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Abstract— Robotic endoscopes play a crucial role in diagnos-
ing gastrointestinal disease and performing tumor resections.
While current research primarily focuses on autonomously
controlling rigid robots, establishing control models for flexible
robots remains challenging. To address this, model-free deep
reinforcement learning (DRL) presents a promising approach
for enabling agents to make decisions under uncertainty. In
this paper, we investigate the control policy of a flexible
endoscope using Simulation Open Framework Architecture
(SOFA) platform. We design a flexible tendon-driven robotic
endoscope (TDRE) and develop a custom simulation envi-
ronment within SOFA to train DRL agents. OQur approach
involves implementing the Proximal Policy Optimization (PPO)
algorithm to approximate an optimal policy for trajectory
planning. The optimal policy facilitates trajectory tracking
tasks for the TDRE’s end-effector, such as circle trajectories
and action disturbances, without requiring fine-tuning policy
network parameters. Experimental results demonstrate that our
approach achieves near real-time performance (30 FPS). The
feedforward neural network of the policy provides feedback,
enabling closed-loop control of TDRE. Furthermore, our exper-
iments show that the navigation success rate of TDRE exceeds
90% within a tolerant error of 3 mm in free space. Notably,
compared to direct training with contact, navigation tasks with
contact retrained by a pre-trained policy in free space exhibit
enhanced navigation capabilities.

I. INTRODUCTION

The widespread use of long flexible endoscopes in access-
ing and diagnosing hollow organs in the gastrointestinal (GI)
tract underscores their importance in medical procedures.
These flexible catheters, akin to transoral robots [1], navigate
narrow spaces within the GI tract for diagnostic and thera-
peutic purposes [2]-[4]. However, relying solely on preoper-
ative information for developing path-planning algorithms is
unreliable due to dynamic biological deformations and body
contact between robots and tissues. In this paper, we consider
both the dynamic behavior in trajectory planning and control
method, and the factor of contacting environment.

Navigation is crucial for executing complex surgical tasks
with endoscopes, yet autonomous navigation of flexible
robots in soft environment remains a challenge [S5]-[7].
We modeled the deformation of a flexible robot by finite
element method (FEM) to balance processing speed and
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Fig. 1. Learning-based feedback control strategy. Pre-train Neural Network
works as the brain of TDRE, the input is the instant state of robot. It provides
an optimal action set for each time step to reach the destination.

accuracy in approximating deformations [8], [9]. To avoid
the impracticality of manually tuning hyperparameters for
traditional nonlinear control systems and reduce time and
cost associated with trial-and-error in real-world scenarios,
using reinforcement learning in simulation to train the control
policy of robot is a more efficient approach than model-based
control [10]. As a consequence, the soft robot interacts with
environments in SOFA and derives optimal control strategies
through on-policy DRL training [11].

Current research primarily focuses on autonomously con-
trolling rigid robots [12]-[14]. The key challenge lies in
devising an appropriate control policy for flexible robots
amidst both the deformation of the robot and the high
variability and dynamic behavior of soft tissues [15]. Our
simulated endoscope, equipped with flexible tendon-driven
catheters, aims to learn the optimal trajectory for navigating
on the inner wall of a simplified stomach model. To achieve
autonomous navigation goals, we demonstrate the versatility
of our approach by realizing random target navigation in free
space and assessing the robustness of the trained control pol-
icy under disturbed actions. We deployed a retrain strategy
to enhance the capability of navigation with contact in the
environment.

To our best knowledge, it is the first attempt at using
model-free DRL algorithms to control a tendon-driven flex-
ible robot in contact scenarios.

II. PROBLEM FORMATION

Endoscopic navigation in the GI tract relies on controlling
degrees of freedom and reacting to collisions with the organ’s
inner wall to reach target areas. A more uniform collision
can enhance safety by reducing the endoscope’s pressure on
the organ surface [8], [16]. We anticipate that TDRE can
learn environmental information through trial and error using
model-free DRL. By leveraging this information, TDRE aims
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Fig. 2. Computer-aided design for TDRE. (a) TDRE consists of three
parts: the back end (1000 mm), the tendon-driven part (68 mm), and the
front end (19 mm). (b) Tendon-driven bending capability. Assumes that the
back end is fixed and only the tendon drive is considered. The blue-shaded
trajectory shows the reachable trajectory of the end effector of TDRE. Green
and yellow dotted lines illustrate possible deformed shapes of TDRE.

to approach unreachable target areas of the organ wall, uti-
lizing front-end tendon-driven actuation, back-end reaction
force, and swinging higher in free space like a pendulum to
reach the maximum bending inaccessible region.

In this work, the RL algorithms are used to find an optimal
policy and predict action pairs. For modeling decision-
making problems, the Markov Decision Process (MDP)
acts as a framework for formulating problems in RL. The
navigation problem for TDRE can be considered as a finite-
horizon discounted MDP, which consists of five components,
namely, S, A, R, P, and -y, where s; € S is the state with
respect to time ¢, a; € A is the action in time ¢, and
ry = R (s, a;) is the reward function. Given a state transition
function P, we note P (s;41]|S¢, a;) as the probability for the
state in the next time step under the current state-action pair.
Neural net-based DRL approaches can provide predictors of
dynamics [10]. A trained agent can perform real-time action
selection by forward passing observation state input to a pre-
trained Neural Network. As shown in Fig. 1, the feedback
control strategy can select an optimal action set for instant
observation.

III. METHODOLOGY
A. Computer-aided Design

1) Mechanical Structure: The endoscopic robot is de-
signed to have 3 parts, as shown in Fig. 2(a). The back end is
the longest part that passively interacts with the environment.
The length of this part is 1000 mm. The second part is
the tendon-actuated part that can be controlled by peripheral
devices, such as using a keyboard in simulation. In reality, it
is expected to bend the front end of the robot, based on the
control from the forces executed on the back end and actively
controlling with tendon actuators. In SOFA, the cable-driven
module is applied to simulate the behavior of tendon [1], [9],
with a length of 68 mm. The third part is on the rightmost
session, with a length of 19 mm. This part is reserved to add

Mesh point  Tetrahedron

Collision model in SOFA

Fig. 3. Mesh generation for simulating deformable object in SOFA by
Finite Element Method. The yellow dots represent points in the topology
container in SOFA.

functionality to the top of the endoscope, viz., attaching a
camera to gain visual perception.

2) Mesh Generation: The collision model of TDRE has
a cylindrical shape, as shown in Fig. 3. To simulate its
deformable behavior by Finite Element Method (FEM), the
mesh is generated by Gmsh [17]. To accurately simulate the
deformable behavior of TDRE, we generated 1920 points,
resulting in 3540 triangles on the surface and 4728 tetrahedra
in the cylinder. In terms of the physical properties, we set
Young’s Module as 1000 Nm~2 with a Poisson’s Ratio of
0.45 at the current stage.

3) Tendon-driven Actuators Design: The diameter of the
robot tip is 11.8 mm. We designed a four-cable-driven
mechanism. In SOFA, the flexible endoscopic robot will twist
its direction from the central axis because the cable length
can be modified by inputting the value index to decrease the
cable length.

B. DRL

State-of-the-art DRL algorithms, including PPO, Trust
Region Policy Optimization (TRPO), Deep Deterministic
Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and
Soft Actor-Critic (SAC), have been evaluated for continuous
control tasks in [18]. Among these, PPO demonstrates con-
sistent performance across tasks, leading to its selection for
training our agents.

The reward r; is calculated immediately after each action
has been executed to TDRE. To make immediate rewards
more significant, the discount factor v € (0, 1) is introduced.
The expected discounted episode reward can be expressed as

T
Gt =T + ’Y'f’t+1 + ’}/2’]"t+2 + . = Z’yk’l"t+k. (l)
k=0

The goal for agents in DRL training is to take actions to
maximize G;. Then, we deploy an on-policy DRL algorithm
PPO, which collects a set of roll-out data C, stored as a
sequence in the form of

Q = {5¢,a1,Tt, St41, At 41, Tt 415} (2)

The policy function 7y is optimized by PPO to maximize
the expected return, which is an optimization problem as,

max F6) = max E., (Gilst = s). 3)

The trajectory planning for navigation tasks is an end-
to-end DRL approach in simulation scenarios. We want the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 10,2025 at 02:22:26 UTC from IEEE Xplore. Restrictions apply.



[ Pipeline ]

[

Training

|

Evaluation

A} 1
[RL Framework ] [Load Pre-trained Model ] [Create Scene in SOFA ]
D

Create Scene in SOFA | ——Input State [Initialize Actor-Critic Model]
|

|
+

[Endoscopy] [Comact Model] [Actor Neural Network] [Critic Neural Network]

! Data Buffer
PPO T

\ +-One Batch Data

Fig. 4. The DRL training and

end-effector of TDRE to autonomously process the state
information obtained from the SOFA environment and adjust
the posture for reaching targets. The goal is to reach the target
as close as possible with the smallest number of steps.

Two neural networks mg(a;|s;) and V(s,) are used to
approximate the functions of actor (policy function) and
critic (value function), respectively. Vp(s;) is an estimate
state value from 7y (a¢|s:) to determine whether the output
action set is commending.

We deploy PPO-Clip to maximize the expected return [19].
The clipping coefficient C is set to prevent large policy
changes for one update process. For the value function,
we encourage exploration by penalizing overly deterministic
policies. The loss functions for my(a¢|s;) and Vy(s;) are
clipped surrogate objective L;(f) and entropy regularization,
where A; is the estimator of the advantage function at
timestep ¢. L;(#) is defined as

Lt (0) = min (Nf (0) At, Cllp (Nf (9) y 1-— €, 1 + 6) At) s
“4)
where N, is the probability ratio between current policy and
old policy.
1) State: The state set S in continuous state space can be
represented as

S: {P€7Ct7M7Pt7S€}7 (5)

where P, = (X.,Y., Z.) is the current positions of end-
effector, C; = {Ct1,C2,Ct3,Cra} is the values of con-
straints of the tendons in time t, M is the value of axial
motion of last time step and P; = (Xy,Y;, Z;) is the target
position in time t. S, is the number of steps of the current
episode.

2) Action: TDRE has two types of actuation: axial for-
ward, and tendon-driven actuation. TDRE can make one DoF
of axial forward motion, and four DoFs of tendon actuation.
Therefore, five action parameters are defined in an action set:

A ={Cu,C2,Cy3,Cpq, M }. (6)

/
4

|
[}

|
|

,/ [Actor Neural Network] [Endoscopy]\ [Contact Model]
/ |
4 |

. |
l—Outpul Actions-— }

// ‘l‘l
|

Input State ——!

evaluation pipelines in SOFA.

The actions are continuous. In each time step, the output
values of mg(at|st) are constrained from -1 to 1 by adding
hyperbolic tangent activation function tanh™' in the final
layer. The values in A are sampled by a multivariate nor-
mal distribution, whose mean is from the vector output of
mg(a¢|s:). One variance value V, is set as a hyperparameter
to make sure the agent can explore the environment in the
training process. To simulate the bending limit of front-end
tendon-driven behavior as a real endoscope, we limit the
accumulated constraint value for each tendon to between -7
and 7 in the simulation.

3) Reward: The reward function R consists of three fac-
tors. When the distance between the end-effector and target
point is within the predefined threshold distance, TDRE
finishes this episode and gains a fixed reward [Z;. We set
a negative reward R, denoting the two-point distance of P,
and P;. R, is a punishment reward for the number of steps
of one episode. The more steps are taken, the more negative
value is set to the reward of one action. Hence, the reward
function is represented as

R=R;—puRq— paRe. @)

C. Pipelines

Training and evaluation pipelines are shown in Fig. 4. The
main scene contains object nodes in SOFA, a physical engine
for DRL training and evaluation, providing real-time updated
object parameters. Our designed TDRE is the agent for DRL.
Additional models can be loaded as an object node to provide
contact with TDRE. Reinforcement learning class (RL class)
includes compulsory components (Reset function and Step
function) for RL training [20]. After finishing training, the
trained actor neural network is saved and it is loaded as a
feedforward Neural Network for evaluation.

IV. EXPERIMENT

We conducted two experiments that followed the training
and evaluation pipelines as shown in Fig. 4. The first experi-
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Fig. 5. (a) The training and evaluation environment for experiment 1. The
white side surface of the cylinder is the reset target region for each episode.
The red rectangular box mimics the actuation box in reality, so that only
axial movement is allowed in the box, with neither deformable behavior nor
swinging effect by inertia. (b) The training result of policy mj (a¢|s¢), it
converges at very beginning. We trained for 52634 episodes.

ment is to investigate the effect of action error disturbance for
navigation tasks. The second experiment is to demonstrate
the ability of the trained model to conduct a pre-planning
trajectory task and its navigation capability in an environ-
ment with conduct. Based on the interaction between the
endoscopic robots TDRE and constructed environments of
free space (&y) and simplified model (E,), the data collected
from each step is transmitted as input data for training and
evaluation. Agents can learn from the data and optimize the
weights of neural networks by clip-PPO.

Using a feedforward network of trained policy to output
action vectors, it can perform navigation tasks in real-time
(near 30 FPS). All the simulation experiments, including
DRL training and evaluations in SOFA, ran on 20 cores 12th
Gen Intel® Core™i7-12700K CPU.

A. Disturbance for Actuators

We trained the policy 7§(a.|s;) for 52634 episodes in
environment K¢y as shown in Fig. 5(a). We define maximum
disturbance error (MDE) as the maximum difference between
each output value from 7} (as|s;) and the input value to
actuate TDRE. For example, the values in action set a; are
constrained in the range between -1 and 1. If MDE = 10%,
the errors that are randomly sampled from -0.1 to 0.1 are
added to all the values in a;. To investigate MDE, the reset
target region is the side surface of the cylinder, the white
region, as shown in Fig. 5(a). All the reset target points are
reachable without the swinging effect by inertia. The red
rectangular box mimics the actuation box in reality, which
provides the axial movement. The part of TDRE in the red

137

(a) 1.0 P e e
0.8 /
S
206
©
< i
- |
804
9 Max. 0% error
a —— Max. 15% error
0.2 —— Max. 30% error
—— Max. 45% error
o
0.0 Max. 60% error
0 2 4 6 8
Threshold of tolerant error (mm)
( ) 300 —— Max. 15% error
—— Max. 30% error
250 —— Max. 45% error
" Max. 65% error
G 200
py
o
2150
%)
c
& 100
50
0 ———

0 5 10 15 20 25 30 35 40
Distance (mm)

Fig. 6.  Evaluation of control policy m}(a¢|s¢). (a) The success rates
of navigation with actions with different maximum noise. (b) The points
density of distance of the final step (DFS) under different maximum
disturbances for actions. We tested 5000 points with a maximum step of
128 for each case.

box neither has deformable behavior nor makes a swinging
effect by inertia.

We defined tolerant error (TE) that the navigation task
is treated as success within TE. For each point, TDRE can
take a maximum of 128 steps. If the step is over 128, the
task is treated as a fail. Fig. 6(a) indicates that when TE
exceeds 3 mm, the success rates of navigation tasks are over
90%, regardless of the presence of disturbance. Fig. 6(b)
shows the point density of distance of the final step (DFS)
under different maximum disturbances for actions (MDA).
We tested 5000 points with a maximum step of 128 when
MDA = 15%, 30%, 45% and 60%. The results in Fig. 6(a-
b) demonstrate the robustness of the DRL control strategy
for a tendon-driven flexible robot, even when there is a
discrepancy between the action value output by the model
and the actual value required for actuation in reality. Despite
this discrepancy, with accurate state information s; provided
by Eq. (5), the control policy is capable of generating an
optimal trajectory to effectively approach the target in the
subsequent steps.

B. Navigation Task with Pre-planning Trajectory and in
Environment with Contact

We trained three policies with the same reward settings.
We set the parameters Ry = 1000, p; = 8, and puy = 1
for Eq. (7). The hyperparameters of neural networks are
the same for three policies. The networks consist of two
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(a)-(b) training results. The shaded regions are the standard deviation of samples. The curve uses an average window with a size of 200 for the

convolution process. (a) The training result of 72 (at|s¢) in Eyo. (b) The training results of 73 (at|st) and mj(a¢|s¢) in Fs. (c) In reality, a CT scan
of the endoscope passes through the stomach. (d) The simplified rigid model in environment Es mimics the inner wall structure of the stomach, which
provides collision and contact for TDRE. The model is in three-dimensional space. We make it transparent for better visualization. (f) Evaluation of control

policy 73 (at|st), 73 (at|st) and mj(a¢|s¢) in Es.

fully connected layers for both actor and critic. The first
and second layers of the actor neural network contain 128
and 64 neurons, respectively. The two layers for critic neural
networks contain 256 neurons. The batch size for updating
the weights is 512, and the learning rate is set as 0.0003
empirically. Fig. 7(a) shows the training result of 77 (az|st),
which is trained in Eyo, as shown in Fig. 7(e). The yellow
cylinder is a reachable region without swinging by damping
action actuated by cables. The white sphere region is a region
for resetting target points.

Fig. 8 shows the pre-planning trajectory navigation of
TDRE by using pre-train control policy 73 (a¢|s;). We set
a circle trajectory containing 20 green points with a radius
of 50 mm, whereas the red points indicate the real trajectory.
The points of end-effector coincide roughly with points of
pre-planning trajectory because we trained the policy with a
TE of 20 mm.

Fig. 7(b) shows the training results of mj(as|s;) and
75 (at|st), which are trained in Fj, as indicated in Fig.
7(d). 73 (ar|s:) is the retrained policy of 73 (a¢|s:) in E.
In addition, Fig. 7(c) shows a CT image of a real endoscope
passing through the stomach. The orange curve indicates
the inner wall of the stomach that is in contact with a
flexible endoscope. The green line indicates the gastric outlet
and the blue line represents the starting point where the
endoscope collides with the inner wall of the stomach. Fig.

Reference trajectory
@ Actual trajectory

Z Axis

-20

0

)('4)(/'5 20 20 —40

Fig. 8. Green points are pre-planning circle trajectory and red points are
the trajectories of TDRE.

7(d) showcases the initial posture of TDRE for training and
evaluation. The rigid model is a simplified model of the
stomach that can represent a similar structure to the inner
wall. In the evaluation process, 50 target points are randomly
chosen from the points on the surface of the simplified model
for each TE. Fig. 7(f) shows the successful rates for reaching
the targets within corresponding TEs for 73 (at|s:), 75 (at|st)
and 7y (at|st) in Es.
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Loading a pretrained model to train the model in a new
environment is our retrain strategy, which showcases the best
performance, followed by a policy trained in free space.
Directly training on the environment with contact gives the
worst performance. F is a more complicated environment,
compared with the environment in free space (£ or Eyo).
TDRE is supposed to learn how to approach the target by
walking along the inner wall of the simplified rigid model.
Retrain strategy helps TDRE learn how to approach targets
in free space and learn specific information such as how the
contacted model can guide TDRE to targets by retraining the
pre-trained model.

V. CONCLUSIONS

This paper introduces an autonomous control strategy for
flexible robots using DRL. We evaluate the effectiveness of
the trained policies through navigation missions and pre-
planned circle-drawing tasks. Specifically, our model-free
control policy achieves a success rate exceeding 90% in
free space experiments within a clinical tolerance error of 3
mm. Furthermore, by introducing action disturbance errors
to the agent, we demonstrate its robustness in reaching the
target. However, we observe that the navigation capability
of the robot is significantly affected by contact and collision
scenarios. To address this challenge, we advocate training the
agent in environments that closely mimic real-world contact
and collision conditions and deploy a retrain strategy, thereby
enhancing the performance of the control policy.

Our findings showcase the potential of autonomous control
for flexible robots. Future research directions could focus
on improving the realism of contact models and devising
training methods that efficiently incorporate information on
deformation. By leveraging collision and contact data from
high variability of soft tissue, we aim to enhance the agent’s
ability to generalize its autonomous control capabilities
within the GI tract and beyond. Reducing the gap between
simulation and reality to a reasonable level, the trained
control policy in simulation can be deployed to reality. In-
vivo experiments could be introduced to validate pre-trained
control policies in the future.
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