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Abstract

When reading stories, people can naturally001
identify sentences in which a new event starts,002
i.e., event boundaries, using their knowledge003
of how events typically unfold, but a compu-004
tational model to detect event boundaries is005
not yet available. We characterize and detect006
sentences with expected or surprising event007
boundaries in an annotated corpus of short008
diary-like stories, using a model that combines009
commonsense knowledge and narrative flow010
features with a RoBERTa classifier. Our re-011
sults show that, while commonsense and nar-012
rative features can help improve performance013
overall, detecting event boundaries that are014
more subjective remains challenging for our015
model. We also find that sentences marking016
surprising event boundaries are less likely to017
be causally related to the preceding sentence,018
but are more likely to express emotional re-019
actions of story characters, compared to sen-020
tences with no event boundary.021

1 Introduction022

When people read stories, they can easily detect023

the start of new events through changes in cir-024

cumstances or in narrative development, i.e., event025

boundaries (Zacks et al., 2007; Bruni et al., 2014;026

Foster and Keane, 2015; Jafarpour et al., 2019b).027

These event boundaries can be expected or surpris-028

ing. For example, in the story in Figure 1 based029

on crowdsourced annotation, “getting along with a030

dog who does not generally like new people" marks031

a surprising new event, while “their playing fetch032

together for a long time" is an expected new event.033

We aim to study whether machines can detect034

these surprising or expected event boundaries, us-035

ing commonsense knowledge and narrative flow036

features. Characterizing features that are infor-037

mative in detecting event boundaries can help de-038

termine how humans apply expectations on event039

relationships (Schank and Abelson, 1977; Kurby040

and Zacks, 2009; Radvansky et al., 2014; Ünal041

Figure 1: Example story with sentences that contain
either a surprising event boundary, no event boundary
or an expected event boundary respectively. The anno-
tations of reader perception are from the Hippocorpus
dataset (Sap et al., 2022).

et al., 2019; Zacks, 2020). Furthermore, detection 042

of sentences with event boundaries can also be use- 043

ful when generating engaging stories with a good 044

amount of surprises. (Yao et al., 2019; Rashkin 045

et al., 2020; Ghazarian et al., 2021). 046

To differentiate sentences with surprising event 047

boundaries, expected event boundaries, and no 048

event boundaries, we train a classifier using 3925 049

story sentences with human annotation of event 050

boundaries from diary-like stories about people’s 051

everyday lives (Sap et al., 2022). We extract var- 052

ious commonsense and narrative features on re- 053

lationships between sentences of a story, which 054

can predict the type of event boundaries. Com- 055

monsense features include the likelihood that ad- 056

jacent sentences are linked by commonsense rela- 057

tions from the knowledge graphs Atomic (Sap et al., 058

2019a) and Glucose (Mostafazadeh et al., 2020). 059

Narrative features include Realis (Sims et al., 2019) 060

that identifies the number of event-related words in 061

a sentence, Sequentiality (Radford et al., 2019; Sap 062

et al., 2022) based on the probability of generating 063

a sentence with varying context and SimGen (Ros- 064

set, 2020), which measures the similarity between 065

a sentence and the sentence that is most likely to 066
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be generated given the previous sentence. We then067

combine the prediction based on these features with068

the prediction from a RoBERTa classifier (Liu et al.,069

2019), to form overall predictions.070

We evaluate the performance of the classification071

model by measuring F1 of the predictions and com-072

pare various configurations of the model to a base-073

line RoBERTa model. We find that integrating nar-074

rative and commonsense features with RoBERTa075

leads to a significant improvement (+2.2% F1) over076

a simple RoBERTa classifier. There are also in-077

dividual differences on the subjective judgment078

of which sentences contain a surprising or an ex-079

pected event boundary, that is reflected in the detec-080

tion model’s performance. The performance of our081

model increases with increasing agreement across082

the human annotators. Additionally, by interpreting083

the trained parameters of our model, we find that084

the absence of causal links between sentences is a085

strong predictor of surprising event boundaries.086

To further analyze how surprising event bound-087

aries relate to deviation from commonsense un-088

derstanding, we compare the performance of the089

classification model on the related task of ROC090

Story Cloze Test (Mostafazadeh et al., 2016). This091

task concerns whether the ending sentence of a092

story follows/violates commonsense based on ear-093

lier sentences, which can be linked to whether094

sentences are expected or surprising. Our model095

performs significantly higher on the ROC Story096

Cloze Test (87.9% F1 vs 78.0% F1 on our task),097

showing that surprising event boundaries go be-098

yond merely violating commonsense and therefore099

can be seen as more challenging to detect. Together,100

our results suggests that while detecting surprising101

event boundaries remains a challenging task for102

machines, a promising direction lies in utilizing103

commonsense knowledge and narrative features to104

augment language models.105

2 Event Boundary Detection Task106

Events have been widely studied in Natural Lan-107

guage Processing. They have often been repre-108

sented in highly structured formats with word-109

specific triggers and arguments (Walker et al., 2006;110

Li et al., 2013; Chen et al., 2017; Sims et al., 2019;111

Mostafazadeh et al., 2020; Ahmad et al., 2021)112

or as Subject-Verb-Object-style (SVO) tuples ex-113

tracted from syntactic parses (Chambers and Ju-114

rafsky, 2008; Martin et al., 2018; Rashkin et al.,115

2018; Sap et al., 2019a). In narratives, events116

are represented as a continuous flow with multiple 117

boundaries marking new events (Zacks et al., 2007; 118

Graesser et al., 1981; Kurby and Zacks, 2008; Za- 119

cks, 2020); however, we lack a model to detect the 120

boundary events that mark the meaningful segmen- 121

tation of a continuous story into discrete events. 122

In this work, we study stories from a cognitive 123

angle to detect event boundaries. Such event bound- 124

aries relate to our narrative schema understanding 125

(Schank and Abelson, 1977; Chambers and Juraf- 126

sky, 2008; Ryan, 2010), commonsense knowledge 127

(Sap et al., 2019a; Mostafazadeh et al., 2020) and 128

world knowledge (Nematzadeh et al., 2018; Bisk 129

et al., 2020). Event boundaries can be surprising or 130

expected based on the knowledge of how a flow of 131

events should unfold. For example, events can be 132

surprising when they deviate from commonsense in 133

terms of what people would predict (e.g., if some- 134

one won something, they should not be sad; Sap 135

et al., 2019a). Surprising events can also be low 136

likelihood events (Foster and Keane, 2015) such as 137

seeing someone wear shorts outside in winter, or 138

due to a rapid shift in emotional valence between 139

events (Wilson and Gilbert, 2008) such as seeing 140

a protagonist being defeated. Importantly, there 141

are individual differences in how humans segment 142

narratives into events (Jafarpour et al., 2019a). 143

We tackle event boundary detection as a three- 144

way classification task that involves distinguishing 145

surprising but plausible event boundaries in story 146

sentences from expected event boundaries and no 147

event boundaries. To mirror how humans read sto- 148

ries, we predict the event boundary label for a sen- 149

tence using all of its preceding sentences in the 150

story, as well as the general story topic as context. 151

Surprising event boundaries are novel events that 152

are unexpected given their context, such as a dog 153

getting along with someone despite not typically 154

liking new people. Expected event boundaries are 155

novel events that are not surprising, such as a per- 156

son playing a new game with a dog for a long time 157

given that they like each other. In contrast, sen- 158

tences with no event boundary typically continue 159

or elaborate on the preceding event, such as a per- 160

son liking a dog given that they get along with the 161

dog (Figure 1). 162

3 Event-annotated Data 163

We use the event-annotated sentences from stories 164

in the Hippocorpus dataset to study event bound- 165

aries. This dataset contains 240 diary-like sto- 166
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Majority label #Samples (%) % majority
agreement (std)

No event 2255 (57.5) 68.1 (13.9)
Expected 650 (16.6) 58.8 (10.6)
Surprising 509 (13.0) 61.7 (11.9)
Tied 511 (13.0) 41.1 (5.7)

Total 3925 (100) 62.2 (15.2)

Table 1: Descriptive Statistics for Event-Annotated sen-
tences. Majority label refers to the most common anno-
tation of a sample from 8 independent annotators. If
there is a tie between 2 labels, it is categorized as tied.
Majority agreement is the proportion of sample annota-
tions for the majority label.

ries about everyday life experiences, which anno-167

tated at the sentence level (Sap et al., 2022). Sto-168

ries were inspected for the absence of offensive169

or person-identifying content. For the annotation,170

eight crowdworkers were shown a story sentence by171

sentence and were asked to mark whether each sen-172

tence contained a new surprising or expected event173

boundary, or no event boundary at all, based on174

their subjective judgment (Sap et al., 2022). Sum-175

marized in Table 1, based on the majoritarian vote,176

most sentences (57.5%) contain no event bound-177

aries while 16.6% and 13.0% of sentences contains178

expected and surprising event boundaries, respec-179

tively.180

Due to the inherent subjectivity of the task, ag-181

gregating labels into a majority label yields low182

agreement (e.g., 61.7% for surprising event bound-183

aries; Table 1). Therefore, at training time, we use184

the proportion of annotations for each event bound-185

ary type as the label instead of the majority vote,186

because such distributional information is a better187

reflection of the inherent disagreement among hu-188

man judgements (Pavlick and Kwiatkowski, 2019).189

At test time, we use the majority vote as a gold190

label, since measuring performance on distribution191

modelling is less intuitive to interpret, and sub-192

sequently break down performance by agreement193

level to take disagreements into account.194

4 Event Boundary Detection Model195

We first describe informative commonsense and196

narrative features that we extract for the event197

boundary detection model. Then, we describe how198

we integrate these features with a RoBERTa classi-199

fier in our model before detailing our experimental200

setup. Figure 2 depicts an overview of our model.201

4.1 Features 202

We select a collection of commonsense features 203

(Atomic and Glucose relations) and narrative flow 204

features (Realis, Sequentiality and SimGen). A 205

model is trained separately from our main model 206

for Atomic relations, Glucose relations and Re- 207

alis while models for Sequentiality and SimGen 208

are used without further training. Features of 209

story sentences are extracted as input into the main 210

model. Because language modelling alone might 211

not be sufficient to learn such features (Gordon 212

and Van Durme, 2013; Sap et al., 2019a), we pro- 213

vide the extracted features to the model instead 214

of relying on the language models to learn them 215

implicitly. 216

Atomic relations are event relations from a so- 217

cial commonsense knowledge graph containing nu- 218

merous events that can be related to one another 219

(Sap et al., 2019a). The event relations in this graph 220

consists of: 221

Emotional Reaction, 222

The Effect of an event, 223

Want to do after the event, 224

What Needs to be done before an event, 225

The Intention to do a certain event, 226

What Attributes an event expresses. 227

When an event affects the subject, the feature name 228

is preceded by an x, while if it affects others, 229

it has an o. For example, an xWant of a sen- 230

tence PersonX pays PersonY a compliment is that 231

PersonX will want to chat with PersonY, and an 232

oWant is that PersonY will compliment PersonX 233

back. We use Atomic relations because surprising 234

event boundaries can involve breaches of common- 235

sense understanding (Bosselut et al., 2019; Sap 236

et al., 2019a; Mostafazadeh et al., 2020; Gabriel 237

et al., 2021). Furthermore, some Atomic relations 238

(xReact and oReact) concern emotional affect 239

and therefore can be used to capture changes in 240

emotional valence, which can cause events to be 241

seen as surprising (Wilson and Gilbert, 2008). 242

We train an Atomic relation classifier using a 243

RoBERTa-base model (Liu et al., 2019) to classify 244

event-pairs into one of the nine possible relation- 245

ship labels as well as a None label (to introduce 246

negative samples). We achieved a validation F1 of 247

77.15%, which is high for a 10-way classification 248

task. We describe training and other experimental 249

details in the Appendix. When making inferences 250

on the event-annotated dataset, we predict the like- 251

lihood that a preceding sentence in a story will be 252
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Figure 2: (Left) Our model involves a GRU to combine features from sentence pairs with three feature encoding
modes, RoBERTa to consider story sentences and Event Boundary Detector to combine predictions made by
the two components. Sn and Fn refer to sentence n and features n respectively, while PG and PR are predictions
made by the GRU and RoBERTa. The output is a probability distribution over no event boundary, expected event
boundary and surprising event boundary, which is used to update model parameters together with the label using
the Kullback-Leibler Divergence loss function. (Right) Features (Atomic, Glucose, Realis, Sequentiality and
SimGen) can be extracted as input into the GRU in three feature encoding modes: SEQUENTIAL (shown in Model
Overview), ALLTOCURRENT and PREVIOUSONLY.

related to the current sentence via each of the nine253

relationship label. Because Atomic relations are254

directed relations (e.g., I ate some cake xEffect255

I am full is different from I am full xEffect I256

ate some cake), we also made the reverse infer-257

ence in case commonsense relations between sen-258

tences exist in the reverse direction. Together, 9259

forward atomic relation features and 9 reverse fea-260

tures (marked with’-r’) are used.261

Glucose relations are event relations from an-262

other commonsense knowledge dataset contain-263

ing relations between event-pairs in 10 dimensions264

(Mostafazadeh et al., 2020). Glucose relation fea-265

tures are used to complement Atomic relation fea-266

tures in its coverage of commonsense relations.267

Dim-1 to 5 are described below while Dim-6 to 10268

are the reverse/passive form of Dim-1 to 5 respec-269

tively.270

Dim-1: Event that causes/enables271

Dim-2: Emotion/human drive that motivates272

Dim-3: Change in location that enables273

Dim-4: State of possession that enables274

Dim-5: Other attribute that enables275

Glucose relation classifier was trained on a276

RoBERTa-base model to classify event-pairs from277

its annotated dataset into one of ten possible rela-278

tion labels as well as a None label. We used the279

specific version of Glucose events represented in280

natural language. As a result, we achieved a valida-281

tion F1 of 80.94%. Training and other experimental282

details are in the Appendix. During inference on 283

the Event-annotated dataset, we predict and use 284

as features the likelihood that the current sentence 285

will be related to a preceding sentence via each 286

relation label. 287

Realis events are words that serve as triggers (i.e., 288

head words) for structured event representations 289

(Sims et al., 2019). Realis event words denote 290

concrete events that actually happened, meaning 291

that a higher number of Realis event words sug- 292

gests greater likelihood of the sentence containing 293

a new event boundary (expected or surprising). We 294

trained a BERT-base model (Devlin et al., 2019) 295

on an annotated corpus of literary novel extracts 296

(Sims et al., 2019). We achieved a validation F1 297

of 81.85%, inspired by and on par with Sap et al. 298

(2020). Then, we use the trained model to make 299

inference on story sentences in the Event-annotated 300

dataset. Finally, we used the number of Realis 301

words in each sentence as a feature. Training and 302

other experimental details are in the Appendix. 303

Sequentiality is a measure of the difference in 304

conditional negative log-likelihood of generating 305

a sentence given the previous sentence or other- 306

wise (Sap et al., 2020, 2022). Sequentiality can be 307

a predictor for unlikely events, which can cause 308

surprise (Foster and Keane, 2015). We use GPT-2 309

(Radford et al., 2019) to measure this negative log- 310

likelihood since it is a Left-to-Right model, which 311
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matches the order in which annotators were shown312

sentences in a story. NLL of each sentence was313

obtained in two different contexts. NLL_topic314

is based on the sentence alone with only the topic315

as prior context, while NLL_topic+prev uses316

the previous sentence as additional context to317

study the link between adjacent sentences. Finally,318

Sequentiality is obtained by taking their dif-319

ference. Experimental details are in the Appendix.320

NLLtopic = −
1

|si|
log pLM (si | Topic)321

NLLtopic+prev = − 1

|si|
log pLM (si | Topic, si−1)322

SimGen is computed as the cosine similarity be-323

tween each sentence and the most likely gener-324

ated sentence given the previous sentence, under325

a large Left-to-Right language model (specifically,326

Turing-NLG; Rosset, 2020). Then, we separately327

converted the original sentence and generated sen-328

tence into sentence embeddings using a pre-trained329

MPnet-base model (Song et al., 2020). Finally, the330

generated embeddings and the original embeddings331

are compared for cosine similarity, which is used as332

a feature. Experimental details are in the Appendix.333

4.2 Model Architecture334

We propose a model to integrate feature-based pre-335

diction with language-based prediction of event336

boundaries, illustrated in Figure 2 (left). The pre-337

dictions are independently made with extracted fea-338

tures using a gated recurrent unit (GRU) and with339

language (i.e., story sentences) using RoBERTa.340

Then these predictions are combined into a final341

predicted distribution for the three types of event342

boundaries. Our model is then trained using the343

Kullback-Leibler Divergence loss.344

GRU is used to combine features relating the cur-345

rent sentence i to prior sentences in a story. It se-346

quentially considers information concerning prior347

sentences, which mimics the annotator’s procedure348

of identifying event boundaries as they read one349

sentence at the time. As seen in Figure 2 (right),350

we use three feature encoding modes to determine351

the features that are used as input into the GRU, as352

inspired by literature on event segmentation (Petti-353

john and Radvansky, 2016; Baldassano et al., 2018;354

Zacks, 2020). These three modes represents differ-355

ent ways of facilitating information flow between356

sentences, which can have distinct effects on iden-357

tifying event boundaries.358

The first mode, SEQUENTIAL, encodes features 359

from all previous sentences in the story in a re- 360

current way (1 to 2, 2 to 3 ... i − 1 to i) up until 361

the current sentence i. The second mode, ALL- 362

TOCURRENT, uses features from each of the previ- 363

ous sentences to the current sentence i (1 to i, 2 to 364

i ... i− 1 to i). The third mode, PREVIOUSONLY, 365

(i − 1 to i) only feeds into the GRU the features 366

relating to the previous sentence. For all modes, the 367

dimension of each time step input is KG, represent- 368

ing the total number of distinct features. We then 369

project the final output of the GRU, hG ∈ RKG , 370

into a 3-dimensional vector space representing the 371

unnormalized probability distribution over event 372

boundary types. 373

RoBERTa is used to make predictions based on 374

text in story sentences. We use all story sentences 375

up to sentence i inclusive. We then project the 376

hidden state of the first token, hR ∈ RKR , into a 3- 377

dimensional space representing the unnormalized 378

probability distribution over event boundary types. 379

Combining predictions We combine predic- 380

tions made by the GRU (PG) and RoBERTa (PR) 381

by concatenating their predictions and multiplying 382

it with a linear classifier of size (6, 3) to output 383

logits of size (3). The logits are then normalized 384

using Softmax to give a distribution of the three 385

types of event boundaries (P ). The weights of the 386

linear classifier are initialized by concatenating two 387

identity matrix of size 3 (I3), which serves to per- 388

form elementwise addition between the predictions 389

of the GRU and RoBERTa at early stages of the 390

training process. 391

W := [I3; I3] (1) 392

393

P := Softmax(W ([PG;PR])) (2) 394

Loss function We use the Kullback-Leibler Di- 395

vergence loss function to train the model. We use 396

it over the standard Cross Entropy loss function 397

because our training targets are in the form: propor- 398

tion of annotations for each type of event boundary 399

(e.g., 0.75, 0.125, 0.125 for no event, expected 400

and surprising respectively). Including such dis- 401

tributional information in our training targets over 402

using the majority annotation only can reflect the 403

inherent disagreement among human judgements 404

(Pavlick and Kwiatkowski, 2019), which is impor- 405

tant to capture for event boundaries given that they 406

are subjective judgements. 407
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4.3 Experimental setup408

We seek to predict the event-boundary annotation409

for each Hippocorpus story sentence, using pre-410

ceding sentences in the story as context, as shown411

in Figure 2. Additional training and experimental412

details are available in the Appendix.413

K-fold Cross-validation Because of the limited414

size of the dataset (n=3925), we split the dataset415

in k-folds (k=10), using one fold (n=392) for val-416

idation and nine other folds combined for train-417

ing. From each of the 10 models, we obtained418

the prediction for the validation set. Together, the419

validation sets for the 10 models combine to form420

predictions for the entire dataset, which we use to421

conduct significance testing in order to compare422

the performance of models.423

GRU was accessed from PyTorch, with KG set424

to 33 and a hidden dimension of 33.425

RoBERTa RoBERTa-base-uncased was used, ac-426

cessed from HuggingFace Transformers library427

(with 12-layer, 768-hidden (KR), 12-heads, 110M428

parameters, 0.1 dropout). When more than 10 prior429

sentences are available in a story, we use only the430

most recent 10 sentences due to RoBERTa input431

sequence length limitations.432

Evaluation Metrics While capturing distribu-433

tional information of subjective judgement labels434

(Pavlick and Kwiatkowski, 2019) is important for435

training, it can also be difficult to interpret for eval-436

uation. Therefore, we decided to predict for the437

most likely label during evaluation and compare it438

against the majority label for each sample. Some439

samples do not have a single majority label (e.g.,440

equal number of expected and surprising annota-441

tions) and these samples were excluded. We use442

micro-averaged F1 as the metric.443

5 Results and Discussion444

We first quantify the performance of our model in445

detecting event boundaries, using a coarse-grained446

performance measure on F1 with respect to major-447

ity vote. Then, we investigate how the performance448

varies based on annotation subjectivity. Finally, we449

inspect the model parameters to identify common-450

sense and narrative features that are most informa-451

tive in detecting event boundaries.452

Improving prediction of event boundaries As453

seen in Table 2, RoBERTa alone performs fairly454

overall no event expected surprising
F1 F1 F1 F1

Event Detector
(w RoBERTa)
- PREVIOUSONLY* 78.0 87.2 60.0 59.7
- SEQUENTIAL 77.3 86.6 57.5 60.5
- ALLTOCURRENT 76.9 86.3 57.5 59.7

RoBERTa 75.8 86.2 55.8 54.3

Event Detector
(w/o RoBERTa)
- ALLTOCURRENT 63.9 81.8 32.3 24.8
- SEQUENTIAL 63.8 82.1 34.6 19.5
- PREVIOUSONLY 63.4 81.8 31.8 21.2

Table 2: Event detection task: Performance of Event
Detector compared to baseline model. *: significant
difference from RoBERTa based on McNemar’s test (p
<0.05)

well in predicting event boundaries (F1 = 75.8%, 455

within 2.2% F1 of our best performing model), 456

but can be further supported by our commonsense 457

and narrative features to improve its performance. 458

In contrast, the commonsense and narrative fea- 459

tures alone do not perform as well.1 Overall, 460

our best performing set-up is the Event Detector 461

(PREVIOUSONLY) with F1 = 78.0%, which is sig- 462

nificantly different from RoBERTa alone based on 463

McNemar’s test (p <0.05). 2 Its overall strong 464

performance is largely contributed by its strong 465

performance in detecting no event boundaries and 466

expected event boundaries. F1 for no event bound- 467

ary is higher than for both surprising and expected 468

event boundaries, likely because there are more sen- 469

tences with no event boundaries as seen in Table 1. 470

The PREVIOUSONLY configuration performs best 471

for no event boundaries and expected event bound- 472

aries likely because determining whether the cur- 473

rent sentence continues an expected event (or not) 474

requires retaining the latest information in work- 475

ing memory (Jafarpour et al., 2019a). However, 476

the SEQUENTIAL configuration seems to perform 477

the best in predicting surprising event boundaries. 478

Compared to no/expected event boundaries, we 479

hypothesize that predicting surprising event bound- 480

aries requires taking into account how the story 481

developed prior to the previous sentence in set- 482

ting up the context for the current sentence. This 483

1We also increased learning rate to 1e-3 for better per-
formance given the absence of RoBERTa predictions in this
ablation set-up

2McNemar’s test is used to determine whether samples
that have been predicted accurately (or not) by one model
overlap with those that have predicted accurately (or not) by
another model
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Figure 3: F1 by Event Detector (PREVIOUSONLY)
against majority agreement, on all 10 folds. * means
that Pearson’s r is significant at p < 0.05 and ** at p <
0.001.

finding echoes results by Townsend (2018) that484

showed that surprising sentences take long time to485

read because it requires changing our mental model486

formed from previous sentences.487

F1 varies with majority agreement Since the488

annotations were subjective and did not always489

agree, we further examine our best model’s per-490

formance (PREVIOUSONLY) with respect to an-491

notation agreement. As shown in Figure 3, F1492

increases with majority label agreement (Pearson’s493

r = 0.953, p < 0.05). Such positive correlations494

are observed across all event boundary labels (Pear-495

son’s r = 0.869-0.994) and is especially strong for496

surprising event boundaries (Pearson’s r = 0.994,497

p < 0.001). This means that most errors are made498

on samples that have low agreement among anno-499

tators. For example to show this contrast, after500

“She and I are very close so it was great to see her501

marrying someone she loves," 7 out of 8 annotators502

indicated that “The most memorable moment was503

when I spilled champagne on my dress before the504

wedding" was surprising. On the other hand, after505

“It was a hot day in July that our community de-506

cided to paint a mural on an intersection for public507

art,” only 4 out of 8 annotators indicated that “I had508

decided to volunteer to help paint." was surprising.509

The results suggest that our model performance510

reflects the variability and agreements in humans511

annotations of event boundaries. We hypothesize512

that the event boundaries with more agreement are513

based on features that are shared across the an-514

notators, such as commonsense knowledge; there-515

fore, the model performs well in detecting those.516

Whereas, our model struggles with detecting event517

Figure 4: Feature weights towards each label in GRU
component of Event Detector (PREVIOUSONLY)

boundaries that are more subjective. 518

Predictive features By integrating a separate 519

feature-based classifier, the Event Boudary Detec- 520

tor model allows us to examine the model parame- 521

ters and determine features that are associated with 522

surprising, expected or no event boundaries. First, 523

we take the average of the GRU classifier weights 524

for each of the 10 cross-validated models. Then, 525

we plot these weights for each label in Figure 4, 526

and summarize the findings below. 527

Features that relate to commonsense relations: 528

oEffect, xEffect and Glucose Dim-6 529

(caused by) are most predictive of expected event 530

boundaries. This can indicate that events that are an 531

effect of/caused by a prior event can be expected by 532

annotators, as also noted by Graesser et al. (1981). 533

An example of an expected event boundary is “I 534

told her we could go for coffee sometime.”, as an 535

effect of “We had a good time together.” xNeed is 536

least indicative of surprising event boundaries. This 537

is likely because xNeed refers to what the subject 538

need to do before an activity, which is procedural 539

and unlikely to cause surprise. An example is “I 540

was grocery shopping a few weeks ago.” which is 541

needed before “I had purchased my items and was 542

leaving the store.” 543

Features that explain unlikely events Realis 544

is highest for surprising event boundaries, suggest- 545

ing that surprising event boundaries tend to con- 546

tain the most concrete event-words. Surprising 547

event boundaries also have the highest likelihood 548

when conditioned on the story topic (NLL_topic) 549

while expected events are highest when condi- 550

tioned based on the topic and the previous sentence 551
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(NLL_topic+prev). This suggests that surpris-552

ing events are often inline with the story topic but553

not with the previous sentence. Therefore, the low554

likelihood of transitioning between the previous555

and current sentence is a strong predictor of sur-556

prising event boundaries, in line with findings by557

Foster and Keane (2015) on how the difficulty of558

linking two adjacent events is an important factor559

in causing surprise.560

Features that explain changes in emotional561

valence Compared to sentences that contain no562

event boundaries, sentences that contain either ex-563

pected or surprising event boundaries have higher564

xReact and oReact, which are emotional re-565

sponses either by the subject or by others to an566

event. For example, this is the case for the surpris-567

ing and emotional event boundary "I remember it568

was like the 3rd or 4th game when something bad569

happened.." This suggests that event boundaries are570

more likely when a sentence is more emotionally571

charged, echoing work by Dunsmoor et al. (2018)572

on how event segmentation is particularly frequent573

when the emotion of fear is triggered.574

6 Comparison with Story Cloze Test575

To better understand how surprising event bound-576

aries relate to deviation from commonsense reason-577

ing, we compare our Event Boundary Detection578

Task to the ROC Story Cloze Test (Mostafazadeh579

et al., 2016). This Test involves identifying whether580

a candidate ending sentence follows commonsense581

(commonsense ending) or deviates from common-582

sense (nonsense ending) given the first four sen-583

tences of a short story. Deviation from common-584

sense reasoning is one factor that can cause surprise585

(Sap et al., 2019a) and therefore comparing our task586

to the ROC Story Cloze Test can allow us to poten-587

tially isolate deviations from commonsense from588

other factors that can cause surprise. The ROC589

Story Cloze Test dataset contains 3142 samples590

with 1571 commonsense endings and 1571 non-591

sense endings.3 We train a separate Event Bound-592

ary Detector model on the ROC Story Cloze Test,593

using the same experimental setup as for event594

boundary detection, except the loss function; we595

use the cross-entropy loss since only one label is596

available for each sample.4597

3We use the Winter 2018 version, which contains a dev
and a test set. As in previous work (Schwartz et al., 2017), we
train our model on the dev portion.

4Training takes 20 minutes on an Nvidia P100 GPU.

overall nonsense commonsense
F1 ending F1 ending F1

Event Detector w RoBERTa
- ALLTOCURRENT 87.9 87.8 88.0
- PREVIOUSONLY 87.6 87.3 87.8
- SEQUENTIAL 87.3 87.1 87.5

RoBERTa 87.7 87.6 87.8

Table 3: ROC Story Cloze Test

Performance of Event Detector on ROC Story 598

Cloze Test Compared to the Event Boundary De- 599

tection task, models perform significantly better on 600

the ROC Story Cloze Test (highest F1 = 78.0% vs. 601

87.9%, p < 0.001 based on a two-tailed t-test, as 602

observed in Tables 2 and 3). While the tasks are not 603

directly comparable due to the inherent subjectivity 604

of the Event Boundary Detection Task, the higher 605

performance on the ROC Story Cloze Test suggests 606

that identifying surprising, expected or no event 607

boundaries may be more challenging than iden- 608

tifying commonsense or nonsense endings. Our 609

commonsense and narrative features also do not 610

seem to significantly improve upon RoBERTa’s 611

performance in the ROC Story Cloze Test (+0.2% 612

F1). This indicates that detecting whether a story 613

ending follows commonsense can be effectively 614

approached using RoBERTa alone, making it rela- 615

tively easier to tackle. 616

7 Conclusion 617

We tackle the task of identifying event boundaries 618

in stories. We propose a model that combines pre- 619

dictions made using commonsense and narrative 620

features with a RoBERTa classifier. We found that 621

integrating commonsense and narrative features 622

can significantly improve the prediction of surpris- 623

ing event boundaries through detecting violations 624

to commonsense relations (especially relating to 625

the absence of causality), low likelihood events, 626

and changes in emotional valence. Our model is 627

capable in detecting event boundaries with high 628

annotator agreement but limited in detecting those 629

with lower agreement. Compared to identifying 630

commonsense and nonsense story endings in Story 631

Cloze Test, our task is found to be more challeng- 632

ing. Our results suggest that considering common- 633

sense knowledge and narrative features can be a 634

promising direction towards characterizing and de- 635

tecting event boundaries in stories. 636

8



References637

Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei638
Chang. 2021. Gate: Graph attention transformer en-639
coder for cross-lingual relation and event extraction.640

Christopher Baldassano, Uri Hasson, and Kenneth A.641
Norman. 2018. Representation of real-world event642
schemas during narrative perception. The Journal of643
Neuroscience, 38(45):9689–9699.644

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob645
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-646
ata, Angeliki Lazaridou, Jonathan May, Aleksandr647
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.648
Experience grounds language. In Proceedings of the649
2020 Conference on Empirical Methods in Natural650
Language Processing (EMNLP), pages 8718–8735,651
Online. Association for Computational Linguistics.652

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-653
tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.654
2019. Comet: Commonsense transformers for au-655
tomatic knowledge graph construction. In Proceed-656
ings of the 57th Annual Meeting of the Association657
for Computational Linguistics (ACL).658

Luis Emilio Bruni, Sarune Baceviciute, and Mo-659
hammed Arief. 2014. Narrative cognition in inter-660
active systems: Suspense-surprise and the p300 erp661
component. In Interactive Storytelling, pages 164–662
175, Cham. Springer International Publishing.663

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-664
vised learning of narrative event chains. In Proceed-665
ings of ACL-08: HLT, pages 789–797, Columbus,666
Ohio. Association for Computational Linguistics.667

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and668
Jun Zhao. 2017. Automatically labeled data genera-669
tion for large scale event extraction. In Proceedings670
of the 55th Annual Meeting of the Association for671
Computational Linguistics (Volume 1: Long Papers),672
pages 409–419, Vancouver, Canada. Association for673
Computational Linguistics.674

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and675
Kristina Toutanova. 2019. BERT: Pre-training of676
deep bidirectional transformers for language under-677
standing. In Proceedings of the 2019 Conference678
of the North American Chapter of the Association679
for Computational Linguistics: Human Language680
Technologies, Volume 1 (Long and Short Papers),681
pages 4171–4186, Minneapolis, Minnesota. Associ-682
ation for Computational Linguistics.683

Joseph E. Dunsmoor, Marijn C. W. Kroes, Caroline M.684
Moscatelli, Michael D. Evans, Lila Davachi, and685
Elizabeth A. Phelps. 2018. Event segmentation pro-686
tects emotional memories from competing experi-687
ences encoded close in time. Nature Human Be-688
haviour, 2(4):291–299.689

Meadhbh I. Foster and Mark T. Keane. 2015. Predict-690
ing surprise judgments from explanation graphs.691

Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, 692
Ronan Le Bras, Maxwell Forbes, and Yejin Choi. 693
2021. Paragraph-level commonsense transformers 694
with recurrent memory. Proceedings of the AAAI 695
Conference on Artificial Intelligence, 35(14):12857– 696
12865. 697

Sarik Ghazarian, Zixi Liu, Akash S M, Ralph 698
Weischedel, Aram Galstyan, and Nanyun Peng. 699
2021. Plot-guided adversarial example construction 700
for evaluating open-domain story generation. In Pro- 701
ceedings of the 2021 Conference of the North Amer- 702
ican Chapter of the Association for Computational 703
Linguistics: Human Language Technologies, pages 704
4334–4344, Online. Association for Computational 705
Linguistics. 706

Jonathan Gordon and Benjamin Van Durme. 2013. Re- 707
porting bias and knowledge acquisition. In Proceed- 708
ings of the 2013 Workshop on Automated Knowledge 709
Base Construction, AKBC ’13, page 25–30, New 710
York, NY, USA. Association for Computing Machin- 711
ery. 712

Arthur C Graesser, Scott P Robertson, and Patricia A 713
Anderson. 1981. Incorporating inferences in narra- 714
tive representations: A study of how and why. Cog- 715
nitive Psychology, 13(1):1–26. 716

Anna Jafarpour, Elizabeth A Buffalo, Robert T Knight, 717
and Anne GE Collins. 2019a. Event segmentation 718
reveals working memory forgetting rate. Available 719
at SSRN 3614120. 720

Anna Jafarpour, Sandon Griffin, Jack J Lin, and 721
Robert T Knight. 2019b. Medial orbitofrontal cor- 722
tex, dorsolateral prefrontal cortex, and hippocampus 723
differentially represent the event saliency. Journal 724
of cognitive neuroscience, 31(6):874–884. 725

CA Kurby and JM Zacks. 2009. Segmentation in the 726
perception and memory of events. Trends in cogni- 727
tive sciences. 728

Christopher A Kurby and Jeffrey M Zacks. 2008. Seg- 729
mentation in the perception and memory of events. 730
Trends in cognitive sciences, 12(2):72–79. 731

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event 732
extraction via structured prediction with global fea- 733
tures. In Proceedings of the 51st Annual Meeting of 734
the Association for Computational Linguistics (Vol- 735
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria. 736
Association for Computational Linguistics. 737

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 738
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 739
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 740
Roberta: A robustly optimized bert pretraining ap- 741
proach. 742

Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang, 743
William Hancock, Shruti Singh, Brent Harrison, and 744
Mark Riedl. 2018. Event representations for auto- 745
mated story generation with deep neural nets. Pro- 746
ceedings of the AAAI Conference on Artificial Intel- 747
ligence, 32(1). 748

9

http://arxiv.org/abs/2010.03009
http://arxiv.org/abs/2010.03009
http://arxiv.org/abs/2010.03009
https://doi.org/10.1523/jneurosci.0251-18.2018
https://doi.org/10.1523/jneurosci.0251-18.2018
https://doi.org/10.1523/jneurosci.0251-18.2018
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://aclanthology.org/P08-1090
https://aclanthology.org/P08-1090
https://aclanthology.org/P08-1090
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1038/s41562-018-0317-4
https://doi.org/10.1038/s41562-018-0317-4
https://doi.org/10.1038/s41562-018-0317-4
https://doi.org/10.1038/s41562-018-0317-4
https://doi.org/10.1038/s41562-018-0317-4
https://ojs.aaai.org/index.php/AAAI/article/view/17521
https://ojs.aaai.org/index.php/AAAI/article/view/17521
https://ojs.aaai.org/index.php/AAAI/article/view/17521
https://doi.org/10.18653/v1/2021.naacl-main.343
https://doi.org/10.18653/v1/2021.naacl-main.343
https://doi.org/10.18653/v1/2021.naacl-main.343
https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
https://doi.org/10.1145/2509558.2509563
https://pubmed.ncbi.nlm.nih.gov/18178125/
https://pubmed.ncbi.nlm.nih.gov/18178125/
https://pubmed.ncbi.nlm.nih.gov/18178125/
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://ojs.aaai.org/index.php/AAAI/article/view/11430
https://ojs.aaai.org/index.php/AAAI/article/view/11430
https://ojs.aaai.org/index.php/AAAI/article/view/11430


Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong749
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,750
Pushmeet Kohli, and James Allen. 2016. A cor-751
pus and cloze evaluation for deeper understanding of752
commonsense stories. In Proceedings of the 2016753
Conference of the North American Chapter of the754
Association for Computational Linguistics: Human755
Language Technologies, pages 839–849, San Diego,756
California. Association for Computational Linguis-757
tics.758

Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon,759
David Buchanan, Lauren Berkowitz, Or Biran, and760
Jennifer Chu-Carroll. 2020. GLUCOSE: GeneraL-761
ized and COntextualized story explanations. In762
Proceedings of the 2020 Conference on Empirical763
Methods in Natural Language Processing (EMNLP),764
pages 4569–4586, Online. Association for Computa-765
tional Linguistics.766

Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison767
Gopnik, and Tom Griffiths. 2018. Evaluating theory768
of mind in question answering. In Proceedings of769
the 2018 Conference on Empirical Methods in Nat-770
ural Language Processing, pages 2392–2400, Brus-771
sels, Belgium. Association for Computational Lin-772
guistics.773

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent774
disagreements in human textual inferences. Transac-775
tions of the Association for Computational Linguis-776
tics, 7:677–694.777

Kyle A. Pettijohn and Gabriel A. Radvansky. 2016.778
Narrative event boundaries, reading times, and ex-779
pectation. Memory & Cognition, 44(7):1064–1075.780

Alec Radford, Jeff Wu, Rewon Child, David Luan,781
Dario Amodei, and Ilya Sutskever. 2019. Language782
models are unsupervised multitask learners.783

Gabriel A. Radvansky, Andrea K. Tamplin, Joseph Ar-784
mendarez, and Alexis N. Thompson. 2014. Differ-785
ent kinds of causality in event cognition. Discourse786
Processes, 51(7):601–618.787

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and788
Jianfeng Gao. 2020. PlotMachines: Outline-789
conditioned generation with dynamic plot state790
tracking. In Proceedings of the 2020 Conference791
on Empirical Methods in Natural Language Process-792
ing (EMNLP), pages 4274–4295, Online. Associa-793
tion for Computational Linguistics.794

Hannah Rashkin, Maarten Sap, Emily Allaway,795
Noah A. Smith, and Yejin Choi. 2018. Event2mind:796
Commonsense inference on events, intents, and re-797
actions. In ACL.798

Nils Reimers and Iryna Gurevych. 2019. Sentence-799
bert: Sentence embeddings using siamese bert-800
networks. In Proceedings of the 2019 Conference on801
Empirical Methods in Natural Language Processing.802
Association for Computational Linguistics.803

Corby Rosset. 2020. Turing-nlg: A 17-billion- 804
parameter language model by microsoft. 805

Marie-Laure Ryan. 2010. Narratology and cognitive 806
science: A problematic relation. Style, 44(4):469– 807
495. 808

Maarten Sap, Eric Horvitz, Yejin Choi, Noah A Smith, 809
and James W Pennebaker. 2020. Recollection ver- 810
sus imagination: Exploring human memory and cog- 811
nition via neural language models. In ACL. 812

Maarten Sap, Anna Jafarpour, Yejin Choi, Noah A. 813
Smith, James W. Pennebaker, and Eric Horvitz. 814
2022. Computational lens on cognition: Study of 815
autobiographical versus imagined stories with large- 816
scale language models. 817

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan- 818
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin, 819
Brendan Roof, Noah A. Smith, and Yejin Choi. 820
2019a. Atomic: An atlas of machine common- 821
sense for if-then reasoning. Proceedings of the AAAI 822
Conference on Artificial Intelligence, 33(01):3027– 823
3035. 824

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 825
Le Bras, and Yejin Choi. 2019b. Social IQa: Com- 826
monsense reasoning about social interactions. In 827
Proceedings of the 2019 Conference on Empirical 828
Methods in Natural Language Processing and the 829
9th International Joint Conference on Natural Lan- 830
guage Processing (EMNLP-IJCNLP), pages 4463– 831
4473, Hong Kong, China. Association for Computa- 832
tional Linguistics. 833

R.C. Schank and R. Abelson. 1977. Scripts, Plans, 834
Goals, and Understanding. Hillsdale, NJ: Earlbaum 835
Assoc. 836

Roy Schwartz, Maarten Sap, Ioannis Konstas, Li Zilles, 837
Yejin Choi, and Noah A Smith. 2017. The effect 838
of different writing tasks on linguistic style: A case 839
study of the roc story cloze task. In CoNLL. 840

Matthew Sims, Jong Ho Park, and David Bamman. 841
2019. Literary event detection. In Proceedings of 842
the 57th Annual Meeting of the Association for Com- 843
putational Linguistics, pages 3623–3634, Florence, 844
Italy. Association for Computational Linguistics. 845

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- 846
Yan Liu. 2020. Mpnet: Masked and permuted pre- 847
training for language understanding. arXiv preprint 848
arXiv:2004.09297. 849

David J. Townsend. 2018. Stage salience and situa- 850
tional likelihood in the formation of situation models 851
during sentence comprehension. Lingua, 206:1–20. 852

Ercenur Ünal, Yue Ji, and Anna Papafragou. 2019. 853
From event representation to linguistic meaning. 854
Topics in Cognitive Science, 13(1):224–242. 855

Christopher Walker, Stephanie Strassel, Julie Medero, 856
and Kazuaki Maeda. 2006. Ace 2005 multilingual 857
training corpus. 858

10

https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/2020.emnlp-main.370
https://doi.org/10.18653/v1/2020.emnlp-main.370
https://doi.org/10.18653/v1/2020.emnlp-main.370
https://doi.org/10.18653/v1/D18-1261
https://doi.org/10.18653/v1/D18-1261
https://doi.org/10.18653/v1/D18-1261
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.3758/s13421-016-0619-6
https://doi.org/10.3758/s13421-016-0619-6
https://doi.org/10.3758/s13421-016-0619-6
https://doi.org/10.1080/0163853X.2014.903366
https://doi.org/10.1080/0163853X.2014.903366
https://doi.org/10.1080/0163853X.2014.903366
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://www.aclweb.org/anthology/P18-1043
https://www.aclweb.org/anthology/P18-1043
https://www.aclweb.org/anthology/P18-1043
https://www.aclweb.org/anthology/P18-1043
https://www.aclweb.org/anthology/P18-1043
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
http://www.jstor.org/stable/10.5325/style.44.4.469
http://www.jstor.org/stable/10.5325/style.44.4.469
http://www.jstor.org/stable/10.5325/style.44.4.469
https://www.aclweb.org/anthology/2020.acl-main.178
https://www.aclweb.org/anthology/2020.acl-main.178
https://www.aclweb.org/anthology/2020.acl-main.178
https://www.aclweb.org/anthology/2020.acl-main.178
https://www.aclweb.org/anthology/2020.acl-main.178
http://arxiv.org/abs/2201.02662
http://arxiv.org/abs/2201.02662
http://arxiv.org/abs/2201.02662
http://arxiv.org/abs/2201.02662
http://arxiv.org/abs/2201.02662
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://www.aclweb.org/anthology/K17-1004
https://www.aclweb.org/anthology/K17-1004
https://www.aclweb.org/anthology/K17-1004
https://www.aclweb.org/anthology/K17-1004
https://www.aclweb.org/anthology/K17-1004
https://doi.org/10.18653/v1/P19-1353
https://doi.org/10.1016/j.lingua.2018.01.002
https://doi.org/10.1016/j.lingua.2018.01.002
https://doi.org/10.1016/j.lingua.2018.01.002
https://doi.org/10.1016/j.lingua.2018.01.002
https://doi.org/10.1016/j.lingua.2018.01.002
https://doi.org/10.1111/tops.12475
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88


Timothy D. Wilson and Daniel T. Gilbert. 2008. Ex-859
plaining away: A model of affective adaptation. Per-860
spectives on Psychological Science, 3(5):370–386.861
PMID: 26158955.862

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin863
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-864
and-write: Towards better automatic storytelling. In865
The Thirty-Third AAAI Conference on Artificial In-866
telligence (AAAI-19).867

Jeffrey M. Zacks. 2020. Event perception and mem-868
ory. Annual Review of Psychology, 71(1):165–191.869
PMID: 31905113.870

Jeffrey M Zacks, Nicole K Speer, Khena M Swallow,871
Todd S Braver, and Jeremy R Reynolds. 2007. Event872
perception: a mind-brain perspective. Psychologi-873
cal bulletin, 133(2):273.874

11

https://doi.org/10.1111/j.1745-6924.2008.00085.x
https://doi.org/10.1111/j.1745-6924.2008.00085.x
https://doi.org/10.1111/j.1745-6924.2008.00085.x
https://doi.org/10.1146/annurev-psych-010419-051101
https://doi.org/10.1146/annurev-psych-010419-051101
https://doi.org/10.1146/annurev-psych-010419-051101


A Appendix875

A.1 Atomic relations training details876

We used the train/dev/test splits from the original877

Atomic dataset. Negative samples are created by878

matching a Atomic event node to a correspond-879

ing tail event node from another sample based880

on the relationship involved. Sepcifically, nega-881

tive sampling was performed on groups ([’xWant’,882

’oWant’, ’xNeed’, ’xIntent’],[’xReact’, ’oReact’,883

’xAttr’],[’xEffect’, ’oEffect’]) given that the tail884

event nodes in each group are more similar, creat-885

ing more discriminating negative samples, as in-886

spired by Sap et al. (2019b). One negative sample887

is introduced every nine positive samples, since888

there are nine labels. We used a learning rate of889

1e-4, batch size of 64, 8 epochs and AdamW op-890

timizer. Training took 18 hours on a Nvidia P100891

GPU.892

A.2 Glucose relations training details893

Because the Glucose dataset was not split initially,894

we randomly split the dataset into train/dev/test895

splits based on a 80/10/10 ratio. For each sample896

in Glucose, annotations share similar head event897

nodes in Dim-1 to 5 and similar tail event nodes898

in Dim-6 to 10. Therefore, our negative sampling899

strategy for Dim-1 to 5 involves randomly choosing900

a tail node from Dim-6 to 10 and vice-versa. As a901

result, one negative sample is introduced every five902

samples. During training, we used a learning rate903

of 1e-4, batch size of 64, 8 epochs and AdamW904

optimizer. Training took 15 hours on a Nvidia P100905

GPU.906

A.3 Realis training details907

We used the train/dev/test split from the Realis908

dataset. During training, we used the AdamW opti-909

mizer, a learning rate of 2e-5, 3 epochs and batch910

size of 4, as inspired by (Sap et al., 2020). Training911

took 1 hour on a Nvidia P100 GPU.912

A.4 Sequentiality experimental details913

GPT2-small was accessed from HuggingFace914

Transformers library and used without further fine-915

tuning. It has 125M parameters, a context window916

of 1024, hidden state dimension of 768, 12 heads917

and dropout of 0.1.918

A.5 SimGen experimental details919

We used the Turing-NLG model without further920

fine-tuning. The model has 17B and we used it921

with top-p sampling (top-p=0.85), temperature=1.0 922

and max sequence length of 64 tokens. MPnet- 923

base model was accessed from the Sentence-BERT 924

library (Reimers and Gurevych, 2019) and used 925

without further fine-tuning. 926

A.6 Event Boundary Detection Model 927

training details 928

AdamW optimizer was used with α = 5∗10−6, fol- 929

lowing a uniform search using F1 as the criterion at 930

intervals of {2.5, 5, 7.5, 10} ∗ 10n;−6 ≤ n ≤ −3. 931

Learning rate was linearly decayed (8 epochs) with 932

100 warm-up steps. Batch size of 16 was used. Val- 933

idation was done every 0.25 epochs during training. 934

Training each model took around 30 minutes on an 935

Nvidia P100 GPU. 936
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