
Speculative Decoding with Big Little Decoder

Sehoon Kim1 Karttikeya Mangalam1 Suhong Moon1

Jitendra Malik1 Michael W. Mahoney123 Amir Gholami12 Kurt Keutzer1

1University of California, Berkeley 2ICSI 3LBNL
{sehoonkim, mangalam, suhong.moon, malik, mahoneymw, amirgh, keutzer}@berkeley.edu

Abstract

The recent emergence of Large Language Models based on the Transformer ar-
chitecture has enabled dramatic advancements in the field of Natural Language
Processing. However, these models have long inference latency, which limits their
deployment and makes them prohibitively expensive for various real-time appli-
cations. The inference latency is further exacerbated by autoregressive generative
tasks, as models need to run iteratively to generate tokens sequentially without
leveraging token-level parallelization. To address this, we propose Big Little De-
coder (BiLD), a framework that can improve inference efficiency and latency for
a wide range of text generation applications. The BiLD framework contains two
models with different sizes that collaboratively generate text. The small model runs
autoregressively to generate text with a low inference cost, and the large model
is only invoked occasionally to refine the small model’s inaccurate predictions in
a non-autoregressive manner. To coordinate the small and large models, BiLD
introduces two simple yet effective policies: (1) the fallback policy that determines
when to hand control over to the large model; and (2) the rollback policy that
determines when the large model needs to correct the small model’s inaccurate
predictions. To evaluate our framework across different tasks and models, we apply
BiLD to various text generation scenarios encompassing machine translation on
IWSLT 2017 De-En and WMT 2014 De-En, and summarization on XSUM and
CNN/DailyMail. On an NVIDIA T4 GPU, our framework achieves a speedup of
up to 2.12× speedup with minimal generation quality degradation. Furthermore,
our framework is fully plug-and-play and can be applied without any modifications
in the training process or model architecture. Our code is open-sourced1.

1 Introduction

In recent years, the Transformer [63] has become the de-facto model architecture for a wide range
of Natural Language Processing tasks. The potential of the Transformer architecture has been
further enhanced by the emergence of Large Language Models (LLMs) with up to hundreds of
billions of parameters trained on massive text corpora [2, 47, 50, 10, 23, 7, 55, 83, 62]. Despite
their performance, efficiently running these models for inference is a challenge due to their large
model size and runtime complexity. This limits their use in many applications that require real-time
responses.

These computational inefficiencies are particularly pronounced in autoregressive generative tasks
such as machine translation [3, 1], summarization [21], and language modeling [41]. For these tasks,
models need to run iteratively to generate tokens sequentially, as each token is dependent on the
previously generated tokens. This requires the models to load weight matrices, as well as the cached
keys and values of previously generated tokens [46], for each token generation, thus preventing

1https://github.com/kssteven418/BigLittleDecoder

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/kssteven418/BigLittleDecoder

Large Model
(#parameter ~10N)

<s>

① Several

Several

② famous

famous

③ songs

songs

④ are

are

⑤ composed

Small Model
(#parameter N)

<s>

① Several

Several

② famous

famous

③ songs

songs

④ are

Large Model
(#parameter ~10N)

<s> Several famous songs are

⑤’ composed

Autoregressive (sequential) Autoregressive (sequential) Non-autoregressive (parallel)

Latency: ① + ② + ③ + ④ + ⑤ Latency: ① + ② + ③ + ④ + ⑤’ (① + ② + ③ + ④ + ⑤ >> ⑤’)>

Figure 1: Illustration of (Left) the normal autoregressive decoding procedure of a large model
and (Right) BiLD that consists of a small model and a large model. In BiLD, the small model
generates tokens autoregressively (i.e., sequentially) until it hands over control to the large model.
The large model then takes as input the tokens generated by the small model in parallel, allowing for
non-autoregressive (i.e., parallel) execution to generate the next token. This improves end-to-end
latency by allowing for more efficient utilization of underlying hardware.

parallelization of the loaded values across multiple tokens. This makes autoregressive text generation
memory bandwidth constrained during inference [8]. As a consequence, autoregressive generative
tasks suffer from low hardware utilization as well as high inference latency [32]. In contrast, non-
autoregressive tasks, such as text classification [65], can process the entire input sequence with a
single weight load, which is then shared across all input tokens in parallel. Given the increasing
popularity of text generation tasks, in light of advancements in LLMs, it is critical to improve the
inference latency and runtime efficiency of autoregressive decoding processes despite the potential
sacrifice in generation quality.

To overcome this, non-autoregressive decoding [16, 69, 39, 59, 70, 52, 37, 15, 19] has been explored
to maximize token-level parallelization and reduce the inference latency of generative tasks by
generating multiple tokens simultaneously. This approach can be more computationally efficient than
the regular autoregressive process. However, non-autoregressive decoding suffers from text generation
quality issues due to its assumption of conditional independence between output tokens [29]. In
order to achieve comparable performance to that of autoregressive processes, it generally requires
complex and often task-dependent training strategies, supplementary hinting information that guides
the decoding process [69, 39, 59, 70, 52], and knowledge distillation [84].

In this paper, we introduce a novel framework named Big Little Decoder (BiLD) that can be applied
to various text generation scenarios to reduce inference latency without additional training iterations
or modifications to the existing training pipeline or model architecture. As illustrated in Figure 1
(Right), the BiLD framework consists of two decoder models, a large model and small model, that
work collaboratively to generate text sequences. In particular, only the small model is executed
autoregressively to generate the majority of the text, taking advantage of its small runtime overhead.
The large model only engages occasionally to refine the small model’s inaccurate predictions, thus
allowing for efficient non-autoregressive execution. This autoregressive small, non-autoregressive
large scheme results in a substantial improvement of up to ∼2× in end-to-end inference latency,
compared to regular autoregressive execution, while maintaining similar or better generation quality.
The effectiveness of our framework is also supported by our observation that the predictions made by
small and large models only slightly disagree, and thus the small model can match the performance
of the large model with a minimal refinement of its own predictions (Figure 2, Section 3.1).

In summary, our main contributions are as follows:

• We introduce BiLD, a general framework that allows faster inference of various text generation
applications. Our framework is designed to coordinate a large model and a small model such that
the large model is only executed infrequently and efficiently in a non-autoregressive manner to
refine the small model’s inaccurate predictions.

• We propose two policies for BiLD: the fallback policy that allows the small model to hand control
over to the large model if it is not confident enough (Section 3.3), and the rollback policy that
allows the large model to review and correct the small model’s inaccurate predictions (Section 3.4).

• We introduce a simple yet effective technique for aligning the predictions of the small model with
those of the large model. By incorporating this prediction alignment technique into the BiLD
framework, we can further enhance its performance with minimal additional effort (Section 3.5.1).

2

• We apply BiLD for 4 different text generation scenarios including IWSLT 2017 De-En [3] and WMT
2014 De-En [1] for machine translation, XSUM [43] and CNN/DailyMail [21] for summarization.
Compared to the full autoregressive execution, BiLD achieved a speedup of up to 1.85× without
generation quality degradation and 2.12× allowing ∼1 point degradation on an NVIDIA T4 GPU
(Section 4.2).

2 Related Work

2.1 Efficient Transformer Decoding Inference

A variety of approaches have been proposed to increase the speed and reduce the overall inference
costs of Transformers. Well-known approaches include efficient architecture design [26, 33, 36, 60,
67, 75], quantization [31, 54, 81, 82, 79, 74, 9], pruning [14, 49, 34, 42, 64, 12, 35], and neural
architecture search [5, 56, 57, 66, 76, 80]. While these methods are generally suitable for Transformer-
based tasks, some of the works have been focused on efficient decoding mechanisms to reduce the
cost of autoregressive tasks.

One popular line of research that shares similarity to our work is non-autoregressive decoding. Non-
autoregressive decoding, also known as parallel decoding, was first introduced in [16] as a method to
reduce inference latency by producing multiple output tokens in parallel, thus avoiding sequential text
generation. Subsequent work has further improved the performance of non-autoregressive models by
incorporating auxiliary or hinting information [69, 39, 59, 70, 52] to ensure more accurate parallel
decoding, or by allowing multiple additional iterations to refine any inaccurate predictions [37, 15, 19].
Such a multi-iteration decoding scheme has also been proposed in [71, 17, 58], which generates texts
with fewer steps than the autoregressive scheme by inserting or deleting multiple tokens per iteration.
However, these works require complex and often task-dependent training strategies and/or auxiliary
information to achieve comparable performance to that of autoregressive models. In contrast, our
methodology aims for a plug-and-play solution that does not require any complex training pipeline.

Our work is also related to the approaches that reduce the decoding cost by making decoders
shallow. [29] demonstrates that increasing the depth of encoders and decreasing the depth of decoders
can reduce decoding latency while still preserving performance. CALM [51] recently introduces
early exiting, which dynamically adjusts the depth of the decoder for each token generation by
terminating the inference at a middle layer, rather than executing until the end layer. While our
method shares the same goal of accelerating decoding, we take a different approach by improving
decoding parallelism rather than by skipping unnecessary computation. In addition, our framework
offers several advantages over CALM: (1) our method is a fully black box approach that does not
involve any modifications to model structures, while CALM requires modifications such as state
propagation for the skipped layers; (2) our approach does not require changes to the training pipeline,
whereas CALM requires averaged loss across all layers to ensure layer consistency; (3) our approach
can be also applied without any training which is critical in various LLM use cases where training
is either infeasible or prohibitively expensive. In Section 4.4, we also show that the early exiting
strategy can be implemented in our framework to yield significantly better generation quality, further
demonstrating the generalizability of our method to a wider range of problems.

2.2 Use of Multiple Models

Coordinating the use of multiple models has also been explored in knowledge distillation and
ensemble learning. Knowledge distillation is a widely adopted methodology for enhancing the
performance of smaller models by training them to replicate the behavior of larger, more complex
models [22]. When applied to the Transformer architecture, this approach involves distilling the
final logits [48, 61] and/or hidden states of a larger model, such as the attention map [60, 28, 68]. In
contrast to knowledge distillation, which leverages the knowledge of a large model solely during the
training time to improve the training of a smaller model, our method is a run-time solution applied
during the decoding process. Therefore, our approach can be more adaptive to run-time behaviors
and does not add complexity to training.

Ensemble learning is another approach for coordinating multiple models, wherein multiple models are
trained independently and their predictions are combined to improve overall performance. Ensemble
learning has been found to yield promising results for Transformer inference [44, 25, 77, 40, 24],

3

particularly when the models aggregated are pre-trained on different datasets and use different
techniques. However, ensemble learning generally requires running multiple models and combining
their predictions at run-time, which can be computationally expensive and not optimized for latency.
Our research aims to optimize both model performance and run-time latency.

Concurrently and independently of our work, [38, 4] also propose an interesting algorithm to
accelerate generative inference using a more powerful model to score and speculatively sample
predictions from a less powerful model. While [38, 4] offer unbiased estimators that match the
stronger model’s probability distributions, our extensive empirical evaluation shows that our approach
can deliver superior latency-performance trade-offs, due to its non-random rollback (i.e., rejection)
policy as well as the dynamic fallback window size. See Section 4.2 and Appendix 7.3 for an in-depth
comparison.

3 Methodology

3.1 Motivating Examples

0 20 40 60 80 100
% Large Model

28

29

30

31

32

BL
EU

 (h
ig

he
r b

et
te

r)

WMT 2017 De-En, mT5

0 20 40 60 80 100
% Large Model

40.0

40.5

41.0

41.5

RO
UG

E-
L

(h
ig

he
r b

et
te

r)

CNN/DailyMail, T5

Figure 2: Quality of text generation for dif-
ferent proportions of the large model’s en-
gagement on the small model’s prediction,
evaluated on the validation datasets of (Left)
WMT 2014 De-En translation [1]; and (Right)
CNN/DailyMail summarization [21]. We see
that the small models can achieve a compa-
rable or better generation quality to the large
models if ∼20% of their incorrect predictions
were substituted.

Although large models tend to produce higher-
quality text, they also result in longer end-to-end
latencies, which can be further exacerbated by the
regressive process of predicting one token at a time.
However, in many text generation scenarios we
demonstrate that a model that is an order of magni-
tude smaller than a larger model can achieve com-
parable generation quality to the larger model, pro-
vided that a few erroneous predictions are corrected.
This implies that only a small fraction of the small
model’s predictions deviate from those of the larger
model. To validate this claim, we evaluate two differ-
ent generative scenarios, machine translation with
mT5 [78] on WMT 2014 De-En [1] and summa-
rization with T5 [47] on CNN/DailyMail [21] by
running the large model along the small model for
every decoding iteration. See Section 4.1 for more
details on these models. Then, we measure the like-
lihood of the large model predicting the same token
that the small model generates. If the likelihood is below a certain threshold, we assume that the
small model’s prediction is not accurate enough, and we replace it with the large model’s prediction.
By controlling the threshold, we can adjust the proportion of the large model’s engagement.

Figure 2 plots the text generation quality on the validation dataset of each benchmark for different
proportions of the large model’s engagement. The results exhibit a clear trend across the tasks where
the small models with ∼10× smaller sizes can retain the large model’s generation quality only if
approximately 20% of their inaccurate predictions were substituted by the large model. While this
experiment assumes an ideal case where the predictions of the large model are available as ground
truth in every iteration, it nonetheless demonstrates the feasibility of achieving the text generation
quality of the large model while maintaining the low inference latency of the small model.

3.2 Problem Formulation

At nth decoding iteration, the small model and the large model each take as input a partially
generated output text y1:n−1 = (y1, · · · , yn−1), and then generate a probability distribution over
entire vocabulary pS(y|y1:n−1) and pL(y|y1:n−1), respectively. Then, the next token yn,S and yn,L
are sampled from the probability distributions,

yn,S ∼ pS(y|y1:n−1) and yn,L ∼ pL(y|y1:n−1). (1)

Depending on whether to use the small model or the large model for the nth decoding step, the nth
token yn can be either yn,S or yn,L. When deciding which model to use, it is not feasible to run the
large model along with the small model for every decoding step to verify the predictions of the small
model, as in the experiments in Section 3.1. Thus, it is necessary to hand over the control to the

4

Small Model
(#parameter N)

<s>

Several

Several

famous

famous

people

people

are

Large Model
(#parameter ~10N)

<s> Several famous people are

composing

are

singing

0.8 0.75 0.7
0.9

0.55

Fallback Threshold 𝜶𝜶𝑭𝑭𝑭𝑭= 𝟎𝟎.𝟔𝟔
Fallback

Several famous songs are?

Small Model
(#parameter N)

<s>

Several

Several

famous

famous

people

people

are

Large Model
(#parameter ~10N)

<s> Several famous people are

composing

are

singing

Rollback

Several famous songs are

distance: 𝒅𝒅 = 𝟑𝟑
Rollback Threshold 𝜶𝜶𝑹𝑹𝑭𝑭 = 𝟐𝟐

Generated Text: Several famous songs

Figure 3: (Top) The fallback policy. When the small model generates tokens autoregressively, if the
prediction probability of a specific token is below the predefined fallback threshold value αFB , the
prediction is deemed to be not confident enough, and control is then shifted to the larger model to
produce the corresponding token. (Bottom) The rollback policy. If the large model takes over the
control, it produces its own predictions for all previous tokens, as well as the current token. If the
prediction probability from the large model for a previously generated token deviates from the small
model’s prediction by a distance metric d exceeding the predetermined rollback threshold αRB , the
small model’s prediction is regarded as incorrect. In such a case, we roll back all predictions made by
the small model that follow the corresponding token.
large model only when the small model is likely to make an inaccurate prediction based on a policy
π(y1:n−1) that returns a boolean value {0, 1} indicating whether to use the large model:

yn =

{
yn,S if π(y1:n−1) = 0

yn,L if π(y1:n−1) = 1.
(2)

The objective, therefore, is to design a lightweight policy π that leads to high text generation quality
with the minimum end-to-end latency by invoking the large model only when necessary. In order to
illustrate the mechanism by which latency is reduced, consider a simple case where the small model
has generated tokens y1 through yn autoregressively. If the large model takes over the control and
predicts the next token, yn+1, it can now take multiple input tokens (y1 through yn) in parallel, thus
allowing for non-autoregressive inference. It is worth noting that this non-autoregressive approach
would require the same amount of FLOPs as a regressive approach that predicts y1 through yn+1

sequentially; however, it is much faster on hardware due to its token-level parallelism and increased
arithmetic intensity [72]. In other words, processing multiple tokens in a single memory operation
is more efficient than individually processing tokens with separate memory operations, as memory
accesses can be more costly than arithmetic operations in decoding tasks [32]. If the latency saving
from running the large model non-autoregressively outweights the additional cost of running the
small model, there is a net latency reduction. Therefore, the aim of this approach is not to reduce
the number of FLOPs, but rather to improve the hardware utilization and arithmetic intensity of the
decoding process. More detailed analysis on this can be found in Appendix 7.5.1. Figure 1 provides
a high-level overview of how the small and the large models in BiLD coordinates for text generation.

We now focus on constructing an appropriate policy π for our framework. Here, we introduce two
simple policies, the fallback and rollback policies, which (despite their simplicity) result in high
performance with significant latency reduction. We discuss the details in the following subsections.

3.3 Fallback Policy: Small Model Knows When to Stop Predictions

The first principle of the policy is that the small model should be able to determine when to hand
over control to the large model. Whenever the small model lacks confidence in its prediction, it is

5

better to allow the large model to take over. Confidence (or uncertainty, in reverse) quantification
has been an active research area [13, 30], and any lightweight confidence metric can serve as a
potential candidate. Here, we find it sufficient with a simple policy based on the maximum prediction
probability, i.e., maxy pS(y|y1:n−1), similar to the observations made in [20]. If the maximum
prediction probability is lower than a certain threshold αFB , then the small model’s prediction is
regarded to be not confident enough, and we fallback to the large model to generate the next token.
Note that this does not entail a runtime overhead. Figure 3 (Top) illustrates the fallback policy.

Fallback Policy: If maxy pS(y|y1:n−1) < αFB , then fallback to the large model and set yn = yn,L.

3.4 Rollback Policy: Large Model Knows When to Revert Predictions

While the fallback policy allows the large model to take over when the small model is not confident
enough, it is still possible that the small model is over-confident in its incorrect predictions [18].
Moreover, a single incorrect prediction at an early decoding iteration can lead to a catastrophic
effect [51], as it will affect all subsequent token predictions. To avoid such cases, it is desirable to
have the large model review the small model’s predictions and ensure the validity of each prediction.
In our framework, this comes without any extra cost. When the large model is provided with the tokens
generated by the small model for its non-autoregressive prediction of the next token, it also produces
its own predictions for all the previous decoding steps. That said, given the partially generated text
y1:n, it generates pL(y|y1:m) for all previous and current decoding steps m = 1, · · · , n, which can
be used to validate the small model’s previous predictions.

Therefore, for some distance metric d(·, ·) that compares two probability distributions, we find the
smallest decoding step m such that

d(pS(y|y1:m), pL(y|y1:m)) > αRB (3)

for a predetermined threshold αRB . If such m exists, we regard the small model’s previous prediction
ym to be inaccurate, and we rollback all predictions that follow, i.e., ym through yn, since they are
all dependent on the wrong prediction. We then replace ym with ym,L of the large model. We will
discuss in Section 4.2 that the cross-entropy loss between the small model’s hard label and the large
model’s soft label (which measures the likelihood of obtaining the small model’s prediction from the
large model’s output) is a good choice for the metric d. Rollback may incur additional latency due to
the need for duplicated computation for the reverted tokens. However, we demonstrate in Section 4.3
the net advantage of rollback as the improved text generation quality outweighs the additional latency.
See Figure 3 (Bottom) for a detailed illustration of the rollback policy.

Rollback Policy: If there exists a minimum m ∈ [1, n− 1] such that d(pS(y|y1:m), pL(y|y1:m)) >
αRB , then rollback the predictions (ym, · · · , yn) and set ym = ym,L.

3.5 Big Little Decoder Algorithm 1: Big Little Decoder
1: y ← [<s>]
2: while y[−1] ̸= <eos>
3: pS ← SmallModel(y)
4: if max(pS [−1]) > αFB

5: # Use the small model’s predicton
6: y ← y + [sample(pS [−1])]
7: else
8: # Fallback to the large model
9: pL ← LargeModel(y)

10: m← min. index such that d(pL[m], pS [m]) > αRB

11: if m exists
12: # Rollback: use the large model’s prediction
13: y ← y[: m] + [sample(pL[m])]
14: else
15: # Don’t rollback: use the large model’s prediction
16: y ← y + [sample(pL[−1])]
17: return y

Taken together, the Big Little Decoder
(BiLD) framework consists of one small
model, one large model, and a policy
that determines which model to use for
each decoding iteration. The policy
comprises two components: the fallback
policy to fall back to the large model
when the small model’s prediction is
not confident enough; and a rollback
policy to roll back the small model’s
predictions if they deviate from the pre-
dictions of the large model. Algorithm 1
provides a summary of the end-to-end
algorithm.

3.5.1 Model Prediction Alignment
BiLD is a general framework that imposes no restriction on the selection of small and large models
as long as they use the same vocabulary. Therefore, as will be demonstrated in Section 4.2, two

6

independently trained models can compose BiLD to achieve a significant latency improvement.
Nevertheless, when two models are trained separately, they may generate sequences with similar or
identical semantic meanings but using different vocabularies. For instance, one model may produce
the phrase “writing is hard” while the other may generate “writing is difficult”. Because the BiLD
policy relies on the degree of agreement between the large and small models, such a vocabulary-level
discrepancy can result in unnecessary disagreements that roll back the small model’s prediction
without any improvement in generation quality.

In order to address this issue and further optimize the BiLD performance, we present a simple
approach called model prediction alignment that aids in aligning the predictions produced by the small
and large models. To achieve this, we leverage a calibration dataset Xcal = {x(i)} that well represents
the input sentence distribution. We then generate the corresponding output sequence for each
input sequence using the large model, resulting in Ycal = {y(i)} where y(i) = argmax pL(y|x(i)).
Subsequently, we fine-tune the small model using the calibration examples (xcal, ycal) ∈ (Xcal,Ycal).

The underlying rationale of this approach is to increase the likelihood of the small model gen-
erating sequences that would have been generated by the large model. This can minimize
the distance between the small model and the large model’s predictions per each token, i.e.,
d(pS(y|x, y1:m), pL(y|x, y1:m)), throughout the decoding process, thereby avoiding unnecessary
rollbacks. Despite its simplicity, our experiments in Section 4.2 demonstrate that this approach can be
incorporated into the BiLD framework with minimal effort to significantly enhance the performance.
We further emphasize that this method does not introduce any additional complexity or hyperparame-
ters to the normal training pipeline. This is comparable to knowledge distillation [22], an alternative
method for aligning model predictions, which requires modifications to the training pipeline, access
to internal hidden states such as logits, and additional hyperparameter tuning.

4 Evaluations

4.1 Experiment Setup

Models and Datasets. To access the generalizability and validity of BiLD in various text generation
settings, we have selected IWSLT 2017 De-En [3] and WMT 2014 De-En [1] for machine translation
benchmarks and XSUM [43] and CNN/DailyMail [21] for summarization benchmarks. We used
mT5-large and small [78] for machine translation and T5-large and small [47] for summarization as
our target models, where the size of the models differ by approximately a factor of 20. Our framework
is built on top of PyTorch [45] and the HuggingFace Transformers library [73] along with their
pre-trained checkpoints.

Training. We fine-tune the pre-trained models on the target benchmarks for 500k steps to obtain
the baseline small and large models. To train the aligned small models via the prediction alignment
method (Section 3.5.1), we generate output sequences from the input sequences of the training
datasets using the fully trained large models to create calibration datasets. We then fine-tune the
pre-trained small models on the calibration dataset using the same training recipes and the number of
steps as the baseline small models. More training details can be found in Appendix 7.1.1. Throughout
the paper, we refer to BiLD with the baseline and aligned small models as unaligned and aligned
BiLD, respectively.

Inference. All inference evaluations are conducted on a single NVIDIA T4 GPU of a GCP n1-
standard-4 instance, using a batch size 1, which is a common use case for online serving [51]. For
the distance metric d in Equation 3 for the rollback policy, we use the cross-entropy loss between
the small model’s hard label and the large model’s soft label. For BiLD inference, we sweep over
different fallback and rollback thresholds to explore different trade-offs between generation quality
and latency. More evaluation details can be found in Appendix 7.1.2.

4.2 Main Results

The main results are illustrated in Figure 4, which shows the trade-off between text generation quality
and average end-to-end latency per example, normalized by the vanilla inference latency of the
pure large baseline models. The trade-offs are obtained by controlling the fallback and rollback
thresholds. Table 1 summarizes the results, with the second and third rows corresponding to unaligned

7

Table 1: The summary of Figure 4 which compares the generation quality and latency speedup of
BiLD against vanilla inference with large baseline models. The first row reports the vanilla inference,
and the second and third rows report unaligned BiLD. The fourth and fifth rows report aligned BiLD.
In both cases of unaligned and aligned BiLD, we report the speedup with minimal BLEU/ROUGE-L
score degradation (second and fourth rows), and within ∼1 point degradation (third and fifth rows).

Task (Model) Machine Translation (mT5) Summarization (T5)

Dataset IWSLT WMT XSUM CNN/DailyMail
BLEU Speedup BLEU Speedup ROUGE-L Speedup ROUGE-L Speedup

Vanilla Inference 40.32 - 31.38 - 35.08 - 41.54 -

BiLD (Unaligned) 40.33 1.43× 31.28 1.34× 35.12 1.48× 41.44 1.71×
39.44 1.58× 30.47 1.43× 34.02 1.72× 40.57 2.05×

BiLD (Aligned) 40.24 1.62× 31.26 1.47× 35.05 1.50× 41.52 1.85×
39.13 1.78× 30.33 1.70× 33.95 1.80× 40.96 2.12×

1.6x faster

1.8x faste
r

1.5x faster

1.7x fa
ste

r

1.5x faster

1.8x faste
r

1.9x faster

2.1x faster

Figure 4: Generation quality and average end-to-end latency of processing a single example on 4
different benchmarks. We report BLEU for machine translation and ROUGE-L for summarization as
performance metrics. The green and blue lines are unaligned and aligned BiLD, respectively. The X
marks are the vanilla inference with the baseline large models. For comparison, two horizontal lines
are plotted to indicate the BLEU/ROUGE-L score of the vanilla inference and 1 point degradation
from it. The latency on the x-axis is normalized by the baseline latency.

BiLD. When coupled with the normally fine-tuned baseline small models, BiLD achieves an average
speedup of 1.50× across all benchmarks, with up to 1.71× speedup on CNN/DailyMail without any
degradation in text generation quality (2nd row). By allowing ∼1 point degradation, BiLD achieves
an average speedup of 1.70×, with up to 2.05× speedup (3rd row). Note that unaligned BiLD is a
pure plug-and-play solution that does not require additional training effort or cost beyond preparing
small and large models independently.

In addition, Figure 4 shows the efficacy of the prediction alignment method, leading to a consistent
improvement of aligned BiLD over unaligned BiLD. As summarized in the forth and fifth rows of
Table 1, aligned BiLD that incorporates the aligned small models yields an average speedup of 1.61×,
with up to 1.85× speedup (4th row). Within ∼1 point degradation, it achieves an average speedup of
1.85×, with up to 2.12× speedup (5th row). The results also demonstrate that both unaligned and
aligned BiLD outperform the baseline BLEU/ROUGE-L scores in the high-latency regime, which
can be attributed to the ensembling effect of using two different models, as also studied in prior
work [40]. In Appendix 7.5.2, we provide examples of text sequences generated by BiLD, which
demonstrate that the large model’s engagement in BiLD decoding not only improves the prediction
accuracy but also prevents incorrect predictions from impacting the future ones.

We have additionally conducted a performance comparison of our method with the speculative
sampling method proposed in [4] on the IWSLT 2017 De-En and XSUM benchmarks. We implement
and evaluate it in the same environment as our main BiLD experiments using the same baseline large
and small models. We apply a fixed window size of [3, 10]. On the IWSLT benchmark, speculative
sampling achieves a BLEU score of 39.93 with a 1.28× speedup, while BiLD (unaligned) achieves a
0.61 higher BLEU score with similar speedup, or a 0.21× more latency gain with a similar BLEU
score. On the XSUM benchmark, speculative sampling achieves a ROUGE-L score of 35.00 with a
1.25× speedup. In contrast, BiLD achieves up to a 0.30 ROUGE-L score gain with a faster latency, or
up to 0.22× more latency gain with a better ROUGE-L score. We provide more detailed comparisons
in Appendix 7.3.

8

0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example

38.5

39.0

39.5

40.0

BL
EU

 (h
ig

he
r b

et
te

r)

IWSLT 2017 De-En, mT5

Vanilla Inference
BiLD
BiLD (No RB)
BiLD (No FB)

0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example

33.5

34.0

34.5

35.0

RO
UG

E-
L

(h
ig

he
r b

et
te

r)

XSUM, T5

Vanilla Inference
BiLD
BiLD (No RB)
BiLD (No FB)

Figure 5: Ablation study results for BiLD
on (Left) IWSLT 2017 De-En translation and
(Right) XSUM summarization tasks without the
rollback or fallback policy. Aligned small mod-
els were used in all cases. The result demon-
strates that BiLD experiences significant perfor-
mance degradation without either policy in both
tasks. The horizontal lines indicate the vanilla
inference score and 1 point degradation from it.

1.4x faster

1.6x fa
ste

r

1.3x faster

1.7x f
as

ter

Figure 6: Application of the BiLD framework
to the early exit problem using the mT5-small
model as the large model and its first layer as
the small model, evaluated on (Left) the IWSLT
2017 De-En and (Right) WMT 2014 De-En
benchmarks. The × marks indicate the latency
and BLEU score of the mT5-small models. The
horizontal lines indicate the vanilla inference
score and 1 point degradation from it.

4.3 Ablation Studies

We have further conducted two ablation studies to validate the individual components of BiLD by
(1) removing the rollback policy, and (2) removing the fallback policy. When removing the rollback
policy, we use the same fallback thresholds as the main experiments to control the generation quality
and latency trade-off. When removing the fallback policy, we use the same rollback thresholds as the
main experiments. Additionally, we apply fallback after a fixed number of small model executions
(swept over [3, 10]), similar to [4].

Figure 5 illustrates the results of these ablation studies on IWSLT 2017 De-En for machine trans-
lation and XSUM for summarization with aligned BiLD. The results show that the rollback policy
consistently produces better generation quality across all latency regimes, particularly in the high-
BLEU/ROUGE regime where the large model’s engagement via rollback is crucial in correcting small
model’s wrong predictions. This demonstrates that, despite the additional latency overhead from the
duplicated computation of reverted tokens, the improvement in text generation quality outweighs
this cost. Similarly, removing the fallback policy and periodically handing over control to the large
model after a fixed number of token generations leads to significant performance degradation. Taken
together, these results highlight that both policies are critical components of BiLD.

4.4 Early Exiting Strategy in the BiLD Framework

So far, we have demonstrated how BiLD can be used as a general framework for accelerating the
text generation process by incorporating a small model and a large model. However, having two
separate models is not a limitation as they can be combined into a single model by using a subset of
a larger model, such as a few of its early layers, as a smaller model. This approach resembles the
early exit strategy, which is a popular method for accelerating the decoding process [51]. This section
demonstrates how the early exiting strategy can be reframed within the BiLD framework.

To demonstrate the applicability of using the early exiting strategy within the BiLD framework, we
use mT5-small model as the large model and the first (out of 8) layer as the small model, and evaluate
it on two machine translation benchmarks: IWSLT 2017 De-En and WMT 2014 De-En. To ensure
consistency between the prediction made after the first layer and the one made after the last layer, we
train the model with the average loss of these two layers, similar to [11, 51]. The prediction head is
shared for these two layers. More training and evaluation details can be found in Appendix 7.2.1.

Figure 6 illustrates the results, where for each benchmark, BiLD achieves up to 1.60× and 1.74×
speedup within less than one point BLEU score drop, respectively. This demonstrates the extensibility
of the BiLD framework to early exit problems. In Appendix 7.2.2, we further provide a detailed
comparison of our results with CALM [51], another framework that incorporates early exiting for
fast Transformer decoding. Compared to CALM, BiLD offers two advantages that contribute to
better generation quality: (1) in BiLD, even if an early exited prediction (i.e., prediction made by the
smaller model) is incorrect, it can be corrected and replaced using the rollback policy; (2) the key
and value caches for skipped layers are filled with actual values instead of being computed from the

9

exiting layer’s hidden states, leading to reduced error propagation and improved decoding stability.
As a result, when tested on IWSLT 2017 De-En and WMT 2014 De-En using mT5-small, BiLD
achieves a BLEU score improvement of up to ∼2 points over CALM in both datasets (Figure 7).

5 Conclusion

In this work, we have introduced Big Little Decoder (BiLD), a framework that reduces end-to-end
inference latency for a wide variety of text generation tasks without the need for training or modifying
the existing models. In essence, our framework couples a large and small decoder model together
to generate text more efficiently. In particular, we start inference with a small model which runs
autoregressively for the majority of the time to generate text with a low inference cost, while the large
model is executed non-autoregressively to refine the small model’s inaccurate predictions. BiLD
incorporates two policies, the fallback policy, which hands control to the large model when the small
model is uncertain, and the rollback policy, which allows the large model to revert the small model’s
inaccurate predictions. Our framework is evaluated across various text generation scenarios, including
machine translation, summarization, and language modeling. Running on an NVIDIA Titan Xp GPU,
with no performance drop BiLD achieved an average speedup of 1.52×, with improvements of up to
2.18× on some tasks. Furthermore, when a 1 point degradation in performance was allowed, BiLD
achieved an average speedup of 1.76× with speedups of up to 2.38× on some tasks.

6 Acknowledgements

We acknowledge gracious support from Google Cloud, Google TRC team, and specifically Jonathan
Caton, Prof. David Patterson, and Dr. Ed Chi. Prof. Keutzer’s lab is sponsored by Intel corporation,
Intel VLAB team, Intel One-API center of excellence, as well as funding through BDD and BAIR.
Sehoon Kim and Suhong Moon would like to acknowledge the support from Korea Foundation for
Advanced Studies (KFAS). Amir Gholami was supported through funding from Samsung SAIT.
Michael W. Mahoney would also like to acknowledge a J. P. Morgan Chase Faculty Research Award
as well as the DOE, NSF, and ONR. Our conclusions do not necessarily reflect the position or the
policy of our sponsors, and no official endorsement should be inferred.

References

[1] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics.

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[3] Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Katsuhito
Sudoh, Koichiro Yoshino, and Christian Federmann. Overview of the IWSLT 2017 evaluation
campaign. In Proceedings of the 14th International Conference on Spoken Language Translation,
pages 2–14, Tokyo, Japan, December 14-15 2017. International Workshop on Spoken Language
Translation.

[4] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[5] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun
Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable
neural architecture search. arXiv preprint arXiv:2001.04246, 2020.

[6] Patrick H Chen and Cho-jui Hsieh. A comparison of second-order methods for deep convolu-
tional neural networks. openreview under ICLR 2018, 2018.

10

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[8] Michiel de Jong, Yury Zemlyanskiy, Joshua Ainslie, Nicholas FitzGerald, Sumit Sanghai, Fei
Sha, and William Cohen. Fido: Fusion-in-decoder optimized for stronger performance and
faster inference. arXiv preprint arXiv:2212.08153, 2022.

[9] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. In Advances in Neural Information Processing Systems,
2022.

[10] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547–5569. PMLR, 2022.

[11] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073, 2019.

[12] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[14] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[15] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

[16] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-
autoregressive neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

[17] Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in Neural
Information Processing Systems, 32, 2019.

[18] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.

[19] Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence model for
non-autoregressive neural machine translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 376–385, 2020.

[20] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[21] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
neural information processing systems, pages 1693–1701, 2015.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
Workshop paper in NIPS, 2014.

[23] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[24] Chris Hokamp, Demian Gholipour Ghalandari, Nghia The Pham, and John Glover. Dyne: Dy-
namic ensemble decoding for multi-document summarization. arXiv preprint arXiv:2006.08748,
2020.

[25] Ngo Quang Huy, Tu Minh Phuong, and Ngo Xuan Bach. Autoencoding language model
based ensemble learning for commonsense validation and explanation. arXiv preprint
arXiv:2204.03324, 2022.

[26] Forrest N Iandola, Albert E Shaw, Ravi Krishna, and Kurt W Keutzer. Squeezebert: What can
computer vision teach nlp about efficient neural networks? arXiv preprint arXiv:2006.11316,
2020.

11

[27] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language
models with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

[28] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[29] Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A Smith. Deep en-
coder, shallow decoder: Reevaluating non-autoregressive machine translation. arXiv preprint
arXiv:2006.10369, 2020.

[30] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems, 30, 2017.

[31] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert:
Integer-only bert quantization. arXiv preprint arXiv:2101.01321, 2021.

[32] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan
Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack
optimization of transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

[33] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

[34] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran,
Michael Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order
pruning for large language models. arXiv preprint arXiv:2203.07259, 2022.

[35] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and
Amir Gholami. A fast post-training pruning framework for transformers. arXiv preprint
arXiv:2204.09656, 2022.

[36] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[37] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. arXiv preprint arXiv:1802.06901, 2018.

[38] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[39] Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based
training for non-autoregressive machine translation. arXiv preprint arXiv:1909.06708, 2019.

[40] Yoshitomo Matsubara, Luca Soldaini, Eric Lind, and Alessandro Moschitti. Ensemble trans-
former for efficient and accurate ranking tasks: an application to question answering systems.
arXiv preprint arXiv:2201.05767, 2022.

[41] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[42] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650, 2019.

[43] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. arXiv
preprint arXiv:1808.08745, 2018.

[44] Liu Pai. Qiaoning at semeval-2020 task 4: Commonsense validation and explanation system
based on ensemble of language model. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 415–421, 2020.

[45] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[46] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference. arXiv preprint arXiv:2211.05102, 2022.

12

[47] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[48] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[49] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

[50] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

[51] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. arXiv preprint arXiv:2207.07061,
2022.

[52] Chenze Shao, Jinchao Zhang, Yang Feng, Fandong Meng, and Jie Zhou. Minimizing the
bag-of-ngrams difference for non-autoregressive neural machine translation. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pages 198–205, 2020.

[53] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604, 2018.

[54] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of bert.
In AAAI, pages 8815–8821, 2020.

[55] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using
deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[56] David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on
Machine Learning, pages 5877–5886. PMLR, 2019.

[57] David R So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer:
Searching for efficient transformers for language modeling. arXiv preprint arXiv:2109.08668,
2021.

[58] Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. In International Conference on Machine Learning,
pages 5976–5985. PMLR, 2019.

[59] Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast structured
decoding for sequence models. Advances in Neural Information Processing Systems, 32, 2019.

[60] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv preprint
arXiv:2004.02984, 2020.

[61] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

[62] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-
Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[64] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

[65] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

13

[66] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
Hat: Hardware-aware transformers for efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020.

[67] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[68] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. arXiv
preprint arXiv:2002.10957, 2020.

[69] Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 5377–5384, 2019.

[70] Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, Jun Xie, and Xu Sun. Imitation
learning for non-autoregressive neural machine translation. arXiv preprint arXiv:1906.02041,
2019.

[71] Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential
text generation. In International Conference on Machine Learning, pages 6716–6726. PMLR,
2019.

[72] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[73] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony
Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45, 2020.

[74] Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li, and Yuxiong He. Extreme compression
for pre-trained transformers made simple and efficient. arXiv preprint arXiv:2206.01859, 2022.

[75] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short
range attention. arXiv preprint arXiv:2004.11886, 2020.

[76] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: task-
agnostic and adaptive-size bert compression with neural architecture search. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1933–1943,
2021.

[77] Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing Huang. Improving bert fine-tuning via
self-ensemble and self-distillation. arXiv preprint arXiv:2002.10345, 2020.

[78] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934, 2020.

[79] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
arXiv preprint arXiv:2206.01861, 2022.

[80] Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Autotinybert:
Automatic hyper-parameter optimization for efficient pre-trained language models. arXiv
preprint arXiv:2107.13686, 2021.

[81] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing
attention-based nlp models for low latency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 811–824. IEEE,
2020.

[82] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188, 2019.

[83] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[84] Chunting Zhou, Graham Neubig, and Jiatao Gu. Understanding knowledge distillation in
non-autoregressive machine translation. arXiv preprint arXiv:1911.02727, 2019.

14

7 Supplementary Material

7.1 Experimental Details

Table 2: Model configurations of the large and small models for each evaluation task. For comparison,
the number of layers, hidden dimension, FFN dimension, and the number of decoder parameters
(without embeddings) for each model are provided.

Task Model # Layers dim FFN dim # Params

Machine mT5-large [78] 24 1024 2816 409M
Translation mT5-small [78] 8 512 1024 25M

Summarization T5-large [47] 24 1024 4096 402M
T5-small [47] 6 512 2048 25M

7.1.1 Training Details

For machine translation, we use IWSLT 2017 German-English [3] and WMT 2014 German-
English [1] as target benchmarks, and mT5 [78] as a target model. We use the 8-layer mT5-small
and the 24-layer mT5-large as the small and large models. For summarization, we use XSUM [43]
and CNN/DailyMail [21] as target benchmarks, and T5 [47] as a target model. We use T5-small
and T5-large with 6 and 24 layers, respectively, for the small and large models. Table 2 summarizes
the size and configuration of each model. All the models are fine-tuned from the pre-trained check-
points of the HuggingFace library [73] for 500k steps using a batch size of 16. We use Adafactor
optimizer [53] with constant learning rate of {0.5, 1, 2, 5}e−4 for the small models and {0.5, 1}e−4
for the large models. We refer to the normally fine-tuned models on the validation datasets as the
baseline small and large models.

When training aligned small models via the prediction alignment method described in Section 3.5.1,
we first generate calibration datasets using the input sequences from the training datasets of each
benchmark. We then use the fully trained large model to generate output sequences through greedy
sampling with a beam size of 1. To ensure a fair comparison, we fine-tune pre-trained small models
(rather than the baseline small models that are already fine-tuned on the training datasets) on the
calibration datasets using the same training recipes and the number of training steps as described
above. This decision is based on our observation that fine-tuning a baseline model using the calibration
dataset tends to improve generation quality, likely due to the increased number of training examples
and data augmentation effects, which makes it difficult to make a fair comparison between unaligned
BiLD and aligned BiLD. However, in practice, one can obtain aligned models by applying the
prediction alignment method directly to the fine-tuned baseline small models to achieve the best
performance.

7.1.2 Evaluation Details

All inference evaluations including latency measurement are conducted on a single NVIDIA T4 GPU
of a GCP n1-standard-4 instance with 4 vCPUs and 15GB memory. For inference, we use batch
size 1, which is a common use case for online serving [51]. For the distance metric d in Equation 3
for the rollback policy, we use the cross-entropy loss between the small model’s hard label and the
large model’s soft label. This measures the (negative log) likelihood of obtaining the small model’s
prediction from the large model’s output. For BiLD inference, we sweep over different fallback
and rollback thresholds to explore different trade-offs between generation quality and latency. For
the machine translation tasks, we use fallback thresholds in [0.5, 0.9] and rollback thresholds in [1,
10]. For the summarization tasks, fallback thresholds in [0.2, 0.6] and rollback thresholds in [2, 6].
We keep the maximum generation length of the small model to 10 to avoid high rollback costs. In
Appendix 7.5.3, we provide a detailed analysis of how varying the fallback and rollback thresholds
impacts the trade-offs between generation quality and latency in the BiLD framework.

15

0.7 0.8 0.9 1.0
Normalized avg latency per example

34.0

34.5

35.0

35.5

36.0

36.5

BL
EU

 (h
ig

he
r b

et
te

r)

IWSLT 2017 De-En, mT5

Vanilla Inference
BiLD
CALM

0.6 0.7 0.8 0.9 1.0
Normalized avg latency per example

24.5

25.0

25.5

26.0

26.5

27.0

BL
EU

 (h
ig

he
r b

et
te

r)

WMT 2014 De-En, mT5

Vanilla Inference
BiLD
CALM

Figure 7: The trade-off curves between inference latency and BLEU score for BiLD and CALM in
the early exiting setting for (Left) IWSLT 2017 De-En and (Right) WMT 2014 De-En. The × marks
indicate the vanilla inference latency and BLEU score of the mT5-small models. The horizontal lines
indicate the vanilla inference score and 1 point degradation from it. BiLD outperforms CALM across
all speedup regimes by up to 2 ∼ 2.5 points better BLEU score, demonstrating the effectiveness of
our approach for the early exiting strategy.

7.2 Details of Early Exiting Strategy in the BiLD Framework

7.2.1 Training and Evaluation Details

The training and evaluation details for BiLD as well as for CALM are as follows.

BiLD. We use the mT5-small model as the large model and the first (out of 8) layer as the small
model, and evaluate it on two machine translation benchmarks: IWSLT 2017 De-En and WMT 2014
De-En. To ensure consistency between the prediction made after the first layer and the one made
after the last layer, we fine-tune the pre-trained mT5 model using the average loss of the first and
the final layers, similar to [11, 51]. That is, L = 1

2 (L1 + L−1) where L1 and L−1 are the negative
log-likelihood loss after the first layer and the final layer. The prediction head is shared for these two
layers. We fine the pre-trained mT5-small model on each benchmark for 500k steps using a batch size
of 16. Similar to the main experiments, we use Adafactor optimizer [53] with constant learning rate
of {0.5, 1, 2, 5}e−4. For evaluation, we use fallback thresholds in [0.2, 0.8] and rollback thresholds
in [0.5, 1.5].

CALM. To reproduce CALM [51] in our experimental setup, we have fine-tuned the pre-trained
mT5-small model on IWSLT 2017 De-En and WMT 2014 De-En datasets. We employ the averaged
loss across all layers, i.e., L =

∑L
i=1 wiLi, where wi = i/

∑L
j=1 j, which was introduced in the

paper to ensure the layer consistency. We use Adafactor optimizer [53] with constant learning rate
of {0.5, 1, 2, 5}e−4 for 500k training steps. To make a fair comparison, we match the BLEU
score of the fine-tuned model to that of BiLD’s models Among the two training-free confidence
measures introduced in the CALM paper, softmax-based and hidden-state saturation-based measures,
we have chosen to use the latter approach as an early exiting criterion. That said, if the cosine
similarity between the current layer’s hidden states and the previous layer’s hidden states exceeds a
certain threshold, we perform early exiting. We have found that the softmax-based alternative is not
applicable in our evaluation scenario due to the large output vocabulary (more than 200k for mT5,
which is ∼ 10× larger than T5), which significantly increases latency overhead. As described in
the paper, when early exiting happens, the hidden states of the exited layer are propagated down to
the remaining layers to compute the key and value caches. To achieve different trade-offs between
latency and generation quality, we sweep over λ in [0.7, 0.98] and t in {0, 1, 2, 4, 8} in the decaying
threshold function.

7.2.2 Performance Comparison between BiLD and CALM

Figure 7 illustrates the BLEU score and latency curves of BiLD compared to CALM in the early
exiting setting. In both tasks, our method achieves significantly better BLEU scores with the same
latency speedup, yielding up to around 2 point better BLEU score in the ∼ 1.5× speedup regime.
This can be attributed to two factors. First, in BiLD, even if an early exited prediction (i.e., prediction
made by the smaller model) is incorrect, it can be corrected and replaced using the rollback policy.

16

Therefore, an error in the early exited layer is propagated less drastically to the future prediction.
Second, the key and value caches for skipped layers are filled with actual values instead of being
computed from the exiting layer’s hidden states. This also leads to reduced error propagation and
improved decoding stability.

7.3 Comparison with Other Speculative Decoding Frameworks

Concurrently and independently of our work, [38, 4] also propose an algorithm to accelerate generative
inference using a more powerful model to score and speculatively sample predictions from a less
powerful model. While the rejection sampling-based approach in [38, 4] offers unbiased estimators
that match the stronger model’s probability distributions, our extensive empirical evaluation shows
that our approach can deliver superior latency-performance trade-offs, due to its non-random rollback
(i.e., rejection) policy as well as the dynamic fallback window size. Below, we provide distinctions in
detailed methodologies and quantitative comparison, as well as our insights on better latency and
performance of our approach.

7.3.1 Differences in methodology

While the idea of using two models with different sizes can be deemed similar to the speculative
decoding frameworks in [38, 4], we have clear distinctions in detailed methodologies.

(1) Non-Random Prediction Rollback Approach: The primary difference lies in how we decide
the rollback (e.g., rejection) of predictions from the small model. In our rollback policy, we propose
to make the rejection decision based on the distance between the small and large model predictions,
which differs from the rejection sampling policy outlined in [38, 4]. While [38, 4] propose an
unbiased estimator on the large model’s prediction, Figure 2 demonstrates that combining predictions
from both models through our distance-based rejection approach can surpass the exclusive utilization
of the large model’s prediction probability. BiLD seeks to find and utilize this optimal performance
point without introducing much runtime cost. We have a further discussion below about how our
rejection policy benefits text-generation performance.

(2) Dynamic Fallback Window Size: Additionally, we introduce the dynamic fallback window size
in our fallback policy. In [38, 4], the window size remains a fixed hyperparameter; however, it is
also highlighted in [4] that the window size can have a noticeable impact on end-to-end latency. Our
approach offers an efficient and robust solution: adjusting the window size at runtime based on the
small model’s confidence level in run-time. Our ablation study (Figure 5) demonstrates that omitting
the fallback policy and periodically transitioning control to the large model, as proposed in [38, 4],
can result in notable latency degradation.

(3) Model Alignment Enhancement: Beyond the core framework, we introduce a model alignment
method to align the small model’s predictions with those of the large model. This enhances the
framework by reducing unnecessary rejections and can be incorporated with minimal adjustments to
the training pipeline.

7.3.2 Quantitative Comparisons

In Table 3, we provide a comprehensive quantitative comparison between our method and [38, 4]
across two different datasets: IWSLT for machine translation and XSum for summarization. In order
to ensure a fair comparison that isolates the impact of the frameworks themselves, we employ the
baseline (non-aligned) small model for all experiments. We maintained the same evaluation setup
and hyperparameter space that are outlined in Appendix 7.1.2.

Table 3 includes two BiLD configurations: the one that matches latency and the other that matches
BLEU/ROUGE-L scores as compared to the rejection sampling-based methods. Across all experi-
ments, BiLD consistently outperforms speculative decoding. It achieves either (1) notably improved
BLEU/ROUGE-L scores with equivalent latency gains, or (2) superior latency gains while retaining
the same BLEU/ROUGE-L scores.

17

Table 3: Comparison of BiLD to other rejection sampling based speculative sampling methods
proposed in [38, 4] on IWSLT and XSUM. For BiLD, we include two BiLD configurations: the one
that matches latency and the other that matches BLEU/ROUGE-L scores as compared to the rejection
sampling based methods. Note that BiLD consistently outperforms other methods by achieving either
(1) improved BLEU/ROUGE-L scores with equivalent latency gains, or (2) improved latency gains
while retaining the same performance score.

Dataset IWSLT XSUM
BLEU Speedup ROUGE-L Speedup

Vanilla Inference 40.32 - 35.08 -

Rejection Sampling Based [38, 4] 39.93 1.28× 35.00 1.25×
BiLD (Match Latency) 40.54 1.23× 35.30 1.42×
BiLD (Match BLEU/ROUGE-L) 39.87 1.49× 34.96 1.50×

Table 4: Comparison of the percentage of fallback and rollback (rejection) occurrences of BiLD and
other rejection sampling based speculative sampling methods [38, 4]. While achieving even better
BLEU/ROUGE-L scores in IWSLT and XSUM, BiLD involves noticeably fewer number of fallbacks
and rollbacks, resulting in a significantly better latency speedup.

Task Method BLEU/ROUGE-L Speedup % Fallback % Rollback (rejection)

IWSLT Rejection Sampling Based [38, 6] 39.93 1.28× 23.24% 9.81%
BiLD (Better BLEU) 40.33 1.43× 21.09% 1.56%

XSUM Rejection Sampling Based [38, 6] 35.00 1.25× 36.84% 24.24%
BiLD (Better ROUGE-L) 35.12 1.48× 32.33% 6.41%

7.3.3 Insights on Better Latency and Performance

Quantitative analysis reveals a consistent trend where our method, when compared to other speculative
decoding frameworks, effectively enhances both text generation quality and latency. We provide
insights and explanations into why our approach surpasses speculative decoding frameworks.

(1) Better text generation quality

Ensembling effect: The power of blending outputs from multiple models has been well-explored in
various fields. This is also the case in open-source LLM models which exhibit diverse strengths and
weaknesses due to variations in data, architectures, and hyperparameters, making different models
complementary to each other [27]. In fact, we show such effects of blending multiple model outputs
in Figure 2, where a combination of 20% of the large model’s prediction with the small model’s
prediction outperforms the exact imitation of the large model’s behavior. Our approach offers fallback
and rollback policies that efficiently exploit optimal ensemble point, which produces superior output
quality compared to the unbiased estimate of the large model in [38, 4].

Rollback policy that leads to higher performance: Our method adopts a rejection policy that
completely discards the small model’s prediction if it significantly deviates from the large model’s
counterpart, based on cross entropy-based distance metric. This contrasts with speculative decoding,
where the decision involves a stochastic rejection sampling process. We empirically observe that
BiLD ’s hard rejection policy allows a better BLEU/ROUGE-L score with significantly fewer number
of rollbacks (rejections) than the stocastic rejection policy of speculative decoding as described in
Table 4. We hypothesize that this boost in predictive performance stems from our hard rollback
policy, which prevents potentially erroneous predictions by ruling out stochasticity. We additionally
hypothesize that such a strategy can address exposure bias, mitigating the impact of a single early-
stage misprediction on subsequent predictions.

(2) Lower end-to-end latency Furthermore, our fallback policy introduces a dynamic fallback
window size (i.e. number of small model’s consecutive iterations) that is determined based on the
run-time prediction confidence of the small model. This is in contrast with speculative decoding
which adopts a static window size. The advantages of the dynamic window size are two-fold:

18

Table 5: BiLD with nucleus sampling (p=0.8) on IWSLT and XSUM. Similar to the greedy decoding
case, our method achieves a ∼1.5× speedup without compromising performance and a ∼1.8×
speedup with a modest 1-point BLEU/ROUGE score reduction with sampling.

Dataset IWSLT XSUM
BLEU Speedup ROUGE-L Speedup

Vanilla Inference 39.24 - 34.00 -

BiLD 39.72 (+0.48) 1.51× 34.34 (+0.34) 1.22×
39.26 (+0.02) 1.63× 34.04 (+0.04) 1.45×
38.27 (-0.97) 1.80× 33.10 (-0.90) 1.85×

Less fallbacks: The dynamic window size enables the small model to persist in making predictions
when it is confident, thus minimizing the unnecessary engagement of the large model. This is
supported by Table 4 where BiLD involves fewer number of fallbacks (23.24% → 21.09% and
36.84% → 32.33%) than [38, 4] while achieving better performance.

Less rollbacks/rejections: The dynamic window size further enables preemption of the small model
when it is uncertain, which avoids rollback of the small model’s wrong predictions. This is also
supported by Table 4 where BiLD involves significantly fewer number of rollbacks (9.81% → 1.56%
and 24.24% → 6.41%) than [38, 4] while achieving better performance.

Minimizing both fallbacks and rollbacks/rejections reduces unnecessary computation which directly
translates to end-to-end latency improvement.

7.4 BiLD with Sampling

Our approach isn’t restricted to greedy decoding, but it can seamlessly extend to sampling methods.
The only modification is to perform random sampling instead of greedy sampling when drawing a
token from both the small model and the large model while using the same fallback and rollback
policy. This is because both the fallback and rollback policies, based on the maximum prediction
probability, serve as an effective indicator of the small model’s uncertainty in prediction and potential
inaccuracies, regardless of the sampling method. The following table illustrates the latency versus
performance trade-off of the sampling-based approach, specifically using nucleus sampling with
p=0.8, similar to [6]. This evaluation follows the same environment as other experiments outlined in
the paper, and both cases involve aligned small models.

Table 5 exhibits the BLEU/ROUGE-L score of BiLD on the IWSLT and XSUM benchmarks as
well as their relative speedup. As can be seen in the table, our method exhibits a similar trend to
the greedy decoding case. It achieves a ∼1.5× speedup without compromising performance and a
∼1.8× speedup with a modest 1-point BLEU/ROUGE score reduction.

7.5 Additional Analysis

7.5.1 Model Analysis of BiLD: FLOPs, MOPs, and Arithmetic Intensity

Figure 8 compares average FLOPs, MOPs (memory operations), arithmetic intensity, and the latency
speedup of the vanilla inference and BiLD on the CNN/DailyMail benchmarks. For BiLD, we use
the model with roughly the same ROUGE-L score as the vanilla inference, and all the numbers
are normalized by the numbers of the vanilla inference. The figure illustrates that BiLD exhibits
slightly higher FLOPs compared to the vanilla inference. This is due to the fact that the autoregressive
and non-autoregressive executions have the same amount of FLOPs, and BiLD involves additional
overhead of running the small model alongside. However, in the case of MOPs, BiLD demonstrates a
significant ∼5× reduction of memory operations. This can be attributed to the capability of BiLD
to process multiple tokens with a single weight load, thereby enhancing token-level parallelism
and maximizing data reuse. In contrast, this is not the case in the vanilla inference where a single
weight load can only process a single token. Consequently, BiLD achieves a significantly higher
arithmetic intensity, which is approximately 5 times larger than the vanilla inference. Arithmetic
intensity [72] measures the number of arithmetic operations that can be performed per memory
operation. Given that memory operations can contribute more to the overall inference latency than
arithmetic operations in many Transformer decoding scenarios [32], decreasing memory operations

19

FLOPs() MOPs() Arithmetic
Intensity()

Speedup()
0

1

2

3

4

5

No
rm

al
ize

d
Va

lu
es

1 1 1 11.11

0.22

4.96

1.85

Model Analysis of Vanilla Inference vs BiLD
Vanilla Inference
BiLD

Figure 8: FLOPs, MOPs (memory operations), arithmetic intensity, and latency speedup comparison
of vanilla inference and BiLD on the CNN/DailyMail benchmark. BiLD approach results in a
remarkable reduction in MOPs due to the improved token-level parallelism, resulting in significantly
higher arithmetic intensity.

Ground Truth And Siftables are an example of a new ecosystem of tools for manipulating digital information.

Large And the Siftables are an example of a new generation of manipulation tools for digital data.

Small And the if you look at the ifleses are an example of a new generation of technologies for manipulation of digital data.

BiLD (ours) And the Siftables are an example of a new generation of manipulation of digital data.

Ground Truth Which is great, because the Romans did not actually think that a genius was a particularly clever individual.

Large That's great. The Romans didn't really think that a genius was a particularly smart individual.

Small That's great. The tube didn't really think that a genius was a particularly lonely individual.

BiLD (ours) That's great. The Romans didn't really think that a genius was a particularly smart individual.

Ground Truth The viral particles then were released from the cells and came back and killed the E. coli.

Large The viral particles then were released by the cells and came back and killed E. coli.

Small The viral particles were then released by the cells and came back and killed E. Coke.

BiLD (ours) The viral particles then were released by the cells and came back and killed E. coli.

Figure 9: Example text sequences that BiLD generates with the validation set of IWSLT 2017 De-En,
compared to the ground truths and the outputs of the large and small baselines. For BiLD, tokens
generated by the large model are highlighted in red, while all the other tokens are generated by the
small model. This illustrates that with a small engagement of the large model, BiLD can correct not
only inaccurate vocabulary but also wrong semantics of the text that the small model would have
otherwise generated.

and increasing arithmetic intensity can effectively alleviate the inference bottleneck. This leads to an
overall latency speedup of 1.85× on actual hardware.

7.5.2 Examples of Generated Sequences

Figure 9 provides examples of text sequences generated by BiLD on the validation set of IWSLT
2017 De-En, along with the ground truths (i.e., labels) and outputs of the pure large and small
baseline models. The tokens generated from the large model of BiLD are highlighted in green, while
all the other tokens are generated by the small model. The results illustrate that the small model
often produces low-quality texts, by predicting inaccurate tokens which can alter the meaning of
the entire sentence. To contrast, it is observed from the examples that BiLD is able to improve the
text generation quality by letting the large model interrupt when the small model generates incorrect
tokens. Particularly, in the examples provided, BiLD tends to be as strong as the large model at
predicting terminologies. Overall, the large model’s engagement in BiLD decoding not only improves
the prediction accuracy but also prevents incorrect predictions from impacting the future ones.

20

0.55 0.60 0.65 0.70
Normalized avg latency per example

33.50

33.75

34.00

34.25

34.50

34.75

35.00

RO
UG

E-
L

(h
ig

he
r b

et
te

r)

XSUM, T5

Rollback threshold 1.0
Rollback threshold 2.0
Rollback threshold 3.0
Rollback threshold 4.0
Rollback threshold 5.0
Rollback threshold 6.0

0.475 0.500 0.525 0.550 0.575 0.600
Normalized avg latency per example

41.0

41.2

41.4

41.6

41.8

RO
UG

E-
L

(h
ig

he
r b

et
te

r)

CNN/DailyMail, T5

Rollback threshold 3.0
Rollback threshold 4.0
Rollback threshold 5.0
Rollback threshold 6.0
Rollback threshold 7.0

Figure 10: The trade-off between latency and generation quality (ROUGE-L) for the aligned BiLD
model on two summarization tasks: (Left) XSUM and (Right) CNN/DailyMail. Each curve represents
a different rollback threshold, with smaller thresholds indicating more rollbacks. The trade-off can
be further obtained within each curve with different fallback thresholds, where larger scatter sizes
indicate larger fallback thresholds. A larger fallback threshold implies more fallbacks.

7.5.3 Impact of Fallback and Rollback on Performance

We have explored how the BiLD framework can achieve different trade-offs between latency and
generation quality by adjusting fallback and rollback thresholds. In this section, we present a detailed
analysis of how these thresholds affect the performance using the aligned BiLD model on two
different summarization tasks, XSUM and CNN/DailyMail, as illustrated in Figure 10. Different
curves in the plot represent different rollback thresholds, and each scatter point within the curve
represents different fallback thresholds. Note that a small rollback threshold implies more rollback,
while a larger fallback threshold implies more fallback.

We observe a general trend where smaller rollback thresholds (i.e., more rollbacks) result in better
generation quality but longer latency. This trend is expected because, with more rollback, we preempt
more small model’s predictions that can be potentially inaccurate by sacrificing the latency. Similarly,
there is also a general trend that smaller fallback thresholds (i.e., fewer fallbacks) result in faster
latency but a worse generation quality. However, we observed that lowering the fallback rates beyond
a certain point can actually hurt both the latency and generation quality. This is because inaccurate
predictions that the small model should have fallen back are later rolled back, incurring an extra
‘flush’ cost for the tokens that follow.

21

	Introduction
	Related Work
	Efficient Transformer Decoding Inference
	Use of Multiple Models

	Methodology
	Motivating Examples
	Problem Formulation
	Fallback Policy: Small Model Knows When to Stop Predictions
	Rollback Policy: Large Model Knows When to Revert Predictions
	Big Little Decoder
	Model Prediction Alignment

	Evaluations
	Experiment Setup
	Main Results
	Ablation Studies
	Early Exiting Strategy in the BiLD Framework

	Conclusion
	Acknowledgements
	Supplementary Material
	Experimental Details
	Training Details
	Evaluation Details

	Details of Early Exiting Strategy in the BiLD Framework
	Training and Evaluation Details
	Performance Comparison between BiLD and CALM

	Comparison with Other Speculative Decoding Frameworks
	Differences in methodology
	Quantitative Comparisons
	Insights on Better Latency and Performance

	BiLD with Sampling
	Additional Analysis
	Model Analysis of BiLD: FLOPs, MOPs, and Arithmetic Intensity
	Examples of Generated Sequences
	Impact of Fallback and Rollback on Performance

