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Abstract

Causal Inference allows scientists and businesses
to draw causal conclusions about e.g. their drug-
development or marketing campaign. Causal En-
tropy Search Branchini et al. [2023] was intro-
duced as a way to learn both the causal graph
as well as optimise an intervention of interest at
the same time. It combines Bayesian Optimisation
with the Causal Inference Framework to identify
the right molecule or marketing tagline. Here, we
present initial work on a crucial extension of CEO,
namely the introduction of preference elicitation,
an increasingly popular technique in Bayesian Op-
timisation to elicit crucial causal knowledge from
subject matter experts. We introduce the problem
of Causal Elicitation for Bayesian Optimisation,
discuss elicitation strategies and initial work on
empirical evaluation.

1 INTRODUCTION

The Causal Bayesian Optimisation (CBO) literature had it’s
start with Aglietti et al. [2020] which evaluated the impact of
the knowledge of a causal graph on Bayesian Optimisation
(BO) tasks, demonstrating that without causal knowledge,
BO performs sub-optimally in some applications. The work
was then extended to dynamic settings, as well as settings
to learn the graph simultaneously with the intervention opti-
misation Branchini et al. [2023]. For a comparison of recent
CBO work, see Appendix 1.

2 PROBLEM SETTING

Our model is similar to the one pursued by Branchini et al.
[2023]. It is comprised of an unknown directed acyclic
graph, G, and a tuple ⟨U,V, F, p(U)⟩, where V is a set

of observed endogenous variables and F = {f1, . . . , f|V |}
is a set of unknown functions characterizing the structural
causal model such that vi = f(pai, ui), where pai denotes
the parents of Vi. We also let X ⊂ V denote the set of
treatment variables that can be set to any specific value
within D(XI). Finally, we let Y ∈ V denote the outcome
of interest to be maximized.

As is typical, we assume G is Markovian so that p(V | G) =∏
Vj∈V p(Vj | paGj , G). We also assume causal sufficiency

and perfect interventions so that

p(VI | (X = xI), G) =
∏

Vj∈VI

p(Vj | paGj ,XI = xI)

for any XI ⊆ X, where VI = V \XI . Our goal is to solve

max
XI∈P(X),xI∈D(XI)

[Y | (XI = xI), G]

3 FRAMEWORK

3.1 STATSITICAL MODEL OVER OUTCOME
OBSERVATIONS

For each XI ∈ P(X), we place a Gaussian process prior
over hI(xI) = [Y | (XI = xI), G]. Following Branchini
et al. [2023], we use the following prior mean and covari-
ance functions mI(xI) = [̂[Y | (XI = xI)]] , and

kI(xI ,x
′
I) =

k(xI ,x
′
I) +

[
V̂ [Y | (XI = xI)]

]
+ V [̂[Y | (XI = xI)]] ,

respectively, where the outer expectation and covariance
operators are over the posterior over G given the available
observational and interventional data, and the inner expec-
tation and covariance operators are computed with respect
to p̂(Y | (XI = xI), G), an approximation of the interven-
tional distribution computed via the do-calculus with only
observational data. We assume that observations are of the
form y = hI(xI) + νI , where ν ∼ N(0, s2I), where νI is
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independent across observations. For each I , the posterior
on hI(xI) given G and the outcome observations can be
computed in closed form using the standard GP regression
formulas.

3.2 STATISTICAL MODEL OVER G

We place a uniform prior over G with support G =
{g1, . . . , gK}. In our case, we have two sources of infor-
mation to estimate G: interventional (and observational)
data and expert information. We assume these two sources
are independent and specify a likelihood for each source.

For the interventional data, we use the model of Branchini
et al. [2023]. The conditional distribution of Xj given that
G = g is given by Xj = fg

j (pa
g
j ) + ϵj , where fg

j is a Gaus-
sian process and ϵj ∼ N(0, σ2

j ) is independent across obser-
vations. For the expert data, we adopt the Bernoulli model of
Ibrahim et al. [2023]. The user response ri,j for the existence
of an edge Xi → Xj (i.e, Xi ∈ paj) given that G = g is
Bernoulli with mean µI{Xi ∈ pagj}+(1−µ)I{Xi /∈ pagj}.
Since the likelihood factorizes across outcome observations
and expert information, the posterior over G given these two
data sources can be computed in closed form.

3.3 CAUSAL ELICITATION STRATEGY

We begin by introducing additional notation. Let n denote
the data collected after n interventions and Em denote the
data collected after m interactions with the expert. We de-
note the expectation given n and Em by n,m. To motivate
our causal elicitation strategy, we consider the following hy-
pothetical question. If we had to commit to an intervention
after collecting data of n interventions and m interactions
with the expert, how would we choose it? There is not a
single answer to this question, but we argue that a sensible
choice is to pick an intervention from the set

XI∈P(X),xI∈D(XI)n,m[fI(x)]

Under this premise,

max
XI∈P(X),xI∈D(XI)

n,m[fI(x) | (Xi, Xj , ri,j)]−

max
XI∈P(X),xI∈D(XI)

n,m[fI(x)]

can be interpreted as the benefit of asking the expert one
additional query (Xi, Xj) and observing the response ri,j .
Our causal elicitation strategy selects at every iteration the
query that maximizes the above quantity in expectation
given the information available so far, i.e.,

(X∗
i , X

∗
j ) ∈(Xi,Xj) n,m [

max
XI∈P(X),xI∈D(XI)

n,m[fI(x) | (Xi, Xj , ri,j)]−

max
XI∈P(X),xI∈D(XI)

n,m[fI(x)]

4 EXPERIMENTS

As a first step to our implementation, we evaluated current
implementations of learning DAGs and optimising inter-
ventions, such as Branchini et al. [2023]. Unfortunately, so
far, we were not able to replicate results found there, yet,
possibly due to a typo in their implementation. 1

Branchini et al. [2023] in their synthetic study use a example
from Aglietti et al. [2020] Figure 3, defined as

X = ϵX

Z = exp(−X) + ϵZ

Y = cos(Z)− exp(− Z

20
) + ϵY

With the typo removed, we were not able to reproduce the
expected results of CEO, possibly due to several reasons:

• Numerical instability: CEO requires a choice of an-
chor points for the acquisition function, for which we
chose the default that were used in the original paper.
We can increase those, but so does the runtime which
quickly becomes prohibitive.

• Implementation issues: It’s possible the CEO has
itself implementation issues that prevent a proper eval-
uation.

Due to the two reasons above, we decided to not base our
empirical evaluation on the CEO code, but are rewriting it
from the ground up. Our goal is then to evaluate the impact
of expert knowledge on optimisation performance. For that,
we will simulate a problem and introduce expert knowledge
ranging from fully correct knowledge to completely wrong
knowledge. With that, we will also be able to evaluate the
failure mode of our method, i.e. the impact of wrong expert
knowledge on convergence.

5 CONCLUSION

As causal expert knowledge is crucial to any causal infer-
ence ("no causes in, no causes out"), supplementing cur-
rent Causal Bayesian Optimisation methods via Preference
Elicitation is an essential challenge to overcome for better
decision making in science and business. So far, we have
stated the problem, strategies for how to include preference
elicitation and described challenges in implementation. Go-
ing ahead, we are rewriting the current CEO code and will
run evaluations on the impact of expert knowledge.

1see the ’4’ line 10 in https://shorturl.at/oqS28
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A COMPARISON TABLE

Method Struct.
learning Effect opt. Nonliner BOED Scalable Continuous Finite Data Value setting Expert

Murphy [2006], Tong and Koller [2001]

Agrawal et al. [2019]

Scherrer et al. [2022]

Gamella and Heinze-Deml [2021]

von Kügelgen et al. [2019]

Sussex et al. [2021]

Tigas et al. [2022]

Ours

Table 1: Based on Tigas et al. [2022], extended with column for expert knowledge
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