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Abstract001

BERT-family have been increasingly explored002
for adaptation to scenarios beyond language003
understanding tasks, with more recent efforts004
focused on enabling them to become good in-005
struction followers. These explorations have en-006
dowed BERT-family with new roles and human007
expectations, showcasing their potential on par008
with current state-of-the-art (SOTA) large lan-009
guage models (LLMs). However, several cer-010
tain shortcomings in previous BERT-family,011
such as the relatively sub-optimal training cor-012
pora, learning procedure, and model architec-013
ture, all impede the further advancement of014
these models for serving as general and compet-015
itive LLMs. Therefore, we aim to address these016
deficiencies in this paper. Our study not only017
introduces a more suitable pre-training task018
that helps BERT-family excel in wider applica-019
tions to realize generality but also explores the020
integration of cutting-edge technologies into021
our model to further enhance their capabili-022
ties. Our final models, termed Bidirectional023
General Language Models (BiGLM)1, ex-024
hibit performance levels comparable to current025
SOTA LLMs across a spectrum of tasks. More-026
over, we conduct detailed analyses to study027
the effects of scaling and training corpora for028
BiGLM. To the best of our knowledge, our029
work represents the early attempt to offer a030
recipe for building novel types of scalable, gen-031
eral, and competitive LLMs that diverge from032
current autoregressive modeling methodology.033

1 Introduction034

Generative large language models (LLMs) have035

significantly influenced various aspects of society,036

reshaping how we access and interact with informa-037

tion and knowledge (Touvron et al., 2023a,b; Team038

et al., 2023; OpenAI, 2023). Among them, almost039

all the recent models adopt the decoder-only model040

architecture with the autoregressive (AR) modeling041

1Our code will be available at https://github.com/
anonymous.

paradigm, with the representative being the GPT 042

series models (Radford et al., 2019; Brown et al., 043

2020; OpenAI, 2023). While this recipe has demon- 044

strated effectiveness in achieving scalability and 045

generality in current LLMs (Tay et al., 2022; Bi- 046

derman et al., 2023; Touvron et al., 2023a), it also 047

exposes several challenges, such as the well-known 048

teacher forcing problem (Zhang et al., 2019), gen- 049

eration hallucinations (Ji et al., 2023; Rawte et al., 050

2023; Zhang et al., 2023; Tonmoy et al., 2024), and 051

reduced efficiency during inference (Xiao et al., 052

2022; Xia et al., 2024; Zhang et al., 2024a). These 053

challenges serve as a catalyst for us to attempt to 054

find, at least discuss the potential of alternative 055

approaches for developing scalable, general, and 056

competitive large language models. 057

Hence, we investigate the potential of BERT- 058

family, which adopt the encoder-only model archi- 059

tecture with the masked language modeling (MLM) 060

paradigm. Our explorations are driven by several 061

key observations: (1) BERT-family have been one 062

of the most widely used language models in pre- 063

vious years (Devlin et al., 2018; Liu et al., 2019), 064

which contain variants boasting billions of model 065

parameters (Conneau and Lample, 2019; Shoeybi 066

et al., 2019), showcasing its scalability potential. 067

(2) The bi-directional attention mechanism inher- 068

ent in BERT-family, equips these models with a 069

profound understanding of semantic information, 070

earning them a reputation for excelling in various 071

language understanding tasks. (3) With theoreti- 072

cally indicating that BERT-family can generate co- 073

herent textual content (Dong et al., 2019; Wang and 074

Cho, 2019), researchers have leveraged these mod- 075

els in non-autoregressive generation tasks and yield 076

positive feedback (Chan and Fan, 2019; Jiang et al., 077

2021; Su et al., 2021; Liang et al., 2023b,a). Re- 078

cently, Xiao et al. further demonstrate that BERT- 079

family can also become instruction followers with 080

instruction tuning. These explorations all indicate 081

the potential of generality for BERT-family. 082
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Figure 1: The presentation of the evolution of BiGLM.

Despite these positive attempts of BERT-family,083

we also notice the following shortcomings among084

them, such as the mismatching of pre-training085

paradigm for generation tasks and several sub-086

optimal designs of pre-train models including the087

model architecture, training procedure and data088

compositions compared to the up-to-date LLMs.089

Therefore, we aim to address these deficiencies and090

make the following contributions to build a novel091

type of scalable, general, and competitive LLMs:092

• We introduce a feasible pre-training task to093

train new variants of BERT-family termed094

as Bidirectional General Language Models095

(BiGLM), which provide a recipe for building096

LLMs beyond autoregressive modeling.097

• We explore the potential of integrating the098

cutting-edge technologies whose effectiveness099

has been verified in current AR models into100

BiGLM to further enhance its capabilities.101

• We evaluate BiGLM on a range of scenarios, in-102

cluding task-specific fine-tuning, zero-shot rea-103

soning, and multitask learning. Results demon-104

strate that BiGLM can reach the performance105

levels that are on par with, and in some cases106

surpassing the previous SOTA models.107

• We further conduct detailed analyses to study108

the effects of scaling and training corpora for109

our models, providing better understandings of110

BiGLM for current LLM community.111

2 Bidirectional General Language Models112

We draw lesson from the traditional masked lan-113

guage modeling (MLM) pre-training objective,114

which makes the model to learn to predict the spe-115

cific masked tokens and has been widely used in116

BERT-like models (Devlin et al., 2018; Liu et al.,117

2019). Specifically, MLM first replaces partial to-118

kens with the special masked token (e.g., [MASK])119

in the training instance, and enables the model to120

predict the corresponding masked parts as follows: 121

LMLM = −
∑

ct∈Cmask

logP(ct|Cobs; θ), (1) 122

where Cmask and Cobs denote the masked and un- 123

masked parts in the training instance C, respec- 124

tively. ct denotes each masked token, and θ denotes 125

the trainable parameters of the model. In conven- 126

tional BERT-like models (Devlin et al., 2018), the 127

masked tokens Cmask are typically randomly se- 128

lected with a fixed small proportion (e.g., 0.15) of 129

tokens within each training instance. While this 130

pre-training task facilitates the learning of sentence- 131

level representations, it falls short in capturing lan- 132

guage generation capabilities compared to the tra- 133

ditional pre-trained AR language models trained 134

with the widely-used causal language modeling 135

objective (i.e., next token prediction task). 136

BiGLM aims to build a general pre-trained 137

language model which simultaneously possesses 138

the ability of language understanding and gener- 139

ation. Firstly, motivated by the previous works 140

which adapt the traditional MLM to generation 141

tasks (Ghazvininejad et al., 2019; Liang et al., 142

2023b,a; Xiao et al., 2024), we first decompose 143

each training instance into two parts to simulate 144

a scenario akin to conditional generation. Then, 145

drawing inspiration from prior practice (Song et al., 146

2019; Li et al., 2022; Guo et al., 2020; Xiao et al., 147

2023), we further assign different masking strate- 148

gies for these two parts to enable BiGLM learn the 149

understanding and generation capabilities, respec- 150

tively. Besides, we adopt specific attention masking 151

mechanism to enhance the consistency between the 152

training and inference process for BiGLM. 153

2.1 Pre-train Task 154

Specifically, as shown in Figure 2, given a 155

specific training instance with the max context 156

length L: C = {c1, c2, ..., cL−1, cL}, BiGLM de- 157

composes C into a tuple (X,Y ) based on a 158

decomposition position i, i ∈ (1, L), where 159

X = {c1, c2, ...ci−1, ci} denotes the prefix tokens, 160

and Y = {ci+1, ci+2, ...cL−1, cL} denotes the suf- 161

fix tokens. This decomposition position controls 162

the minimum length of the X and Y . In prac- 163

tice, we set a ratio α, α ∈ (0, 0.5) in advance, 164

and randomly sample the position i from α ∗ L 165

to (1 − α) ∗ L. Then, the prefix tokens are used 166

to provide context information and help the model 167

understand the whole sentence, we randomly sam- 168

ple a small ratio of mask tokens, which is sim- 169
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Figure 2: The pre-training task of BiGLM, where each
specific training instance is decomposed into the prefix
and suffix tokens. We assign random masking strategy
with relatively small ratio for prefix tokens to learn
understanding ability and uniform masking for suffix
tokens to learn generation ability for BiGLM.

ilar to the traditional MLM in BERT, denoted170

as (Xmask, Xobs) = RANDOM_MASK(X,βX), where171

Xmask and Xobs denote the masked and unmasked172

parts in X , βX denotes the masking ratio. The173

suffix tokens tend to help the model learn the gener-174

ation capability, we adopt uniform masking as men-175

tioned in CMLM (Ghazvininejad et al., 2019), de-176

noted as (Ymask, Yobs) = UNIFORM_MASK(Y, βY ),177

where βY is sampled from a uniform distribu-178

tion U(0, 1). Then, BiGLM learns to predict the179

masked tokens based on different contexts. In prac-180

tice, we adopt an adaptive masking function for the181

masking ratio βX as mentioned in Xiao et al. (2023)182

to replace the fixed masking ratio in the traditional183

MLM for X , as βX = λ1 − λ2 ∗ βY , where λ1 and184

λ2 determines the masking ratio range of X . This185

operation can achieve more diverse masking condi-186

tions in X for BiGLM to learn and is based on the187

intuition that once more tokens in Y are masked,188

X should provide more context information (i.e.,189

lower βX ). Moreover, we prevent the query of each190

token in X attending the tokens in Y in the atten-191

tion module as shown in Figure 2 during training192

to keep consistent with the inference process since193

there is no target sequence in advance. Finally, the194

training loss of BiGLM can be computed as:195

LBiGLM = −
∑

xt∈Xmask

logP(xt|Xobs; θ)

−
∑

yt∈Ymask

logP(yt|Xobs, Yobs; θ).
(2)196

2.2 Trails for BiGLM197

In this section, we pre-train different model variants198

from scratch to conduct evaluation experiments for199

BiGLM2. Specifically, we first verify the neces- 200

sity of two key components of our modified pre- 201

training task, i.e., the decomposition of the training 202

instance and the specific attention masking strat- 203

egy. Then, we further conduct ablation studies to 204

compare different methods to determine the decom- 205

position points and various masking ratios for the 206

prefix tokens in the training sequence. 207

Data and Architecture For the pre-training cor- 208

pora, we adopt a deduplicated version of FineWeb- 209

edu (Lozhkov et al., 2024) developed by SmolLM- 210

Corpus (Ben Allal et al., 2024) which contains 211

around 220B tokens, denoted as deduplicated 212

FineWeb-edu. As for the model architecture, we 213

follow the most practice in previous BERT-family 214

to build an encoder-only language model with bi- 215

directional attention mechanism, and further incor- 216

porate several modifications to align with current 217

language models (Touvron et al., 2023a; Biderman 218

et al., 2023): 1) We use Rotary Positional Em- 219

bedding (RoPE) (Su et al., 2024) to replace the 220

traditional absolute/relative position encoding to 221

inject positional information. 2) We replace the tra- 222

ditional ReLU with swiglu (Shazeer, 2020) as our 223

activation function 3) We adopt RMSNorm (Zhang 224

and Sennrich, 2019) as our normalization method 225

rather than the common layer normalization. We 226

adopt a model version containing around 124M pa- 227

rameters whose num-layers/hidden-size/num-attn- 228

heads are 12/768/12 to conduct experiments. 229

Training Details We pre-train all the model vari- 230

ants from scratch with a max length of 2048, batch 231

size of 1024, and the training steps as 50k, i.e., 232

totally with around 100B tokens. The learning 233

rate is set as 3e-3 and decreases with cosine de- 234

cay strategy. We utilize the Megatron-Deepspeed 3 235

library, and train all the models on 64 NVIDIA 236

A100-PCIE-80GB GPU cards. As for the specific 237

variants, we train the common BiGLM and then 238

successively omit the attention masking strategy 239

(i.e., w/o attn) and the decomposition process (i.e., 240

w/o both) to obtain three variants. For the ablation 241

studies, we compare the different decomposition 242

ratios and different masking factors for X and Y . 243

The details are presented in Appendix C. 244

Evaluation Details After the training process, 245

we evaluate the models without fine-tuning on a 246

2In this paper, all the evaluation experiments are only con-
ducted on English language data.

3https://github.com/microsoft/Megatron-DeepSpeed
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Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

RoBERTa-base 36.07 25.68 58.98 61.8 51.78 26.27 27.94 35.62 61.19 33.97 25.12 40.40
ModernBERT-base 36.27 28.58 59.12 58.3 50.12 27.12 27.91 36.73 61.12 34.01 25.26 40.41

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48
w/o attn. 51.09 23.89 59.90 83.8 52.56 29.03 27.37 38.08 61.53 32.80 25.95 44.18
w/o both. 41.58 22.69 56.58 76.6 49.96 27.80 28.80 38.11 60.40 31.23 24.84 41.69

Table 1: Results of various pre-training variants. Wino., Hella., and Truth. denote the WinoGrande, Hellaswag,
and Truthfulqa datasets, AVG. denotes average result. attn. denotes the attention masking strategy.

range of widely-used zero-shot reasoning tasks, in-247

cluding ARC-easy, ARC-challenge (Clark et al.,248

2018), BoolQ (Clark et al., 2019), PIQA (Bisk249

et al., 2020), SIQA (Sap et al., 2019), Wino-250

Grande (Sakaguchi et al., 2021), LogiQA (Liu251

et al., 2020), Race (Lai et al., 2017), Sciq (Jo-252

hannes Welbl, 2017), Hellaswag (Zellers et al.,253

2019), and Truthfulqa (Lin et al., 2021). We254

adopt Language Model Evaluation (Gao et al.,255

2021) framework to evaluate these datasets un-256

der a zero-shot setting (Biderman et al., 2023)257

and report normalized accuracy for PIQA, ARC-258

challenge, LogiQA, Hellaswag, and accuracy for259

other tasks (Biderman et al., 2023).260

Results The results on zero-shot reasoning tasks261

are presented in Table 1, we can find that (1) The262

corresponding two key components are necessary263

for our pre-training task. The decomposition of the264

training instance and assigning different masking265

into them is more critical for the success of BiGLM,266

while removing it leads to significant performance267

declines. (2) We also report the performance of268

RoBERTa-base and recent ModernBERT which269

serves as competitive BERT-like models with com-270

parable parameters but trained with around 2T to-271

kens. Our model adopting the same pre-training272

task (i.e., w/o both) with only 100B tokens also out-273

performs RoBERTa-base, indicating the effective-274

ness of the corresponding modifications on model275

architecture and the pre-training data corpus. As276

for the ablation studies, whose results are presented277

in Table 8 in Appendix C, we can find that all the278

variants achieve comparable performance.279

3 Enhanced Strategies for BiGLM280

In this section, we explore the feasibility of inte-281

grating several effective cutting-edge technologies282

into BiGLM to further enhance the capabilities.283

3.1 Model Architecture284

Deeper Model Additional to the common modi-285

fications as mentioned in 2.2, recent work has pro-286

posed that while training a language model, going 287

deeper is more crucial than going wider for per- 288

formance improvement (Liu et al., 2024). In other 289

words, after determining the total model parame- 290

ters, we prefer adding the number of layers rather 291

than wider the hidden-size. As a result, we fol- 292

low the model designs in (Liu et al., 2024) to 293

train a deeper BiGLM but with comparable param- 294

eter. Specifically, we set the num-layers/hidden- 295

size/num-attn-heads as 30/576/9 to replace the orig- 296

inal 12/768/12. Furthermore, we also adopt the 297

method of grouped query attention (Chowdhery 298

et al., 2023; Ainslie et al., 2023) which reduces the 299

original parameters to allow more layers. The cor- 300

responding results are presented in Table 2, we can 301

find the deeper model (BiGLM++) outperforms the 302

original BiGLM by around 0.5 score on average. 303

However, we need to recognize that the training 304

time of the deeper model is around 2x than the 305

common BiGLM in our experiments. 306

Dropout Module We evaluate the necessity of 307

Dropout (Srivastava et al., 2014), which serves as a 308

simple way to avoid over-fitting but been omitted in 309

recent LLMs (Touvron et al., 2023a,b). We include 310

this exploration based on that all previous BERT- 311

family, even with billion parameters, still adopt 312

the dropout module (Conneau and Lample, 2019; 313

Shoeybi et al., 2019). The corresponding results 314

are presented in Table 2, i.e., BiGLM v.s., BiGLM 315

w/o dropout. We can find that omitting the dropout 316

module leads to around 1 score improvement on 317

average, indicating that the dropout module is also 318

not necessary for BiGLM. 319

3.2 Training Procedure 320

Learning Rate Scheduler While researchers 321

adopt Cosine Learning Rate Scheduler (Cosine 322

LRS) to train most LLMs, Hu et al. have seek for 323

better one, i.e., the Warmup-Stable-Decay Learn- 324

ing Rate Scheduler (WSD LRS), which divides the 325

training process into three stages: 1) the warm-up 326

stage as the same as previous practice, 2) the stable 327
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Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48
w/o dropout 53.76 26.40 60.78 87.2 51.73 28.33 30.12 38.49 62.03 35.01 25.17 45.37

BiGLM++ 53.70 25.34 60.55 85.8 51.86 28.12 28.80 38.54 62.05 34.74 24.99 44.95
w/ mixdata 55.13 25.51 61.97 88.5 51.85 28.36 30.43 37.93 62.02 35.67 25.31 45.70

no annealing 51.34 24,74 60.56 84.4 54.06 27.54 30.05 37.32 61.99 34.30 25.21 44.68
rawdata annealing 52.95 26.28 61.91 86.3 52.09 28.38 30.33 38.98 61.74 34.93 24.73 45.33
rawdata annealing++ 53.21 25.97 62.32 86.3 52.17 28.28 30.17 38.96 62.01 35.25 25.02 45.42
syndata annealing 50.04 26.02 62.68 79.4 51.70 28.02 29.47 37.78 61.53 35.13 25.46 44.29
mixdata annealing 52.44 25.68 61.37 85.4 50.51 28.13 29.19 38.15 61.74 35.31 24.75 44.79

Table 2: Results of integrating the cutting-edge technologies in BiGLM.

training stage with the learning rate unchanged, 3)328

the annealing stage with the learning rate decreas-329

ing linearly. This scheduler provides a simpler way330

for continue training and has been adopted in recent331

competitive models, e.g., Llama 3.1 (Vavekanand332

and Sam, 2024) and Falcon-Mamba (Zuo et al.,333

2024). In Hu et al. (2024) where WSD LRS is first334

proposed, 10% of total training steps are adopted335

for annealing, i.e., final 5k steps for annealing for336

BiGLM since the total training steps is 50k. Dur-337

ing the annealing stage, we adopt the same training338

data distribution (i.e., deduplicated FineWeb-edu)339

as that in the stable training stage. Besides, con-340

sidering the relatively lower learning efficiency of341

BERT-family (Wettig et al., 2022), we trail for a342

longer annealing stage (i.e., rawdata annealing++343

in Table 2) with final 10k steps for annealing after344

40k training steps. We present the corresponding345

results in Table 2, demonstrating that (1) we report346

a baseline that does not adopt the annealing stage347

(i.e., no annealing), i.e., a total of 50k steps for the348

warm-up and stable training stage, which results in349

a 0.27 score decline on average compared with the350

one trained with Cosine LRS (i.e., BiGLM++); (2)351

WSD LRS (i.e., rawdata annealing) outperforms352

Cosine LRS, and longer annealing stage leads to353

better performance, indicating that BiGLM needs354

more training steps during the annealing stage.355

3.3 Data Composition356

Pre-training Data Previous non-autoregressive357

works (Ghazvininejad et al., 2019; Kasai et al.,358

2020; Huang et al., 2022; Xiao et al., 2023) which359

also adopts the MLM objective for training have360

demonstrated that data distillation is quite impor-361

tant for competitive performance. They train their362

models with the data generated by the autoregres-363

sive models rather than the raw data, which can sim-364

plify the modalities in training data and reduce the365

modeling difficulties. This also alleviates the well-366

known multi-modality problem (Gu et al., 2018)367

which affects the performance of BERT-family for 368

generation tasks (Liang et al., 2023a,b). However, 369

the data composition is not well explored for pre- 370

vious BERT-family. Thus, we adopt the Cosmope- 371

dia v2 (Ben Allal et al., 2024), which is a collec- 372

tion of synthetic textbooks and stories generated by 373

mistralai/Mixtral-8x7B-Instruct-v0.14 (Jiang et al., 374

2024) and contains around 39B tokens, to serve as 375

the distillation data to verify the effectiveness of 376

synthetic data. Specially, we compared the models 377

trained on only the deduplicated FineWeb-edu and 378

the mixture of deduplicated FineWeb-edu and Cos- 379

mopedia v2 for the same total tokens, as shown in 380

Table 2, i.e., BiGLM++ v.s., w/ mixdata, training 381

on the mixture data leads to significant performance 382

improvements by 0.75 scores on average. 383

Annealing Data Previous works (Hu et al., 2024; 384

Vavekanand and Sam, 2024) have pointed out the 385

annealing stage always needs higher-quality train- 386

ing data, e.g., selective code and math data or 387

exquisite synthetic data, to enable the better conver- 388

gence of the model. Thus, we explore the effects 389

on different data compositions during the annealing 390

stage. Rather than adopting the same distribution as 391

mentioned in Section 3.2, we include two variants 392

which adopt only the synthetic data and the mixture 393

data during the annealing stage, with results pre- 394

sented in Table 2 and termed as syndata annealing 395

and mixdata annealing. Contrary to the common 396

intuition, while including the higher-quality syn- 397

thetic data, adopting syndata annealing and mix- 398

data annealing both leads to performance declines, 399

especially with syndata annealing, we attribute this 400

to the mismatching of the data distribution between 401

the stable training and the annealing stage. 402

4 Experiments 403

Based on the above observations in Section 3.2, 404

we adopt a mixture of deduplicated FineWeb-edu 405

4https://huggingface.co/mistralai
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Methods
MNLI m/mm SQuAD BEIR XSUM MSQG

Accuracy EM / F1 nDCG@10 R-1 / R-2 / R-L R-L / B-4 / MR
BERT-Base 84.3 / - 80.5 / 88.5 38.9 39.1 / 15.3 / 31.0 38.3 / 9.5 / 22.0
Roberta-Base 84.6 / - 83.0 / 90.4 37.7 41.5 / 17.5 / 33.5 38.5 / 10.5 / 22.7
BART-Base 84.1 / - - / 90.8 - 38.8 / 16.2 / 30.6 38.2 / 10.2 / 22.9
ModernBERT-Base - / - - / - 41.6 - / - / - - / - / -
BiGLM-136M 84.7 / - 83.1 / 90.6 41.2 41.6 / 17.3 / 33.6 39.2 / 10.6 / 23.6
BERT-Large 86.7 / 85.9 88.0 / 93.7 38.9 39.8 / 15.8 / 31.9 38.9 / 10.2 / 22.9
Roberta-Large 90.2 / 90.2 88.9 / 94.6 41.4 44.5 / 20.4 / 36.3 40.1 / 11.2 / 23.6
BART-Large 89.9 / 90.1 88.8 / 94.6 - 45.1 / 22.2 / 37.2 38.8 / 9.2 / 24.3
DeBERTaV3 91.8 / 91.9 - / - 25.6 - / - / - - / - / -
ModernBERT-Large - / - - / - 44.0 - / - / - - / - / -
BiGLM-360M 90.2 / 90.3 88.9 / 94.5 43.7 44.6 / 21.0 / 36.4 40.2 / 11.2 / 24.4
T5-Large-770M 89.9 / 89.6 86.7 / 93.8 - - / - / - - / - / -
Megatron-1.3B 90.9 / 91.4 89.1 / 94.9 - - / - / - - / - / -
Megatron-3.5B 91.4 / 91.4 90.0 / 95.5 - - / - / - - / - / -
BiGLM-1.3B 91.2 / 91.3 89.8 / 95.2 44.8 46.2 / 22.7 / 38.0 40.8 / 11.5 / 24.9
BiGLM-3.5B 91.7 / 91.9 90.1 / 95.5 45.4 47.1 / 23.3 / 38.7 41.3 / 11.8 / 25.3

Table 3: Result of task-specific scenarios. The evaluation metrics are simplified: EM / F1 : exact match score / F1
score, R-1 / R-2 / R-L : ROUGE-1 / ROUGE-2 / ROUGE-L, R-L / B-4 / MR : ROUGE-L / BLEU-4 / METEOR.

and Cosmopedia v2 to pre-train three versions406

of BiGLM with different parameters, termed as407

BiGLM-136M, BiGLM-360M, and BiGLM-1.3B.408

Besides, we include the above-mentioned common409

model modifications and omit the dropout module.410

Then, we we follow the deeper model architectures411

in (Liu et al., 2024) to train BiGLM-136M and412

BiGLM-360M, and follow the common design to413

train BiGLM-1.5B and BiGLM-3.5B considering414

the training efficiency. We set the max length as415

2048 and batch size as 1024, then train BiGLM416

for a total of 300k steps (around 600B tokens).417

Additionally, we adopt the WSD LRS to train all418

the models with 20% time for the annealing stage.419

More details are presented in Appendix A.420

4.1 Task-specific Fine-tuning421

Datasets and Models We evaluate BiGLM for422

task-specific fine-tuning scenarios with the follow-423

ing dataset, i.e., MNLI (Williams et al., 2017)424

and SQuAD (Rajpurkar et al., 2016) for un-425

derstanding tasks, BEIR for text retrieval tasks,426

XSUM (Narayan et al., 2018) and MSQG (Mi-427

croSoft Question Generation) for generation tasks.428

The details of these datasets are presented in Ap-429

pendix B. For the baseline models, we adopt two430

representative BERT-family models (BERT (De-431

vlin et al., 2018), RoBERTa (Liu et al., 2019), De-432

BERTaV3 (He et al., 2020), and recent Modern-433

BERT (Warner et al., 2024)). Besides, we also434

include BART (Lewis et al., 2019), which can435

perform well in both language understanding and436

generation tasks. We further adopt the model ver-437

sions of BERT containing 1.3B and 3.5B parame-438

ters which are provided in Shoeybi et al. (2019) to439

compare with BiGLM-1.3B and BiGLM-3.5B. 440

Settings We fine-tune BiGLM on XSUM and 441

MSQG following the previous practice (Liang et al., 442

2023a; Xiao et al., 2024), which utilizes the Mask- 443

Predict decoding algorithm (Ghazvininejad et al., 444

2019) to adapt the BERT-family to language gen- 445

eration scenarios. Besides, we follow the practice 446

in the traditional BERT-family for SQuAD, but for 447

MNLI, rather than adopting the representation of 448

the [cls] token to predict the label class in the tradi- 449

tional BERT-family, we enable BiGLM to predict 450

the real label with a specific prompt (Bach et al., 451

2022). During fine-tuning, we train for a total of 452

5 epochs for MNLi and SQuAD, and 50 epochs 453

for XSUM and MSQG. We validate BiGLM af- 454

ter each epoch and select the best one as our final 455

model. As for the evaluation metrics, we follow 456

Liu et al. (2021) to adopt ROUGE-1/2/L (Lin and 457

Hovy, 2002) for XSUM, BLEU-4 (Papineni et al., 458

2002), Rouge-L and METEOR (Lavie and Agar- 459

wal, 2007) for MSQG. Besides, we report accuracy 460

for MNLI, exact match, and F1 score for SQuAD 461

following previous BERT-family (Liu et al., 2019). 462

Results The corresponding results are presented 463

in Table 3, we can find that for these models un- 464

der 1B parameters: (1) BiGLM can outperform all 465

the baselines on MNLI and MSQG. (2) BiGLM 466

achieve comparable and in some cases superior 467

performance on SQuAD and XSUM. (3) BiGLM- 468

360M achieves relatively inferior performance on 469

XSUM compared to BART-Large. We attribute 470

this to the non-autoregressive generation paradigm 471

which falls short in generating longer targets. Be- 472

sides, for those over 1B parameters, BiGLM-1.3B 473
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Models LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

RWKV-169M (300B) 24.73 75.2 47.52 23.46 50.67 62.17 64.04 37.00 26.89 32.25 22.25 42.41
SmolLM-135M (600B) 27.04 83.5 61.61 28.75 53.28 62.17 68.08 39.66 31.77 42.61 25.21 47.61
BiGLM-136M (600B) 28.88 86.2 59.43 27.65 53.32 62.23 65.83 38.18 32.93 40.51 25.67 47.35

RWKV-430M (300B) 24.42 79.0 52.23 25.17 52.80 62.05 68.44 38.84 28.71 40.78 22.28 44.98
Qwen2-500M (7T) 29.34 90.8 54.55 28.84 57.46 58.84 69.91 42.78 33.97 49.08 24.48 49.10
SmolLM-360M (600B) 28.57 90.7 70.20 36.18 56.99 61.25 71.04 41.15 34.74 53.51 24.60 51.76
BiGLM-360M (600B) 29.29 91.8 67.95 34.25 54.72 62.17 67.78 41.33 37.13 52.97 25.80 51.38

RWKV-1.5B (300B) 27.80 84.9 60.82 29.01 55.33 52.95 72.36 41.20 32.54 52.95 21.79 48.33
TinyLlama-1.1B (3T) 25.81 89.3 61.66 32.68 59.43 61.56 73.56 42.27 36.94 46.70 22.28 53.17
Qwen2-1.5B (7T) 31.03 94.5 66.37 36.95 65.82 68.93 75.08 45.91 36.36 65.34 30.35 56.05
Gemma-2B (3T) 30.26 94.3 74.41 41.55 65.35 65.35 78.29 48.06 36.08 71.43 22.15 57.02
SmolLM-1.7B (1T) 28.57 93.2 76.47 46.25 60.93 62.57 76.01 43.20 36.84 65.74 24.26 55.83
BiGLM-1.3B (600B) 30.67 94.7 74.12 42.12 58.27 63.25 74.02 43.65 38.86 63.25 25.83 55.43

RWKV-3B (300B) 28.11 86.0 64.81 33.28 59.98 62.08 74.32 41.15 33.78 59.97 19.83 51.21
Sheared-LLaMA-3B (2T) 28.26 91.1 67.30 33.58 65.04 60.76 76.93 42.07 38.09 68.99 23.99 54.19
Qwen2.5-3B (7T) 33.49 95.4 77.31 47.44 68.43 74.95 78.51 49.95 38.37 72.54 32.07 60.77
Open-LLaMA-3B (1T) 28.57 92.2 69.28 36.35 61.80 62.91 74.97 42.22 37.32 64.31 22.40 53.85
BiGLM-3.5B (600B) 32.02 96.1 78.78 47.21 64.97 66.12 77.12 45.87 40.09 72.08 26.17 58.79

Table 4: Results of zero-shot reasoning scenarios.

outperforms Megatron-1.3B and there only exists474

a tiny gap compared to Megatron-3.5B. BiGLM-475

1.3B outperforms all the baseline models.476

4.2 Zero-shot Reasoning477

Datasets and Models We adopt a range of zero-478

shot common sense reasoning and reading com-479

prehension tasks as mentioned in Section 2.2. For480

baseline models, we adopt the previous LLMs con-481

taining the comparable parameters with BiGLM,482

including RWKV (Peng et al., 2023), SmolLM (Al-483

lal et al., 2024), Gemma (Team et al., 2023), several484

Llama and Qwen variants (Zhang et al., 2024b; Xia485

et al., 2023; Geng and Liu, 2023; qwe, 2024).486

Settings The evaluation for BiGLM is the same487

as mentioned in Section 2.2. For these baseline488

models, we also adopt Language Model Evaluation489

framework to re-run their public released models490

in Huggingface5 to obtain their final performance.491

Results The corresponding results are presented492

in Table 4, demonstrating that considering the av-493

erage performance compared to baselines: (1) for494

these models with less than 1B parameters, BiGLM495

outperform most previous LLMs and achieve com-496

parable performance with the current state-of-the-497

art lightweight SmolLM. (2) While BiGLM-1.3B498

is trained for 600B tokens, it only slightly underper-499

forms SmolLM-1.7B and Qwen2-1.5B which are500

trained for 1T and 7T tokens, respectively. Besides,501

considering specific single dataset, BiGLM can502

perform best on several datasets, Sciq, BoolQ, and503

Truthfulqa for BiGLM-135M and BiGLM-360M,504

5https://huggingface.co

Methods MMLU SuperGLUE Genset
ZS / FS AVG ACC. B-2 / D-2

Flan-T5-Small (87M) 30.05 / 29.76 50.58 29.17 / 0.55
Flan-T5-Base (250M) 33.44 / 34.28 64.97 32.46 / 0.62
Flan-T5-Large (780M) 41.54 / 42.03 74.04 38.28 / 0.63
Flan-T5-XL (3B) 48.68 / 49.24 76.56 36.53 / 0.63
Instruct-XMLR (3B) 41.36 / 40.17 74.16 35.83 / 0.70
BiGLM-136M 31.14 / 32.98 53.21 31.23 / 0.72
BiGLM-360M 39.61 / 40.03 68.45 35.29 / 0.71
BiGLM-1.3B 46.17 / 46.59 75.53 40.18 / 0.71
BiGLM-3.5B 51.05 / 52.18 77.12 43.19 / 0.73

Table 5: Result of multitask learning scenarios. The
metrics are simplified: ZS / FS: accuracy under zero-
shot/few-shot settings, AVG ACC: average score on
SuperGLUE, B-2 / D-2: BLEU-2 / Distinct-2.

Sciq and BoolQ for BiGLM-360M. (3) The perfor- 505

mance of BiGLM-3.5B is similr to BiGLM-1.3B, 506

which only underperforms Qwen2.5-3B. 507

4.3 Multitask Learning 508

Datasets and Models We evaluate BiGLM for 509

multitask learning scenario after multitask instruc- 510

tion tuning (Chung et al., 2022; Taori et al., 2023), 511

which ability of BERT-family has also been men- 512

tioned in (Xiao et al., 2024). We utilize FLAN 513

dataset (Wei et al., 2021) which is composed of 514

numerous tasks with the instruction format, to fine- 515

tune BiGLM, then we adopt a held-in benchmark 516

(SuperGLUE (Wang et al., 2022)), a held-out one 517

(MMLU (Hendrycks et al., 2021)), and a subset 518

containing several instances sampled from held- 519

out generation tasks including WIKI-AUTO (Jiang 520

et al., 2020) for text simplification, Quora Ques- 521

tion Pairs (QQP) for paraphrase generation, and 522

PersonaChat (Zhang et al., 2018) for dialogue gen- 523

eration. For baselines, we adopt Flan-T5 (Wei 524
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(a) Train Loss (b) Accuracy of ARC

Figure 3: Results of scaling effects for BiGLM.

et al., 2021) and instruct-XMLR (Xiao et al., 2024),525

whose details are presented in Appendix B.526

Settings We fine-tune BiGLM on FLAN dataset527

for 5 epochs, and adopt a held-in validation set to528

evaluate the model after each epoch, then we select529

the best one as our final model. During training, we530

set the learning rate as 5e-5 and adopt the linear531

decay schedule. For MMLU, we report the corre-532

sponding zero-shot and few-shot results following533

previous practice, and for SuperGLUE, we report534

the average accuracy. Moreover, for other gen-535

eration tasks, we randomly sample 100 instances536

from each dataset to compose a subset, denoted as537

Genset. We report BLEU (Papineni et al., 2002)538

and Distinct (Li et al., 2015) to measure the n-gram539

level precision and the diversity of generated texts.540

Results Table 5 presents the corresponding re-541

sults, we can find that (1) BiGLM-1.3B outper-542

forms Instruct-XMLR in all scenarios, indicating543

the effectiveness of our various methods for train-544

ing new BERT-family. (2) Compared with Flan-T5545

models which trained with more tokens (1T) dur-546

ing pre-training stage, BiGLM can also reach the547

performance level with specific model parameters.548

5 Analysis549

5.1 Scaling Effects for BiGLM550

In this section, we study the scaling effects for551

BiGLM which plays a vital role in the success552

of LLMs (Hoffmann et al., 2022; Touvron et al.,553

2023a). Specifically, we study the loss and per-554

formance changes across different model versions555

throughout the training process. For performance,556

we present the average accuracy score of ARC-easy557

and ARC-challenge. We present the corresponding558

curves in Figure 3, we can find that (1) increasing559

the model parameters can bring significant perfor-560

mance improvements and reduce the training loss.561

(2) We can also verify the effectiveness of WSD562

LRS as mentioned in Section 3.2 while witnessing563

(a) Train Loss (b) Accuracy of ARC

Figure 4: Results of models trained with different data.

an evident drop in training loss and improvement in 564

performance after 240k training steps in the figure. 565

5.2 Effects on Pre-training Corpora 566

As the training corpora has shown great effects on 567

final capabilities of LLMs, we conduct an analytic 568

experiments of the loss and performance changes 569

during training trained with data. Specifically, ex- 570

cept adopting the mixed data and raw data as men- 571

tioned in Section 3.3, we also include the Pile (Gao 572

et al., 2020; Biderman et al., 2022), which is a cu- 573

rated collection of English language datasets and 574

has been widely used for training language mod- 575

els (Biderman et al., 2023; Peng et al., 2023). We 576

train BiGLM-136M for 100B tokens and the cor- 577

responding results are shown in Figure 4, demon- 578

strating that: (1) while lower loss can be achieved 579

with the pile data, it does not lead to better perfor- 580

mance, indicating that data distribution is highly 581

related to the training loss. (2) Compared with raw 582

data and mixed data, adopting the mixed data can 583

achieve lower loss and better performance. Overall, 584

we can only conduct consistent comparisons based 585

on the training loss while there is no significant 586

distribution differences between two corpora. 587

6 Conclusion 588

In this paper, we explore the potential of BERT- 589

family for building scalable, general and compet- 590

itive LLMs. By introducing a more feasible pre- 591

training task and further integrate several cutting- 592

edge technologies in BERT-family, our proposed 593

model variants, which is trained from scratch with 594

bidirectional attention mechanism and termed as 595

Bidirectional General Language Models (BiGLM), 596

can reach the performance levels that are on par 597

with, and in some cases surpassing the current 598

SOTA AR models with comparable parameters. 599

Our works represent the early attempts for seeking 600

novel types of LLMs, aiming to promote further de- 601

velopment of the BERT family and further provide 602

a new research direction for LLM community. 603
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Limitations604

Due to computational limitations, we only scaled605

BiGLM to 3.5B parameters, which is still consid-606

erably smaller than the current mainstream large607

language models with tens of billions of parame-608

ters, such as LLaMA-65B, Qwen-2-72B, and sev-609

eral GPT series models. Besides, the training data610

(600B) is also relatively not enough for BiGLM-611

1.5B and BiGLM-3.5B, leaving a problem that612

whether BiGLM can breaking through standard613

scaling laws. Additionally, previous works have614

pointed out that training language models with615

masked language modeling with bidirectional at-616

tention mechanism need more time to train the617

same tokens compared with current decoding-only618

LLMs with autoregressive modeling, which may619

lead to more computational costs.620
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A Details of Pre-training1074

We present the details of the pre-training models in1075

Table 7.1076

B Details of Datasets and Models1077

We present the details for evaluation datasets here.1078

MNLI MNLI (Williams et al., 2017) consists of1079

pairs of premise and hypothesis sentences, as well1080

as labels indicating their relationship (i.e., entail-1081

ment, neutral, and contradiction). It has two test1082

sets, which comes from matching domains (MNLI-1083

m) and mismatching domains (MNLI-mm) of the1084

training set.1085

SQuAD SQuAD (Rajpurkar et al., 2016) is a1086

reading comprehension dataset consisting of ques-1087

tions posed by crowdsourcing workers on a set of1088

wikipedia articles, where the answer to each ques-1089

tion is a paragraph of text from the corresponding1090

article. Reseacher adopt this dataset to evaluate the1091

extractive question answering for language models.1092

XSUM XSUM (Narayan et al., 2018) dataset con-1093

tains 204,045/11,332/11,334 online articles and sin-1094

gle sentence summary pairs from the British Broad-1095

casting Corporation for training/validation/test.1096

MSQG MicroSoft Question Generation (MSQG)1097

is a large-scale dataset for question generation tasks1098

proposed in GLGE benchmark (Liu et al., 2021).1099

ARC AI2 Reasoning Challenge (ARC) () is1100

datasets composed of genuine grade-school level,1101

multiple-choice science questions. This is further1102

divided into a Challenge Set and an Easy Set, where1103

the former contains only questions answered incor-1104

rectly by both a retrieval-based algorithm and a1105

word co-occurrence algorithm.1106

LogiQA LogiQA (Liu et al., 2020) is constructed1107

from the logical comprehension problems from1108

publically available questions of the National Civil1109

Servants Examination of China, which are designed1110

to test the civil servant candidates’ critical thinking1111

and problem solving.1112

Sciq Sciq (Johannes Welbl, 2017) contains1113

13,679 crowdsourced science exam questions about1114

Physics, Chemistry and Biology. Among them, an1115

additional paragraph with supporting evidence for1116

the correct answer is provided.1117

WinoGrande WinoGrande (Sakaguchi et al., 1118

2021) is formulated as a fill-in-a-blank task with bi- 1119

nary options, aiming to enable the language model 1120

to choose the right option for a given sentence. 1121

BoolQ BoolQ (Clark et al., 2019) a question an- 1122

swering dataset with labels as yes/no. Each exam- 1123

ple is a triplet of (question, passage, answer), with 1124

the title of the page as optional additional context. 1125

PIQA PIQA (Bisk et al., 2020) composes of sev- 1126

eral natural language inference questions which 1127

evaluates the ability of physical commonsense rea- 1128

soning for language models, 1129

SIQA Social_IQa(SIQA) (Sap et al., 2019) is 1130

the first large scale benchmark for commonsense 1131

reasoning about social situations, which contains 1132

several multiple choice questions for probing emo- 1133

tional and social intelligence in a variety of every- 1134

day situations. 1135

Race RACE (Lai et al., 2017) is a large-scale 1136

reading comprehension dataset collected from En- 1137

glish examinations, which are designed for middle 1138

school and high school students. 1139

Hellaswag Hellasawg (Zellers et al., 2019) is a 1140

dataset for commonsense natural language infer- 1141

ence to evaluate the ability of language models to 1142

finish the specific sentence. 1143

TruthfulQA TruthfulQA (Lin et al., 2021) aims 1144

to measure whether a language model is truthful in 1145

generating answers to questions. We transform this 1146

datasets into the multiple choice questions follow- 1147

ing previous practice. 1148

MMLU MMLU (Hendrycks et al., 2021) is 1149

a massive multitask test consisting of multiple- 1150

choice questions from various branches of knowl- 1151

edge, including humanities, social sciences, hard 1152

sciences, and other areas that are important for 1153

some people to learn. It covers 57 tasks in total in- 1154

cluding elementary mathematics, US history, com- 1155

puter science, law, and more. 1156

SuperGLUE SuperGLUE (Wang et al., 2022) 1157

is a enhanced version of GLUE containing more 1158

difficult language understanding tasks. 1159

WIKI-AUTO WIKI-AUTO (Jiang et al., 2020) 1160

contains aligned sentences from English Wikipedia 1161

and Simple English Wikipedia, which evaluates the 1162

simplification abilities of the language models. 1163
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QQP Quora Question Pairs (QQP) consists of1164

several pair of questions containing the same se-1165

mantics, which can viewed as paraphrase pairs.1166

PersonaChat PersonaChat (Zhang et al., 2018)1167

contains around 150k data triples formatted as (pro-1168

file, conversation, response).1169

Flan-T5 Flan-T5 (Wei et al., 2021) is trained on1170

FLAN instruction data based on the T5 pre-trained1171

language models.1172

Instruct-XMLR Instruct-XMLR (Xiao et al.,1173

2024) is instruction based fine-tuned based on1174

XLM-R with an encoder-only model archetecture.1175

C Results of Ablation Study1176

As mentioned in Section 2.2, we compare different1177

decomposition ratios (α in {0.1,0.2,0.3,0.4}), and1178

different factors (λ1, λ2) in {(0.3, 0.2), (0.5,0.2),1179

(0.5,0.4), (0.4,0.2)} to control the masking ratio1180

range for X , i.e., βX ∼ U(0.1, 0.3), U(0.3, 0.5),1181

U(0.1, 0.5), U(0.2, 0.4), respectively. Besides,1182

while the masking ratio for Y is typically sampled1183

from a uniform distribution U(0, 1), we also com-1184

pare different variants where βY ∼ U(0.1, 0.9),1185

U(0.2, 0.8), and U(0.3, 0.7). As the result shown1186

in Table 1 (BiGLM) is trained based on the setting1187

that α = 0.2, βX ∼ U(0.1, 0.3), βY ∼ U(0, 1),1188

we present the other ones in Table 8, we can find1189

that all the variants (i.e., different decomposition1190

ratios, masking ratios for X and Y ) achieve com-1191

parable performance compared to the first ver-1192

sion of BiGLM which is trained with , except1193

that adopting relative larger masking ratio for X1194

(βX ∼ U(0.3, 0.5)), indicating that larger masking1195

ratio for X which leads to fewer unmasked tokens1196

(i.e., useful context information) may increase the1197

learning difficulty and is not suitable for BiGLM.1198

D Training Cost Analysis1199

According to the training detailed as mentioned in1200

Section 4, we present the training cost (i.e., the1201

GPU hours of the training process) in Table 6.

Model GPU Hours

BiGLM-136M 11392
BiGLM-360M 22528
BiGLM-1.3B 45568
BiGLM-3.5B 100250

Table 6: The training cost.

1202

E Related Works 1203

The traditional BERT families (Devlin et al., 2018; 1204

Liu et al., 2019; Clark et al., 2020; He et al., 2020; 1205

Conneau et al., 2020; Warner et al., 2024; Fu et al., 1206

2024) have demonstrated excellent performance in 1207

the NLP community. Their bidirectional model- 1208

ing characteristic enables them to learn the context 1209

representations well and facilitate the capture of 1210

comprehensive semantic information, leading to 1211

success in various language understanding tasks. 1212

However, their language generation abilities are rel- 1213

atively weak compared with autoregressive causal 1214

language models (Lewis et al., 2019; Song et al., 1215

2019). Several previous works have introduced 1216

different methods to empower them with language 1217

generation abilities via non-autoregressive gener- 1218

ation manner (Chan and Fan, 2019; Jiang et al., 1219

2021; Su et al., 2021; Liang et al., 2023b,a; Xiao 1220

et al., 2024). However, the performance does not 1221

reach the level of strong AR models. Besides, 1222

they focus on simple generation tasks, and always 1223

rely on the fine-tuning process. As a result, the 1224

generation potential of the vanilla BERT-family 1225

without fine-tuning, is under-explored. Further- 1226

more, more capabilities of BERT-family should 1227

be evaluated with the constantly updating require- 1228

ments for language models. In this paper, we fill-in 1229

this blank and pre-train a new version of BERT- 1230

family, demonstrating their potential for building 1231

scalable, general, and competitive large language 1232

models. Among the previous works in BERT fami- 1233

lies, Samuel has pointed out that BERT families can 1234

be generative in-context learners and be adopted 1235

for solving reasoning task, their models generate 1236

the target tokens one-by-one in left-to-right order 1237

similar to AR models but exist relatively large per- 1238

formance gaps. Conversely, our proposed BiGLM 1239

generate the target tokens without ordering con- 1240

straint and achieve comparable performance with 1241

current competitive AR models. Besides, more cur- 1242

rent work (Warner et al., 2024) also incorporates 1243

several enhanced training strategies which are also 1244

mentioned in Section 3 into the training process to 1245

enhance the capabilities of BERT family. However, 1246

they still focus on improving the performance in 1247

traditional NLU and text retrieval tasks which rely 1248

the understanding ability of BERT family. Com- 1249

paratively, we conduct evaluation experiments in 1250

more range of testing scenarios such as text gener- 1251

ation and common sense reasoning tasks to further 1252

broader the applications of BERT family. 1253
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Parameters BiGLM -136M BiGLM -360M BiGLM -1.3B BiGLM -3.5B

Num_layers 30 32 24 30
Hidden_size 576 960 2048 2560
Num_attn_heads 9 15 32 20
Num_key_value_heads 3 5 32 20
Init_std 0.02 0.02 0.013 0.013
Seq_length 2048 2048 2048 2048
Batch_size 1024 1024 1024 1024
Total_train_iters 300000 300000 300000 300000
Learning_rate 6e-4 6e-4 6e-4 6e-4
Annealing_iters 60000 60000 60000 60000
Annealing_min_lr 6e-5 6e-5 6e-5 6e-5
Clip_grad 1.0 1.0 1.0 1.0
Adam_beta (0.9,0.95) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Weight_decay 1e-2 1e-2 1e-2 1e-2

Table 7: Details of the pre-training models and setting.

Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48

α = 0.1 52.23 25.72 60.26 84.5 51.60 28.45 27.53 37.49 60.51 34.23 25.02 44.32
α = 0.3 52.14 25.46 60.41 85.6 50.43 27.19 27.46 38.37 61.13 34.02 24.68 44.29
α = 0.4 51.60 25.09 62.02 86.0 51.22 26.73 30.14 37.05 59.17 33.14 24.85 44.27

βX ∼ U(0.1, 0.5) 50.63 23.72 60.06 83.8 52.40 28.73 28.61 38.39 60.61 33.89 24.96 44.16
βX ∼ U(0.3, 0.5) 51.05 24.06 59.85 83.6 52.17 26.27 27.75 36.75 59.14 32.80 24.31 43.43
βX ∼ U(0.2, 0.4) 51.22 23.63 60.12 83.9 52.33 27.19 28.52 37.95 60.74 33.51 24.97 44.01

βY ∼ U(0.1, 0.9) 52.64 25.34 59.74 84.9 50.59 28.67 28.13 37.37 59.14 33.67 24.84 44.09
βY ∼ U(0.2, 0.8) 51.84 25.26 59.09 85.3 52.17 28.31 28.71 37.01 61.26 32.57 24.24 44.16
βY ∼ U(0.3, 0.7) 52.74 25.17 60.45 84.9 51.14 28.17 28.13 37.70 59.62 34.26 25.04 44.30

Table 8: Results of various pre-training variants. Wino., Hella., and Truth. denote the WinoGrande, Hellaswag,
and Truthfulqa datasets, AVG. denotes average result. attn. denotes the attention masking strategy.
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