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Abstract

Certified robustness is a critical measure for assessing the reliability of machine1

learning systems. Traditionally, the computational burden associated with certifying2

the robustness of machine learning models has posed a substantial challenge,3

particularly with the continuous expansion of model sizes. In this paper, we4

introduce an innovative approach to expedite the verification process for L2-norm5

certified robustness through sparse transfer learning. Our approach is both efficient6

and effective. It leverages verification results obtained from pre-training tasks and7

applies sparse updates to these results. To enhance performance, we incorporate8

dynamic sparse mask selection and introduce a novel stability-based regularizer9

called DiffStab. Empirical results demonstrate that our method accelerates the10

verification process for downstream tasks by as much as 70-80%, with only slight11

reductions in certified accuracy compared to dense parameter updates. We further12

validate that this performance improvement is even more pronounced in the few-13

shot transfer learning scenario.14

1 Introduction15

In recent years, ensuring the certified robustness of machine learning systems has emerged as16

a paramount research challenge. The primary objective is to guarantee consistent and resilient17

output predictions, impervious to perturbations spanning a defined range in any direction. Diverse18

verification techniques have been devised to quantify the certified robustness of neural networks.19

When confronting inputs perturbed within some Linf -norm bound, the prevailing verification methods20

center around the branch-and-bound (BaB) technique [20, 16, 18]. In cases involving L2-norm21

perturbations, randomized-smoothing approaches reign supreme [4, 10].22

However, it is a widely recognized challenge that commonly used certified verification methods,23

such as the BaB methods [20, 18] and randomized smoothing [4] grapple with the inherent issue of24

computationally expensive verification for each sample. In fact, the computational cost of verification25

often surpasses that of inference for the same sample by several orders of magnitude. For instance,26

the BaB method exhibits exponential complexity, while randomized smoothing typically demands27

the sampling of approximately 1,000 noisy inputs for each individual verification. This predicament28

of resource-intensive verification is further exacerbated by the exponential growth in the sizes of29

state-of-the-art (SOTA) models across various benchmarks.30

In this paper, we concentrate on developing novel streamlined techniques designed to expedite31

the verification processes based on randomized smoothing for L2-norm certified robustness. Our32

approach begins by identifying ways to efficiently reuse the verification results from pre-training33
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tasks to downstream tasks, and our innovation here is to introduce the tool of sparse transfer learning34

to update only a select subset of network parameters during the transfer. We then implement our35

novel differential sparse verification techniques to accelerate the verification process by leveraging36

specific patterns of sparsity. This is chiefly accomplished by hastening the forward propagation of37

noisy samples from the Monte-Carlo sampling of randomized smoothing-based verification, using38

(structured) sparse update vector multiplication. We further introduce two techniques to augment39

the certified robustness for sparse transfer learning, namely dynamic sparse mask selection and a40

novel stability-based regularizer. They result in significant enhancements in both the speed of the41

verification process and the robustness of the certified outcomes, when compared to the conventional42

approach of direct training and verification on downstream tasks.43

Specifically, our contributions are outlined as follows:44

• We for this first time investigate the use of sparse transfer learning to expedite the certified45

verification process, capitalizing on reusing the verification results from the upstream task46

and executing sparse weight updates. Specifically, we employ sparse transfer learning47

with three distinct sparsity patterns, thereby facilitating efficient transfer and accelerating48

the downstream verification process. This is achieved by propagating the intermediate49

verification results using the sparse convolutional operator.50

• Recognizing that sparse transfer learning may affect the certified robustness of transferred51

models, we further propose to boost this process using dynamic mask selection and a novel52

stability-based regularizer. These measures significantly narrow the performance gap with53

the upper bound achieved by dense parameter updates.54

• We empirically discover that our approach can hasten the verification process on downstream55

tasks by up to 70-80%, with only slight reductions in certified accuracy compared to dense56

parameter update. Furthermore, we find that the advantages of sparse transfer learning and57

acceleration can be further amplified in the context of few-shot transfer learning.58

2 Related Work59

2.1 L2-norm Certified Robustness60

Research into L2-norm certified robustness aims to ensure stable machine learning system outputs61

when input perturbations lie within an L2-norm ball. Cohen et al. [4] pioneered a verification method62

for L2-norm certified robustness using randomized smoothing based on Monte-Carlo sampling [4].63

Kumar and Goldstein [10] introduced a variant that facilitates L2-robust training and verification for64

tasks with structured outputs, such as semantic segmentation [10]. An alternative approach verifies65

L2-norm robustness by leveraging the diffusion model to denoise the input before making predictions66

with benign-trained models [1, 19]. However, this diffusion model-based method introduces an67

added denoising step during inference. This paper centers on accelerating the prevalent randomized68

smoothing techniques for L2-norm certified robustness.69

2.2 Transfer learning70

Transfer learning facilitates knowledge transfer from a source to a target domain, particularly when71

data in the target domain is scarce. Many approaches adopt a pretrain-and-finetune framework,72

varying primarily in their pre-training objectives. This includes contrastive pre-training [3, 11],73

pretext tasks [7], and autoencoding [5]. Recently, Guo et al. [9] introduced DiffPruning, a parameter-74

efficient method that updates only a sparse subset of model parameters for each downstream task. In75

this paper, we harness DiffPruning for both sparse transfer learning and sparse differential verification.76

2.3 Robustness Transfering77

Recent studies have highlighted the robustness of neural networks pre-trained on large-scale datasets.78

Such networks tend to possess robust feature extractors that can be transferred to downstream79

tasks [4, 15, 10, 12]. Salman et al. [14] discovered that adversarially trained networks can enhance80

accuracy in these downstream tasks. Furthermore, Vaishnavi et al. [17] introduced a method using81

knowledge transfer to expedite the training for certified robustness. Nevertheless, to our knowledge,82
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our work is pioneering in its approach to accelerate the certified robustness verification process via83

sparse transfer learning.84

3 Methodology85

We introduce the preliminaries of this work, including sparsity patterns and dynamic mask selection86

with RigL in appendix A. Certified verification techniques, such as randomized smoothing, grapple87

with substantial computational overhead—often eclipsing the inference time for the same sample. For88

the L2-norm, this cost intensifies with randomized smoothing methods [4, 15, 10], which use Monte-89

Carlo sampling to certify each original sample by sampling multiple noisy inputs. In this section, we90

explore how sparse transfer learning can bolster the efficiency of the randomized smoothing-based91

verification and enhance the certified robustness for downstream tasks. We also discuss dynamic92

mask selection and our novel stability regularizer, both tailored to amplify certified robustness. The93

architecture of our framework is illustrated in fig. 1.94

3.1 Sparse Transfer Learning for Certified Robustness95

Sparse transfer learning involves updating a selected subset of parameters in pre-trained models96

during transfer. We pinpoint two benefits of employing sparse transfer learning for L2-norm certified97

robustness: ❶ Transfer learning typically yields superior certified robustness in downstream tasks98

than training exclusively on those tasks. This is attributed to the foundational robustness instilled99

during the pre-training phase [15, 12]. ❷ Sparse transfer learning facilitates the acceleration of100

the randomized smoothing verification process across various sparsity patterns. We expedite the101

randomized smoothing certification by leveraging efficient Monte-Carlo sampling inference, informed102

by sparse update vectors derived from sparse transfer learning.103

We further explore the potential of sparse transfer learning to expedite the verification process by104

examining various sparsity patterns. In our approach, we integrate DiffPruning, as presented in Guo105

et al. [9], with different types of sparsity: unstructured, structured (channel-wise), and group-wise,106

as detailed in Sec. A.1. This amalgamation allows for sparse transfer learning. Furthermore, we107

discuss the method of capitalizing on the certified verification outcomes from pre-training tasks. By108

employing the sparse update masks corresponding to the various sparsity patterns, we aim to speed109

up the verification procedure for the transferred tasks. It’s crucial to mention that in order to benefit110

from the verification results of the pre-training tasks, consistency in input between pre-training and111

downstream tasks is imperative112

In methods rooted in randomized smoothing, the predominant computational demand during the113

verification process stems from Monte-Carlo sampling. For each sample undergoing verification, it114

is commonplace for these techniques to draw upon 1,000 noisy inputs, forecast outcomes, and then115

gauge the verification conclusion from these forecasts. This underscores that bolstering the speed of116

forward propagation for each prediction can, in turn, hasten the overarching verification procedure. In117

this study, we venture to enhance the pace of the forward propagation. We achieve this by integrating118

the differential outcome of forward propagation, brought about by sparse update vectors, with the119

dense verification results inherited from pre-training tasks, as depicted in Fig. 1.120

Subsequently, we materialize this acceleration across diverse sparsity patterns:121

• Unstructured sparsity In CNNs, the convolutional operation is the primary source of com-122

putational complexity during inference. To achieve acceleration, our focus is on optimizing123

this convolutional operation. It’s well-understood that convolutional operations can be124

translated into matrix multiplications. Therefore, the differential forward propagation can125

be conducted using a matrix multiplication between the dense input matrix and the sparse126

parameter update matrix for each convolutional layer. This process is further expedited127

using a sparse coordinate list operator tailored for matrix computations.128

In the forward propagation, for each layer, we combine this differential output with the results129

previously obtained from the pre-training task. This integrated result is then propagated130

to the subsequent layer. By iteratively integrating the outcome of this sparse forward131

propagation for each convolutional layer, we can efficiently compute the output of the final132

convolutional layer.133
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• Structured sparsity The acceleration process for structured sparsity is notably straight-134

forward. The sparse update vector in this context is channel-wise, functioning as a binary135

indicator for every layer. When this indicator has a value of 1, it signifies that the parameters136

of the related channel have undergone updates. We compute the differential output exclu-137

sively for the updated channels. Then, for each layer, we combine this differential output138

with the results derived from the pre-training task. The aggregated result is subsequently139

propagated to the following layer.140

• Group-wise sparsity Group-wise sparsity can be conceptualized as an amalgamation of141

both unstructured and structured sparsity. Given that certain channels without selected dense142

blocks are omitted, we ultimately achieve a sparsity mask with an unstructured configuration.143

Consequently, we can employ a combined acceleration strategy, drawing from the methods144

above used for both structured and unstructured sparsity.145

We empirically find that, for a given sparse ratio k, structured sparsity typically yields a more pro-146

nounced acceleration compared to unstructured sparsity, with group-wise sparsity falling somewhere147

in the middle. In contrast, when evaluating certifiable robustness (specifically, verified accuracy),148

the performance trend for each sparsity pattern is opposite to their respective acceleration effects.149

Notably, group-wise sparsity strikes a more balanced compromise between acceleration and certifiable150

robustness in comparison to the other two sparsity paradigms.151

3.2 Regularizing Sparse Transfer Learning152

As mentioned above, the proposed method with sparse transfer learning can help the model achieve153

better-verified accuracy than training directly on downstream tasks, but not as good as dense transfer154

learning, where we update all the parameters while transferring. We identify 2 reasons for this155

phenomenon: firstly, we originally expected that sparse transfer learning is possible to achieve better156

certified robustness than dense transfer learning since the network is already pre-trained to be robust157

and has stable intermediate outputs for its layers given the same input. However, we failed to observe158

this phenomenon and conclude that unconstrained sparse transfer learning is unable to preserve the159

robustness obtained from the pre-training task. Secondly, we believe that the domain gap between160

the pre-training task and the downstream task prevents sparse transfer learning to achieve better161

robustness than dense transfer learning.162

To tackle these two challenges, we introduce a dual-method approach: Firstly, We advocate for163

a regularizer based on stability, which specifically targets the L2 distance of the lower and upper164

bounds for each neuron. By ensuring these bounds remain consistent between the pre-training165

and downstream tasks—given identical input and perturbation ranges—we aim to maintain the166

inherent stability and robustness from the pre-training phase. To this end, we employ Interval Bound167

Propagation (IBP) [8]. The Linf -norm bounds provided by IBP are not only efficient but also align168

with the computational complexity of a network’s forward pass. It’s worth highlighting that even169

though the Linf -norm bound is distinct from the L2-norm bound, our empirical findings suggest170

that the former is effective in regularizing L2-norm robustness. Formally defined, if the lower and171

upper bounds of neuron i for the pre-training task are denoted by lbi and ubi respectively, and for the172

downstream task they are lb′i and ub′i, the regularization loss is computed as follows:173

lossstab =
1

N

N∑
i

(lb′i − lbi)
2 + (ub′i − ubi)

2 (1)

Where N is the number of neurons across the network. We call this regularizer as DiffStab. And the174

overall loss for transfer learning is:175

loss = lossorig + lossstab (2)

Where lossorig is the original loss of transfer learning. Secondly, to mitigate the domain gap176

challenge, we advocate for dynamic mask selection. Specifically, we implement the RigL approach177

as outlined in [6]. This method ensures enhanced mask flexibility during the transfer phase. Our178

empirical analysis confirms that dynamic mask selection markedly boosts certified robustness in179

sparse transfer learning, especially when confronted with a substantial domain gap.180
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Table 1: The comparison of verified accuracy and verification time of different transfer setting with
different sparsity patterns.

Direct Train Dense Transfer Sparse Transfer
Sparsity Pattern Updated Params(%) 100 100 1 2 4 8 16 32 64

Unstruct Ver Acc(%) 60.4 61.2 55.1 56.2 57.9 59.1 60.3 60.6 61.1
Time Saved(%) 0 0 77.6 63.5 46.6 29.1 10.2 3.2 1.2

Struct Ver Acc(%) 60.4 61.2 53.4 54.7 56.2 57.6 58.8 59.7 60.3
Time Saved(%) 0 0 92.1 88.5 82.2 72.8 55.4 33.1 15.8

Group-wise Ver Acc(%) 60.4 61.2 54.0 55.3 56.8 57.8 59.1 59.8 60.5
Time Saved(%) 0 0 87.2 81.8 75.2 61.9 49.3 28.7 12.5

4 Experiments181

In this section, our objective is to address two primary inquiries via comprehensive experiments: (1)182

How effectively does the proposed method hasten the certified verification process and amplify the183

certified robustness for a downstream task under L2-norm input perturbations? (2) How do DiffStab184

and RigL contribute to enhancing the certified robustness performance in the context of our proposed185

sparse transfer learning and verification methodology?186

To address the posed questions, we carry out experiments in two distinct settings across two datasets,187

including CIFAR10 and CelebV-HQ. The details about experiment settings are highlighted in ap-188

pendix B.189

4.1 Sparse Transfer Learning Accelerates and Enhances Certified Robustness190

Table 2: The comparison of verified accuracies before and after adding DiffStab regularizer and
RigL(dynamic mask selection) of different sparsity patterns. The relative improvements in the
brackets are obtained by comparing them with the baselines of different sparsities.

Direct Train Dense Transfer Sparse Transfer
Sparsity Pattern UpdateParams 100 100 1 2 4 8 16 32 64

Unstruct Ver Acc(%) 60.4 61.2 55.1 56.2 57.9 59.1 60.3 60.6 61.1

+DiffStab+RigL Ver Acc(%) 60.4 62.2
(+1.0)

58.1
(+3.0)

59.0
(+2.8)

60.6
(+2.7)

61.2
(+2.1)

61.5
(+1.2)

62.2
(+1.6)

62.2
(+1.1)

Struct Ver Acc(%) 60.4 61.2 53.4 54.7 56.2 57.6 58.8 59.7 60.3

+DiffStab+RigL Ver Acc(%) 60.4 62.2
(+1.0)

57.0
(+3.6)

58.7
(+4.0)

59.4
(+3.2)

60.6
(+3.0)

60.9
(+2.1)

61.4
(+1.7)

61.6
(+1.3)

Group-wise Ver Acc(%) 60.4 61.2 54.0 55.3 56.8 57.8 59.1 59.8 60.5

+DiffStab+RigL Ver Acc(%) 60.4 62.2
(+1.0)

57.0
(+3.0)

58.6
(+3.3)

59.3
(+2.5)

60.3
(+2.5)

60.7
(+1.6)

61.2
(+1.4)

61.7
(+1.2)

4.1.1 CIFAR10 Results191

In this subsection, we assess the effectiveness of combining sparse transfer learning with sparse192

differential verification to expedite the randomized smoothing-based verification process. Notably,193

when given an ample amount of pre-training data, sparse transfer learning not only facilitates faster194

performance but also achieves superior results.195

To corroborate the acceleration effect, we implemented sparse transfer learning on the CIFAR10196

dataset at predetermined sparsity ratios. We juxtaposed the outcomes from sparse differential197

verification with those obtained using the standard randomized smoothing. The results of this198

comparison are delineated in table 1. Although similar acceleration findings were empirically199

noted on the CelebV-HQ dataset (owing to the consistent network architecture and a dominant200

influence of sparsity ratio over input or network configuration), for the sake of brevity, we’ve confined201

our exposition to the CIFAR10 dataset. As evident from table 1, as the sparsity ratio increases,202

sparse differential verification can hasten the verification process by a staggering 77.6% to 92.1%.203

However, a trade-off is observed in the form of a reduced verified accuracy. While we employed204

contrastive learning for pre-training, aiming to harness robust self-supervision signals, the scale of the205

dataset remains a constraint, limiting the significant benefits of pre-training for subsequent tasks. In206

subsequent sections, we will discuss how augmenting the pre-training dataset size can alleviate this207

challenge. Additionally, by incorporating our novel DiffStab regularizer and dynamic mask selection,208

we demonstrate that performance can be further enhanced.209
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When we examine various sparsity patterns presented in table 1, it’s evident that the acceleration ef-210

fects increase in the order of unstructured, group-wise, and structured sparse differential verifications.211

This progression aligns with our expectations. Structured sparsity directly omits entire channels from212

the verification process, while group-wise sparsity can be perceived as an amalgamation of both213

unstructured and structured sparsity, as outlined in our methodology.214

However, when looking at verified accuracies, they tend to decrease in the order from unstructured215

to structured sparsity. This outcome is plausible since unstructured sparsity employs the most216

adaptive sparsity masks. This observation parallels findings in the model compression domain where217

unstructured pruning often surpasses structured pruning in terms of subnetwork performance.218

Upon Comparing group-wise sparsity with the other two types, it becomes clear that group-wise219

sparsity aligns more closely with unstructured sparsity in terms of verified accuracy, while resembling220

structured sparsity in acceleration outcomes. Therefore, we can infer that group-wise sparsity strikes221

an optimal balance, presenting a commendable trade-off between performance and acceleration,222

particularly when certifying robustness.223

To demonstrate the broad applicability of our method across various network architectures, we further224

evaluated its acceleration performance on both ResNet-18 and VGG-16. The results are presented in225

table 3 in the Appendix.226

4.1.2 CelebV-HQ Results227

For the CelebV-HQ dataset, we commenced with analogous experiments involving unstructured228

sparsity, both under a standard transfer setting utilizing 100% of the downstream data and a few-shot229

transfer setting with just 1% of downstream data. For detailed results, see the 1st and 5th rows in230

table 4.231

By comparing these outcomes with those in table 1, it becomes evident that the expansive scale of the232

pre-training dataset in CelebV-HQ markedly bolsters the certified robustness achieved through sparse233

transfer learning. Let’s remember that for our pre-training, we utilized 40 attributes, while only 1234

attribute was used for each downstream task. Notably, even when a mere 8% of network parameters235

are updated during sparse transfer learning, the enhanced network showcases a performance that’s on236

par with direct training that involves dense parameter updates. This comes with the added advantage237

of a 29.1% acceleration for unstructured sparsity.238

The advantages of sparse transfer learning become even more pronounced in a few-shot transfer239

learning environment. Here, sparse transfer learning significantly outperforms direct training. This240

can be attributed to the fact that the extensive multi-attribute classification pre-training infuses the241

network with substantial robustness. In contrast, direct training is limited by its access to a smaller242

dataset, curtailing its robust training capabilities. Interestingly, the performance disparity between243

dense transfer learning and sparse transfer learning narrows in the few-shot setting. This can be244

explained by the limited data available for finetuning in the few-shot scenario. Consequently, the245

performance is less adversely impacted by the ’lazy’ update strategy, that is, the sparse parameter246

update. More study is provided in appendix C and appendix D.247

5 Conclusion248

In this paper, we introduce sparse differential verification to accelerate the L2-norm robustness249

verification process based on randomized smoothing. Building on sparse differential forward prop-250

agation, our approach hastens the Monte-Carlo Sampling inherent to randomized smoothing. We251

explore three sparsity patterns for transfer learning, discussing their pros and cons. To bridge the gap252

between dense and sparse transferring, we employ dynamic mask selection and our new DiffStab253

regularizer. Empirically, our method achieves up to 80% acceleration while maintaining verified254

accuracies comparable to dense transfer methods. One constraint is the need for consistent input255

between pre-training and downstream tasks, limiting our model’s breadth. Still, our work offers a256

promising step towards leveraging transfer learning for faster, reliable machine learning verification.257
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A Preliminary313

A.1 Sparsity Patterns314

In this paper, we explore three distinct types of sparsity: unstructured sparsity, structured sparsity,315

and group-wise sparsity[2]. Given a sparse ratio k (0 < k < 1), the network’s sparsity can be316

depicted by a binary mask M , where each element corresponds to a single parameter of the model317

and the ratio of non-zero elements equals k. In a conventional neural network with convolutional318

layers, unstructured sparsity implies no constraints on the mask M other than its sparse ratio being k,319

whereas structured sparsity ensures channel-wise uniformity in the mask, i.e., all parameters in the320

same channel or kernel must share the same mask value. Lastly, group-wise sparsity [2] combines321

both unstructured and structured sparsity. Here, the mask M is first generated in an unstructured322

manner, and a hypergraph partitioning algorithm [13] identifies dense blocks of activated parameters,323

reactivating any deactivated parameters within these blocks. The remaining activated parameters not324

in these dense blocks are deactivated, with the ratio of chosen blocks controlled so that the sparse325

ratio still equals k after determining the group-wise mask.326

A.2 Dynamic Mask Selection with RigL327

We adapt the RigL method [6] for dynamic mask selection across three sparsity patterns. The RigL328

method dynamically activates and deactivates network parameters based on gradient magnitudes and329

magnitudes of parameter values, respectively, during training. Originally designed for unstructured330

sparsity, we modify RigL for structured sparsity by shifting from parameter-level to channel-level331

activation and deactivation, guided by the magnitudes and gradient magnitudes of the channel weight332

γ in BatchNorm layers. We control the overall sparsity ratio using a strategy similar to [6]. For333

group-wise sparsity, we simply follow the unstructured version of RigL, allowing the group-wise334

sparsity to determine the structured sparsity.335

Figure 1: Our novel framework integrating differential verification with sparse transfer learning. For
downstream tasks, the pre-trained network is refined using DiffPruning[9] coupled with dynamic
mask selection. To ensure network robustness during sparse parameter updates, we introduce a neuron
stability-based regularizer. For verification, we synergize sparse differential verification techniques
with reusable dense verification results to yield a conclusive verification outcome.
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Table 3: The acceleration results for a certified verification of different architectures with sparse
transfer learning under different sparsity patterns.

Sparse Transfer
Architecture Sparsity Pattern Updated Params(%) 1 2 4 8 16 32 64

ResNet-18
Unstruct Time Saved(%) 92.5 88.4 82.4 72.1 55.8 33.2 16.2
Struct Time Saved(%) 77.8 63.8 47.2 29.0 11.0 3.1 1.4
Group-wise Time Saved(%) 87.2 81.8 75.2 61.9 49.3 28.7 12.5

ResNet-50
Unstruct Time Saved(%) 92.1 88.5 82.2 72.8 55.4 33.1 15.8
Struct Time Saved(%) 77.6 63.5 46.6 29.1 10.2 3.2 1.2
Group-wise Time Saved(%) 87.2 81.8 75.2 61.9 49.3 28.7 12.5

VGG-16
Unstruct Time Saved(%) 92.5 89.1 82.5 73.1 55.4 33.2 15.6
Struct Time Saved(%) 77.8 63.6 46.8 29.3 10.3 3.5 1.4
Group-wise Time Saved(%) 89.4 84.8 77.5 63.5 50.3 30.1 13.7

B Datasets336

Our experiment setting is elaborated as below:337

CIFAR10 Initially, we deploy CIFAR10 to gauge the efficacy of our methodologies. Given the338

comparatively modest scale of CIFAR10, we employ contrastive learning during the pre-training339

phase to extract a rich self-supervision signal and subsequently use image classification for the340

downstream task. It’s noteworthy that contrastive learning predicts based on a dense feature map341

rather than a singular scalar probability. Consequently, randomized smoothing is unsuitable for pre-342

training this model. As an alternative, we utilize Center Smoothing [10]—a variant of randomized343

smoothing designed to secure L2-norm robustness for dense outputs—in tandem with contrastive344

learning to pre-train our network. Following this, randomized smoothing is incorporated for transfer345

learning within the image classification task.346

CelebV-HQ Introduced in [21], CelebV-HQ is a contemporary benchmark tailored for multi-347

attribute classification tasks. It offers classifications for 83 facial attributes bifurcated into two348

categories: appearance and action attributes. Given that CelebV-HQ is rooted in video classification,349

we extract five disparate frames at random from each video, resize them to 64x64 dimensions,350

and utilize them as the input for every sample. This approach morphs the multi-attribute video351

classification task into a multi-attribute image classification challenge. Our strategy then encompasses352

random sampling of 40 attributes for pre-training, with the remaining attributes earmarked for353

downstream transfer. It’s pivotal to understand that, in this dataset, the pre-training endeavor involves354

multi-attribute classification using the 40 selectively sampled attributes. Each subsequent downstream355

task revolves around binary classification, leveraging each of the residual attributes. To ascertain356

comprehensive results, evaluations across all downstream tasks are averaged. In the context of this357

dataset, we contemplate three distinct transfer settings: standard transfer, and a "few-shot" transfer,358

wherein the downstream tasks have access to merely 1% of randomly sampled data for their training.359

We employ DiffPruning, as previously discussed, for our sparse transfer learning approach. Our360

evaluation criteria are bifurcated: first, we gauge the time saved in verification through our proposed361

methodologies in contrast to direct verification of samples in downstream tasks. Second, we assess362

certified robustness, which equates to the verified accuracies, as confirmed by randomized smoothing363

in the subsequent tasks. Pertaining to the model architecture, unless stated otherwise, we consistently364

utilize ResNet-50 as the foundational network for our experiments. Only the fully connected layers365

of the network undergo reinitialization, with sparse transfer learning executed on the convolutional366

layers. We’ve earmarked the perturbation radius of the input L2-norm ball at 0.25, considering a367

normalized image input.368

C Acceleration Results on More Architectures369

In order to validate the consistent acceleration performance of our proposed techniques, we substituted370

ResNet-50 with both ResNet-18 and VGG-16 in our CIFAR10 experiments. Our objective was371

to compare the acceleration outcomes of these three architectures when subject to randomized372

smoothing-based verification. These findings are documented in table 3.373

9



Table 4: The comparison of under normal/few-shot transfer setting. +Reg means applying DiffStab
and RigL. The relative improvements in the brackets are obtained by comparing them with the
unstructured baseline.

Direct
Train

Dense
Transfer

Sparse
Transfer

Updated
Params(%) 100 100 1 2 4 8 16 32 64

Normal
transfer

Unstruct
(Baseline) Ver Acc(%) 55.8 59.1 52.8 53.8 54.2 55.3 56.6 57.2 57.9

Unstruct
+Reg Ver Acc(%) 55.8 59.1 56.2

(+3.4)
56.9

(+3.1)
57.5

(+3.2)
57.9

(+2.6)
58.6

(+2.0)
58.9

(+1.7)
59.0

(+1.1)
Struct
+Reg Ver Acc(%) 55.8 59.1 54.7

(+1.9)
56.3

(+2.5)
56.6

(+2.4)
57.1

(+1.8)
57.8

(+1.2)
58.4

(+1.2)
58.8

(+0.9)
Group-wise

+Reg Ver Acc(%) 55.8 59.1 55.6
(+2.8)

57.0
(+3.2)

57.2
(+3.0)

57.7
(+2.4)

58.3
(+1.7)

58.7
(+1.5)

58.8
(+0.9)

Few-shot
transfer

Unstruct
(Baseline) Ver Acc(%) 39.2 54.2 48.6 50.2 51.3 52.4 53.2 53.6 53.8

Unstruct
+Reg Ver Acc(%) 39.2 54.2 52.5

(+3.9)
53.1

(+2.9)
53.5

(+2.4)
53.8

(+1.4)
54.0

(+0.8)
54.1

(+0.5)
54.1

(+0.3)
Struct
+Reg Ver Acc(%) 39.2 54.2 49.3

(+0.7)
51.9

(+1.7)
52.6

(+1.3)
53.1

(+0.8)
53.6

(+0.4)
53.8

(+0.2)
53.9

(+0.1)
Group-wise

+Reg Ver Acc(%) 39.2 54.2 51.6
(+3.0)

52.7
(+2.5)

53.2
(+0.9)

53.5
(+1.1)

53.7
(+0.5)

53.9
(+0.3)

53.9
(+0.1)

Remarkably, the proportion of verification time saved remains relatively stable across the diverse ar-374

chitectures. For instance, the discrepancy between ResNet-18 and ResNet-50 is negligible, remaining375

within a 1% margin in most scenarios. VGG-16 presents marginally superior acceleration outcomes.376

This can potentially be attributed to VGG-16’s relatively straightforward architecture when contrasted377

with residual networks. Consequently, it encompasses fewer operations, which wouldn’t benefit from378

acceleration during forward propagation.379

D DiffStab and Dynamic Mask Selection Boost Certified Robustness of380

Sparse Transfer Learning381

From the results presented in the preceding subsection, a discernible performance discrepancy382

between dense transfer learning and sparse transfer learning remains evident. We delved into383

potential reasons for this in Sec. 3.2, subsequently proposing two remedies: the DiffStab regularizer384

and dynamic mask selection using RigL. Upon applying these methodologies to three distinct sparsity385

patterns on both the CIFAR10 and CelebV-HQ datasets, the outcomes, as depicted in table 2 and386

table 4 respectively, show a marked enhancement in verified accuracy for sparse transfer learning.387

The effectiveness of these strategies is directly proportional to the degree of sparsity, with higher388

sparsity ratios benefiting more significantly.389

Interestingly, while these techniques are tailored for sparse transfer learning, they appear to have no390

discernible impact on dense transfer learning. This aligns with our expectations, given that there’s391

inherently no room for dynamic mask selection in dense parameter updates. Moreover, it can be392

inferred that the DiffStab regularizer truly shines in environments where updated parameters are393

sufficiently sparse. This enables the regularizer to more effectively modulate network stability and394

robustness, without inadvertently hindering model training.395

With the implementation of the two techniques, we are now equipped to pinpoint hyperparameter396

configurations that strike a balance between impressive verified accuracies and commendable acceler-397

ation outcomes for sparse transfer learning. ❶ Taking the CIFAR10 dataset as an example: Among398

configurations that surpass the verified accuracy of direct training, structured sparsity with an 8%399

sparse ratio stands out, yielding a remarkable 72.8% reduction in verification time when juxtaposed400

with traditional verification. When filtering for configurations that achieve over 80% verification401

acceleration, the same structured sparsity setting with an 8% sparse ratio boasts the pinnacle of402

verified accuracy, only trailing direct training by a slim 1% in accuracy. ❷ Turning our attention to403

the CelebV-HQ dataset under the standard transfer setting: We discern that nearly all sparse transfer404

configurations armed with regularizers outperform direct training. Notably, group-wise sparsity at a405

16% sparse ratio demonstrates a negligible performance dip, less than 1% compared to dense transfer,406

while simultaneously realizing a 49.3% acceleration. ❸ In the few-shot setting: Some of the most407
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aggressive sparse configurations, updating a mere 2% of parameters with both unstructured and408

group-wise sparsities, exhibit a performance delta of under 2% accuracy loss. This is paired with409

remarkable acceleration gains of 63.5% and 81.8%, respectively.410

11


	Introduction
	Related Work
	L2-norm Certified Robustness
	Transfer learning
	Robustness Transfering

	Methodology
	Sparse Transfer Learning for Certified Robustness
	Regularizing Sparse Transfer Learning

	Experiments
	Sparse Transfer Learning Accelerates and Enhances Certified Robustness
	CIFAR10 Results
	CelebV-HQ Results


	Conclusion
	Preliminary
	Sparsity Patterns
	Dynamic Mask Selection with RigL

	Datasets
	Acceleration Results on More Architectures
	DiffStab and Dynamic Mask Selection Boost Certified Robustness of Sparse Transfer Learning

