3 and F.4, all methods except BT and OPC fails to separate
the forget samples from representation cluster of correct label. Inherently, the UA and unlearning
efficacy are strictly limited, indicating the failure of forgetting.

However, OPC and BT shows different behavior. In CIFAR10 experiment, both OPC and BT makes
the inter-class separability between forget features and retain features, inducing larger gain in MIAe

in Table 2. On SVHN results in Fig. F.4, OPC behavior is similar to perfect forgetting on class
unlearning scenario, that the forget features are making single cluster and the features are mixed
enough to destroy the class information, explaining the remarkable UA gain (92.5% (OPC) vs ¡10%
(others) ) while preserving the TA and RA.
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G DISCUSSION ON PREDICTION NORM

G.1 RELATION BETWEEN FEATURE NORM AND UNCERTAINTY

One motivation of OPC is came from the empirical observation reported in OOD detection literature:
the OOD predictions are observed to have smaller norms and larger uncertainty.

In motivation, we found that the retrained model, which is often considered to be the golden stan-
dard, shows the consistent behavior of small feature norm and larger entropy on forget dataset. We
visualize the entropy of prediction feature norm ∥fθ(x)∥2 on forget data and retain data in Fig. G.1
with class unlearning scenario on CIFAR10 and SVHN.
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Figure G.1: The difference of entropy and feature norm of retrained model, on forget dataset and
retain dataset. Fig. G.1a and Fig. G.1b are the results from CIFAR10, and Fig. G.1c and Fig. G.1d
are the results from SVHN. The forget dataset is consist of 3 classes of each dataset.

We made the larger gap between the forget samples and retain samples on feature norm and entropy,
by OPC unlearning algorithm to make forgetting deeper.

G.2 DISCUSSION ON RELATION BETWEEN BT AND OPC

The BT(Chundawat et al., 2023) shares some behavioral similarities to OPC on logit level, on CKA
analysis for class unlearning scenario, and feature visualization in Fig. F.3 on random unlearning
scenario with higher MIAe scores. It sometimes show resistance against the reconstruction attack.

We carefully hypothesize this partial similarity and success of BT is due to small-normed prediction,
which induces high uncertainty by Theorem 3.1 and concept of OPC.

Recall that BT employs a knowledge distillation from randomly initialized model, the bad teacher,
to guide the broken prediction on forget dataset. Interestingly, the prediction norm from the teacher
is consistently low. compared to the pretrained model, as shown in Fig. G.2 with full train dataset.
The randomly initialized model gives prediction with much smaller (about 0.01 scale) norm.
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Figure G.2: Norm distribution of prediction of bad teacher and pretrained model

Since BT-unlearned model is trained to imitate the teacher’s behavior, the BT-unlearned model’s
prediction has small norm too, as depicted in Fig. G.3. Note that the prediction norm was preserved
on retain set for both BT and OPC.
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Figure G.3: Norm distribution of prediction of Df and Dr

However, the magnitude degradation by BT is limited; there is a significant gap between OPC and
BT on forget prediction norm, which exhibits the information destruction. Also, the BT training
was insufficient to guide the feature-level forgetting, makes the unlearned model vulnerable under
recovery or reconstruction attack.

H SENSITIVITY ANALYSIS

In this section, we examine the sensitivity of OPC. In H.1, we analyze its sensitivity to hyperparam-
eters. In H.2, we evaluate its scalability across different unlearning scenarios. In H.3, we investigate
how the number of iterations affects OPC when the hyperparameters are fixed.

H.1 HYPERPARAMTER ANALYSIS

Table H.1: Hyperparameter analysis on CIFAR10, 30% class unlearning scenario

Df Dr test Df test Dr MIAe coeff ce coeff un

2.037 99.737 2.333 94 1 1 1
0.037 99.771 0.167 94.371 1 1 0.9
1.592 99.603 1.867 93.757 1 1 0.8

0 99.606 0 93.143 1 1 0.7
3.4 99.759 3.333 93.543 1 1 0.6

0.044 99.791 0 94.571 1 1 0.5
1.793 99.851 1.733 94.457 1 1 0.4
0.852 99.908 1.033 94.814 1 1 0.3
1.696 99.810 1.5 94.7 1 1 0.2

25.178 99.876 23.633 94.614 1 1 0.1

Table H.1 and Table H.2 present the sensitivity of OPC to the hyperparameters that control the
relative contribution of the retain loss and the unlearning loss. Across both the class-unlearning
and random-unlearning settings, OPC remains highly stable to the choice of coefficients. In the
30% class-unlearning scenario, decreasing the unlearning coefficient shows that OPC maintains
stable retain accuracy and effective forgetting across a broad range of values. However, when the
coefficient becomes very small (e.g., 0.1), we observe that the training finishes before the contraction
fully occurs, resulting in slightly higher residual forget accuracy. This suggests that extremely small
coefficients may under-drive the contraction process.

A similar trend appears in the 10% random-unlearning setting. As the unlearning coefficient
coeff un increases, the forget accuracy Df decreases more aggressively, indicating stronger for-
getting. However, a mild trade-off emerges: both Dr and Dtest also drop slightly as the forgetting
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Table H.2: Hyperparameter analysis on CIFAR10, 10% random unlearning scenario

Df Dr Dtest MIAe MIAp coeff ce coeff un

65.511 98.449 89.76 0.885 0.572 0.95 0.13
70.889 98.689 90.35 0.890 0.577 0.95 0.12
73.556 98.859 90.5 0.883 0.579 0.95 0.11
74.889 99.242 91.2 0.867 0.578 0.95 0.1
79.333 98.958 90.71 0.841 0.575 0.95 0.09
82.156 99.316 91.4 0.819 0.576 0.95 0.08
85.156 99.519 92.2 0.769 0.573 0.95 0.07
87.378 99.746 92.36 0.752 0.579 0.95 0.06
84.244 99.190 90.930 0.627 0.570 0.95 0.05
90.733 99.849 92.98 0.586 0.574 0.95 0.04

94.4 99.928 93.56 0.374 0.566 0.95 0.03
97.089 99.985 94.07 0.251 0.567 0.95 0.02
98.756 99.978 94.51 0.095 0.557 0.95 0.01

strength increases. While this sensitivity is relatively small compared to the overall stability of OPC,
it highlights that choosing coeff un requires balancing forgetting strength with utility preservation.

H.2 SCALING ANALYSIS

Table H.3: Scaling analysis on CIFAR10

Class unlearning scenario

Unit(10%) Df Dr test Df test Dr MIAe coeff ce coeff un

5 0 99.702 0 96.08 1 1 1
4 0.006 99.426 0 94.417 1 1 0.9
3 0 99.746 0 94.129 1 1 0.9
2 0.089 99.606 0.1 93.4125 1 1 0.9
1 0.022 99.412 0 93.167 1 1 0.9

Random unlearning scenario

Unit(10%) Df Dr Dtest MIAe MIAp coeff ce coeff un

5 89.431 99.658 89.57 0.579 0.634 1 0.15
4 88.578 99.7 89.98 0.602 0.625 1 0.15
3 86.452 99.454 90.3 0.665 0.612 1 0.15
2 79.089 98.764 89.13 0.767 0.599 1 0.15
1 84.244 99.190 90.930 0.627 0.570 0.95 0.05

In Table H.3, we present the results of applying OPC across various unlearning scenarios. In both
the Class and Random unlearning settings, OPC maintains stable unlearning performance even as
the size of the forget set increases, and this is achieved with simple hyperparameter adjustments.

Except for the hyperparameters explicitly shown, all other hyperparameters (with the exception of
the number of epochs) follow the configuration in Section C.1. For the Class unlearning scenario, we
use 25 epochs only when the forget ratio is 50%, and 30 epochs for all other cases. For the Random
unlearning scenario, we use 20 epochs for all experiments.

H.3 ITERATION ANALYSIS

Similarly, OPC demonstrates robustness to the number of iterations, as shown in Table H.4 and
Table H.5. Other unlearning methods often show degraded performance on both Dr and Df as the
number of epochs increases, or they even show partial recovery on Df . In contrast, OPC continues to
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Table H.4: Iteration analysis on CIFAR10 30% class unlearning scenario

Epochs Df Dr test Df test Dr MIAe coeff ce coeff un

40 0.067 99.838 0.1 94.229 1 1 0.7
30 0 99.606 0 93.143 1 1 0.7
20 0.215 99.635 0.167 94.114 1 1 0.7
10 2.274 99.467 1.667 93.543 1 1 0.7
5 5.652 98.851 5.133 93.086 1 1 0.7
1 4.548 99.248 4.4 94.386 1 1 0.7

Table H.5: Iteration analysis on CIFAR10 10% random unlearning scenario

Epochs Df Dr Dtest MIAe MIAp coeff ce coeff un

40 61.711 99.474 91.42 0.901 0.579 0.95 0.05
35 68.511 99.649 91.83 0.883 0.585 0.95 0.05
30 79 99.556 91.72 0.805 0.576 0.95 0.05
25 85.533 99.637 92 0.764 0.581 0.95 0.05
20 84.244 99.190 90.930 0.627 0.570 0.95 0.05
15 92.844 99.864 93.19 0.513 0.562 0.95 0.05
10 96.022 99.906 93.62 0.258 0.561 0.95 0.05
5 98.6 99.862 94.33 0.131 0.559 0.95 0.05
1 99.178 99.531 93.84 0.062 0.551 0.95 0.05

reduce performance on Df proportionally to the number of iterations while maintaining performance
on Dr.

Due to this behavior, it may appear in Table C.1 that OPC requires a relatively large training budget.
However, OPC’s training dynamics are highly stable, which allows effective unlearning without any
loss in overall performance.

In the random unlearning scenario, the proportional relationship between unlearning performance
and the number of iterations is still preserved. However, as shown in Table H.2, Dtest gradually
decreases, so hyperparameter selection requires careful attention, just as in the case of choosing
coeffun.
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