Under review as a conference paper at ICLR 2026

TOOLTREE: EFFICIENT LLM ToOOL PLANNING VIA
DUAL-FEEDBACK MONTE CARLO TREE SEARCH AND
BIDIRECTIONAL PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents are increasingly applied to complex, multi-
step tasks that require interaction with diverse external tools across various do-
mains. However, current LLM agent tool planning methods typically rely on
greedy, reactive tool selection strategies that lack foresight and fail to account
for inter-tool dependencies. In this paper, we present ToolTree, a novel Monte
Carlo tree search-inspired planning paradigm for tool planning. ToolTree explores
possible tool usage trajectories using a dual-stage LLM evaluation and bidirec-
tional pruning mechanism that enables the agent to make informed, adaptive de-
cisions over extended tool-use sequences while pruning less promising branches
before and after the tool execution. Empirical evaluations across both open-set and
closed-set tool planning tasks on 4 benchmarks demonstrate that ToolTree consis-
tently improves performance while keeping the highest efficiency, achieving an
average gain of around 10% compared to the state-of-the-art planning paradigm.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Brown et al., 2020; |Ouyang et al., 2022}
Touvron et al.||2023) have propelled the emergence of language agents capable of tackling complex
multi-step tasks across various domains, including software engineering (Yang et al., [2024)), web
browsing (Zhou et al., [2023)), scientific discovery (Bran et al., [2023)) and multimodal understanding
(Wu et al.| 2023)). A critical aspect of enabling these agents to solve sophisticated problems lies in
their ability to plan and coordinate external tools (Qu et al.,|2025)). Effective tool planning leverages
the prior knowledge of LLMs by decomposing complex tasks, reasoning about which tools are
appropriate, and generating structured plans that assign intermediate steps to these tools. In doing
so, LLMs can integrate external functionalities into their reasoning process, thereby enhancing their
effectiveness in completing complex tasks (Schick et al., [2023} L1 et al.,2024; [Lu et al., 2025).

To enhance the tool planning capabilities of LLMs, existing research has primarily followed two
directions. The first is greedy-based tool planning, where the model independently selects and exe-
cutes the tool that appears most suitable at each step, without engaging in long-term rewards. (Wei
et al., 2022 Shen et al.l [2023; |Yao et al., 2023b}; [Lu et al.| 2025 [Liu et al. [2025). As a result,
these approaches often suffer from brittle performance, particularly when early suboptimal choices
propagate errors that compound irreversibly and compromise later steps. Besides, these methods
also tend to waste computation by following only a single trajectory with no exploration of alter-
natives. On the other hand, search-based methods attempt to address this limitation by expanding
multiple candidate branches, but they introduce new challenges when tools are involved (Yao et al.,
2023a};|Zhuang et al., [2024; Zhou et al., [2024). The branching factor grows exponentially with tool
types, arguments, and evolving states, leading to high costs and unpredictable latency. Moreover,
many variants evaluate hypothetical thoughts rather than executed actions, so ranking is decoupled
from actual tool use utility, and improvements realized several steps later are rarely credited back to
earlier decisions. Together, these drawbacks highlight the need for a planning approach that is both
forward-looking and outcome-grounded, while remaining compute-efficient under fixed budgets.

Our ToolTree tackles the above two issues at the same time. ToolTree frames tool planning as a
search problem guided jointly by a fast pre-execution prior and a grounded post-execution utility,
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Figure 1: Comparison of ToolTree with greedy search and search-based tool planning. Our ToolTree
chooses the optimal tool trajectory and answers correctly with 20.

enabling agents to allocate computation adaptively and recover from early missteps without task-
specific retraining as illustrated in Figure [I] Our design integrates pre-execution scoring into the
selection policy to predict the utility of a tool before it is invoked, while a post-execution score
assesses its actual contribution based on observed outcomes as rollout rewards, and applies comple-
mentary pre- and post-pruning to eliminate unpromising branches. This feedback loop enables the
agent to refine its strategy iteratively, incorporating foresight and hindsight into tool selection. To
evaluate the effectiveness of ToolTree in enhancing LLM agent tool planning abilities, we compare
ToolTree with greedy and search-based planning methods on four tool use benchmarks spanning
both closed-set and open-set tool scenarios, with around 10 percent improvement over baseline,
achieving SoTA performance with a 66.95 F1 score on GTA and a 69.04 pass rate on ToolBench.

Overall, our contributions can be summarized as follows:

* We present ToolTree, a novel Monte Carlo tree search-inspired planning paradigm that
frames LLM agent tool use as search guided by pre-execution priors and post-execution
rewards, enabling robust multi-step reasoning without retraining.

* ToolTree effectively integrates a dual-evaluation guided tree traversal method with bidi-
rectional pruning, which integrates pre- and post-scoring into search and eliminates weak
branches, improving accuracy per unit compute under fixed budgets.

* We evaluate ToolTree on four benchmarks of both closed-set and open-set tool planning,
demonstrating its superior effectiveness and efficiency. The improvements scale consis-
tently with the number of tool sets, model size and computing resources.

2 PRELIMINARIES

In this section, we introduce the preliminaries of the tool planning task for language agents, includ-
ing (1) the formal problem definition for tool planning; (2) tree-search enhanced tool planning; and
(3) the fundamentals of Monte Carlo Tree Search (MCTS).

Problem Definition: Tool Planning. Tool planning refers to the task of deciding not only which
external tools a language model should use, but also when and in what order to use them, in order
to accomplish a task both efficiently and accurately. Unlike simple tool selection, which focuses
on identifying the most appropriate tool at a single step, tool planning requires reasoning over en-
tire sequences of tools, with the objective of discovering an optimal or near-optimal sequence that
maximizes task success.

Formally, let (1) T, = {t1,t2,...,tn} denote a set of available tools. Each tool ¢ € Ty is
represented by a structured tool card C; with explanatory metadata using JSON format to provide
standardized information for further utilization, which can be found in Appendix [B.3} (2) S be the
state space, where each state s € S encodes the current dialogue context and any accumulated
intermediate results; (3) A denote the action space, where each action corresponds to invoking a
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tool t; € Ty, with an input; and (4) R : S — R be a reward function that measures how correct,
informative or efficient the current tool sequence is. Then, the tool planning task is to learn or search
for a policy m : S — A that generates a sequence of actions s* = {a1,as,...,a,}, where a; € A
to maximize the expected reward: m = arg max E[R(s*)|, T

Tree Search-enhanced planning. Tree-search enhanced tool planning reframes the above tool
planning task as a search problem: The agent explicitly constructs and evaluates candidate sequences
of tool invocations (sequences) and uses a specific search policy to choose actions that are promising
in expectation. Specifically, a search tree is constructed with nodes corresponding to states s € .S
and edges corresponding to actions a € A. Each root-to-node path corresponds to a partial plan
s ={aa,...,ar}, where k denotes the number of searched child nodes. The tree search procedure
estimates terminal rewards R(s*) for candidate plans and returns the highest-value plan.

Monte Carlo Tree Search (MCTS). Monte Carlo Tree Search (MCTYS) is a heuristic search al-
gorithm for decision-making in large and complex search spaces, most notably applied in game
playing (e.g., Go (Silver et al.| 2016)) and Chess (Helfenstein et al.| [2024)) and planning problems
(Feng et al.| [2023)). Basically, the MCTS process can be decomposed into four iterative steps: (1)
selection, starting from the root, the algorithm recursively selects child nodes according to a tree
policy, such as UCT (Kocsis & Szepesvaril [2006) and PUCT (Silver et al [2017) that balances ex-
ploration and exploitation; (2) expansion, if the selected node is not terminal, one or more child
nodes are added to the tree, representing possible future actions; (3) simulation, from the expanded
node, a policy-guided simulation is performed to approximate the outcome of completing the plan
from that state; (4) back propagation, the result of the simulation is propagated back up the tree
to update the computed rewards of the traversed nodes. By repeating this procedure many times,
MCTS refines its estimates of action values and converges toward high-quality plans.

3 PROPOSED METHOD: TOOLTREE

In this section, we demonstrate how ToolTree performs tool planning by casting multi-tool use as a
Monte Carlo Tree Search (MCTS) inspired planning paradigm over executable trajectories in Figure
[21 We first outline the overall process in Section[3.1] We then demonstrate the unique design of dual
evaluation and pruning in Section

3.1 OVERVIEW

We view tool planning as a sequential decision process where each state encodes the evolving dialog
context and intermediate results, and each action corresponds to invoking a candidate tool from the
library T, = {t1,...,tm}. The objective is to discover a trajectory that maximizes task utility
within a fixed rollout budget R, x.

Unlike prior approaches that rely on a separate planner, ToolTree integrates tool selection, execu-
tion, evaluation and pruning directly into the MCTS loop. At every step, the search is guided by two
complementary signals: a lightweight pre-evaluation that anticipates the usefulness of an action be-
fore execution, and a post-evaluation that scores the grounded output afterward. This dual feedback
supports both exploration and pruning, enabling deliberate, training-free planning that generalizes
across diverse tool libraries. The search terminates when the budget is met or improvements plateau,
and the highest-valued trajectory is returned to generate the final answer. This look-ahead/look-back
loop allows the agent to recover from early errors, avoid dead-end tool combinations, and allocate
its limited call budget to the most promising trajectories. The overall process is depicted in Figure
with Selection, Pre-evaluation, Expansion, Execution, Post-Evaluation, and Backward Propagation.

Selection. Given the current search state s, the search descends the tree by repeatedly selecting the
child action that maximizes a prior-augmented UCT score:

In N(s)
N(s,a)’

UCT(s,a) = Q(s,a) + Arpre(s,a) (1)

where (s, a) drives exploitation as it accumulates the post evaluation rewards obtained so far.
N(s) and N(s,a) are visit counts and rp (s, a) € [0, 1] is a fast, predictive signal available before
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Figure 2: Architecture overview of ToolTree. An input query is processed sequentially via iterative
dual evaluation-guided Monte Carlo Tree Search, including selection, pre-evaluation, expansion,
execution, post-evaluation and backward-propagation. The Answer Predictor then incorporates the
tool trajectories with the highest reward found by the MCTS to produce the final prediction.

executing action a. Only admissible actions a € A(s) where tools with input schema compatible
with the current context are considered; ties are broken by larger N (s) followed by a small random
jitter to preserve exploration diversity. The use of rye(s, a) biases early rollouts toward promising
branches while retaining the exploitation pressure from Q(s, a).

Expansion. Upon reaching a leaf state s; = (C}, Ay.4), we enumerate the remaining admissible
actions Agem(st) = A(s¢) \ {a1,...,a;}. For each candidate a € Aem(s:), we obtain its predictive
score Tpre(s¢, @) and instantiate a new child node (s¢,a) only if rpe(st,a) > Tpre (pre-pruning,
consistent with the prior term in Eq. [I), and the tool’s I/O schemas are type-compatible with C;.
When tools accept structured arguments, we generate a minimal, schema-valid argument draft and
cache it with the node to avoid regenerating at selection time.

Execution. For a selected child (s¢, a), we invoke the corresponding tool/API with its arguments,
yielding an output o, 1. The context is updated to C; 1 by appending (a, 0;41) in a structured form.
To reduce waste, we employ deterministic caching keyed by (a, args): if an identical call has already
been made within the current rollout, its o0, is reused. Persistent failures attach an error token to
041 so downstream compatibility checks and scoring can handle the outcome explicitly.

Backward Propagation. After execution, the resulting post-execution score rpos(s¢, a) € [0,1] is
propagated from the new child back to the root. For every edge (s, a) on this path, we update the

counts and value estimate N(s,a) < N(s,a) + 1, Q(s,a) + Q(s,a) + W
This running average refines the exploitation term in Eq.[I] allowing subsequent selections to reflect

observed utility. We also maintain N (s) <« )", N(s,a’) for use in the exploration bonus.

3.2 DuAL EVALUATION AND PRUNING

Classical MCTS balances exploration and exploitation but is agnostic to (i) the plausibility of a tool
call before execution and (ii) the grounded utility of its realized output afterwards. ToolTree injects
two lightweight, training-free signals into the loop: a pre-evaluation 1 (s, a) € [0, 1] that forecasts
usefulness prior to execution, and a post-evaluation rpoq (s, a) € [0, 1] that scores the produced out-
put. These signals serve complementary roles—foresight and hindsight—and enable bidirectional
pruning that keeps the tree compact without sacrificing solution quality.

Pre-Evaluation. For a newly encountered pair (s,a), we query a LLM judge to score rpe(s,a)
based on the current context C, the tool card (I/O schema, domain tags, examples), and a schema-
valid argument draft. This score enters selection via the prior-augmented exploration bonus in Eq.[T]
and also gates expansion:

AT (s)) = {a € A(st) & Tpre(S,0) > Tpre } Ageep(st) = top-K (AT (s4) 5 Tpre)-

Only actions in Ayeep(s¢) are expanded. Intuitively, rp removes obviously incompatible or low-
yield branches before any tool call, reducing the branching factor while still allowing exploration
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through the UCT term. Depth-aware annealing of A (or of Ty) can gradually temper the influence
of the prior as empirical evidence accumulates.

Post-Evaluation After executing (s¢, ) and obtaining o4, 1, we score grounded utility with the same
LLM judge:
Tpost(sta a) = J( Cta a, Ot+1) € [07 1}7

where J evaluates task-consistency (e.g., correctness proxies, relevance, constraint satisfaction) and
robustness cues. This score drives exploitation by updating the running mean Q(s, a) in backward
propagation and directly supports post-pruning: edges With 7pes (¢, @) < Tpost are marked non-
expandable to prevent further budget on unproductive continuations. Because 75 1S computed on
executed actions, it yields faithful credit assignment compared to ranking hypothetical thoughts.

Bidirectional Pruning. Combining both signals yields a two-sided budget control: Pre-pruning to
discard (s, a) if rpre(s, @) < Tpre (or if it falls outside the top-K),thereby curbing expansion of low-
promise children. Post-pruning while after execution, mark (s;, a) non-expandable if 7pos(s¢, @) <
Tpost» trimming branches disproven by evidence. We also cache (a, args) — o to avoid duplicate
calls within a rollout; failures attach a typed error token so pruning decisions remain explicit rather
than implicit timeouts. Together, these rules concentrate rollouts on branches that are both likely
(per 7pre) and useful (per rpos), improving accuracy-per-second under fixed Ry ax.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate ToolTree across two complementary regimes that stress different facets of LLM agent
tool use: closed-set tool planning with GTA (Wang et al.,|2024) and m&m (Ma et al., [2024), where
a small, fixed tool set with typed I/O must be composed into short multi-hop chains, and open-set
tool planning with ToolBench (Qin et al.,2023)) and RestBench (Song et al., [2023)), where the action
space spans dozens of APIs/endpoints and API retrieval is part of the problem. These two tasks
demonstrate the effectiveness and efficiency of ToolTree.

Datasets. We use four datasets covering two tasks to test our method. For (i) closed-set tool planning
we adopt GTA (Wang et al.| 2024) and m&m (Ma et al.|[2024), each of them provides a fixed tool set
of size 14/33 with typed I/O and short multi-hop chains. We follow the original setup by evaluating
this task in both step-by-step mode and end-to-end modes. For (ii) open-set tool planning we use
ToolBench (Qin et al., [2023) and RestBench (Ma et al.l 2024), which pair 16,464 and 143 real
APIs, respectively, with multi-tool retrieval-then-planning scenarios under a judge-based protocol.
We follow the initial setup using pass rate and win rate as the evaluation metrics. More details can
be found in Appendix [B.Tand[B.2]

Baselines. For (i) closed-set tool planning on GTA and m&m we compare our method against: 1)
Zero-shot, 2) ReAct (Yao et al.|[2023b)), 3) Chain-of-Thought (Wei et al.|[2022), 4) Best—First search
(Koh et al.;,|2024), 5) Tree-of-Thought (Yao et al.,[2023a)), 6) A* Search developed in the ToolChain*
paper (Zhuang et al., [2024), and 7) Monte Carlo tree search (Zhou et al.,[2024). These baselines
span the spectrum from no planning through greedy, reactive planning to search-based planning,
providing a comprehensive contrast on small, typed tool suites. For (ii) open-set tool planning on
ToolBench and RestBench, we use: 1) Zero-shot, 2) Chain-of-Thought, 3) ReAct, 4) DFSDT |[Qin
et al.|(2023), and 5) Monte Carlo tree search, emphasizing planning-centric controllers standard for
large API spaces, while retaining simple baselines to isolate planning gains. To ensure a fair com-
parison, all planners share the same tool schemas and descriptions, the same type pre-gating pipeline
and the same caching policy for tool outputs and LLM calls. We also enforce identical compute and
rollout budgets. These shared engineering settings are applied uniformly across methods to isolate
the effect of the planning strategy itself. More details in Appendix

4.2 CLOSED-SET TOOL PLANNING ON GTA AND M&M

We compare ToolTree with the selected baselines on GTA and m&m on both step-by-step and end-
to-end mode under GPT-40 and GPT-40-mini. For step-by-step mode, we measure Tool F1 and
Arg F1 to evaluate the tool selection and argument prediction ability. For end-to-end mode, we



Under review as a conference paper at ICLR 2026

GTA \ m&m
Model Planner Step-by-step  End-to-End AVG ‘ Step-by-step  Multi-step AVG
Tool Arg Plan Exec ‘ Tool Arg Plan Exec

Zero-Shot 58.73 28.44 60.18 33.85 4530|7248 67.44 7748 67.59 71.25

ReAct 60.13 2943 68.26 34.80 48.16|73.55 65.10 82.16 69.42 72.56

CoT 56.10 25.58 66.47 35.63 45.95|70.13 6527 76.12 66.96 69.62

. . Best-First 5842 30.13 69.96 34.46 47.99 | 74.42 66.83 83.58 68.37 73.80
GPT-40-mini

ToT 6241 33.12 7294 37.42 5147|7558 70.84 82.58 71.37 75.59

A* 6447 3526 73.86 38.16 52.94|75.16 71.85 84.74 72.59 76.59

LATS 65.88 37.26 74.28 3824 5391|7684 70.16 83.383 72.94 75.83

ToolTree (ours) 67.83 39.64 76.44 39.65 55.89 | 77.25 71.26 85.52 73.58 76.90

Zero-shot 70.16 38.52 77.14 4528 57.78 | 78.52 80.17 85.17 78.47 80.58

ReAct 7142 40.58 75.52 4633 58.46 | 83.58 81.24 84.42 76.58 81.46

CoT 66.52 42.17 73.22 42.86 56.69 | 85.58 77.84 78.16 71.43 78.75

GPT-40 Best—First 72.13 4426 77.64 47.83 60.46 | 84.47 82.17 85.84 78.11 82.65

ToT 72.53 43.68 78.84 46.53 60.40 | 86.28 83.74 85.26 80.35 83.91

A* 7429 47.58 79.96 4626 62.52|87.17 83.44 86.87 81.49 84.74

LATS 77.84 4990 82.57 48.80 64.78 | 88.89 84.77 88.38 83.77 86.45

ToolTree (ours) 79.26 50.84 85.53 52.17 66.95 | 91.92 86.16 90.47 85.88 88.61

Table 1: Comparison of ToolTree with other baselines across GTA and m&m. The experiment is
carried out under both step-by-step and end-to-end mode. Tool” stands for tool selection F1 score;
”Arg” stands for argument prediction F1 score; ”Plan” and ”Exec” stand for planning and execution
F1 score. Ours achieves the best performance overall.

report F1 score for both planning and execution. GTA and m&m offer typed tool APIs and gold
protocols across two modes, allowing us to cleanly measure both planning and execution quality.

Results. As demonstrated in Table[T} ToolTree attains the best overall average score on both datasets
and model backends. On GTA with GPT-4o, it achieves 66.95 average score, outperforming the
vanilla MCTS baseline by more than 2.2 points. On m&m with GPT-4o, ToolTree reaches 88.61
average score of both modes, outperforming the zero-shot baseline by more than 8 points. The same
pattern holds for GPT-40-mini with smaller but consistent margins. Meanwhile, greedy controllers
like Zero-shot, ReAct and CoT lag behind search-based methods, confirming the value of lookahead
even with small typed tool suites. Among the rest baselines, while ToT, A* and LATS improve
progressively, ToolTree remains on top as its dual pre-/post-evaluation with pruning filters implau-
sible actions before expansion and cuts unproductive branches after execution using real feedback,
concentrating budget on promising chains and yielding higher next-action and executed-plan scores.
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Figure 3: Progressive efficiency analysis across step limits. (a) Performance vs. step limit; (b)
Runtime vs. step limit; (c) Efficiency vs. step limit. ToolTree achieves the highest efficiency compared
with baselines. mprovements are largest for step limits between 12 and 64.
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RestBench-TMDB RestBench—Spotify ToolBench
Pass Win AVG | Pass Win AVG | Pass Win AVG

Zero-shot 33.28 50.00 41.64 | 26.44 50.00 38.22 | 28.85 50.00 39.42
CoT 3442 5470 44.56 | 29.82 53.10 41.46 | 2629 5547 40.88
ReAct 38.82 61.06 4994 | 32.64 5995 4630 | 3430 5894 46.62

Model Method

GPT-do-mini  \oonT 4620 6426 5523 | 3510 6547 5028 | 38.84 6829 5357
LATS 5133 66.67 59.00 | 39.81 72.85 5633 | 40.08 6577 52.92
Ours 5517 7040 6279 | 42.08 7218 5774 | 4224 6790 55.07
Zero-shot 5628 50.00 53.14 | 49.54 5000 49.77 | 47.58 50.00 48.79
CoT 5852 5232 5542 | 47.92 4455 4623 | 4688 4757 47.23
GPTdo ReAct 6242 66.17 6430 | 5327 6072 57.00 | 52.38 6339 57.89
DESDT  66.57 69.08 67.82 | 5548 71.63 63.55 | 5486 6859 61.73
LATS 6826 7444 7135 | 6125 7580 6853 | 5925 73.85 66.55
Ours 7240 7559 74.50 | 60.87 78.84 7136 | 61.27 7681 69.04

Table 2: Open-set tool-planning results on RestBench and ToolBench using GPT-40-mini and
GPT-40 as back-end LLMs. Higher values indicate better performance; the best score for each
dataset-model pair is highlighted in bold. ”Pass” and ”Win” refer to pass rate and win rate.

Progressive Efficiency Analysis. We sweep the step limit and record the dataset performance,
wall-clock time and efficiency, defined as the marginal gain per second, at each budget in Figure
On Figure (a) Performance vs step limit, all methods improve with more steps, but ToolTree
dominates at every budget, with the largest margin in the low—mid regime of 16—-64 steps before all
curves begin to saturate, demonstrating the effectiveness of lookahead converting early expansions
into higher-quality actions. On Figure (b) Running time vs step limit, runtime grows near-linearly
for all methods. While ToolTree is slower than ReAct and Best-first, it is comparable to ToT and
typically below LATS. On Figure (c) Efficiency vs step limit, despite the extra time, ToolTree yields
the highest accuracy-per-second, especially from 16-32 and 32-64 steps, indicating better budget
allocation. The pattern aligns with our design: pre-evaluation pruning removes implausible children
before expansion and post-evaluation pruning trims unproductive branches after probes, together
producing the best performance—time trade-off and a practical sweet spot around 32—-64 steps.

4.3 OPEN-SET TOOL PLANNING ON TOOLBENCH AND RESTBENCH

We compare ToolTree with Zero-shot, Chain-of-Thought, ReAct, DFSDT, and LATS on ToolBench
and RestBench using GPT-40-mini and GPT-40. Following each benchmark’s protocol, we report
Pass Rate and Win Rate under identical instructions, a fixed retrieval setup, and budget parity. These
benchmarks expose large, diverse API catalogs and require both API selection and argument com-
position over executable REST endpoints, providing a clean stress test of planner scalability in
many-API, real-world settings.

Results As demonstrated in Table 2] ToolTree attains the best score across both datasets and mod-
els. On ToolBench with GPT-4o, it reaches 69.04 AVG, about +2.5 over the strongest baseline; on
RestBench—-TMDB, it achieves 74.50 AVG, about +3.1 over the next best. The advantage is largest
where branching is high and plans span multiple calls. As our method explores pre-evaluation
to filter schema- or slot-incompatible calls before expansion, and applies post-evaluation to prune
branches quickly using execution feedback, the resulting value backups favor API sequences that
are compatible over longer horizons. In contrast, DESDT and LATS either allocate depth without
breadth-aware priors or distribute rollouts less selectively, leading to inaccurate planning and exe-
cution. More results can be found in Appendix [A] Potential concerns related to metric coupling are
discussed in Appendix [A.10]

Retrieval Sensitivity. To isolate the impact of the shortlist, we replace the retriever with Contriever,
RoBERTa, and BM25 and evaluate ReAct, ToT, and our planner on ToolBench, reporting the three

official instruction groups (G1/G2/G3) as in Table [3] While stronger retrieval lifts all methods, ours
remains best across G1-G3 under every retriever. Besides, we also found degradation under weaker
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retrieval is smallest for our planner, demonstrating the effectiveness of both pre-evaluation and post
evaluation on retrieved tool lists. We further attach the result for increasing tool library from 14 to
10014 in the Appendix [A-T1|to demonstrate its scalability.

Retriever Method G1-inst. G2-inst. G3-inst.
ReAct 61.0 78.0 72.5
Contriever ToT 62.8 79.6 75.2
ToolTree (ours) 64.5 81.8 78.3
ReAct 60.5 76.5 73.0
RoBERTa ToT 63.0 80.0 76.2
ToolTree (ours) 66.0 83.0 82.8
ReAct 58.2 74.1 69.4
BM25 ToT 60.1 76.0 71.8
ToolTree (ours) 62.4 79.0 74.2

Table 3: Ablation of different retrievers on model performance under the ToolBench benchmark.

" 5 Rollouts 2 Nodes Variant Accuracy T Token Cost |
s 5 10 ToolTree 76.44 18.2k
2 . i, — Pre-pruning 75.28 20.4k
[ $al - — Pre-evaluation 71.80 21.1k
il ¢ B8 L — Post-pruning 75.82 22.9k

z B ' . — Post-evaluation 68.94 22.9k

— Both Pruning 74.58 24.1k
7 — Both Evaluation 66.70 24.3k

Figure 4: Efficiency comparison of ToolTree  Table 4: Ablation of dual evaluation and bidi-
and its pruning variants on nodes and rollouts. rectional pruning on accuracy and token cost.

5 ANALYSIS

Effect of dual evaluation and pruning. We ablate the effectiveness of dual evaluation and pruning
under the same step limits and prompts on GTA with GPT-40. Table [4] shows that ToolTree attains
the highest accuracy at the lowest token cost. Removing post-evaluation causes the largest accuracy
drop by more than 7 points, indicating that shallow execution feedback is critical for steering search.
Concurrently as demonstrated in Figure [4] removing pre-pruning substantially reduces the median
number of nodes expanded to approximately 70 from 95 by directly curtailing unpromising branch
explorations for a narrower search tree.

Conversely, removing post-evaluation pruning
more substantially reduces median rollouts to
approximately 33 from 47, as its accurate re-
wards provide clearer solution quality signals
for potentially earlier confident convergence.
We provide further analysis on the robustness
of using LLM judge for dual evaluation and
pruning as illustrated in Appendix [A.2]
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Figure 5: A Sample Case of ToolTree on GTA.

found that ToolBench is more size-sensitive than GTA as larger models help more when the planner
must select among many APIs and ground longer argument strings.

Case Study. Figure[5|showcases how ToolTree progressively corrects itself on a GTA task. With the
number of rollouts grows, ToolTree finds better tool trajectories guided by both the pre-evaluation
score as the prior and the post-evaluation score as the dominant reward. The query asks, “According
to the sign, how many miles is it from London to Paris?”; the photo shows “343 km.” In its first
rollout, the agent invokes a lightweight OCR tool, passes the raw text to the LLM, and naively returns
“343 km,” earning a low post-evaluation score (0.2). By the fifth rollout, the search has inserted the
patch-zoom tool to crop the numeric region and rerun OCR, but it still reports kilometers and receives
only a medium reward (0.5). Guided by these signals, the tenth rollout adds a unit-conversion API
after OCR; the calculator multiplies 343 x 0.621 371, and the LLM outputs the correct “213.75
miles,” which the judge scores 0.9. More case studies are in Appendix [A.9]

6 RELATED WORK

Tool Planning for LLM Agents. Dynamic tool planning is crucial for complex tasks that require
the use of sequential tools [2025). In order to mitigate such a problem, prompt-based
methods leverage LLMs with their strong world knowledge priors (Hao et all 2023} [Gu et al
as a planner to select tools using in-content learning techniques, such as chain-of-thought
(Wei et al, [2022) or ReAct 2023b) schema (Shen et al., 2023} [Paranjape et al.| 2023}
Lu et al.l 2025). Even though flexible, these approaches often make greedy, single-step choices
without adequate looking-ahead or backtracking, potentially leading to hallucinated or incorrect
actions (Qin et al}, 2023} [Liu et al., [2024). Alternatively, training-based methods fine-tune models
or add specific heads for tool invocation (Schick et al., 2023} [Yang et al.|[2023)), incurring significant
computational and data annotation costs. ToolTree departs fundamentally from linear pipelines
by integrating the Pre-Evaluation score (1) directly into the UCT formula to dynamically steer
exploration, while the Post-Evaluation score (rpos) governs Backpropagation, together forming a
non-linear, self-correcting decision policy.

Augmenting LLM Agent with Tree Search. To address the limitations of reactive LLM agents in
complex tasks requiring lookahead [2024), augmenting them with tree search provides a
deliberate planning layer. Various search algorithms, such as greedy search (Yao et al.l [2023b), A*
Search (Zhuang et al/,[2024), Beam Search (Xie et al.}[2023)), MCTS (Zhou et al., 2024} Hao et al],
[2023), BFS/DFS (Yao et al.l 2023a), Best-first search (Koh et al., have been integrated at infer-
ence time. However, these methods often lack sufficient tool invocation diversity for broad domain
generalization. Our approach addresses this with explicit tree search for tool selection, contrasting
with LLM-internal reasoning prevalent in prior methods, and further incorporates dual environmen-
tal feedback for robust verification and plan refinement. One notable related work with ToolTree is
Toolchain* (Zhuang et al, 2024), we attach more comparisons with Toolchain* in Appendix[B.3] .
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7 CONCLUSION

This paper presents ToolTree, a training-free agent framework that integrates a plug-and-play
MCTS-based tool planning module to enable robust multi-tool orchestration across diverse tasks.
ToolTree explores a dual feedback mechanism from the environment to provide nuanced guidance
for MCTS, enabling both efficient search via strategic pruning and effective discovery of optimal
tool trajectory. Experiments over 4 datasets across diverse domains of both closed-set and open-set
tool planning demonstrate ToolTree consistently outperforms state-of-the-art planning paradigm by
10 percent on average success rate. We hope this method will serve as a valuable foundation for
future explorations into sophisticated tool orchestration and reasoning in more advanced Al agents.

Ethics Statement. We affirm adherence to the ICLR Code of Ethics. Our study uses only public
benchmarks (GTA, m&m, ToolBench, RestBench) without human subjects or personally identifi-
able data. API interactions are restricted to benchmark-provided virtual endpoints or public test
servers; no private user data or production systems are accessed. Potential risks include automation
bias, unintended amplification of model biases, and misuse of automated tool-calling; to mitigate
this, we (i) pin evaluator versions and judge prompts, (ii) report multiple seeds and confidence in-
tervals to avoid cherry-picking, (iii) release prompts/tool specs for external auditing, and (iv) follow
dataset and API licenses/ToS. We report compute budgets and runtime to encourage awareness of
environmental cost. There are no conflicts of interest or external sponsorship that would bias work.

Reproducibility Statement. We provide a complete specification of the problem setup and no-
tation in §Preliminaries and the full algorithm (scoring, selection, widening, pruning, backups)
with pseudocode and hyperparameters in §Method. Experimental protocols (datasets, metrics,
budgets, baselines), prompts/tool cards, retrieval settings, and evaluator configurations are detailed
in §Experiments and the Appendix. We will release an anonymized repository containing code,
prompts, tool specifications, evaluation scripts (including judge prompts/versions), seed control,
and config files.
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A ADDITIONAL EXPERIMENT RESULTS

A.1 RESULTS ON APIBENCH

We further carried out additional results on APIbench to demonstrate its applicability in tool the
invocation task as illustrated in Table [Sl This confirms that our dual evaluation mechanism is not
merely a pipeline heuristic but a generalized hallucination filter. It successfully identifies and prunes
invalid tool candidates in zero-shot settings on completely unseen libraries, without the need for
domain-specific fine-tuning

Table 5: APIBench results (BM25 retriever) for GPT-40 and GPT-40-mini with different planning
strategies. We report AST-based overall accuracy (%) on HuggingFace, TensorHub, and TorchHub,
as well as the macro-average accuracy and hallucination rate across the three subsets.

Backbone Method HuggingFace TensorHub TorchHub Avg. Acc. (%) Avg. Hallu. (%)
Zero-shot 68.4 59.2 44.5 574 22.1
GPT-do-mini ReAct 69.8 61.5 47.2 59.5 18.5
"™ Tree-of-Thought 712 62.8 49.6 61.2 9.3
ToolTree (Ours) 73.5 65.4 53.1 64.0 7.4
Zero-shot 76.5 69.8 62.3 69.5 7.8
GPT-4o ReAct 77.2 71.0 63.5 70.6 5.1
Tree-of-Thought 78.0 72.4 64.8 71.7 2.5
ToolTree (Ours) 79.2 74.1 66.5 73.3 2.1

A.2 ROBUSTNESS TO LLM-AS-JUDGE NOISE.

A potential vulnerability of ToolTree is its reliance on LLM-based judgment for pre- and post-
evaluation. To quantify this risk, we conduct a restoration analysis on ToolBench, where we start
from actual ToolTree trajectories and counterfactually correct erroneous judge decisions on a ran-
dom subset of instances. We consider three variants: (i) selectively fixing false positives (rejecting
tool calls that the judge incorrectly approved), (ii) selectively fixing false negatives (accepting tool
calls that the judge incorrectly rejected), and (iii) an oracle setting where all judge decisions are
corrected. Table [f] reports the judge error rate and task success rate for GPT-40 and GPT-40-mini
under these configurations.

Backbone Configuration Judge error rate  Task success (%, A)
ToolTree (baseline) 25.8% 51.9% (—)
GPT-40 + Fix false positives 7.4% 52.5% (+0.6)
+ Fix false negatives 18.4% 54.1% (+2.2)
Oracle (perfect judge) 0.0% 54.7% (+2.8)
ToolTree (baseline) 39.4% 49.5% (—)
. .+ Fix false positives 16.3% 50.8% (+1.3)
GPT-do-mini | pio flse negatives 23.1% 524% (+2.9)
Oracle (perfect judge) 0.0% 53.6% (+4.1)

Table 6: Restoration analysis of LLM-judge errors on ToolBench. “Judge error rate” is the fraction
of incorrect pre-/post-evaluation decisions. “Task success” is the overall pass rate; A denotes the
absolute difference (in percentage points) relative to the actual ToolTree baseline for each backbone.

The restoration results yield two main observations. First, ToolTree exhibits empirical tolerance
to judge noise: despite non-trivial error rates (25.8% for GPT-40 and 39.4% for GPT-40-mini), the
performance gap to an oracle judge is modest (at most +2.8 and +4.1 points, respectively). More-
over, correcting only false positives yields limited gains, while correcting false negatives accounts
for most of the improvement, indicating that overly conservative judgments are more harmful than
permissive ones. Second, the search does not collapse under noisy judgments because the LLM
signals enter the planner as soft guidance rather than ground truth: 7, and 7,05 are bounded priors
inside the MCTS update, and their influence is aggregated over many rollouts. ToolTree repeatedly
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Feature Ours General LLM Agent Framework Tool Augmented LLM System LLM Agent Tree Search
GPT-Functions OctoTools HuggingGPT ToolChain* ToolPlanner ReAct Reflexion LATS
(OpenA112024] (Lu et al. 12025 (Shen et al.2023]  (Zhuang etal.£2024] (Liuetal.12025] (Yao etal.2023b] (Shinn et al. 2023 (Zhou et al.|2024)

Tool Calling v v v v v v 4 4 v
Planning v v v X v v 4 4 v
Deliberate Tool Selection v X X X v v X X v
Tool Verification v X v X v v X v v
Tool Refinement v X v X v v X v X
Tool Pruning v X X X X X X X v

Table 7: A comparison of ToolTree with notable LLM agent frameworks, tool-augmented LLM
systems and LLM agent tree search. Our method shows significant advantages in tool integration.

Domain Dataset GPT-40-mini GPT-40
Few-Shot HuggingGPT OctoTools ToolTree (Ours) Few-Shot HuggingGPT OctoTools ToolTree (Ours)
VQAV2 68.82 60.17 69.28 74.47 73.22 67.77 74.18 76.43
General Visual GQA 63.80 65.13 66.14 71.54 66.84 60.33 68.58 74.44
SQA 76.50 70.82 78.29 84.28 82.15 78.45 84.13 87.33
MedQA 79.14 84.33 86.18 91.13 83.20 86.73 92.17 93.88
Medical VQA-Rad  48.10 55.14 60.10 63.27 54.47 58.88 66.42 74.12
PathVQA 24.90 40.72 43.13 47.12 26.20 37.82 46.17 50.86
OK-VQA 48.46 44.19 50.17 55.38 53.62 50.12 53.42 59.27
External Knowledge A-OKVQA  60.28 55.81 62.15 70.54 65.91 60.33 68.33 73.48
WebQ 50.20 56.24 61.12 64.28 56.41 58.18 63.44 67.94
MATH 53.26 45.14 58.43 69.42 61.45 53.51 68.57 78.19
Math Game-24 26.50 22.66 34.18 43.33 33.15 25.43 40.18 47.85
MathVista ~ 52.53 55.62 57.97 63.14 59.10 58.44 61.70 65.58
TextVQA 72.42 68.24 74.69 82.26 76.28 70.14 77.17 85.43
Text / Doc. Doc-VQA  83.28 83.10 84.23 89.43 87.11 82.13 89.39 92.33
HotpotQA  37.29 46.48 48.11 54.15 43.71 51.82 53.14 56.33
Average 56.37 56.92 62.94 68.65 61.53 60.01 67.80 72.70

Table 8: Comparison across 15 datasets in five domains. ToolTree consistently outperforms standard
few-shot prompting, HuggingGPT, and OctoTools on both GPT-40-mini and GPT-40, achieving
highest overall score.

revisits and reevaluates actions, so isolated misjudgments are statistically smoothed out instead of
being irrevocably baked into a single greedy trajectory.

A.3 RESULTS ON AGENT FRAMEWORKS

We evaluate ToolTree against three distinct multi-tool orchestration baselines: Few-Shot prompting,
HuggingGPT, and OctoTools with two backbone models, GPT-40-mini and GPT-40. As covered in
Table our evaluation spans 15 datasets in five diverse domains, including general visual, medical,
external knowledge, math, and text/document.

Our framework consistently achieves superior performance across five domains. Under GPT-40-
mini, it attains an average of 68.65%, outperforming Few-Shot and HuggingGPT by over 11.7 points
and OctoTools by 5.71 points on average. A similar trend is observed with the more capable GPT-
40 backbone, where ToolTree outperforms Few-Shot and HuggingGPT by more than 11.1 points
and OctoTools by 4.9 points on average. Notably, ToolTree demonstrates substantial gains on tradi-
tionally challenging, domain-specific datasets such as PathVQA and Game-of-24, with 22.22% and
16.83% performance gain compared with few-shot baselines under GPT-40-mini. These significant
improvements underscore the superiority of our framework that integrates a domain specialized tool
library and MCTS-based tool selector.

A.4 PLUG-AND-PLAY MODULE COMPARISON

We evaluated our plug-and-play module ToolTree-Module on one representative dataset from each
of the five domains under two off-the-shelf LLM-agent frameworks, LangChain and MetaGPT. For
each framework, we start from the vanilla agent with no extra tool use module and then insert ex-
actly one of four modules—Chain-of-Thought Self-Consistency (COT-SC), ReAct, Tree-of-Thought
(ToT), or our proposed ToolTree-Module—while holding all other settings like prompt format, tool
APIs, number of iterations/trajectories, and random seeds identical.
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Configuration VQA-Rad OK-VQA MathVista SQA HotpotQA AVG

LangChain 62.18 49.18 54.24 76.59 39.82 56.40
w/o COT-SC 65.14 54.37 56.88 82.17 44.90 60.69
w/o ReAct 66.28 52.33 59.25 80.95 45.18 60.80
w/o ToT 63.04 48.12 65.33 78.33 52.28 61.42
w/o ToolTree 67.72 54.27 65.74 81.33 51.94 64.20
MetaGPT 64.13 53.84 54.88 78.16 37.72 57.75
w/o COT-SC 68.74 54.88 60.30 79.44 46.90 62.05
w/o ReAct 66.32 55.11 58.94 80.54 49.56 62.09
w/o ToT 65.42 50.52 60.14 80.47 56.21 62.55
w/o ToolTree 69.24 55.83 62.28 82.57 54.77 64.94

Table 9: Comparison of ToolTree as a plug-and-play module with ReAct, COT-SC and ToT modules.
ToolTree achieves highest score on average.

As Table[9] shows, our ToolTree-Module consistently achieves the highest overall average accuracy
and outperforms all baselines on four out of five benchmarks across both frameworks, outperform-
ing COT-SC, ReAct, and ToT by 3-8 points on each dataset and 7 points on average against the
unaugmented agent. The only exception is HotpotQA, where tree-of-thought’s structured reasoning
over LLM’s hidden state excels at systematically decomposing the multi-hop problem and exploring
diverse evidence-linking pathways crucial for this dataset. Nevertheless, this internal state search
nature also makes it far worse than our module in domain-specialized tasks that require external
tools such as vision, medical and knowledge, where our module’s versatile integration and adaptive
orchestration of these tools yields significantly better performance.

A.5 PERFORMANCE COMPARISON FOR EACH DOMAIN
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Figure 7: Breakdown comparison for each of the domains.

Figure [/| presents a detailed breakdown comparison of ToolTree’s average performance across five
specialized domains under two backbone models. ToolTree consistently achieves the highest per-
formance across all domains, particularly excelling in the Math and External Knowledge domains.
For example, in the Math domain under GPT-40-mini, ToolTree reaches 63.4%, significantly outper-
forming Few-Shot by 19.3%, HuggingGPT by 22.2%, and OctoTools by 11.2%. Similarly notable
gains are observed under GPT-4o.

In the Medical domain, ToolTree surpasses HuggingGPT by 12.0% and OctoTools by 5.0% us-
ing GPT-40-mini, demonstrating its strength in tasks requiring specialized external knowledge and
precise tool interactions. In the General Visual and Text/Document domains, ToolTree continues
to show consistent improvements of roughly 5 — 7% over baselines for both backbone models.
These results underscore the robustness of ToolTree’s MCTS-based tool selection and dual evalua-
tion across diverse reasoning challenges.
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VQAv2

Figure 8: Breakdown comparison with the few-shot baseline setup under GPT-40-mini.

A.6 PERFORMANCE COMPARISON WITH BASELINE

We measured ToolTree’s per-dataset improvement over a GPT-4o0 few-shot baseline by subtracting
the baseline accuracy from ToolTree’s accuracy on each of the fifteen tasks and plotting the results
in Figure [§] The chart shows gains on every benchmark: PathVQA sits at the top with an uplift
exceeding twenty points, followed by the Game of 24 and HotpotQA climbing into the mid-teens,
and VQA-Rad and A-OKVQA rising by around 15% and 10% respectively. Even general visual
tasks like VQAvV2 and TextVQA register solid improvements of roughly six to eight points. This
pattern reflects ToolTree’s strength in orchestrating multi-step, domain-specialized tool chains that
is essential for medical and mathematical puzzles, while its verification and pruning mechanisms
consistently enhance performance on more conventional downstream tasks.

A.7 COMPARISON WITH DOMAIN-SPECIFIC FRAMEWORK

We conducted experiments comparing ToolTree against several domain-specialized agent frame-
works, including MMedAgent, LATS, and VIPERGPT, across five representative benchmarks from
medical (VQA-Rad), external knowledge (OK-VQA), mathematics (MathVista), science reasoning
(ScienceQA), and multi-hop reasoning (HotpotQA) domains. Each domain-specialized baseline is
designed specifically for optimal performance in its own niche area.

As illustrated in Table our ToolTree consistently achieves the highest average accuracy of
68.53%. Specifically, ToolTree significantly outperforms MMedAgent in external knowledge, math-
ematics, science reasoning, and multi-hop reasoning tasks. Compared to LATS, which excels specif-
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Model VQA-Rad OK-VQA MathVista ScienceQA HotpotQA Average
MMedAgent 84.32 31.25 21.15 57.24 38.20 46.43
LATS 20.48 27.26 59.33 58.17 77.54 48.56
VIPERGPT 58.24 52.44 64.28 88.64 48.22 62.36
ToolTree (Ours) 74.12 59.27 65.58 87.33 56.33 68.53

Table 10: Performance (%) comparison between domain-specialized agent baselines and our
ToolTree framework across five diverse benchmarks. ToolTree generalizes well on different domain-
specific tasks.
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Figure 9: Effect of different LLM for post evaluation.

ically in multi-hop reasoning, our framework substantially surpasses it by 53.64% in medical image
analysis (VQA-Rad), and around 32.01% in external knowledge (OK-VQA). ToolTree also achieves
competitive performance compared with VIPERGPT, consistently outperforming it in medical tasks
and external knowledge tasks. This improvement pattern indicates that domain-specific LLM agents
suffer from poor cross-domain generalization, resulting in reduced overall accuracy across diverse
tasks. Moreover, specialized LLM agents rely heavily on large-scale domain-specific datasets, many
of which are not publicly available, limiting their reproducibility and adaptability.

A.8 EFFECT OF DUAL FEEDBACK ON ACCURACY

We measured how the choice of post-evaluation model affects overall and domain-specific accuracy
by running the MCTS pipeline under four settings: no post-evaluation, GPT-40-mini as judge, GPT-
40 as judge, and Gemini 2.0 as judge, as shown in Figure 9] Across all tasks, accuracy steadily
increases with more powerful judges, rising from 54.2% to 60.8% (Gemini 2.0). The largest im-
provements appear in vision and text/document tasks, where nuanced output verification matters
most. These results show that richer post-execution feedback enables the agent to better discrimi-
nate useful tool calls, leading to more accurate final answers.
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Internal judge Benchmark evaluator ToolBench RestBench
GPT-40 GPT-4o 69.04 72.48
Gemini-2.5-Flash GPT-4o 72.71 73.12
LLaMA-3.3-70B  GPT-4o 46.48 50.17
LLaMA-3.3-70B LLaMA-3.3-70B 38.11 41.64

Table 11: Cross-vendor / cross-judge robustness of ToolTree on ToolBench and RestBench (pass
rate %). We vary the internal judge used during planning and the external benchmark evaluator.
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(a) Example inference trajectory for a medical VQA query.
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(b) Example inference trajectory for a multi-hop reasoning query.

Figure 10: Two qualitative case studies showcasing ToolTree’s iterative tool orchestration on (a) a
radiology image question and (b) a multi-hop knowledge reasoning task.

A.9 ADDITIONAL CASE STUDY

We show more cases of ToolTree on the evaluation benchmark as shown in Figure [T0]
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Added distractors Total tools Selection strategy Avg. F1 (%) Rel. drop

0 (baseline) 14 Direct context 55.89 /

+10 24 Direct context 55.74 —-0.15%
+100 114 Retrieval (Top-20) 55.15 —0.74%
+1,000 1,014 Retrieval (Top-20) 54.82 —1.07%
+10,000 10,014 Retrieval (Top-20) 54.27 -1.62%

Table 12: Stress test on tool library size. We start from a 14-tool baseline and progressively add
distractor tools. “Avg. F1”” denotes average task performance, and “Rel. drop” is the relative perfor-
mance decrease compared to the 14-tool baseline.

A.10 CROSS-VENDOR CHECK ON POTENTIAL METRIC COUPLING

A potential concern is that ToolTree might overfit to the particular LLM judge used during plan-
ning, especially when the same model family is also used as the benchmark evaluator. To test this,
we conduct a cross-vendor ablation where we vary the internal judge used by ToolTree (GPT-40,
Gemini-2.5-Flash, LLaMA-3.3-70B) and the external evaluator (GPT-40 vs LLaMA-3.3-70B) on
ToolBench and RestBench. As shown in Table [TT]} decoupling the judge from the evaluator can
improve performance. In contrast, tightly coupling LLaMA-3.3-70B as both judge and evaluator
degrades pass rate. These patterns suggest that ToolTree primarily benefits from higher-quality rea-
soning signals rather than exploiting a specific evaluator.

A.11 EFFECT OF TOOL LIBRARY SIZE.

While our ToolBench experiments (over 16k tools) already demonstrate large-scale capability, we
also conduct a controlled stress test to directly examine ToolTree’s robustness to growing tool li-
braries and noisy tools. Starting from a small closed-set configuration with 14 task-relevant tools,
we progressively inject distractor tools drawn from unrelated domains, increasing the total library
size up to 10,014 tools. For each setting, we report the average F1 score and the relative perfor-
mance drop compared to the 14-tool baseline. As shown in Table [I2} even when the library size
increases by three orders of magnitude, the performance degradation remains below 2%, indicating
that ToolTree’s pre-evaluation module effectively filters out irrelevant tools from a large pool. As
the pre-evaluator scores tools based on semantic relevance rather than raw frequency, we can fix the
pruning thresholds as it continue to function reliably across all scales. This bridges the gap between
our small closed-set benchmarks (e.g., GTA) and large open-set scenarios (e.g., ToolBench), and
supports ToolTree’s viability for massive, real-world tool libraries.

B EXPERIMENT DETAILS

B.1 BENCHMARK DATASET

We provide comprehensive descriptions of the datasets and baseline methods used in the main ex-
periments. This appendix serves as a reference to understand the task setups, evaluation modes, and
implementation details for reproducibility and further analysis.

B.1 CLOSED-SET TOOL PLANNING BENCHMARKS

GTA (General Tool Agent) (Wang et al.,[2024). GTA is a benchmark designed to evaluate general-
purpose tool use in LLM agents. It defines a fixed set of 14 APIs with well-typed input/output
schemas and multi-hop compositional tasks. Each task requires the agent to invoke a series of tools
in a logical order to complete the goal. GTA is evaluated under two modes:

* Step-by-step mode: Agents plan tool usage iteratively, predicting both the tool and its
arguments at each step.

* End-to-end mode: Agents must generate the full tool call sequence in a single pass.
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m&m (Multi-modal and Multi-step Tool Use) (Ma et al., [2024). The m&m dataset features 33
APIs spanning vision, text, and arithmetic tasks. Each task involves integrating multiple modali-
ties (e.g., images, structured text) and planning tool usage over longer horizons. The benchmark
emphasizes input schema matching and argument consistency in tool sequences.

B.2 OPEN-SET TOOL PLANNING BENCHMARKS

ToolBench (Qin et al.,|2023). ToolBench is a large-scale benchmark that focuses on open-set tool
planning with real-world APIs. It consists of 16,464 APIs extracted from online documentation.
Each task includes a natural language query, and the agent must 1) retrieve relevant APIs from
the entire pool (tool retrieval); 2) generate valid input arguments; and 3) compose executable tool
sequences to solve the task. Evaluation follows a judge-based protocol with Pass Rate (correct
solution) and Win Rate (head-to-head comparison against baselines).

RestBench (Song et al., 2023). RestBench evaluates agent performance over RESTful APIs in
two domains: TMDB (movie database) and Spotify. Unlike ToolBench, the API pool is smaller
(143 endpoints), but tasks still require multi-step planning, slot filling, and reasoning over endpoint
chains. Evaluation is similar to ToolBench.

B.3 BASELINE METHODS

Zero-Shot. A vanilla LLM is prompted directly with the task instruction and available tools, without
additional planning or prompting heuristics. This serves as a lower-bound baseline.

ReAct (Yao et al 2023b). This method combines reasoning (chain-of-thought) and acting (tool
invocation) in an interleaved fashion. At each step, the model generates intermediate reasoning
followed by tool calls. It is greedy and reactive, without explicit planning.

Chain-of-Thought (CoT) (Wei et al.,[2022). CoT decomposes the task via intermediate reasoning
steps, but without tool calls. In the context of tool planning, it is extended to select tools after each
reasoning span.

Best-First Search (Koh et al., 2024). A tree-based search method that prioritizes the expansion of
most promising partial plans using heuristics. It expands the most likely paths but does not account
for long-term reward or rollout diversity.

Tree-of-Thought (ToT) (Yao et al 2023a). A general planning paradigm where LLM-generated
thoughts are expanded into a search tree, with scoring used to backtrack and explore multiple op-
tions. ToT treats internal LLM reasoning as planning units, not actual tool execution.

A* Search (Zhuang et al.| 2024). Adapts A* to the tool planning problem by defining a heuristic
function over action sequences. It explores the search space by balancing cost so far and expected
utility, assuming an accurate reward heuristic. ToolTree is conceptually related to ToolChain*, which
applies A* search over tool sequences guided by a single heuristic score computed before execution.
However, A* search commits to a best-first expansion based on this heuristic and cannot easily revise
early decisions if the heuristic is misaligned with actual tool behavior. In contrast, ToolTree uses
MCTS to repeatedly sample and update action values, which allows recovery from early mistakes.
Moreover, ToolTree explicitly separates a prior score 7, (used for pre-pruning and exploration)
from a grounded post-execution reward 7,5 (used for backpropagation and post-pruning), enabling
the planner to discard branches that appear promising in theory but fail in practice. Finally, instead
of relying only on queue ordering, ToolTree performs explicit bidirectional pruning before and after
tool calls to reduce error propagation and tool cost.

LATS (Language Agent Tree Search) (Zhou et al.| [2024). LATS is a framework that combines
tree search with tool execution, using LLM-guided rollouts and post-hoc scoring to prune weak
branches. Unlike ToolTree, it lacks pre-evaluation before tool execution.

DFSDT (Qin et al |[2023). This is a strong open-set baseline designed for ToolBench, where the
agent uses a depth-first symbolic planner over retrieved APIs, guided by LLM scoring. It focuses on
execution consistency rather than search efficiency.

20



Under review as a conference paper at ICLR 2026

B.4 MODEL AND EVALUATION PROTOCOL

All baselines are implemented under the same backbone model settings (GPT-40 and GPT-40-mini).
For closed-set tasks, the tool APIs are pre-defined and shared with all models. For open-set tasks,
we use fixed Top-K API retrieval (K=20) and identical prompt formats. We report:

* Closed-set: Tool F1, Argument F1, Plan F1, and Execution F1.
* Open-set: Pass Rate and Win Rate, averaged over three instruction templates.

Hyperparameter Setting. Evoked by |Zhou et al.| (2024)), during MCTS we set the exploration
constant to A = 1.4, allow at most Ry,,x = 60 roll-outs, and prune branches whenever . < 0.3 or
Tpost < 0.4; search stops early if the best @) value increases by < 10~ over 10 consecutive roll-outs.

B.5 TooL LIBRARY

Table |14] summarizes the external tools and models integrated within the ToolTree library, catego-
rized by their domain specialization. The library offers broad coverage across general visual under-
standing, knowledge-based VQA, medical QA, mathematical reasoning, and text/document tasks.
For each domain, a diverse set of functions, ranging from object detection and image segmentation
to knowledge graph querying, medical report generation, and OCR, is supported by state-of-the-
art models and APIs. This comprehensive and modular toolset enables ToolTree to handle a wide
spectrum of complex, multi-modal tasks with domain-adaptive precision.

B.6 TOOL CARD METADATA EXAMPLE

We hereby attach the metadata for the medical object detection tool as an illustrative example in
Table[13]

Field Type Description / Example
tool_name string "Medical_ Object_Detection"
description string A tool that detects the organs within a given medical image,

such as CT, MRI, X-Ray and pathology images.

i nout image: str Path to the image file (e.g. "1lung_cancer_Image.png")
P prompt: str Prompt to guide detection (default: “Detect the organs in the
given image.”)
output dict Detected organs with their bounding box, organ name, and
confidence score.
input {"lung_cancer_Image.png"}
example )
output {"object_1": "name":"left lung",

"bounding box":[27,45,31,102]7,
"confidence":0.82},

"object2": {"name":"right
lung", "bounding box":[57,48,35,98],
"confidence":0.82}}

Table 13: Metadata schema for the Medical _Object _Detection tool.

21



Under review as a conference paper at ICLR 2026

Domain

Tool

Function / Model

General Visual

Object Detection
Image Segmentation
Image Captioning
Image Tagging
Patch Zooming

GroundingDINO v2

Segment Anything Model (SAM)
GPT-40-mini

RAM (Recognize Anything Model)
Vanilla Patch Zoomer (4x)

Search Engine Google Search API
Knowledge Graph Wikidata SPARQL
Knowledge-based VQA  Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-40-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4x)
Image Retrieval PubMed Search API
Object Detection BioMedParse
Medical QA Image Segm.entat.ion B%oMedParse
Image Classification BioMedCLIP
Report Generation ChatCAD
Retrieval-Augmented ChatCAD+ (RAG)
Calculator Arithmetic API
Math Reasoning Code Interpreter Python Code Interpreter
Math Solver Wolfram Alpha
Image Captioning GPT-40-mini (when visual input)
OCR EasyOCR
Layout Parsing PDFMiner
Knowledge Graph Wikidata SPARQL
Text/Document Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-40-mini
Image Tagging RAM

Patch Zooming

Vanilla Patch Zoomer (4x)

Table 14: Summary of external tools and models in the ToolTree library, organized by domain
specialization.
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B.7 PRE-PRUNING JUDGE PROMPT FOR 7'pgg

System message

Role. You are a strict tool-planning judge for a language-agent that solves user tasks by calling
tools in sequence.

Inputs. You are given:
* the original user query and current conversation context;
¢ atool card (name, description, I/O schema, examples);

* aconcrete argument draft that is syntactically valid for the tool.

Output format. You must output a single JSON object with:

* "score": areal number between 0.0 and 1.0 (inclusive) measuring how promising
this tool call is before running it;

e "explanation™: a brief natural-language justification (2—4 sentences).

Scoring guideline. Use a coarse scale in [0, 1]. There is no need to finely distinguish every small
difference; choose a value that roughly reflects your judgment of usefulness.

What to penalize. Give low scores to candidate tool calls that:
* mismatch the required modality or domain;
* ignore key constraints or required fields in the schema;
* duplicate a previous call with effectively identical arguments and no clear new benefit;

e are speculative when a more direct or specific tool is available.

Important. Do not simulate the tool output; you are judging only the promised usefulness of
this tool call as the next action.

User message template
Construct the user message to the judge with the following structure.

Context.

e User query: USER_QUERY

¢ Current dialog / planning context: CURRENT_CONTEXT
Candidate tool card.

e Name: TOOL_NAME

* Description: TOOL_.DESCRIPTION

* Input schema: TOOL_INPUT_SCHEMA

¢ Qutput schema: TOOL_OUTPUT_SCHEMA

* Example uses (if any): TOOL_EXAMPLES
Candidate argument draft.

* Arguments to pass into the tool: ARGUMENT_DRAFT_JSON

Then ask the judge:

Task: Decide how promising it is to execute this tool call next for solving the user’s query, given
the current state of the conversation and prior tool calls. Please respond only with a JSON ob-

ject of the form { "score": <float between 0.0 and 1.0>, "explanation":
"<2--4 sentence explanation>"}.
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B.8 POST-PRUNING JUDGE PROMPT FOR 7post

System message

Role. You are a strict tool-planning judge for a language-agent that solves user tasks by calling
tools in sequence.

Inputs. You are given:
* the original user query and conversation context before the call;
¢ the tool card;
* the concrete arguments that were used;

¢ the actual tool output.

Output format. You must output a single JSON object with:

* "score": areal number between 0.0 and 1.0 (inclusive) measuring the grounded utility
of this executed tool call;

* "explanation™": a brief natural-language justification (2—4 sentences).

Scoring guideline. Use a coarse scale in [0, 1]. Choose a value that roughly reflects how helpful
this call was; you do not need to finely distinguish very small differences.

When assigning the score, consider:
» Task-consistency: does the output address the user’s query or current sub-goal?
¢ Correctness / plausibility: are there obvious errors or contradictions?
* Relevance: is the output focused on what is needed now, rather than generic or noisy?

¢ Constraint satisfaction: does it respect safety, formatting, and domain constraints?

Important. You are judging only this tool call’s incremental contribution from the previous
context to the new context. Do not re-evaluate the entire plan.

User message template
Construct the user message to the judge with the following structure.

Context.

¢ User query: USER_QUERY

¢ Dialog / planning context before this call: CONTEXT_BEFORE_CALL
Executed tool card.

* Name: TOOL_NAME

* Description: TOOL_DESCRIPTION

¢ Input schema: TOOL_INPUT_SCHEMA

¢ Qutput schema: TOOL_OUTPUT_SCHEMA

* Example uses (if any): TOOL_EXAMPLES
Call details.

* Arguments actually used: ARGUMENT_JSON

» Tool output (raw): TOOL_OUTPUT_RAW

Then ask the judge:

Task: Evaluate how much this executed tool call actually helped with solving the user’s
query, considering correctness, relevance, and progress toward a final answer. Please respond
only with a JSON object of the form {"score": <float between 0.0 and 1.0>,
"explanation": "<2--4 sentence explanation>"}.
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