
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOOLTREE: EFFICIENT LLM TOOL PLANNING VIA
DUAL-FEEDBACK MONTE CARLO TREE SEARCH AND
BIDIRECTIONAL PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents are increasingly applied to complex, multi-
step tasks that require interaction with diverse external tools across various do-
mains. However, current LLM agent tool planning methods typically rely on
greedy, reactive tool selection strategies that lack foresight and fail to account
for inter-tool dependencies. In this paper, we present ToolTree, a novel Monte
Carlo tree search-inspired planning paradigm for tool planning. ToolTree explores
possible tool usage trajectories using a dual-stage LLM evaluation and bidirec-
tional pruning mechanism that enables the agent to make informed, adaptive de-
cisions over extended tool-use sequences while pruning less promising branches
before and after the tool execution. Empirical evaluations across both open-set and
closed-set tool planning tasks on 4 benchmarks demonstrate that ToolTree consis-
tently improves performance while keeping the highest efficiency, achieving an
average gain of around 10% compared to the state-of-the-art planning paradigm.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Brown et al., 2020; Ouyang et al., 2022;
Touvron et al., 2023) have propelled the emergence of language agents capable of tackling complex
multi-step tasks across various domains, including software engineering (Yang et al., 2024), web
browsing (Zhou et al., 2023), scientific discovery (Bran et al., 2023) and multimodal understanding
(Wu et al., 2023). A critical aspect of enabling these agents to solve sophisticated problems lies in
their ability to plan and coordinate external tools (Qu et al., 2025). Effective tool planning leverages
the prior knowledge of LLMs by decomposing complex tasks, reasoning about which tools are
appropriate, and generating structured plans that assign intermediate steps to these tools. In doing
so, LLMs can integrate external functionalities into their reasoning process, thereby enhancing their
effectiveness in completing complex tasks (Schick et al., 2023; Li et al., 2024; Lu et al., 2025).

To enhance the tool planning capabilities of LLMs, existing research has primarily followed two
directions. The first is greedy-based tool planning, where the model independently selects and exe-
cutes the tool that appears most suitable at each step, without engaging in long-term rewards. (Wei
et al., 2022; Shen et al., 2023; Yao et al., 2023b; Lu et al., 2025; Liu et al., 2025). As a result,
these approaches often suffer from brittle performance, particularly when early suboptimal choices
propagate errors that compound irreversibly and compromise later steps. Besides, these methods
also tend to waste computation by following only a single trajectory with no exploration of alter-
natives. On the other hand, search-based methods attempt to address this limitation by expanding
multiple candidate branches, but they introduce new challenges when tools are involved (Yao et al.,
2023a; Zhuang et al., 2024; Zhou et al., 2024). The branching factor grows exponentially with tool
types, arguments, and evolving states, leading to high costs and unpredictable latency. Moreover,
many variants evaluate hypothetical thoughts rather than executed actions, so ranking is decoupled
from actual tool use utility, and improvements realized several steps later are rarely credited back to
earlier decisions. Together, these drawbacks highlight the need for a planning approach that is both
forward-looking and outcome-grounded, while remaining compute-efficient under fixed budgets.

Our ToolTree tackles the above two issues at the same time. ToolTree frames tool planning as a
search problem guided jointly by a fast pre-execution prior and a grounded post-execution utility,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of ToolTree with greedy search and search-based tool planning. Our ToolTree
chooses the optimal tool trajectory and answers correctly with 20.

enabling agents to allocate computation adaptively and recover from early missteps without task-
specific retraining as illustrated in Figure 1. Our design integrates pre-execution scoring into the
selection policy to predict the utility of a tool before it is invoked, while a post-execution score
assesses its actual contribution based on observed outcomes as rollout rewards, and applies comple-
mentary pre- and post-pruning to eliminate unpromising branches. This feedback loop enables the
agent to refine its strategy iteratively, incorporating foresight and hindsight into tool selection. To
evaluate the effectiveness of ToolTree in enhancing LLM agent tool planning abilities, we compare
ToolTree with greedy and search-based planning methods on four tool use benchmarks spanning
both closed-set and open-set tool scenarios, with around 10 percent improvement over baseline,
achieving SoTA performance with a 66.95 F1 score on GTA and a 69.04 pass rate on ToolBench.

Overall, our contributions can be summarized as follows:

• We present ToolTree, a novel Monte Carlo tree search-inspired planning paradigm that
frames LLM agent tool use as search guided by pre-execution priors and post-execution
rewards, enabling robust multi-step reasoning without retraining.

• ToolTree effectively integrates a dual-evaluation guided tree traversal method with bidi-
rectional pruning, which integrates pre- and post-scoring into search and eliminates weak
branches, improving accuracy per unit compute under fixed budgets.

• We evaluate ToolTree on four benchmarks of both closed-set and open-set tool planning,
demonstrating its superior effectiveness and efficiency. The improvements scale consis-
tently with the number of tool sets, model size and computing resources.

2 PRELIMINARIES

In this section, we introduce the preliminaries of the tool planning task for language agents, includ-
ing (1) the formal problem definition for tool planning; (2) tree-search enhanced tool planning; and
(3) the fundamentals of Monte Carlo Tree Search (MCTS).

Problem Definition: Tool Planning. Tool planning refers to the task of deciding not only which
external tools a language model should use, but also when and in what order to use them, in order
to accomplish a task both efficiently and accurately. Unlike simple tool selection, which focuses
on identifying the most appropriate tool at a single step, tool planning requires reasoning over en-
tire sequences of tools, with the objective of discovering an optimal or near-optimal sequence that
maximizes task success.

Formally, let (1) Tlib = {t1, t2, . . . , tm} denote a set of available tools. Each tool t ∈ Tlib is
represented by a structured tool card Ct with explanatory metadata using JSON format to provide
standardized information for further utilization, which can be found in Appendix B.5; (2) S be the
state space, where each state s ∈ S encodes the current dialogue context and any accumulated
intermediate results; (3) A denote the action space, where each action corresponds to invoking a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tool ti ∈ Tlib with an input; and (4) R : S → R be a reward function that measures how correct,
informative or efficient the current tool sequence is. Then, the tool planning task is to learn or search
for a policy π : S → A that generates a sequence of actions s∗ = {a1, a2, . . . , an}, where ai ∈ A
to maximize the expected reward: π = arg max E[R(s∗)|π, Tlib]

Tree Search-enhanced planning. Tree-search enhanced tool planning reframes the above tool
planning task as a search problem: The agent explicitly constructs and evaluates candidate sequences
of tool invocations (sequences) and uses a specific search policy to choose actions that are promising
in expectation. Specifically, a search tree is constructed with nodes corresponding to states s ∈ S
and edges corresponding to actions a ∈ A. Each root-to-node path corresponds to a partial plan
s = {a1, . . . , ak}, where k denotes the number of searched child nodes. The tree search procedure
estimates terminal rewards R(s∗) for candidate plans and returns the highest-value plan.

Monte Carlo Tree Search (MCTS). Monte Carlo Tree Search (MCTS) is a heuristic search al-
gorithm for decision-making in large and complex search spaces, most notably applied in game
playing (e.g., Go (Silver et al., 2016) and Chess (Helfenstein et al., 2024)) and planning problems
(Feng et al., 2023). Basically, the MCTS process can be decomposed into four iterative steps: (1)
selection, starting from the root, the algorithm recursively selects child nodes according to a tree
policy, such as UCT (Kocsis & Szepesvári, 2006) and PUCT (Silver et al., 2017) that balances ex-
ploration and exploitation; (2) expansion, if the selected node is not terminal, one or more child
nodes are added to the tree, representing possible future actions; (3) simulation, from the expanded
node, a policy-guided simulation is performed to approximate the outcome of completing the plan
from that state; (4) back propagation, the result of the simulation is propagated back up the tree
to update the computed rewards of the traversed nodes. By repeating this procedure many times,
MCTS refines its estimates of action values and converges toward high-quality plans.

3 PROPOSED METHOD: TOOLTREE

In this section, we demonstrate how ToolTree performs tool planning by casting multi-tool use as a
Monte Carlo Tree Search (MCTS) inspired planning paradigm over executable trajectories in Figure
2. We first outline the overall process in Section 3.1. We then demonstrate the unique design of dual
evaluation and pruning in Section 3.2.

3.1 OVERVIEW

We view tool planning as a sequential decision process where each state encodes the evolving dialog
context and intermediate results, and each action corresponds to invoking a candidate tool from the
library Tlib = {t1, . . . , tm}. The objective is to discover a trajectory that maximizes task utility
within a fixed rollout budget Rmax.

Unlike prior approaches that rely on a separate planner, ToolTree integrates tool selection, execu-
tion, evaluation and pruning directly into the MCTS loop. At every step, the search is guided by two
complementary signals: a lightweight pre-evaluation that anticipates the usefulness of an action be-
fore execution, and a post-evaluation that scores the grounded output afterward. This dual feedback
supports both exploration and pruning, enabling deliberate, training-free planning that generalizes
across diverse tool libraries. The search terminates when the budget is met or improvements plateau,
and the highest-valued trajectory is returned to generate the final answer. This look-ahead/look-back
loop allows the agent to recover from early errors, avoid dead-end tool combinations, and allocate
its limited call budget to the most promising trajectories. The overall process is depicted in Figure 2
with Selection, Pre-evaluation, Expansion, Execution, Post-Evaluation, and Backward Propagation.

Selection. Given the current search state s, the search descends the tree by repeatedly selecting the
child action that maximizes a prior-augmented UCT score:

UCT(s, a) = Q(s, a) + λ rpre(s, a)

√
lnN(s)

N(s, a)
. (1)

where Q(s, a) drives exploitation as it accumulates the post evaluation rewards obtained so far.
N(s) and N(s, a) are visit counts and rpre(s, a)∈ [0, 1] is a fast, predictive signal available before

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Architecture overview of ToolTree. An input query is processed sequentially via iterative
dual evaluation-guided Monte Carlo Tree Search, including selection, pre-evaluation, expansion,
execution, post-evaluation and backward-propagation. The Answer Predictor then incorporates the
tool trajectories with the highest reward found by the MCTS to produce the final prediction.

executing action a. Only admissible actions a ∈ A(s) where tools with input schema compatible
with the current context are considered; ties are broken by larger N(s) followed by a small random
jitter to preserve exploration diversity. The use of rpre(s, a) biases early rollouts toward promising
branches while retaining the exploitation pressure from Q(s, a).

Expansion. Upon reaching a leaf state st = ⟨Ct, A1:t⟩, we enumerate the remaining admissible
actions Arem(st) = A(st) \ {a1, . . . , at}. For each candidate a ∈ Arem(st), we obtain its predictive
score rpre(st, a) and instantiate a new child node (st, a) only if rpre(st, a) ≥ τpre (pre-pruning,
consistent with the prior term in Eq. 1), and the tool’s I/O schemas are type-compatible with Ct.
When tools accept structured arguments, we generate a minimal, schema-valid argument draft and
cache it with the node to avoid regenerating at selection time.

Execution. For a selected child (st, a), we invoke the corresponding tool/API with its arguments,
yielding an output ot+1. The context is updated to Ct+1 by appending (a, ot+1) in a structured form.
To reduce waste, we employ deterministic caching keyed by (a, args): if an identical call has already
been made within the current rollout, its ot+1 is reused. Persistent failures attach an error token to
ot+1 so downstream compatibility checks and scoring can handle the outcome explicitly.

Backward Propagation. After execution, the resulting post-execution score rpost(st, a) ∈ [0, 1] is
propagated from the new child back to the root. For every edge (s, a) on this path, we update the
counts and value estimate N(s, a) ← N(s, a) + 1, Q(s, a) ← Q(s, a) +

rpost(st,a)−Q(s,a)
N(s,a) .

This running average refines the exploitation term in Eq. 1, allowing subsequent selections to reflect
observed utility. We also maintain N(s)←

∑
a′ N(s, a′) for use in the exploration bonus.

3.2 DUAL EVALUATION AND PRUNING

Classical MCTS balances exploration and exploitation but is agnostic to (i) the plausibility of a tool
call before execution and (ii) the grounded utility of its realized output afterwards. ToolTree injects
two lightweight, training-free signals into the loop: a pre-evaluation rpre(s, a)∈ [0, 1] that forecasts
usefulness prior to execution, and a post-evaluation rpost(s, a)∈ [0, 1] that scores the produced out-
put. These signals serve complementary roles—foresight and hindsight—and enable bidirectional
pruning that keeps the tree compact without sacrificing solution quality.

Pre-Evaluation. For a newly encountered pair (s, a), we query a LLM judge to score rpre(s, a)
based on the current context C, the tool card (I/O schema, domain tags, examples), and a schema-
valid argument draft. This score enters selection via the prior-augmented exploration bonus in Eq. 1
and also gates expansion:

A+(st) = { a ∈ A(st) : rpre(st, a) ≥ τpre }, Akeep(st) = top-K
(
A+(st) ; rpre

)
.

Only actions in Akeep(st) are expanded. Intuitively, rpre removes obviously incompatible or low-
yield branches before any tool call, reducing the branching factor while still allowing exploration

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

through the UCT term. Depth-aware annealing of λ (or of τpre) can gradually temper the influence
of the prior as empirical evidence accumulates.

Post-Evaluation After executing (st, a) and obtaining ot+1, we score grounded utility with the same
LLM judge:

rpost(st, a) = J
(
Ct, a, ot+1

)
∈ [0, 1],

where J evaluates task-consistency (e.g., correctness proxies, relevance, constraint satisfaction) and
robustness cues. This score drives exploitation by updating the running mean Q(s, a) in backward
propagation and directly supports post-pruning: edges with rpost(st, a) < τpost are marked non-
expandable to prevent further budget on unproductive continuations. Because rpost is computed on
executed actions, it yields faithful credit assignment compared to ranking hypothetical thoughts.

Bidirectional Pruning. Combining both signals yields a two-sided budget control: Pre-pruning to
discard (s, a) if rpre(s, a) < τpre (or if it falls outside the top-K),thereby curbing expansion of low-
promise children. Post-pruning while after execution, mark (st, a) non-expandable if rpost(st, a) <
τpost, trimming branches disproven by evidence. We also cache (a, args) 7→ o to avoid duplicate
calls within a rollout; failures attach a typed error token so pruning decisions remain explicit rather
than implicit timeouts. Together, these rules concentrate rollouts on branches that are both likely
(per rpre) and useful (per rpost), improving accuracy-per-second under fixed Rmax.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate ToolTree across two complementary regimes that stress different facets of LLM agent
tool use: closed-set tool planning with GTA (Wang et al., 2024) and m&m (Ma et al., 2024), where
a small, fixed tool set with typed I/O must be composed into short multi-hop chains, and open-set
tool planning with ToolBench (Qin et al., 2023) and RestBench (Song et al., 2023), where the action
space spans dozens of APIs/endpoints and API retrieval is part of the problem. These two tasks
demonstrate the effectiveness and efficiency of ToolTree.

Datasets. We use four datasets covering two tasks to test our method. For (i) closed-set tool planning
we adopt GTA (Wang et al., 2024) and m&m (Ma et al., 2024), each of them provides a fixed tool set
of size 14/33 with typed I/O and short multi-hop chains. We follow the original setup by evaluating
this task in both step-by-step mode and end-to-end modes. For (ii) open-set tool planning we use
ToolBench (Qin et al., 2023) and RestBench (Ma et al., 2024), which pair 16,464 and 143 real
APIs, respectively, with multi-tool retrieval-then-planning scenarios under a judge-based protocol.
We follow the initial setup using pass rate and win rate as the evaluation metrics. More details can
be found in Appendix B.1 and B.2.

Baselines. For (i) closed-set tool planning on GTA and m&m we compare our method against: 1)
Zero-shot, 2) ReAct (Yao et al., 2023b), 3) Chain-of-Thought (Wei et al., 2022), 4) Best–First search
(Koh et al., 2024), 5) Tree-of-Thought (Yao et al., 2023a), 6) A* Search developed in the ToolChain*
paper (Zhuang et al., 2024), and 7) Monte Carlo tree search (Zhou et al., 2024). These baselines
span the spectrum from no planning through greedy, reactive planning to search-based planning,
providing a comprehensive contrast on small, typed tool suites. For (ii) open-set tool planning on
ToolBench and RestBench, we use: 1) Zero-shot, 2) Chain-of-Thought, 3) ReAct, 4) DFSDT Qin
et al. (2023), and 5) Monte Carlo tree search, emphasizing planning-centric controllers standard for
large API spaces, while retaining simple baselines to isolate planning gains. To ensure a fair com-
parison, all planners share the same tool schemas and descriptions, the same type pre-gating pipeline
and the same caching policy for tool outputs and LLM calls. We also enforce identical compute and
rollout budgets. These shared engineering settings are applied uniformly across methods to isolate
the effect of the planning strategy itself. More details in Appendix B.3.

4.2 CLOSED-SET TOOL PLANNING ON GTA AND M&M

We compare ToolTree with the selected baselines on GTA and m&m on both step-by-step and end-
to-end mode under GPT-4o and GPT-4o-mini. For step-by-step mode, we measure Tool F1 and
Arg F1 to evaluate the tool selection and argument prediction ability. For end-to-end mode, we

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model Planner
GTA m&m

Step-by-step End-to-End AVG Step-by-step Multi-step AVG
Tool Arg Plan Exec Tool Arg Plan Exec

GPT-4o-mini

Zero-Shot 58.73 28.44 60.18 33.85 45.30 72.48 67.44 77.48 67.59 71.25
ReAct 60.13 29.43 68.26 34.80 48.16 73.55 65.10 82.16 69.42 72.56
CoT 56.10 25.58 66.47 35.63 45.95 70.13 65.27 76.12 66.96 69.62
Best–First 58.42 30.13 69.96 34.46 47.99 74.42 66.83 83.58 68.37 73.80
ToT 62.41 33.12 72.94 37.42 51.47 75.58 70.84 82.58 71.37 75.59
A* 64.47 35.26 73.86 38.16 52.94 75.16 71.85 84.74 72.59 76.59
LATS 65.88 37.26 74.28 38.24 53.91 76.84 70.16 83.38 72.94 75.83
ToolTree (ours) 67.83 39.64 76.44 39.65 55.89 77.25 71.26 85.52 73.58 76.90

GPT-4o

Zero-shot 70.16 38.52 77.14 45.28 57.78 78.52 80.17 85.17 78.47 80.58
ReAct 71.42 40.58 75.52 46.33 58.46 83.58 81.24 84.42 76.58 81.46
CoT 66.52 42.17 73.22 42.86 56.69 85.58 77.84 78.16 71.43 78.75
Best–First 72.13 44.26 77.64 47.83 60.46 84.47 82.17 85.84 78.11 82.65
ToT 72.53 43.68 78.84 46.53 60.40 86.28 83.74 85.26 80.35 83.91
A* 74.29 47.58 79.96 46.26 62.52 87.17 83.44 86.87 81.49 84.74
LATS 77.84 49.90 82.57 48.80 64.78 88.89 84.77 88.38 83.77 86.45
ToolTree (ours) 79.26 50.84 85.53 52.17 66.95 91.92 86.16 90.47 85.88 88.61

Table 1: Comparison of ToolTree with other baselines across GTA and m&m. The experiment is
carried out under both step-by-step and end-to-end mode. ”Tool” stands for tool selection F1 score;
”Arg” stands for argument prediction F1 score; ”Plan” and ”Exec” stand for planning and execution
F1 score. Ours achieves the best performance overall.

report F1 score for both planning and execution. GTA and m&m offer typed tool APIs and gold
protocols across two modes, allowing us to cleanly measure both planning and execution quality.

Results. As demonstrated in Table 1, ToolTree attains the best overall average score on both datasets
and model backends. On GTA with GPT-4o, it achieves 66.95 average score, outperforming the
vanilla MCTS baseline by more than 2.2 points. On m&m with GPT-4o, ToolTree reaches 88.61
average score of both modes, outperforming the zero-shot baseline by more than 8 points. The same
pattern holds for GPT-4o-mini with smaller but consistent margins. Meanwhile, greedy controllers
like Zero-shot, ReAct and CoT lag behind search-based methods, confirming the value of lookahead
even with small typed tool suites. Among the rest baselines, while ToT, A* and LATS improve
progressively, ToolTree remains on top as its dual pre-/post-evaluation with pruning filters implau-
sible actions before expansion and cuts unproductive branches after execution using real feedback,
concentrating budget on promising chains and yielding higher next-action and executed-plan scores.

Figure 3: Progressive efficiency analysis across step limits. (a) Performance vs. step limit; (b)
Runtime vs. step limit; (c) Efficiency vs. step limit. ToolTree achieves the highest efficiency compared
with baselines. mprovements are largest for step limits between 12 and 64.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Method RestBench–TMDB RestBench–Spotify ToolBench

Pass Win AVG Pass Win AVG Pass Win AVG

GPT-4o-mini

Zero-shot 33.28 50.00 41.64 26.44 50.00 38.22 28.85 50.00 39.42
CoT 34.42 54.70 44.56 29.82 53.10 41.46 26.29 55.47 40.88
ReAct 38.82 61.06 49.94 32.64 59.95 46.30 34.30 58.94 46.62
DFSDT 46.20 64.26 55.23 35.10 65.47 50.28 38.84 68.29 53.57
LATS 51.33 66.67 59.00 39.81 72.85 56.33 40.08 65.77 52.92
Ours 55.17 70.40 62.79 42.08 72.18 57.74 42.24 67.90 55.07

GPT-4o

Zero-shot 56.28 50.00 53.14 49.54 50.00 49.77 47.58 50.00 48.79
CoT 58.52 52.32 55.42 47.92 44.55 46.23 46.88 47.57 47.23
ReAct 62.42 66.17 64.30 53.27 60.72 57.00 52.38 63.39 57.89
DFSDT 66.57 69.08 67.82 55.48 71.63 63.55 54.86 68.59 61.73
LATS 68.26 74.44 71.35 61.25 75.80 68.53 59.25 73.85 66.55
Ours 72.40 75.59 74.50 60.87 78.84 71.36 61.27 76.81 69.04

Table 2: Open-set tool-planning results on RestBench and ToolBench using GPT-4o-mini and
GPT-4o as back-end LLMs. Higher values indicate better performance; the best score for each
dataset-model pair is highlighted in bold. ”Pass” and ”Win” refer to pass rate and win rate.

Progressive Efficiency Analysis. We sweep the step limit and record the dataset performance,
wall-clock time and efficiency, defined as the marginal gain per second, at each budget in Figure
3. On Figure (a) Performance vs step limit, all methods improve with more steps, but ToolTree
dominates at every budget, with the largest margin in the low–mid regime of 16–64 steps before all
curves begin to saturate, demonstrating the effectiveness of lookahead converting early expansions
into higher-quality actions. On Figure (b) Running time vs step limit, runtime grows near-linearly
for all methods. While ToolTree is slower than ReAct and Best-first, it is comparable to ToT and
typically below LATS. On Figure (c) Efficiency vs step limit, despite the extra time, ToolTree yields
the highest accuracy-per-second, especially from 16-32 and 32-64 steps, indicating better budget
allocation. The pattern aligns with our design: pre-evaluation pruning removes implausible children
before expansion and post-evaluation pruning trims unproductive branches after probes, together
producing the best performance–time trade-off and a practical sweet spot around 32–64 steps.

4.3 OPEN-SET TOOL PLANNING ON TOOLBENCH AND RESTBENCH

We compare ToolTree with Zero-shot, Chain-of-Thought, ReAct, DFSDT, and LATS on ToolBench
and RestBench using GPT-4o-mini and GPT-4o. Following each benchmark’s protocol, we report
Pass Rate and Win Rate under identical instructions, a fixed retrieval setup, and budget parity. These
benchmarks expose large, diverse API catalogs and require both API selection and argument com-
position over executable REST endpoints, providing a clean stress test of planner scalability in
many-API, real-world settings.

Results As demonstrated in Table 2, ToolTree attains the best score across both datasets and mod-
els. On ToolBench with GPT-4o, it reaches 69.04 AVG, about +2.5 over the strongest baseline; on
RestBench–TMDB, it achieves 74.50 AVG, about +3.1 over the next best. The advantage is largest
where branching is high and plans span multiple calls. As our method explores pre-evaluation
to filter schema- or slot-incompatible calls before expansion, and applies post-evaluation to prune
branches quickly using execution feedback, the resulting value backups favor API sequences that
are compatible over longer horizons. In contrast, DFSDT and LATS either allocate depth without
breadth-aware priors or distribute rollouts less selectively, leading to inaccurate planning and exe-
cution. More results can be found in Appendix A. Potential concerns related to metric coupling are
discussed in Appendix A.10.

Retrieval Sensitivity. To isolate the impact of the shortlist, we replace the retriever with Contriever,
RoBERTa, and BM25 and evaluate ReAct, ToT, and our planner on ToolBench, reporting the three
official instruction groups (G1/G2/G3) as in Table 3. While stronger retrieval lifts all methods, ours
remains best across G1–G3 under every retriever. Besides, we also found degradation under weaker

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

retrieval is smallest for our planner, demonstrating the effectiveness of both pre-evaluation and post
evaluation on retrieved tool lists. We further attach the result for increasing tool library from 14 to
10014 in the Appendix A.11 to demonstrate its scalability.

Retriever Method G1-inst. G2-inst. G3-inst.

Contriever
ReAct 61.0 78.0 72.5
ToT 62.8 79.6 75.2
ToolTree (ours) 64.5 81.8 78.3

RoBERTa
ReAct 60.5 76.5 73.0
ToT 63.0 80.0 76.2
ToolTree (ours) 66.0 83.0 82.8

BM25
ReAct 58.2 74.1 69.4
ToT 60.1 76.0 71.8
ToolTree (ours) 62.4 79.0 74.2

Table 3: Ablation of different retrievers on model performance under the ToolBench benchmark.

Figure 4: Efficiency comparison of ToolTree
and its pruning variants on nodes and rollouts.

Variant Accuracy ↑ Token Cost ↓
ToolTree 76.44 18.2k
– Pre-pruning 75.28 20.4k
– Pre-evaluation 71.80 21.1k
– Post-pruning 75.82 22.9k
– Post-evaluation 68.94 22.9k

– Both Pruning 74.58 24.1k
– Both Evaluation 66.70 24.3k

Table 4: Ablation of dual evaluation and bidi-
rectional pruning on accuracy and token cost.

5 ANALYSIS

Effect of dual evaluation and pruning. We ablate the effectiveness of dual evaluation and pruning
under the same step limits and prompts on GTA with GPT-4o. Table 4 shows that ToolTree attains
the highest accuracy at the lowest token cost. Removing post-evaluation causes the largest accuracy
drop by more than 7 points, indicating that shallow execution feedback is critical for steering search.
Concurrently as demonstrated in Figure 4, removing pre-pruning substantially reduces the median
number of nodes expanded to approximately 70 from 95 by directly curtailing unpromising branch
explorations for a narrower search tree.

Figure 6: Analysis of Performance with respect to
model size on Qwen and LLaMA family.

Conversely, removing post-evaluation pruning
more substantially reduces median rollouts to
approximately 33 from 47, as its accurate re-
wards provide clearer solution quality signals
for potentially earlier confident convergence.
We provide further analysis on the robustness
of using LLM judge for dual evaluation and
pruning as illustrated in Appendix A.2.

Effect of Model Size on Planning. We
study how backbone capacity interacts with our
method by sweeping two open-source model
families, LLaMA and Qwen, over increasing
sizes on GTA and ToolBench. It can be seen in
Figure 6 that performance scales monotonically
with size for both families on both datasets,
with the steepest gains from small to mid models and diminishing returns thereafter. Besides, we

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: A Sample Case of ToolTree on GTA.

found that ToolBench is more size-sensitive than GTA as larger models help more when the planner
must select among many APIs and ground longer argument strings.

Case Study. Figure 5 showcases how ToolTree progressively corrects itself on a GTA task. With the
number of rollouts grows, ToolTree finds better tool trajectories guided by both the pre-evaluation
score as the prior and the post-evaluation score as the dominant reward. The query asks, “According
to the sign, how many miles is it from London to Paris?”; the photo shows “343 km.” In its first
rollout, the agent invokes a lightweight OCR tool, passes the raw text to the LLM, and naively returns
“343 km,” earning a low post-evaluation score (0.2). By the fifth rollout, the search has inserted the
patch-zoom tool to crop the numeric region and rerun OCR, but it still reports kilometers and receives
only a medium reward (0.5). Guided by these signals, the tenth rollout adds a unit-conversion API
after OCR; the calculator multiplies 343 × 0.621 371, and the LLM outputs the correct “213.75
miles,” which the judge scores 0.9. More case studies are in Appendix A.9.

6 RELATED WORK

Tool Planning for LLM Agents. Dynamic tool planning is crucial for complex tasks that require
the use of sequential tools (Qu et al., 2025). In order to mitigate such a problem, prompt-based
methods leverage LLMs with their strong world knowledge priors (Hao et al., 2023; Gu et al.,
2024) as a planner to select tools using in-content learning techniques, such as chain-of-thought
(Wei et al., 2022) or ReAct (Yao et al., 2023b) schema (Shen et al., 2023; Paranjape et al., 2023;
Lu et al., 2025). Even though flexible, these approaches often make greedy, single-step choices
without adequate looking-ahead or backtracking, potentially leading to hallucinated or incorrect
actions (Qin et al., 2023; Liu et al., 2024). Alternatively, training-based methods fine-tune models
or add specific heads for tool invocation (Schick et al., 2023; Yang et al., 2023), incurring significant
computational and data annotation costs. ToolTree departs fundamentally from linear pipelines
by integrating the Pre-Evaluation score (rpre) directly into the UCT formula to dynamically steer
exploration, while the Post-Evaluation score (rpost) governs Backpropagation, together forming a
non-linear, self-correcting decision policy.

Augmenting LLM Agent with Tree Search. To address the limitations of reactive LLM agents in
complex tasks requiring lookahead (Gu et al., 2024), augmenting them with tree search provides a
deliberate planning layer. Various search algorithms, such as greedy search (Yao et al., 2023b), A*
Search (Zhuang et al., 2024), Beam Search (Xie et al., 2023), MCTS (Zhou et al., 2024; Hao et al.,
2023), BFS/DFS (Yao et al., 2023a), Best-first search (Koh et al., 2024) have been integrated at infer-
ence time. However, these methods often lack sufficient tool invocation diversity for broad domain
generalization. Our approach addresses this with explicit tree search for tool selection, contrasting
with LLM-internal reasoning prevalent in prior methods, and further incorporates dual environmen-
tal feedback for robust verification and plan refinement. One notable related work with ToolTree is
Toolchain* (Zhuang et al., 2024), we attach more comparisons with Toolchain* in Appendix B.3. .

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 CONCLUSION

This paper presents ToolTree, a training-free agent framework that integrates a plug-and-play
MCTS-based tool planning module to enable robust multi-tool orchestration across diverse tasks.
ToolTree explores a dual feedback mechanism from the environment to provide nuanced guidance
for MCTS, enabling both efficient search via strategic pruning and effective discovery of optimal
tool trajectory. Experiments over 4 datasets across diverse domains of both closed-set and open-set
tool planning demonstrate ToolTree consistently outperforms state-of-the-art planning paradigm by
10 percent on average success rate. We hope this method will serve as a valuable foundation for
future explorations into sophisticated tool orchestration and reasoning in more advanced AI agents.

Ethics Statement. We affirm adherence to the ICLR Code of Ethics. Our study uses only public
benchmarks (GTA, m&m, ToolBench, RestBench) without human subjects or personally identifi-
able data. API interactions are restricted to benchmark-provided virtual endpoints or public test
servers; no private user data or production systems are accessed. Potential risks include automation
bias, unintended amplification of model biases, and misuse of automated tool-calling; to mitigate
this, we (i) pin evaluator versions and judge prompts, (ii) report multiple seeds and confidence in-
tervals to avoid cherry-picking, (iii) release prompts/tool specs for external auditing, and (iv) follow
dataset and API licenses/ToS. We report compute budgets and runtime to encourage awareness of
environmental cost. There are no conflicts of interest or external sponsorship that would bias work.

Reproducibility Statement. We provide a complete specification of the problem setup and no-
tation in §Preliminaries and the full algorithm (scoring, selection, widening, pruning, backups)
with pseudocode and hyperparameters in §Method. Experimental protocols (datasets, metrics,
budgets, baselines), prompts/tool cards, retrieval settings, and evaluator configurations are detailed
in §Experiments and the Appendix. We will release an anonymized repository containing code,
prompts, tool specifications, evaluation scripts (including judge prompts/versions), seed control,
and config files.

REFERENCES

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
arXiv preprint arXiv:2309.17179, 2023.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, et al. Is your llm secretly a world model of the internet? model-
based planning for web agents. arXiv preprint arXiv:2411.06559, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507/.

Felix Helfenstein, Jannis Blüml, Johannes Czech, and Kristian Kersting. Checkmating one, by
using many: Combining mixture of experts with mcts to improve in chess. arXiv preprint
arXiv:2401.16852, 2024.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. pp. 282–293, 2006.

10

https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024.

Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu,
Haoyu Dong, Zihao Lin, and Yixin Wang. MMedAgent: Learning to use medical tools with
multi-modal agent. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2024, pp. 8745–8760, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.510. URL https://aclanthology.org/2024.findings-emnlp.
510/.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
Toolnet: Connecting large language models with massive tools via tool graph. arXiv preprint
arXiv:2403.00839, 2024.

Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei Zhang, Xuhong Zhang, Sheng Cheng, Xun
Wang, Jianwei Yin, and Tianyu Du. Tool-planner: Task planning with clusters across multiple
tools. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=dRz3cizftU.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271, 2025.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m & m’s: A bench-
mark to evaluate tool-use for m ulti-step m ulti-modal tasks. In European Conference on Com-
puter Vision, pp. 18–34. Springer, 2024.

OpenAI. Function Calling. https://platform.openai.com/docs/guides/
function-calling, 2024. Online documentation.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

11

https://aclanthology.org/2024.findings-emnlp.510/
https://aclanthology.org/2024.findings-emnlp.510/
https://openreview.net/forum?id=dRz3cizftU
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. Gta:
a benchmark for general tool agents. Advances in Neural Information Processing Systems, 37:
75749–75790, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36:71995–72007, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning, acting, and planning in language models. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pp. 62138–62160. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/zhou24r.html.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A. Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=B6pQxqUcT8.

12

https://openreview.net/forum?id=Bw82hwg5Q3
https://proceedings.mlr.press/v235/zhou24r.html
https://openreview.net/forum?id=B6pQxqUcT8


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENT RESULTS

A.1 RESULTS ON APIBENCH

We further carried out additional results on APIbench to demonstrate its applicability in tool the
invocation task as illustrated in Table 5. This confirms that our dual evaluation mechanism is not
merely a pipeline heuristic but a generalized hallucination filter. It successfully identifies and prunes
invalid tool candidates in zero-shot settings on completely unseen libraries, without the need for
domain-specific fine-tuning

Table 5: APIBench results (BM25 retriever) for GPT-4o and GPT-4o-mini with different planning
strategies. We report AST-based overall accuracy (%) on HuggingFace, TensorHub, and TorchHub,
as well as the macro-average accuracy and hallucination rate across the three subsets.

Backbone Method HuggingFace TensorHub TorchHub Avg. Acc. (%) Avg. Hallu. (%)

GPT-4o-mini

Zero-shot 68.4 59.2 44.5 57.4 22.1
ReAct 69.8 61.5 47.2 59.5 18.5
Tree-of-Thought 71.2 62.8 49.6 61.2 9.3
ToolTree (Ours) 73.5 65.4 53.1 64.0 7.4

GPT-4o

Zero-shot 76.5 69.8 62.3 69.5 7.8
ReAct 77.2 71.0 63.5 70.6 5.1
Tree-of-Thought 78.0 72.4 64.8 71.7 2.5
ToolTree (Ours) 79.2 74.1 66.5 73.3 2.1

A.2 ROBUSTNESS TO LLM-AS-JUDGE NOISE.

A potential vulnerability of ToolTree is its reliance on LLM-based judgment for pre- and post-
evaluation. To quantify this risk, we conduct a restoration analysis on ToolBench, where we start
from actual ToolTree trajectories and counterfactually correct erroneous judge decisions on a ran-
dom subset of instances. We consider three variants: (i) selectively fixing false positives (rejecting
tool calls that the judge incorrectly approved), (ii) selectively fixing false negatives (accepting tool
calls that the judge incorrectly rejected), and (iii) an oracle setting where all judge decisions are
corrected. Table 6 reports the judge error rate and task success rate for GPT-4o and GPT-4o-mini
under these configurations.

Backbone Configuration Judge error rate Task success (%, ∆)

GPT-4o

ToolTree (baseline) 25.8% 51.9% (—)
+ Fix false positives 7.4% 52.5% (+0.6)
+ Fix false negatives 18.4% 54.1% (+2.2)
Oracle (perfect judge) 0.0% 54.7% (+2.8)

GPT-4o-mini

ToolTree (baseline) 39.4% 49.5% (—)
+ Fix false positives 16.3% 50.8% (+1.3)
+ Fix false negatives 23.1% 52.4% (+2.9)
Oracle (perfect judge) 0.0% 53.6% (+4.1)

Table 6: Restoration analysis of LLM-judge errors on ToolBench. “Judge error rate” is the fraction
of incorrect pre-/post-evaluation decisions. “Task success” is the overall pass rate; ∆ denotes the
absolute difference (in percentage points) relative to the actual ToolTree baseline for each backbone.

The restoration results yield two main observations. First, ToolTree exhibits empirical tolerance
to judge noise: despite non-trivial error rates (25.8% for GPT-4o and 39.4% for GPT-4o-mini), the
performance gap to an oracle judge is modest (at most +2.8 and +4.1 points, respectively). More-
over, correcting only false positives yields limited gains, while correcting false negatives accounts
for most of the improvement, indicating that overly conservative judgments are more harmful than
permissive ones. Second, the search does not collapse under noisy judgments because the LLM
signals enter the planner as soft guidance rather than ground truth: rpre and rpost are bounded priors
inside the MCTS update, and their influence is aggregated over many rollouts. ToolTree repeatedly

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Feature Ours General LLM Agent Framework Tool Augmented LLM System LLM Agent Tree Search

GPT-Functions OctoTools HuggingGPT ToolChain* ToolPlanner ReAct Reflexion LATS
(OpenAI, 2024) (Lu et al., 2025) (Shen et al., 2023) (Zhuang et al., 2024) (Liu et al., 2025) (Yao et al., 2023b) (Shinn et al., 2023) (Zhou et al., 2024)

Tool Calling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Planning ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Deliberate Tool Selection ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓
Tool Verification ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
Tool Refinement ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
Tool Pruning ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 7: A comparison of ToolTree with notable LLM agent frameworks, tool-augmented LLM
systems and LLM agent tree search. Our method shows significant advantages in tool integration.

Domain Dataset GPT-4o-mini GPT-4o
Few-Shot HuggingGPT OctoTools ToolTree (Ours) Few-Shot HuggingGPT OctoTools ToolTree (Ours)

General Visual
VQAv2 68.82 60.17 69.28 74.47 73.22 67.77 74.18 76.43
GQA 63.80 65.13 66.14 71.54 66.84 60.33 68.58 74.44
SQA 76.50 70.82 78.29 84.28 82.15 78.45 84.13 87.33

Medical
MedQA 79.14 84.33 86.18 91.13 83.20 86.73 92.17 93.88
VQA-Rad 48.10 55.14 60.10 63.27 54.47 58.88 66.42 74.12
PathVQA 24.90 40.72 43.13 47.12 26.20 37.82 46.17 50.86

External Knowledge
OK-VQA 48.46 44.19 50.17 55.38 53.62 50.12 53.42 59.27
A-OKVQA 60.28 55.81 62.15 70.54 65.91 60.33 68.33 73.48
WebQ 50.20 56.24 61.12 64.28 56.41 58.18 63.44 67.94

Math
MATH 53.26 45.14 58.43 69.42 61.45 53.51 68.57 78.19
Game-24 26.50 22.66 34.18 43.33 33.15 25.43 40.18 47.85
MathVista 52.53 55.62 57.97 63.14 59.10 58.44 61.70 65.58

Text / Doc.
TextVQA 72.42 68.24 74.69 82.26 76.28 70.14 77.17 85.43
Doc-VQA 83.28 83.10 84.23 89.43 87.11 82.13 89.39 92.33
HotpotQA 37.29 46.48 48.11 54.15 43.77 51.82 53.14 56.33
Average 56.37 56.92 62.94 68.65 61.53 60.01 67.80 72.70

Table 8: Comparison across 15 datasets in five domains. ToolTree consistently outperforms standard
few-shot prompting, HuggingGPT, and OctoTools on both GPT-4o-mini and GPT-4o, achieving
highest overall score.

revisits and reevaluates actions, so isolated misjudgments are statistically smoothed out instead of
being irrevocably baked into a single greedy trajectory.

A.3 RESULTS ON AGENT FRAMEWORKS

We evaluate ToolTree against three distinct multi-tool orchestration baselines: Few-Shot prompting,
HuggingGPT, and OctoTools with two backbone models, GPT-4o-mini and GPT-4o. As covered in
Table 8, our evaluation spans 15 datasets in five diverse domains, including general visual, medical,
external knowledge, math, and text/document.

Our framework consistently achieves superior performance across five domains. Under GPT-4o-
mini, it attains an average of 68.65%, outperforming Few-Shot and HuggingGPT by over 11.7 points
and OctoTools by 5.71 points on average. A similar trend is observed with the more capable GPT-
4o backbone, where ToolTree outperforms Few-Shot and HuggingGPT by more than 11.1 points
and OctoTools by 4.9 points on average. Notably, ToolTree demonstrates substantial gains on tradi-
tionally challenging, domain-specific datasets such as PathVQA and Game-of-24, with 22.22% and
16.83% performance gain compared with few-shot baselines under GPT-4o-mini. These significant
improvements underscore the superiority of our framework that integrates a domain specialized tool
library and MCTS-based tool selector.

A.4 PLUG-AND-PLAY MODULE COMPARISON

We evaluated our plug-and-play module ToolTree-Module on one representative dataset from each
of the five domains under two off-the-shelf LLM-agent frameworks, LangChain and MetaGPT. For
each framework, we start from the vanilla agent with no extra tool use module and then insert ex-
actly one of four modules—Chain-of-Thought Self-Consistency (COT-SC), ReAct, Tree-of-Thought
(ToT), or our proposed ToolTree-Module—while holding all other settings like prompt format, tool
APIs, number of iterations/trajectories, and random seeds identical.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Configuration VQA-Rad OK-VQA MathVista SQA HotpotQA AVG
LangChain 62.18 49.18 54.24 76.59 39.82 56.40
w/o COT-SC 65.14 54.37 56.88 82.17 44.90 60.69
w/o ReAct 66.28 52.33 59.25 80.95 45.18 60.80
w/o ToT 63.04 48.12 65.33 78.33 52.28 61.42
w/o ToolTree 67.72 54.27 65.74 81.33 51.94 64.20
MetaGPT 64.13 53.84 54.88 78.16 37.72 57.75
w/o COT-SC 68.74 54.88 60.30 79.44 46.90 62.05
w/o ReAct 66.32 55.11 58.94 80.54 49.56 62.09
w/o ToT 65.42 50.52 60.14 80.47 56.21 62.55
w/o ToolTree 69.24 55.83 62.28 82.57 54.77 64.94

Table 9: Comparison of ToolTree as a plug-and-play module with ReAct, COT-SC and ToT modules.
ToolTree achieves highest score on average.

As Table 9 shows, our ToolTree-Module consistently achieves the highest overall average accuracy
and outperforms all baselines on four out of five benchmarks across both frameworks, outperform-
ing COT-SC, ReAct, and ToT by 3–8 points on each dataset and 7 points on average against the
unaugmented agent. The only exception is HotpotQA, where tree-of-thought’s structured reasoning
over LLM’s hidden state excels at systematically decomposing the multi-hop problem and exploring
diverse evidence-linking pathways crucial for this dataset. Nevertheless, this internal state search
nature also makes it far worse than our module in domain-specialized tasks that require external
tools such as vision, medical and knowledge, where our module’s versatile integration and adaptive
orchestration of these tools yields significantly better performance.

A.5 PERFORMANCE COMPARISON FOR EACH DOMAIN

Figure 7: Breakdown comparison for each of the domains.

Figure 7 presents a detailed breakdown comparison of ToolTree’s average performance across five
specialized domains under two backbone models. ToolTree consistently achieves the highest per-
formance across all domains, particularly excelling in the Math and External Knowledge domains.
For example, in the Math domain under GPT-4o-mini, ToolTree reaches 63.4%, significantly outper-
forming Few-Shot by 19.3%, HuggingGPT by 22.2%, and OctoTools by 11.2%. Similarly notable
gains are observed under GPT-4o.

In the Medical domain, ToolTree surpasses HuggingGPT by 12.0% and OctoTools by 5.0% us-
ing GPT-4o-mini, demonstrating its strength in tasks requiring specialized external knowledge and
precise tool interactions. In the General Visual and Text/Document domains, ToolTree continues
to show consistent improvements of roughly 5 – 7% over baselines for both backbone models.
These results underscore the robustness of ToolTree’s MCTS-based tool selection and dual evalua-
tion across diverse reasoning challenges.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Breakdown comparison with the few-shot baseline setup under GPT-4o-mini.

A.6 PERFORMANCE COMPARISON WITH BASELINE

We measured ToolTree’s per-dataset improvement over a GPT-4o few-shot baseline by subtracting
the baseline accuracy from ToolTree’s accuracy on each of the fifteen tasks and plotting the results
in Figure 8. The chart shows gains on every benchmark: PathVQA sits at the top with an uplift
exceeding twenty points, followed by the Game of 24 and HotpotQA climbing into the mid-teens,
and VQA-Rad and A-OKVQA rising by around 15% and 10% respectively. Even general visual
tasks like VQAv2 and TextVQA register solid improvements of roughly six to eight points. This
pattern reflects ToolTree’s strength in orchestrating multi-step, domain-specialized tool chains that
is essential for medical and mathematical puzzles, while its verification and pruning mechanisms
consistently enhance performance on more conventional downstream tasks.

A.7 COMPARISON WITH DOMAIN-SPECIFIC FRAMEWORK

We conducted experiments comparing ToolTree against several domain-specialized agent frame-
works, including MMedAgent, LATS, and VIPERGPT, across five representative benchmarks from
medical (VQA-Rad), external knowledge (OK-VQA), mathematics (MathVista), science reasoning
(ScienceQA), and multi-hop reasoning (HotpotQA) domains. Each domain-specialized baseline is
designed specifically for optimal performance in its own niche area.

As illustrated in Table 10, our ToolTree consistently achieves the highest average accuracy of
68.53%. Specifically, ToolTree significantly outperforms MMedAgent in external knowledge, math-
ematics, science reasoning, and multi-hop reasoning tasks. Compared to LATS, which excels specif-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model VQA-Rad OK-VQA MathVista ScienceQA HotpotQA Average

MMedAgent 84.32 31.25 21.15 57.24 38.20 46.43

LATS 20.48 27.26 59.33 58.17 77.54 48.56

VIPERGPT 58.24 52.44 64.28 88.64 48.22 62.36

ToolTree (Ours) 74.12 59.27 65.58 87.33 56.33 68.53

Table 10: Performance (%) comparison between domain-specialized agent baselines and our
ToolTree framework across five diverse benchmarks. ToolTree generalizes well on different domain-
specific tasks.

Figure 9: Effect of different LLM for post evaluation.

ically in multi-hop reasoning, our framework substantially surpasses it by 53.64% in medical image
analysis (VQA-Rad), and around 32.01% in external knowledge (OK-VQA). ToolTree also achieves
competitive performance compared with VIPERGPT, consistently outperforming it in medical tasks
and external knowledge tasks. This improvement pattern indicates that domain-specific LLM agents
suffer from poor cross-domain generalization, resulting in reduced overall accuracy across diverse
tasks. Moreover, specialized LLM agents rely heavily on large-scale domain-specific datasets, many
of which are not publicly available, limiting their reproducibility and adaptability.

A.8 EFFECT OF DUAL FEEDBACK ON ACCURACY

We measured how the choice of post-evaluation model affects overall and domain-specific accuracy
by running the MCTS pipeline under four settings: no post-evaluation, GPT-4o-mini as judge, GPT-
4o as judge, and Gemini 2.0 as judge, as shown in Figure 9. Across all tasks, accuracy steadily
increases with more powerful judges, rising from 54.2% to 60.8% (Gemini 2.0). The largest im-
provements appear in vision and text/document tasks, where nuanced output verification matters
most. These results show that richer post-execution feedback enables the agent to better discrimi-
nate useful tool calls, leading to more accurate final answers.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Internal judge Benchmark evaluator ToolBench RestBench
GPT-4o GPT-4o 69.04 72.48
Gemini-2.5-Flash GPT-4o 72.71 73.12

LLaMA-3.3-70B GPT-4o 46.48 50.17
LLaMA-3.3-70B LLaMA-3.3-70B 38.11 41.64

Table 11: Cross-vendor / cross-judge robustness of ToolTree on ToolBench and RestBench (pass
rate %). We vary the internal judge used during planning and the external benchmark evaluator.

(a) Example inference trajectory for a medical VQA query.

(b) Example inference trajectory for a multi-hop reasoning query.

Figure 10: Two qualitative case studies showcasing ToolTree’s iterative tool orchestration on (a) a
radiology image question and (b) a multi-hop knowledge reasoning task.

A.9 ADDITIONAL CASE STUDY

We show more cases of ToolTree on the evaluation benchmark as shown in Figure 10

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Added distractors Total tools Selection strategy Avg. F1 (%) Rel. drop

0 (baseline) 14 Direct context 55.89 /
+10 24 Direct context 55.74 −0.15%
+100 114 Retrieval (Top-20) 55.15 −0.74%
+1,000 1,014 Retrieval (Top-20) 54.82 −1.07%
+10,000 10,014 Retrieval (Top-20) 54.27 −1.62%

Table 12: Stress test on tool library size. We start from a 14-tool baseline and progressively add
distractor tools. “Avg. F1” denotes average task performance, and “Rel. drop” is the relative perfor-
mance decrease compared to the 14-tool baseline.

A.10 CROSS-VENDOR CHECK ON POTENTIAL METRIC COUPLING

A potential concern is that ToolTree might overfit to the particular LLM judge used during plan-
ning, especially when the same model family is also used as the benchmark evaluator. To test this,
we conduct a cross-vendor ablation where we vary the internal judge used by ToolTree (GPT-4o,
Gemini-2.5-Flash, LLaMA-3.3-70B) and the external evaluator (GPT-4o vs LLaMA-3.3-70B) on
ToolBench and RestBench. As shown in Table 11, decoupling the judge from the evaluator can
improve performance. In contrast, tightly coupling LLaMA-3.3-70B as both judge and evaluator
degrades pass rate. These patterns suggest that ToolTree primarily benefits from higher-quality rea-
soning signals rather than exploiting a specific evaluator.

A.11 EFFECT OF TOOL LIBRARY SIZE.

While our ToolBench experiments (over 16k tools) already demonstrate large-scale capability, we
also conduct a controlled stress test to directly examine ToolTree’s robustness to growing tool li-
braries and noisy tools. Starting from a small closed-set configuration with 14 task-relevant tools,
we progressively inject distractor tools drawn from unrelated domains, increasing the total library
size up to 10,014 tools. For each setting, we report the average F1 score and the relative perfor-
mance drop compared to the 14-tool baseline. As shown in Table 12, even when the library size
increases by three orders of magnitude, the performance degradation remains below 2%, indicating
that ToolTree’s pre-evaluation module effectively filters out irrelevant tools from a large pool. As
the pre-evaluator scores tools based on semantic relevance rather than raw frequency, we can fix the
pruning thresholds as it continue to function reliably across all scales. This bridges the gap between
our small closed-set benchmarks (e.g., GTA) and large open-set scenarios (e.g., ToolBench), and
supports ToolTree’s viability for massive, real-world tool libraries.

B EXPERIMENT DETAILS

B.1 BENCHMARK DATASET

We provide comprehensive descriptions of the datasets and baseline methods used in the main ex-
periments. This appendix serves as a reference to understand the task setups, evaluation modes, and
implementation details for reproducibility and further analysis.

B.1 CLOSED-SET TOOL PLANNING BENCHMARKS

GTA (General Tool Agent) (Wang et al., 2024). GTA is a benchmark designed to evaluate general-
purpose tool use in LLM agents. It defines a fixed set of 14 APIs with well-typed input/output
schemas and multi-hop compositional tasks. Each task requires the agent to invoke a series of tools
in a logical order to complete the goal. GTA is evaluated under two modes:

• Step-by-step mode: Agents plan tool usage iteratively, predicting both the tool and its
arguments at each step.

• End-to-end mode: Agents must generate the full tool call sequence in a single pass.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

m&m (Multi-modal and Multi-step Tool Use) (Ma et al., 2024). The m&m dataset features 33
APIs spanning vision, text, and arithmetic tasks. Each task involves integrating multiple modali-
ties (e.g., images, structured text) and planning tool usage over longer horizons. The benchmark
emphasizes input schema matching and argument consistency in tool sequences.

B.2 OPEN-SET TOOL PLANNING BENCHMARKS

ToolBench (Qin et al., 2023). ToolBench is a large-scale benchmark that focuses on open-set tool
planning with real-world APIs. It consists of 16,464 APIs extracted from online documentation.
Each task includes a natural language query, and the agent must 1) retrieve relevant APIs from
the entire pool (tool retrieval); 2) generate valid input arguments; and 3) compose executable tool
sequences to solve the task. Evaluation follows a judge-based protocol with Pass Rate (correct
solution) and Win Rate (head-to-head comparison against baselines).

RestBench (Song et al., 2023). RestBench evaluates agent performance over RESTful APIs in
two domains: TMDB (movie database) and Spotify. Unlike ToolBench, the API pool is smaller
(143 endpoints), but tasks still require multi-step planning, slot filling, and reasoning over endpoint
chains. Evaluation is similar to ToolBench.

B.3 BASELINE METHODS

Zero-Shot. A vanilla LLM is prompted directly with the task instruction and available tools, without
additional planning or prompting heuristics. This serves as a lower-bound baseline.

ReAct (Yao et al., 2023b). This method combines reasoning (chain-of-thought) and acting (tool
invocation) in an interleaved fashion. At each step, the model generates intermediate reasoning
followed by tool calls. It is greedy and reactive, without explicit planning.

Chain-of-Thought (CoT) (Wei et al., 2022). CoT decomposes the task via intermediate reasoning
steps, but without tool calls. In the context of tool planning, it is extended to select tools after each
reasoning span.

Best-First Search (Koh et al., 2024). A tree-based search method that prioritizes the expansion of
most promising partial plans using heuristics. It expands the most likely paths but does not account
for long-term reward or rollout diversity.

Tree-of-Thought (ToT) (Yao et al., 2023a). A general planning paradigm where LLM-generated
thoughts are expanded into a search tree, with scoring used to backtrack and explore multiple op-
tions. ToT treats internal LLM reasoning as planning units, not actual tool execution.

A* Search (Zhuang et al., 2024). Adapts A* to the tool planning problem by defining a heuristic
function over action sequences. It explores the search space by balancing cost so far and expected
utility, assuming an accurate reward heuristic. ToolTree is conceptually related to ToolChain*, which
applies A* search over tool sequences guided by a single heuristic score computed before execution.
However, A* search commits to a best-first expansion based on this heuristic and cannot easily revise
early decisions if the heuristic is misaligned with actual tool behavior. In contrast, ToolTree uses
MCTS to repeatedly sample and update action values, which allows recovery from early mistakes.
Moreover, ToolTree explicitly separates a prior score rpre (used for pre-pruning and exploration)
from a grounded post-execution reward rpost (used for backpropagation and post-pruning), enabling
the planner to discard branches that appear promising in theory but fail in practice. Finally, instead
of relying only on queue ordering, ToolTree performs explicit bidirectional pruning before and after
tool calls to reduce error propagation and tool cost.

LATS (Language Agent Tree Search) (Zhou et al., 2024). LATS is a framework that combines
tree search with tool execution, using LLM-guided rollouts and post-hoc scoring to prune weak
branches. Unlike ToolTree, it lacks pre-evaluation before tool execution.

DFSDT (Qin et al., 2023). This is a strong open-set baseline designed for ToolBench, where the
agent uses a depth-first symbolic planner over retrieved APIs, guided by LLM scoring. It focuses on
execution consistency rather than search efficiency.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4 MODEL AND EVALUATION PROTOCOL

All baselines are implemented under the same backbone model settings (GPT-4o and GPT-4o-mini).
For closed-set tasks, the tool APIs are pre-defined and shared with all models. For open-set tasks,
we use fixed Top-K API retrieval (K=20) and identical prompt formats. We report:

• Closed-set: Tool F1, Argument F1, Plan F1, and Execution F1.

• Open-set: Pass Rate and Win Rate, averaged over three instruction templates.

Hyperparameter Setting. Evoked by Zhou et al. (2024), during MCTS we set the exploration
constant to λ = 1.4, allow at most Rmax = 60 roll-outs, and prune branches whenever rpre < 0.3 or
rpost < 0.4; search stops early if the best Q value increases by < 10−3 over 10 consecutive roll-outs.

B.5 TOOL LIBRARY

Table 14 summarizes the external tools and models integrated within the ToolTree library, catego-
rized by their domain specialization. The library offers broad coverage across general visual under-
standing, knowledge-based VQA, medical QA, mathematical reasoning, and text/document tasks.
For each domain, a diverse set of functions, ranging from object detection and image segmentation
to knowledge graph querying, medical report generation, and OCR, is supported by state-of-the-
art models and APIs. This comprehensive and modular toolset enables ToolTree to handle a wide
spectrum of complex, multi-modal tasks with domain-adaptive precision.

B.6 TOOL CARD METADATA EXAMPLE

We hereby attach the metadata for the medical object detection tool as an illustrative example in
Table 13.

Field Type Description / Example

tool name string "Medical Object Detection"

description string A tool that detects the organs within a given medical image,
such as CT, MRI, X-Ray and pathology images.

input
image: str Path to the image file (e.g. "lung cancer Image.png")
prompt: str Prompt to guide detection (default: “Detect the organs in the

given image.”)

output dict Detected organs with their bounding box, organ name, and
confidence score.

example
input {"lung cancer Image.png"}
output {"object 1": {"name":"left lung",

"bounding box":[27,45,31,102],
"confidence":0.82},

"object 2": {"name":"right
lung", "bounding box":[57,48,35,98],
"confidence":0.82}}

Table 13: Metadata schema for the Medical Object Detection tool.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Domain Tool Function / Model

General Visual

Object Detection GroundingDINO v2
Image Segmentation Segment Anything Model (SAM)
Image Captioning GPT-4o-mini
Image Tagging RAM (Recognize Anything Model)
Patch Zooming Vanilla Patch Zoomer (4×)

Knowledge-based VQA

Search Engine Google Search API
Knowledge Graph Wikidata SPARQL
Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-4o-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4×)

Medical QA

Image Retrieval PubMed Search API
Object Detection BioMedParse
Image Segmentation BioMedParse
Image Classification BioMedCLIP
Report Generation ChatCAD
Retrieval-Augmented ChatCAD+ (RAG)

Math Reasoning

Calculator Arithmetic API
Code Interpreter Python Code Interpreter
Math Solver Wolfram Alpha
Image Captioning GPT-4o-mini (when visual input)

Text/Document

OCR EasyOCR
Layout Parsing PDFMiner
Knowledge Graph Wikidata SPARQL
Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-4o-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4×)

Table 14: Summary of external tools and models in the ToolTree library, organized by domain
specialization.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.7 PRE-PRUNING JUDGE PROMPT FOR rPRE

System message

Role. You are a strict tool-planning judge for a language-agent that solves user tasks by calling
tools in sequence.

Inputs. You are given:
• the original user query and current conversation context;
• a tool card (name, description, I/O schema, examples);
• a concrete argument draft that is syntactically valid for the tool.

Output format. You must output a single JSON object with:
• "score": a real number between 0.0 and 1.0 (inclusive) measuring how promising

this tool call is before running it;
• "explanation": a brief natural-language justification (2–4 sentences).

Scoring guideline. Use a coarse scale in [0, 1]. There is no need to finely distinguish every small
difference; choose a value that roughly reflects your judgment of usefulness.

What to penalize. Give low scores to candidate tool calls that:
• mismatch the required modality or domain;
• ignore key constraints or required fields in the schema;
• duplicate a previous call with effectively identical arguments and no clear new benefit;
• are speculative when a more direct or specific tool is available.

Important. Do not simulate the tool output; you are judging only the promised usefulness of
this tool call as the next action.

User message template

Construct the user message to the judge with the following structure.

Context.
• User query: USER QUERY

• Current dialog / planning context: CURRENT CONTEXT

Candidate tool card.
• Name: TOOL NAME

• Description: TOOL DESCRIPTION

• Input schema: TOOL INPUT SCHEMA

• Output schema: TOOL OUTPUT SCHEMA

• Example uses (if any): TOOL EXAMPLES

Candidate argument draft.
• Arguments to pass into the tool: ARGUMENT DRAFT JSON

Then ask the judge:

Task: Decide how promising it is to execute this tool call next for solving the user’s query, given
the current state of the conversation and prior tool calls. Please respond only with a JSON ob-
ject of the form {"score": <float between 0.0 and 1.0>, "explanation":
"<2--4 sentence explanation>"}.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.8 POST-PRUNING JUDGE PROMPT FOR rPOST

System message

Role. You are a strict tool-planning judge for a language-agent that solves user tasks by calling
tools in sequence.

Inputs. You are given:
• the original user query and conversation context before the call;
• the tool card;
• the concrete arguments that were used;
• the actual tool output.

Output format. You must output a single JSON object with:
• "score": a real number between 0.0 and 1.0 (inclusive) measuring the grounded utility

of this executed tool call;
• "explanation": a brief natural-language justification (2–4 sentences).

Scoring guideline. Use a coarse scale in [0, 1]. Choose a value that roughly reflects how helpful
this call was; you do not need to finely distinguish very small differences.

When assigning the score, consider:
• Task-consistency: does the output address the user’s query or current sub-goal?
• Correctness / plausibility: are there obvious errors or contradictions?
• Relevance: is the output focused on what is needed now, rather than generic or noisy?
• Constraint satisfaction: does it respect safety, formatting, and domain constraints?

Important. You are judging only this tool call’s incremental contribution from the previous
context to the new context. Do not re-evaluate the entire plan.

User message template

Construct the user message to the judge with the following structure.

Context.
• User query: USER QUERY

• Dialog / planning context before this call: CONTEXT BEFORE CALL

Executed tool card.
• Name: TOOL NAME

• Description: TOOL DESCRIPTION

• Input schema: TOOL INPUT SCHEMA

• Output schema: TOOL OUTPUT SCHEMA

• Example uses (if any): TOOL EXAMPLES

Call details.
• Arguments actually used: ARGUMENT JSON

• Tool output (raw): TOOL OUTPUT RAW

Then ask the judge:

Task: Evaluate how much this executed tool call actually helped with solving the user’s
query, considering correctness, relevance, and progress toward a final answer. Please respond
only with a JSON object of the form {"score": <float between 0.0 and 1.0>,
"explanation": "<2--4 sentence explanation>"}.

24


	Introduction
	Preliminaries
	Proposed Method: ToolTree
	Overview
	Dual Evaluation and Pruning

	Experiments
	Experiment Setup
	Closed-set Tool Planning on GTA and m&m
	Open-set Tool Planning on ToolBench and RestBench

	Analysis
	Related Work
	Conclusion
	Additional Experiment Results
	Results on APIBench
	Robustness to LLM-as-judge noise.
	Results on Agent Frameworks
	Plug-and-Play Module Comparison
	Performance Comparison for Each Domain
	Performance Comparison with Baseline
	Comparison With Domain-Specific Framework
	Effect of Dual Feedback on Accuracy
	Additional Case Study
	Cross-Vendor Check on Potential Metric Coupling
	Effect of tool library size.

	Experiment Details
	Benchmark Dataset
	Open-Set Tool Planning Benchmarks
	Baseline Methods
	Model and Evaluation Protocol
	Tool Library
	Tool card Metadata Example
	Pre-pruning Judge Prompt for rpre
	Post-pruning Judge Prompt for rpost


