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Weakly Supervised Anomaly Detection via
Knowledge-Data Alignment

Anonymous Author(s)

ABSTRACT
Anomaly detection (AD) plays a pivotal role in numerous web-based
applications, including malware detection, anti-money laundering,
device failure detection, and network fault analysis. Most methods,
which rely on unsupervised learning, are hard to reach satisfactory
detection accuracy due to the lack of labels. Weakly Supervised
Anomaly Detection (WSAD) has been introduced with a limited
number of labeled anomaly samples to enhance model performance.
Nevertheless, it is still challenging for models, trained on an inade-
quate amount of labeled data, to generalize to unseen anomalies.
In this paper, we introduce a novel framework Knowledge-Data
Alignment (KDAlign) to integrate rule knowledge, typically sum-
marized by human experts, to supplement the limited labeled data.
Specifically, we transpose these rules into the knowledge space
and subsequently recast the incorporation of knowledge as the
alignment of knowledge and data. To facilitate this alignment, we
employ the Optimal Transport (OT) technique. We then incorporate
the OT distance as an additional loss term to the original objective
function of WSAD methodologies. Comprehensive experimental
results on five real-world datasets demonstrate that our proposed
KDAlign framework markedly surpasses its state-of-the-art coun-
terparts, achieving superior performance across various anomaly
types.
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1 INTRODUCTION
Anomaly detection (AD), aiming at identifying patterns or instances
that deviate significantly from the expected behavior or normal
patterns, is crucial to extensive web-based applications including
malware detection [29], anti-money laundering [33], device fail-
ure detection [50], network fault analysis [64]. Given that labeled
anomaly data is typically scarce or costly to acquire, unsupervised
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methodologies that operate on entirely unlabeled data have gained
widespread use. However, in the absence of supervision, these mod-
els may incorrectly classify noisy or unrelated data as anomalies,
leading to high detection errors.

To alleviate the above issue, Weakly Supervised Anomaly De-
tection (WSAD) has been proposed to enhance detection accuracy
with limited labeled anomaly samples and a large amount of unla-
beled data [27], shown in Fig. 1(a). Early studies use unsupervised
AD algorithms as feature extractors and learn a supervised clas-
sifier with label data [25, 35, 40, 49, 55]. With the development
of deep learning, most recent studies focus on end-to-end frame-
works that build on multilayer perceptron, autoencoder, and gener-
ative adversarial networks, to directly map input data to anomaly
scores [1, 42, 43, 65]. Nevertheless, models trained on insufficient
labeled data fail to generalize to novel anomalies or anomalies not
observed during training time [26, 27]. Although several works
have employed active learning or reinforcement learning to reduce
the cost of obtaining anomaly labels, they still require an initial set
of labeled data to start the learning process, which can be costly
and time-consuming [44, 62].

In this work, we propose to incorporate rule knowledge, which
is often derived or summarized by human experts [6, 34, 37, 60, 64],
similar to label annotation but has been largely overlooked, to
help complement the limited labeled data, as shown in Fig. 1(b).
Although rules are high-quality and accessible in practice [34, 37],
incorporating them is non-trivial for three reasons: (1) knowledge
representation: rules are generally represented by if/else state-
ments [34, 37]. In the representation space, rules and data lack
a direct correlation [58, 64], making them unsuitable for directly
training the WSAD models; (2) knowledge-data alignment: intu-
itively, if two rules are close then their corresponding data samples
should be also close [6]. For example, in anti-money laundering,
a group of fraudsters may possess similar patterns and thus have
similar data representations [6, 34, 37]. Usually, these fraudsters
will be detected by identical or similar if/else rule statements in anti-
money laundering systems [6]. In this work, we reformulate the
knowledge incorporation process as the knowledge-data alignment
and supplement the traditional data-only optimizations; (3) noisy
knowledge: typically, rules are not always accurate [6, 34], thus
directly aligning them with data may involve noises and resulting
in a performance drop. It is still challenging to ensure the model’s
performance under noisy rules.

To address the above issues, we propose a novel framework
for Weakly Supervised Anomaly Detection via Knowledge-Data
Alignment (KDAlign). KDAlign expects to align knowledge and
data to complement the data distribution. For the first challenge,
KDAlign employs a knowledge encoder to map the rules into an
embedding space, thereby allowing knowledge to correlate with
data in the numerical domain. For the second and third challenges,
KDAlign leverages the Optimal Transport (OT) technique to align
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Rule 1: IF 𝒇𝟏 ≥ 0.2 𝑎𝑛𝑑 𝒇𝟐 > 0.2 , 𝑇𝐻𝐸𝑁 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = 𝑇𝑟𝑢𝑒
Rule 2: IF 𝒇𝟐 ≤ 0.12 𝑎𝑛𝑑 𝒇𝒅 < 0.2 , 𝑇𝐻𝐸𝑁 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 = 𝐹𝑎𝑙𝑠𝑒
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True0.08…0.230.20

Limited Labeled Data Source
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(b) Knowledge-Data Alignment WSAD
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Data
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Data
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Figure 1: Comparison between traditional WSAD approach (a) and our proposed knowledge-data alignment WSAD framework
(KDAlign) (b). We can find that the traditional WSADmainly focuses on learning from limited labeled data, while our proposed
framework introduces knowledge as extra information to supplement limited labeled via knowledge-data alignment. Note
that the samples in the unlabeled data source are usually regarded as normal samples, though the unlabeled data may be
contaminated by noise [26, 41].

knowledge and data. The primary strength of OT lies in its inherent
flexibility. It autonomously determines the optimal transport pair-
ings between knowledge and data, thus establishing an intrinsic
connection [39, 54]. Specifically, the OT method intrinsically forms
a robust framework, enabling a geometrically faithful comparison
of probability distributions and facilitating the information transfer
between distinct distributions [21]. Regarding noisy knowledge,
when a sample matches a noisy rule, the distance of that sample
to some other closely related rules will be farther, resulting in an
increased OT distance penalty. To ensure global optimality, the
OT distance between this sample and the noisy rule will be con-
strained by other correct rules, thereby ensuring the performance
of KDAlign.

To sum up, our contributions are three-fold:

• To the best of our knowledge, this is the first work to incorpo-
rate rule knowledge into WSAD, effectively complementing the
limited labeled data.

• We propose a novel Knowledge-Data Alignment Weakly Super-
vised anomaly detection framework (KDAlign).

• The experimental results on five public WSAD datasets indicate
our proposed KDAlign are superior to all the competitors. Fur-
thermore, KDAlign achieves strong performance improvements
even with 20% noisy rule knowledge.

2 PRELIMINARY
2.1 Rule Knowledge and Logical Formulae
In this paper, we focus on rule knowledge (if/else). This choice stems
from the high-quality and accessible in practice of rules — they
present explicit conditions and outcomes. Such transparency allows
individuals to understand anomaly and normal data easily. To avoid
the potential overlaps among different rules, we adopt a precise

knowledge statement format named Logical Formulae. Concretely,
logical statements provide a flexible declarative language for ex-
pressing structured knowledge (e.g., rule knowledge). In this paper,
we focus on propositional logic, where a proposition 𝑝 is a state-
ment which is either True or False [32]. A statement (proposition)
consists of a subject, predicate and object. It can also be regarded as
a ground clause that does not contain any variables [16]. A proposi-
tional formula 𝑓 is a compound of propositions connected by logical
connectives [7, 58], e.g., ¬, ∧, ∨,⇒. Also, a propositional formula
is equal to a grounding first-order logic formula. In the subsequent
content, we use F = {𝑓1, . . . , 𝑓𝑠 } to represent a set of propositional
formulae, where 𝑓𝑖 is a propositional formula and 𝑠 is the number of
propositional formulae. The concrete proposition formats designed
for rule knowledge of AD are introduced in Section 3.

2.2 Problem Statement
Given a training datasetX = {x1, x2, · · · , x𝑛, x𝑛+1, · · · , x𝑛+𝑚}, with
x𝑖 ∈ R𝑑 , where XU = {x1, x2, · · · , x𝑛} is a large unlabeled dataset
and XA = {x𝑛+1, x𝑛+2, · · · , x𝑛+𝑚} (𝑛 ≪𝑚) is a small set of labeled
anomaly examples that often can not cover every possible class of
anomaly, a WSAD modelM is first trained on X to output anomaly
score O := M(X) ∈ R𝑚×1, where higher scores indicate a higher
likelihood of an abnormal sample. The unlabeled dataset XU is
usually assumed as normal data, though it may be contaminated by
some anomalies in practice [41, 42]. Thus, the trainedM is required
to be robustw.r.t. such anomaly contamination. Based on the trained
model, we need to predict on the unlabeled test dataset X𝑇 ∈ R𝑞×𝑑 ,
so to return O𝑇 := M(X𝑇 ) ∈ R𝑞×1. In our work, we introduce a
set of rule knowledge represented by propositional formulae F, as
extra information, to supplement data and then training a WSAD
models on {X, F}.
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Figure 2: Knowledge-data alignment WSAD framework. During the training phase, we firstly use 𝜙𝑋 and 𝜙𝐹 to map X and F to
two separate embedding spaces and then leverage Optimal Transport (OT) techniques to compute the cost matrix C, thereby
obtaining the OT plan S. Next, we compute OT distance ⟨C, S⟩ and add it as a loss term to the prediction loss term, forming a
joint loss. Finally, we utilize the joint loss to train 𝜙𝑋 (·) and 𝜙𝑂 (·), aligning knowledge and data for incorporating knowledge.
In the inference phase of the model, the test data directly yields results by 𝜙𝑋 and 𝜙𝑂 . In the data space, both the abnormal and
normal points can be aligned via OT.

3 METHODOLOGY
3.1 Overview
Figure 2 provides an overview of our proposed Knowledge-Data
Alignment WSAD framework (KDAlign). First, we utilize a deep
learning encoder and a knowledge encoder to project data X and
knowledge F into data embedding space E𝑋 and knowledge em-
bedding space E𝐹 , respectively, making operations between knowl-
edge and data possible. The deep learning encoder could be based
on a multi-layer perceptron, autoencoder, or ResNet-like architec-
ture. The knowledge encoder is a multi-layer graph convolutional
network. Second, within the embedding space, we align data and
knowledge via the Optimal Transport Technique (OT) and then
leverage the alignment result to derive an OT loss term. The OT
loss term is subsequently used for introducing the knowledge into
deep learning models. Besides, we give an analysis of why KDAlign
has the potential to alleviate the noisy knowledge issue. Third, we
jointly leverage the OT loss and the prediction loss to train a deep-
learning model, expecting to learn better data representations for
X and improve the model performance, where the original loss is
computed by the output of the multi-layer perceptron and labels.
Then, the trained model can be used for inferring unlabeled test
data.

3.2 Representation Framework
3.2.1 Data Representation. Given the training dataset X with
𝑚 samples, we use a deep learning encoder to project data into a
high-dimensional embedding space, generating the corresponding

data embedding set E𝑋 = {𝑒1, . . . , 𝑒𝑚}, where𝑚 is the number of
samples. The process is shown by Equation 1

E𝑋 = 𝜙𝑋 (X) ∈ R𝑚×ℎ, (1)

where 𝜙𝑋 is a deep learning encoder, and ℎ is the dimension of the
Data Space E𝑋 defined by E𝑋 .

3.2.2 Knowledge Representation. In order to enable knowl-
edge and data to be operated, we also consider representing knowl-
edge in a high-dimensional embedding space, but embedding knowl-
edge successfully entails rendering it into a format amenable for
processing by deep learning methods. Given 𝑠 if/else statements,
we first contemplate transforming their formats into propositional
logic and then generate a knowledge set F with 𝑠 propositional
formulae, which is drawn inspiration from knowledge embedding
of logical formulae [57].

Next, we provide an example to illustrate how to transform the
if/else statement into propositional logic: Given an if/else statement
‘𝐼 𝑓 𝑎𝑡𝑡𝑟1 > 5 𝑎𝑛𝑑 𝑎𝑡𝑡𝑟2 = 0 , 𝑡ℎ𝑒𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑠 𝑇𝑟𝑢𝑒’, where 𝑎𝑡𝑡𝑟1
and 𝑎𝑡𝑡𝑟2 correspond to two attributes of the sample, three proposi-
tions {𝑝1 = (𝑎𝑡𝑡𝑟1 > 5), 𝑝2 = (𝑎𝑡𝑡𝑟2 = 0), 𝑝3 = (𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑠 𝑇𝑟𝑢𝑒)}
and a proposition formula 𝑓 = {𝑝1 ∧ 𝑝2 ⇒ 𝑝3} can be gen-
erated. The subject, object, and predicate constituting the three
propositions are, respectively, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = {𝑎𝑡𝑡𝑟1, 𝑎𝑡𝑡𝑟2, 𝑎𝑛𝑜𝑚𝑎𝑙𝑦},
𝑜𝑏 𝑗𝑒𝑐𝑡 = {5, 0,𝑇𝑟𝑢𝑒}, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 = {>,=, 𝑖𝑠}.

Building upon the example above, we provide definitions for
the subject, object, and predicate in propositional formulae used to
describe if/else statements: The subject comprises attribute names

3
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present in the sample and the word ‘anomaly’; the object encom-
passes attribute thresholds, words ‘True’, and ‘False’; the predicate
consists of numeric relational symbols and the word ‘is’.

Based on the transformation strategy, we convert if/else state-
ments into a set of propositional formulae F = {𝑓1, ..., 𝑓𝑠 }. Subse-
quently, each propositional formula in F is transformed into a graph
structure, and then a multi-layer graph convolutional network [57]
is constructed as a knowledge encoder to project propositional for-
mulae into a high-dimensional embedding space named Knowledge
Space and generate the knowledge embedding set E𝐹 = {𝑒1, ..., 𝑒𝑠 },
where 𝑠 is the number of propositional formulae, shown in Equa-
tion 2

E𝐹 = 𝜙𝐹 (F) ∈ R𝑠×ℎ, (2)

where 𝜙𝐹 (·) is a multi-layer graph convolutional network, and ℎ is
the dimension of the Knowledge Space E𝐹 defined by E𝐹 . Since the
dimensions of E𝐹 and E𝑋 are both ℎ, knowledge and data lie in the
same dimensional space. Additionally, 𝜙𝐹 (·) is trained before the
training of the deep learning model 𝜙𝑋 . The details of the knowl-
edge encoder are shown in the appendix.

3.3 Knowledge-Data Alignment
3.3.1 Definition. Given a knowledge set F and a limited labeled
training dataset X, without any observed knowledge-data corre-
spondences, the alignment algorithm returns aligned knowledge-
data pairs𝑀 = {(𝑓𝑖 , 𝑥 𝑗 ) | (𝑓𝑖 , 𝑥 𝑗 ) ∈ 𝐹 × 𝑋 }.

3.3.2 Optimal Transport. To resolve knowledge-data alignment,
we leverage the OT technique that has been widely applied in
various domains for alignment, such as in image and graph do-
mains [3, 54, 56, 63].We follow the Kantorovich formulation [20, 61],
which can be formally defined in terms of two distributions and a
cost matrix as follows

Definition 3 (Optimal Transport). Given two sets of observa-
tions 𝑶1 = {𝑜1, ..., 𝑜𝑛1 },𝑶2 = {𝑜1, ..., 𝑜𝑛2 }, there are two discrete
distributions 𝝁, 𝒗 defined on probability simplex Δ1,Δ2, where 𝑛1 is
the number of 𝑶1, and 𝑛2 is the number of 𝑶2. Then, a cost matrix
C ∈ R𝑛1×𝑛2 is computed for measuring the distance between all
pairs

(
𝑓𝑖 , 𝑥 𝑗

)
∈ Δ1 × Δ2 across two distributions. The OT problem

aims to find an OT plan S ∈ Π(𝝁, 𝒗) between 𝝁 and 𝒗 that minimizes
the expected cost over the coupling as follows:

min
S∈Π (𝝁,𝒗 )

∑
𝑓𝑖 ,𝑥 𝑗

C
(
𝑓𝑖 , 𝑥 𝑗

)
S
(
𝑓𝑖 , 𝑥 𝑗

)
= min

S∈Π (𝝁,𝒗 )
⟨C, S⟩,

s.t. S
(
𝑓𝑖 , 𝑥 𝑗

)
≥ 0, 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗,∑𝑛1

𝑖=1 S(𝑓𝑖 , 𝑥 𝑗 ) = `𝑖 ,
∑𝑛2
𝑗=1 S(𝑓𝑖 , 𝑥 𝑗 ) = 𝑣 𝑗 ,

(3)

where S is the OT plan, Π(𝝁, 𝒗) is the probabilistic coupling be-
tween 𝝁 and 𝒗 (i.e., all the available transport plan between 𝝁 and
𝒗), ⟨·, ·⟩ is inner product, and corresponding ⟨C, S⟩ is the Wasser-
stein distance between 𝝁 and 𝒗. In this paper, to efficiently solve the
OT problem, we employ the Sinkhorn-Knopp algorithm [10, 20].
The objective of the Sinkhorn-Knopp algorithm is to approximate

the computation of theWasserstein distance, enabling efficient com-
putation of Wasserstein distance, particularly in high-dimensional
or large-scale scenarios.

In knowledge-data alignment, we regard ` as the knowledge
distribution defined by F and 𝑣 as the data distribution defined by
X, and then S(𝑓𝑖 , 𝑥 𝑗 ) indicates the matching score between 𝑓𝑖 in
the knowledge set 𝑭 and 𝑥 𝑗 in 𝑿 . The alignment𝑀 can be derived
from S:

𝑀 = argmax
𝑀∈M

∑︁
(𝑓𝑖 ,𝑥 𝑗 )∈𝑀

S(𝑓𝑖 , 𝑥 𝑗 ), (4)

whereM is the set of all legit alignments, 𝑖 = 1, ..., 𝑠 , and 𝑗 = 1, ...,𝑚.

3.3.3 OT Loss For Weakly Supervised Anomaly Detection.
Obtaining the knowledge-alignment results, we further describe
how to utilize the alignment results to benefit WSAD. Firstly, we
compute the knowledge-data cost matrix C ∈ R𝑠×𝑚 for measuring
the distance between all pairs

(
𝜙𝐹 (𝑓𝑖 ), 𝜙𝑋 (𝑥 𝑗 )

)
∈ E𝐹 × E𝑋 across

two distribution spaces, which describes the discrepancy between
the data embeddings and the knowledge embeddings. Secondly, we
can compute the OT plan 𝑆 and the knowledge-data alignment𝑀
by Equations 3 and 4, respectively. Thirdly, we also compute the OT
distance, which quantifies the minimum cost required to transform
one probability distribution into another, by ⟨C, S⟩. Finally, the OT
distance is used for training the deep learning model.

Analysis On Noisy Knowledge Alleviation. Firstly, we need
to clarify the effects of noisy rules on WSAD. Since rules and data
are matched one-to-one, when noisy rules emerge, it directly leads
to detection errors. We would naturally assume that introducing
noisy rule information into data embeddings can also impact the
performance of the WSAD model. However, benefiting from the
OT technique, which takes a global perspective to align rules and
data, our proposed KDAlign framework would not be obviously
influenced by noisy rules. This is because introducing too much
noisy rule information can lead to excessive transport distances
between the data and other relevant rules, resulting in a suboptimal
transport plan. Therefore, to provide the optimal transport plan,
the incorporation of noisy rule knowledge is constrained by other
correct rules, thereby alleviating the impact of noisy knowledge.

3.4 Model Training and Inference
Model Training. In addition to deep learning encoders for em-

bedding data, we also employ a multi-layer perceptron (MLP) 𝜙𝑂 (·)
to output anomaly scores or classification results based on data
embeddings. During the training process, to effectively leverage
alignment results, we introduce the OT distance between knowl-
edge and data as a loss term L𝑂𝑇 added to the prediction loss
function L𝑃 computed by output and sample labels, rather than
as a regularization term. This is mainly because the OT distance
calculated by the Sinkhorn-Knopp algorithm is differentiable. Con-
cretely, this addition introduces an auxiliary objective that allows
both the deep learning encoder and MLP to simultaneously update
parameters based on L𝑃 and L𝑂𝑇 , effectively incorporating knowl-
edge information into data embeddings. The joint loss function
L𝐾𝐷𝐴𝑙𝑖𝑔𝑛 is shown by Equation 5
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L𝐾𝐷𝐴𝑙𝑖𝑔𝑛 = L𝑃 + _ · L𝑂𝑇 , (5)

where L𝑃 is the prediction loss, and L𝑂𝑇 is computed by ⟨C, S⟩,
and _ is the trade-off factor of L𝑂𝑇 . From another perspective, the
OT loss offers a targeted optimization direction, thereby effectively
incorporating knowledge information and enhancing the model
performance. In addition, the prediction loss could also be alternated
by other losses for AD (e.g., deviation loss [43] and the specially
designed deviation loss [65].

Model Inference. The trained deep learning encoder 𝜙𝑋 and
MLP 𝜙𝑂 comprise the WSADmodelM, which is used for inference
on test dataset by Equation 6

M(XT) = 𝜙𝑂 (𝜙𝑋 (𝑋𝑇 )) . (6)

where 𝜙𝑋 is the trained deep learning encoder, 𝜙𝑂 is the trained
MLP, M is the trained WSAD model, and 𝑋𝑇 is the test dataset.

4 EXPERIMENTS
In this section, we study the experimental results of our proposed
method and baselines to answer three research questions:
• RQ1.How effective is the proposed KDAlign framework that in-

corporates knowledge compared with representative baselines
in WSAD?

• RQ2. How important is the Knowledge-data Alignment in
KDAlign?

• RQ3. How does noisy knowledge impact the KDAlign?

4.1 Experimental Setup
Datasets. We conduct experiments on five real-world datasets

[23, 26, 53]. The YelpChi dataset[47] is used for finding anomalous
reviews which unjustly promote or demote certain products or
businesses on Yelp.com. The Amazon dataset[38] seeks to identify
the anomalous users paid to write fake product reviews under the
Musical Instrument category on Amazon.com. The Cardiotocog-
raphy dataset[2] targets to detect the pathologic fetuses according
to fetal cardiotocographies. The Satellite dataset [52] is collected
for distinguishing anomalous satellite images according to multi-
spectral values of pixels in 3x3 neighbourhoods. The SpamBase
dataset[24] is leveraged to decide spam e-mails on e-mail systems.
The descriptions of the five datasets are shown in Table 1.

Metrics. We choose two widely used metrics to evaluate the
performance of all the methods[17, 23, 53], namely AUPRC (Area
Under the Precision-Recall Curve), and Rec@K (Recall at k).
AUPRC is the area beneath the Precision-Recall curve at different
thresholds. AUPRC can be calculated by the weighted mean of
precisions at each threshold, where the increase in recall from the
previous threshold serves as the weight. Rec@K is determined
by calculating the recall of the true anomalies among the top-k
predictions that the model ranks with the highest confidence. We
set the value of k as the number of actual outliers in the test dataset.
It is noteworthy that in this specific scenario, Rec @K is equivalent
to both precision at k and the F1 score at k (F1@K).

Table 1: Data description of five datasets used in our exper-
iments. Rule-Detect denotes the number of samples that
match rules. Rate is computed by #Rule-Detect/#Label.

Name Size #Feature #Rule #Label #Rule-Detect Rate(%)

Amazon 11944 25 20 821 431 52.0
Carditocography 2114 21 14 466 281 60.0

Satellite 6435 36 23 2036 1015 50.0
SpamBase 4207 57 21 1679 968 58.0
YelpChi 45954 32 88 6678 1475 22.0

Baselines. We compare the proposed method with the following
baselines and give brief descriptions. The first three are typical AD
methods. The rest of them are representative of WSAD methods.
• k-Nearest Neighbors (KNN) [9]. A classification method based

on the k nearest neighbors in the training set.
• Support Vector Machine (SVM) [8]. A classification method

based on maximum margin.
• Decision Tree (DT) [5]. A classification method based on tree

structure, and every decision path define an if/else statement.
• DeepSAD [49]. A deep semi-supervised one-class method that

enhances the unsupervised DeepSVDD.
• REPEN [40]. A neural network based model that utilized trans-

formed low-dimensional representation for random distance
based detectors.

• DevNet [43]. A neural network based model trained by deviation
loss.

• PReNet [42]. A neural network based model that defines a two-
stream ordinal regression to learn the relation of instance pairs.

• FeaWAD [65]. A neural network based model that incorporates
the network architecture of DAGMM [66] with the deviation loss
of DevNet.

• ResNet [22]. ResNet-like architecture turns out to be a strong
baseline [26].

Parameter And Implementation Details. Firstly, acquiring
knowledge is essential. It is worth noticing that the five datasets do
not provide rules, and due to industrial security and privacy issues,
obtaining well-defined rules directly is challenging. Therefore, we
need to simulate the rules of these datasets to acquire knowledge.
In our experiments, we train several decision tree models for each
dataset using additional labels, and then extract the decision paths
from the decision treemodels as our if/else rules. InWSAD, anomaly
samples are unbalanced and important, so we focus on the decision
paths used for anomaly samples. A more detailed description of
knowledge acquisition can be referred to the appendix. Secondly,
we divide each dataset into a training set, a validation set, and a
test set according to the scale of 7:1:2. To ensure that the rules
really provide extra information (e.g., unseen anomaly scenarios) to
supplement limited labeled samples, we delete the anomaly samples
that match rules from the training set. Besides, for each training
set, we only retain 10 labeled anomaly samples, treating the rest
of the anomalies and all normal samples as unlabeled data, with
the default label being normal samples. Besides, we also consider
another three training settings with 1, 3, and 5 labeled anomaly
samples.
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Table 2: Performance comparison between representative baselines and KDAlign w.r.t. AUPRC and F1@K. The best results are
in bold.

Model Amazon Cardio Satellite SpamBase YelpChi

PRC F1@K PRC F1@K PRC F1@K PRC F1@K PRC F1@K

KNN 0.074 0.071 0.370 0.333 0.326 0.359 0.419 0.406 0.145 0.151
SVM 0.127 0.013 0.654 0.570 0.312 0.296 0.357 0.283 0.130 0.114
DT 0.078 0.065 0.261 0.226 0.320 0.357 0.455 0.431 0.145 0.149

DeepSAD 0.137 0.206 0.253 0.312 0.604 0.509 0.762 0.686 0.187 0.215
KDAlign-DeepSAD 0.201 0.252 0.420 0.462 0.617 0.535 0.731 0.637 0.207 0.248

REPEN 0.116 0.039 0.452 0.473 0.726 0.648 0.605 0.589 0.245 0.283
KDAlign-REPEN 0.289 0.290 0.631 0.559 0.720 0.658 0.608 0.606 0.181 0.204

DevNet 0.250 0.316 0.266 0.258 0.647 0.543 0.416 0.420 0.186 0.211
KDAlign-DevNet 0.487 0.626 0.490 0.516 0.676 0.533 0.517 0.526 0.195 0.218

PReNet 0.580 0.574 0.602 0.591 0.331 0.303 0.848 0.783 0.174 0.200
KDAlign-PReNet 0.728 0.716 0.671 0.624 0.677 0.604 0.850 0.783 0.181 0.205

FeaWAD 0.779 0.768 0.622 0.591 0.322 0.418 0.749 0.620 0.184 0.220
KDAlign-FeaWAD 0.789 0.794 0.664 0.624 0.601 0.555 0.776 0.734 0.216 0.247

ResNet 0.770 0.729 0.566 0.612 0.352 0.384 0.756 0.706 0.183 0.203
KDAlign-ResNet 0.848 0.768 0.659 0.656 0.604 0.594 0.770 0.734 0.209 0.262

Our implementation of SVM, KNN, and DT is consistent with
the APIs of Sklearn [45]. We keep the default settings of SVM,
KNN, and DT given by Sklearn. For representative WSAD meth-
ods, DeepSAD, REPEN, DevNet, PReNet, and FeaWAD are con-
sistent with the Benchmark DeepOD [59], and ResNet is imple-
mented based on the design for AD from [22]. The default op-
timizer of each baseline is Adam [30]. To apply our proposed
KDAlign framework, we make slight adjustments to the repre-
sentative WSAD methods. Concretely, during the forward prop-
agation of these methods, in addition to returning the output of
the final layer, they also return the sample hidden representations
from the layer before the last one. All the models are tuned to the
best performance on the validation set. Our codes are released at
https://github.com/KDAlignForWWW2024/KDAlign.

4.2 Performance Comparison (RQ1)
Table 2 shows themodel performance on 5 datasets w.r.t AUCPR and
F1@K. Each dataset contains 10 labeled anomalies. Above all, we
verify the effectiveness of the KDAlign framework on various deep
learning-based WSAD baselines. The KDAlign based AD methods
we proposed generally outperform the corresponding baselines.

Specifically, we have the following observations:

• We find that typical anomaly detection methods, including KNN,
SVM, and DT, struggle when the number of labeled anomalies is
extremely sparse. The SVM method shows good results on the
Cardiotocography dataset, which might be coincidental.

• We observe that while representative WSAD methods demon-
strate impressive performance on certain datasets, they invari-
ably have weak performance on one or more datasets. For in-
stance, DeepSAD outperforms most baselines on the SpamBase
dataset but underperforms on the Amazon dataset. Based on the

characteristics of these five datasets, the discrepancy may be due
to the higher feature count in SpamBase and the lower feature
count in the Amazon dataset. This is because DeepSAD focuses
on anomaly feature representation learning [27]. REPEN method
outperforms all other methods on the YelpChi dataset, but falls
short on both the Amazon and Cardiotocography datasets. We
surmise that this is because REPEN is an unsupervised anomaly
feature representation learning method [27], and datasets like
Amazon and Cardiotocography neither offer as many samples
as YelpChi nor as many features as Satellite and SpamBase. The
performance of the DevNet method on the Amazon, Cardiotocog-
raphy, and SpamBase datasets is not satisfactory. This is mainly
because the labeled anomalies available for these three datasets
cover a limited range of anomaly scenarios. As the DevNet ap-
proach focuses on Anomaly Score Learning [27], the scores it
learns fail to distinguish between normal and anomalous sam-
ples.

• We find that methods like PReNet and FeaWAD, both belonging
to the anomaly score learning [27], generally outperform DevNet
and other baseline methods across all datasets. We attribute this
promising performance primarily to the design of the PReNet
and FeaWAD. PReNet method takes anomaly-anomaly, anomaly-
unlabeled, and unlabeled-unlabeled instance pairs as input, and
learns pairwise anomaly scores by discriminating these three
types of linear pairwise interactions. This is an augmentation
process of data distribution for existing labeled anomalies, which
subsequently aids in the learning of the final anomaly scores.
The autoencoder architecture of FeaWAD is capable of mapping
limited labeled samples to a latent space, thereby extending the
distribution of these sparsely labeled anomalies and improving
the learned Score distributions.
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Table 3: Performance comparison between representative baselines and KDAlign under the setting of 1, 3, or 5 labeled anomalies
w.r.t AUPRC. ‘-’ indicates that the PReNet model can not handle setting of only 1 labeled anomaly samples.

Model Amazon Cardio Satellite SpamBase YelpChi

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

KNN 0.065 0.065 0.080 0.236 0.253 0.286 0.323 0.319 0.319 0.416 0.416 0.414 0.145 0.145 0.145
SVM 0.238 0.124 0.093 0.290 0.304 0.293 0.349 0.305 0.313 0.437 0.425 0.536 0.148 0.150 0.165
DT 0.065 0.065 0.113 0.229 0.244 0.286 0.318 0.318 0.318 0.426 0.429 0.433 0.145 0.145 0.145

DevNet 0.071 0.103 0.100 0.267 0.269 0.286 0.722 0.717 0.725 0.416 0.416 0.416 0.167 0.169 0.169
KDAlign-DevNet 0.071 0.747 0.581 0.528 0.436 0.502 0.449 0.641 0.686 0.489 0.461 0.494 0.156 0.200 0.195

PReNet - 0.152 0.488 - 0.390 0.626 - 0.344 0.266 - 0.689 0.819 - 0.164 0.161
KDAlign-PReNet - 0.617 0.623 - 0.656 0.558 - 0.748 0.767 - 0.741 0.817 - 0.176 0.207

DeepSAD 0.129 0.070 0.104 0.355 0.248 0.259 0.732 0.739 0.670 0.710 0.668 0.602 0.144 0.199 0.197
KDAlign-DeepSAD 0.347 0.514 0.271 0.639 0.480 0.517 0.717 0.480 0.735 0.699 0.778 0.779 0.144 0.208 0.215

REPEN 0.116 0.116 0.116 0.452 0.452 0.452 0.726 0.703 0.703 0.605 0.605 0.605 0.245 0.244 0.245
KDAlign-REPEN 0.289 0.289 0.289 0.631 0.631 0.631 0.720 0.720 0.720 0.608 0.608 0.608 0.181 0.180 0.209

FeaWAD 0.692 0.274 0.734 0.545 0.527 0.622 0.582 0.570 0.686 0.697 0.717 0.756 0.170 0.177 0.212
KDAlign-FeaWAD 0.738 0.611 0.778 0.654 0.489 0.551 0.751 0.769 0.529 0.615 0.765 0.775 0.212 0.193 0.240

ResNet 0.785 0.629 0.777 0.590 0.663 0.700 0.328 0.359 0.353 0.625 0.601 0.637 0.183 0.175 0.175
KDAlign-ResNet 0.805 0.744 0.834 0.642 0.613 0.691 0.696 0.676 0.699 0.601 0.621 0.668 0.201 0.207 0.207

Table 4: AUPRC and F1@K results of Ablation Study. KD- represents the WSAD method incorporated knowledge without
knowledge-data alignment.

Labeled Anomalies Model Amazon Cardio Satellite SpamBase YelpChi

PRC F1@K PRC F1@K PRC F1@K PRC F1@K PRC F1@K

1 KD-ResNet 0.792 0.793 0.546 0.559 0.581 0.444 0.538 0.588 0.161 0.187
KDAlign-ResNet 0.805 0.800 0.642 0.581 0.696 0.575 0.601 0.643 0.201 0.266

3 KD-ResNet 0.643 0.651 0.629 0.612 0.560 0.422 0.595 0.565 0.156 0.188
KDAlign-ResNet 0.744 0.742 0.613 0.645 0.676 0.592 0.621 0.654 0.207 0.261

5 KD-ResNet 0.812 0.780 0.682 0.667 0.517 0.410 0.600 0.645 0.168 0.194
KDAlign-ResNet 0.834 0.806 0.691 0.645 0.699 0.577 0.668 0.694 0.207 0.263

10 KD-ResNet 0.715 0.767 0.633 0.612 0.485 0.506 0.706 0.700 0.171 0.191
KDAlign-ResNet 0.848 0.768 0.659 0.656 0.604 0.594 0.770 0.734 0.209 0.262

Average KD-ResNet 0.741 0.748 0.623 0.613 0.536 0.446 0.610 0.625 0.164 0.190
KDAlign-ResNet 0.808 0.779 0.651 0.632 0.669 0.585 0.665 0.681 0.206 0.263

• We observe that our proposed KDAlign framework consistently
enhances the performance of representative WSAD methods.
For example, the KDAlign-PReNet method exhibits a 104.53%
improvement over PReNet on the Satellite dataset, climbing from
the last rank (excluding typical AD methods) to the second rank.
In addition, DeepSAD, REPEN and DevNet, which introduced
KDAlign, also have nearly doubled improvements on the Ama-
zon and Cardiotocography data sets. Even when FeaWAD and
ResNet already demonstrate commendable results, the KDAlign
framework still manages to further boost their performance. In
some isolated cases, KDAlign fails to enhance the performance of
baseline methods. The reason may be that the unseen anomalies

learned by the original baseline methods overlap with the anom-
alies covered by knowledge, and aligning them might distort the
original data representation.

• We find that the best-performing methods on each dataset are
based on the KDAlign framework. This indicates that KDAlign
can not only improve the performance of baseline methods but
also holds the potential to provide new state-of-the-art results
in weakly supervised settings.
In addition, we also use Table 3 to present the experimental

results of KDAlign and representative baselines with respect to
AUCPR when the number of labeled anomalies is 1, 3, or 5. The
results for F1@K will be shown in the appendix.
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4.3 Ablation Study (RQ2)
We present the results of our Ablation Study in Table 4, with re-
spect to AUPRC and F1@K. Concretely, we compare the model per-
formance of KDAlign-ResNet and KD-ResNet across five datasets
under fourWSAD settings, where the KD-ResNet introduces knowl-
edge without the knowledge-data alignment and the label anom-
alies of each dataset are respectively 1,3,5 and 10. According to the
experimental results, we can clearly find that KDAlign-ResNet out-
performs KD-ResNet in almost all settings. Besides, we observe that
the standard deviation of KDAlign-ResNet across the four settings
is significantly lower than that of KD-ResNet. This suggests that
the performance of KDAlign-ResNet remains relatively consistent
as the number of labeled samples varies from 1 to 10, reflecting the
robustness of the KDAlign framework.
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Figure 3: Noisy knowledge study on KDAlign-ResNet.

4.4 Impact of Noisy Knowledge (RQ3)
We use Figure 3 to illustrate the impact of noisy knowledge on the
performance of KDAlign-ResNet. By ‘noisy knowledge’, we refer
to the incompletely correct rules that will incorrectly judge some
samples, leading to detection errors. Specifically, we investigate the
performance of KDAlign-ResNet across five datasets under four
noisy settings. The ratio of noise knowledge pertains to the ratio of
incompletely correct rules to the total rules. From our experiments,
we make the following observations: Compared to the setting with-
out noise, we find that as the ratio increases, the performance of
KDAlign-ResNet does not fluctuate significantly, except for the
Satellite dataset. The reason might be the knowledge with noise
happens to cover some unseen important anomaly scenarios, which
in turn results in a decline in model performance. It is worth noting
that compared with Table 2, even when impacted by noisy knowl-
edge, the performance of KDAlign-ResNet remains superior to that
of ResNet.

5 RELATEDWORK
5.1 Weakly Supervised Anomaly Detection
Weakly supervised anomaly detection aims to train an effective AD
model with limited labeled anomaly samples and extensive unla-
beled data. Early studies [40, 48, 49] on WSAD primarily involved
designing a feature extractor based on unsupervised AD algorithms
and then learning a supervised classifier using labeled data such as
eepSAD [49] and REPEN [40]. Recent studies [36, 42, 43, 65] focus
on designing end-to-end deep framework. For example, DevNet [43]
utilizes a prior probability and a margin hyperparameter to enforce
obvious deviations in anomaly scores between normal and abnor-
mal data. FeaWAD [65] incorporates the DAGMM [66] network

architecture with the deviation loss. PReNet [42] formulates the
scoring function as a pairwise relation learning task.

Another research line utilizes active learning or reinforcement
learning to reduce the cost of obtaining anomaly labels. For instance,
AAD [15] leverages the active learning technique, which operates
in an interactive loop for data exploration and maximizes the total
number of true anomalies presented to the expert under a query
budget. DPLAN [44] considers simultaneously exploring both lim-
ited labeled anomaly examples and scarce unlabeled anomalies to
extend the learned abnormality, leading to the joint optimization
of both objectives.

In contrast to above studies, our work introduces rule knowl-
edge to supplement the limited anomaly samples. Similar to label
annotations, such knowledge also contains human supervision, but
has been largely overlooked.

5.2 Neural-symbolic Systems
The symbolic system excels in leveraging knowledge, while the
neural system is adept at harnessing data. Both knowledge and
data play a pivotal role in decision-making processes. There is a
burgeoning interest among AI researchers to fuse the symbolic
and neural paradigms, aiming to harness the strengths of both [18,
19, 28, 51, 57]. When juxtaposing neural-symbolic systems against
purely neural or symbolic ones, three aspects come to the fore [60].
First is the Efficiency. Neural-symbolic models can expedite com-
putations, making them suitable for reasoning on vast data sets.
Second is the Generalization. These systems are not solely reliant on
extensive labeled datasets, endowing them with impressive general-
ization capabilities. By integrating expert or background knowledge,
neural-symbolic models can compensate for sparse training data,
achieving commendable performance without sacrificing generaliz-
ability. Third is the interpretability. Neural-symbolic architectures
offer transparency in their reasoning, enhancing their interpretabil-
ity [60]. Such transparency is invaluable in fields like medical image
analysis, where stakeholders require both the outcome and an un-
derstanding of the decision-making rationale [60]. In general, the
neural-symbolic system is a promising approach to effectively si-
multaneously leverage knowledge and data for decision-making
processes. However, its potential in weakly supervised anomaly
detection has yet to be explored.

6 CONCLUSION AND FUTUREWORK
In this paper, we study the problem of weakly supervised anomaly
detection and propose a novel WSAD framework named KDAlign,
which reformulates knowledge incorporation as knowledge-data
alignment, adopts OT for effectively resolving knowledge-data
alignment, and finally supplements the limited anomaly samples to
improve the performance of WSAD models. We extensively con-
duct experiments on five real-world datasets and the experimental
results demonstrate that our framework outperforms the other
competitors.

For the future, we plan to extend ourwork in following directions:
(1) Extend to graph domain [27]; (2) Introduce other OT methods,
such as [54]; (3) Improve explainability.
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A KNOWLEDGE ACQUISITION
Rule knowledge usually widely exists in industry [64]. However,
hindered by concerns for industrial safety and privacy, procur-
ing traditional rule knowledge from the industry poses challenges.
Therefore, it is necessary to find an alternate way to simulate the
industrial rule knowledge. We find the decision tree method is a
promising way [4, 46], where every decision path can be regarded
as a rule knowledge. First, the representation format of decision
paths is the same as industrial rule knowledge, often manifesting
as if/else statements. Second, decision paths are conveniently acces-
sible—for instance, we can extract decision paths from well-trained
decision trees.

Specifically, referring to Fig. 4, we assign three steps to acquire
rule knowledge based on decision tree models: Step 1: Given a
collection of𝑚 samples X = {𝑥1, ..., 𝑥𝑚} ∈ R𝑚×𝑑 and the binary
ground truth labels y = {𝑦1, ..., 𝑦𝑚} ∈ {0, 1}𝑚 , we train 𝑟 decision
trees; Step 2: For the 𝑟 trained decision trees, we extract all-right
anomaly paths (knowledge set) R = {𝑟1, ..., 𝑟𝑠 } included in them
as the rule knowledge. An all-right anomaly path means that the
labels of specific samples in X passing the decision path are all
anomalous.

Decision Trees

Input data

all-right
abnormal paths

Trained Decision Trees

… …

Rule knowledge set

Step 1
Step 2

Training Extraction

Figure 4: Knowledge Acquisition: Using decision trees to
simulate industrial rule knowledge.

B KNOWLEDGE ENCODER
Preliminaries: This is a brief introduction to d-DNNF, which is
used in Knowledge Encoder. A formula that is a conjunction of
clauses (a disjunction of literals) is in the Conjunctive Normal Form
(CNF). Let 𝑆 be the set of propositional variables. A sentence in
Negation Normal Form (NNF) is defined as a rooted directed acyclic
graph (DAG) where each leaf node is labeled with True, False,
𝑠, 𝑜𝑟¬𝑠, 𝑠 ∈ 𝑆 ; and each internal node is labeled with ∧ or ∨ and can
have discretionarily many children. Deterministic Decomposable
Negation Normal Form (d-DNNF) [12, 14] further imposes that the
representation is: (i) Deterministic: An NNF is deterministic if
the operands of ∨ in all well-formed boolean formula in NNF are
mutually inconsistent; (ii) Decomposable: An NNF is decompos-
able if the operands of ∧ in all well-formed boolean formula in the
NNF are expressed on a mutually disjoint set of variables. Opposite
to CNF and more general forms, d-DNNF has many satisfactory
tractability properties (e.g., polytime satisfiability and polytime
model counting). Because of having tractability properties, it is
appealing for complex AI applications to adopt d-DNNF [11].

In the paper, we mentioned the use of a Knowledge Encoder
module to map propositional formulae into an embedding space.
Concretely, we utilize the d-DNNF graph structure to represent

a propositional formula 𝑓𝑖 and then apply a multi-layer Graph
Convolutional Network [31] as an encoder to project the formula,
𝑓𝑖 . In the following paragraphs, we further detail the Knowledge
Encoder module. Note that the Knowledge Encoder 𝜙𝐹 (·) is
trained before KDAlign framework.

The input for training 𝜙𝐹 (·) consists of specialized d-DNNF
graphs which contribute to enhanced symbolic (knowledge) em-
beddings. These graphs are built from formulae that have been
restructured based on decision paths. To construct the specific
graphs based on these formulae, we first change the formulae in
CNF and then use c2d to compile these formulae in d-DNNF [12–
14]. For example, based on Formula ‘𝑝1 ∧ 𝑝2 ⇒ 𝑞’ in Section 3.2,
we construct a CNF expression by Formula. (7). Then, after exe-
cuting c2d, Formula. (7) can be expressed in d-DNNF shown by
Formula. (8).

¬𝑝1 ∨ ¬𝑝2 ∨ 𝑞 (7)

(¬𝑝1 ∧ 𝑝2) ∨ ¬𝑝2 ∨ 𝑞 (8)����� ��� ���
Figure 5: The d-DNNF graph structure generated based on
Formula. (8).

Then a propositional formula can be represented as a directed
or undirected graph 𝐺 = (𝑉 , 𝐸), consisting of 𝑁 nodes denoted
by 𝑣𝑖 ∈ 𝑉 and edges represented as (𝑣𝑖 ; 𝑣 𝑗 ) ∈ 𝐸. Individual nodes
are either propositions (leaf nodes) or logical operators (∧; ∨; =⇒),
where propositions are connected to their respective operators.
Fig. 5 can help understand the concrete structure. In addition to
the mentioned nodes, every graph, like Fig. 5, is further augmented
by a global node linked to all other nodes. In 𝜙𝐹 (·), the graphs are
regarded as undirected graphs.

The layer-wise propagation rule of GCN is,

𝑍 (𝑙+1) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝑍 (𝑙 )𝑊 (𝑙 ) ) (9)

where 𝑍 (𝑙+1) represent the learnt latent node embeddings at 𝑙𝑡ℎ

(note that 𝑍 (0) = 𝑋 ), �̃� = 𝐴 + 𝐼𝑁 represents the adjacency matrix
of the undirected graph𝐺 with added self-connections through the
identity matrix 𝐼𝑁 . �̃� is a diagonal degree matrix with𝐷𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 .

The weight matrices for layer-specific training are𝑊 (𝑙 ) , and 𝜎 (·)
represents the activation function. To more effectively capture the
semantics conveyed through the graphs, the𝜙𝐹 (·) function incorpo-
rates two additional adjustments: heterogeneous node embeddings
and semantic regularization, as cited in [58]. The concrete code im-
plementation is accessible at https://github.com/ZiweiXU/LENSR.
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Table 5: Performance comparison between representative baselines and KDAlign under the setting of 1, 3, or 5 labeled anomalies
w.r.t F1@K. ‘-’ indicates that the PReNet model can not handle setting of only 1 labeled anomaly samples.

Model Amazon Cardio Satellite SpamBase YelpChi

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

KNN 0.052 0.045 0.071 0.204 0.215 0.226 0.357 0.357 0.357 0.420 0.417 0.411 0.150 0.149 0.149
SVM 0.045 0.026 0.026 0.269 0.280 0.215 0.308 0.279 0.318 0.431 0.386 0.440 0.162 0.153 0.171
DT 0.052 0.052 0.097 0.194 0.194 0.226 0.355 0.357 0.355 0.426 0.426 0.420 0.150 0.150 0.150

DevNet 0.090 0.148 0.123 0.247 0.269 0.258 0.555 0.557 0.562 0.420 0.423 0.423 0.181 0.185 0.184
KDAlign-DevNet 0.071 0.747 0.581 0.528 0.436 0.502 0.449 0.641 0.686 0.489 0.461 0.494 0.156 0.200 0.195

PReNet - 0.277 0.568 - 0.419 0.581 - 0.386 0.244 - 0.669 0.754 - 0.173 0.194
KDAlign-PReNet - 0.658 0.600 - 0.634 0.591 - 0.597 0.641 - 0.703 0.749 - 0.221 0.224

DeepSAD 0.110 0.077 0.161 0.387 0.258 0.247 0.582 0.577 0.548 0.651 0.629 0.594 0.149 0.221 0.221
KDAlign-DeepSAD 0.355 0.484 0.368 0.624 0.495 0.581 0.641 0.495 0.643 0.706 0.723 0.689 0.156 0.248 0.259

REPEN 0.039 0.039 0.039 0.473 0.473 0.473 0.648 0.655 0.655 0.589 0.589 0.589 0.283 0.282 0.283
KDAlign-REPEN 0.289 0.289 0.289 0.631 0.631 0.631 0.720 0.720 0.720 0.608 0.608 0.608 0.181 0.180 0.209

FeaWAD 0.677 0.368 0.710 0.570 0.548 0.656 0.472 0.457 0.538 0.677 0.703 0.726 0.199 0.204 0.235
KDAlign-FeaWAD 0.729 0.677 0.774 0.602 0.505 0.581 0.623 0.650 0.501 0.640 0.754 0.740 0.245 0.228 0.266

ResNet 0.781 0.658 0.774 0.602 0.645 0.677 0.340 0.369 0.369 0.620 0.586 0.603 0.195 0.190 0.207
KDAlign-ResNet 0.800 0.742 0.806 0.581 0.645 0.645 0.575 0.592 0.577 0.643 0.654 0.694 0.266 0.261 0.263

Table 6: Optimal Parameter of KDAlign-FeaWAD

Dataset Name Epoch Layers Learning
Rate

Hidden
Dimension

Rule
Weight Activation

Amazon 20 2 0.001 32 0.01 ReLU
Cardiotocography 20 2 0.01 32 0.01 ReLU

Satellite 20 3 0.001 64 0.05 ReLU
SpamBase 20 3 0.001 64 0.05 ReLU
YelpChi 100 2 0.01 32 0.05 ReLU

Table 7: Optimal Parameter of KDAlign-ResNet

Dataset Name Epoch Learning
Rate Blocks Hidden

Dimension
Rule
Deight

Main
Dimension

Dropout
First

Dropout
Second

Amazon 50 0.01 3 256 0.1 192 0.2 0
Cardiotocography 50 0.01 3 128 0.01 64 0.2 0

Satellite 200 0.01 3 128 3 128 0.2 0
SpamBase 50 0.01 2 128 0.01 64 0.2 0
YelpChi 50 0.01 3 256 3 64 0.2 0

C IMPLEMENTATION DETAILS
Hardware Specifications. All our experiments were carried out on
a Linux server equipped with AMD EPYC 7763 64-Core Processor,
503GB RAM, and eight NVIDIA RTX4090 GPUs with a total of 192G
memory.

Hyperparameter Settings. Table 6 and Table 7 respectively
show our optimal hyperparameter settings of KDAlign-FeaWAD
and KDAlign-ResNet utilized in our experiments clearly, which are
trained on 10 labeled anomaly samples.
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