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Abstract

Fine-tuning tabular foundation models (TFMs) in the face of scarce data is chal-
lenging, as early stopping on even scarcer validation data often fails to capture true
generalization performance. We propose CausalMixFT, a method that enhances
fine-tuning robustness and downstream performance by generating structurally
consistent synthetic samples using Structural Causal Models (SCMs) fitted on the
target dataset. This approach augments limited real data with causally informed
synthetic examples, preserving feature dependencies while expanding training
diversity. Evaluated across 33 classification datasets from TabArena and over 2,300
fine-tuning runs, our CausalMixFT method consistently improves the improvement
of median normalized ROC-AUC by fine-tuning from 0.10 (standard fine-tuning) to
0.12, outperforming purely statistical generators such as CTGAN (-0.01), TabEBM
(-0.04), and TableAugment (-0.09). Moreover, it narrows the median validation-test
performance correlation gap from 0.67 to 0.30, enabling more reliable validation-
based early stopping—a key step toward improving fine-tuning stability under
data scarcity. These results demonstrate that incorporating causal structure into
data augmentation provides an effective and principled route to fine-tuning tabular
foundation models in low-data regimes.

1 Introduction

Foundation models have transformed machine learning across vision [1]], medicine [[17, [2], time
series [20], and graphs [38]]. Yet the most ubiquitous data type in the real world, namely tabular
data, has long remained the hardest to model effectively. Recent advances in pre-trained tabular
foundation models (TFMs) such as TabPFN [[13} [14} [10]], TabICL [30], and TabDPT [24] signal a
paradigm shift: transformers trained across millions of datasets can now perform in-context learning
on unseen tables, rivaling classical methods like XGBoost [6]].

While these models demonstrate strong zero-shot generalization, their full potential emerges only after
fine-tuning on specific target datasets. Recent models such as Mitrzﬂ TabPFNV2 [[14], and LimiX [41]]
now offer out-of-the-box fine-tuning capabilities in response to the growing demand for data-efficient
model adaptation. However, existing fine-tuning practices implicitly assume abundant labeled data,
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an assumption that is not always met in practice. In fact, more than 39% of OpenML datasets contain
fewer than 1,000 samples, representing the largest share of available dataset sizes [26]. Under such
constraints, conventional data splits and validation-based early stopping become unreliable, leading
to overfitting to the training or validation split and unstable performance estimates. Consequently,
fine-tuning towards small and heterogeneous datasets remains an unsolved challenge for tabular
foundation models.

To overcome these limitations, we propose CausalMixFT, a strategy that augments scarce training
samples through learnable Structural Causal Models (SCMs). Unlike statistical generators, SCMs
recover and exploit causal dependencies among features, producing structurally consistent synthetic
samples that preserve the semantics of the target domain. By enriching fine-tuning data with causally
coherent examples, TFMs can be fine-tuned effectively without overfitting to limited real observations.

Contributions. Our work makes three key contributions:

1. Empirical diagnosis: We provide the first systematic analysis of fine-tuning tabular foun-
dation models under severe data scarcity, revealing that large validation-test discrepancies
persist even under strong regularization.

2. Methodological innovation: We introduce CausalMixFT, an SCM-based approach that
learns the underlying causal structure of small datasets to generate structurally consistent
synthetic samples, enabling data-efficient fine-tuning.

3. Comprehensive evaluation: Across diverse benchmarks and over 2,300 fine-tuning runs,
our method consistently surpasses conventional fine-tuning and statistical augmentation
baselines, establishing a new SOTA for fine-tuning tabular foundation models in low-data
regimes.

By combining causal generative modeling with foundation model adaptation, our work provides a
principled and data-efficient pathway toward making tabular foundation models fine-tunable in the
small-data settings that dominate real-world machine learning.

2 Related Work

PFNs and Variants.  Miiller et al. [28]] introduced Prior-Data Fitted Networks (PFNs), using
transformers to approximate Bayesian posterior predictive distributions via in-context learning.
Subsequent works have extended this paradigm to classification and regression tasks [13} 4} 24, 30}
14} 23, 41} [10], scaling to larger datasets and diverse pre-training regimes on both real [24] and
synthetic data [4]]. These advances establish PFNs as universal tabular priors that can generalize
across domains, forming the basis for most current TFMs.

Fine-Tuning TabPFN & Regularization. Recent work investigates the adaptation of PFNs for
large datasets. Approaches include full-weight fine-tuning with prior regularization [4], continued
pre-training [24} [10], tokenization-layer adaptation [37]], encoder compression and distillation [9, 25]],
mixture-of-experts routing [33} [39]], and batch-ensemble encoders [23]. Additional studies refine
context retrieval and conditioning [36, 24} [18]], and Rubachev et al. [31] provide a general survey.
Classical regularization techniques such as L2-SP [211[10], stochastic weight averaging [[15], and early
stopping [29] mitigate overfitting in low-data regimes. However, fine-tuning under data scarcity—the
regime most common in practice—remains largely unaddressed. While Kadra et al. [[L6] has shown
that strong regularization can improve performance in the tabular domain, our work provides a new
regularization through data augmentation for TFMs.

Synthetic Tabular Data Generation. Synthetic data generation supports privacy, data sharing,
and augmentation. GAN-based models [40] and diffusion approaches [22] improve fidelity, while
privacy-preserving GANSs [42] and energy-based models [27] provide interpretability and control.
Yet most focus on distributional realism rather than improving downstream model adaptation. In
contrast, we evaluate these approaches for their ability to enhance fine-tuning.

Research Gap. Despite progress in tabular foundation models (TFMs) and synthetic data gen-
eration, their integration for small-data fine-tuning and regularization remains largely unexplored.
Building on Garg et al. [[10], we investigate whether combining real and structured synthetic samples
can enhance downstream-performance and robustness. Our work addresses this gap by coupling
causal data generation with fine-tuning strategies for TFMs.
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Figure 1: Overview of the SCM-augmented fine-tuning process. Real training data (D{f;ln) are used
to fit a Structural Causal Model (SCM) via PC/FCI and DoWhy [32]. The SCM samples synthetic
data (D2} ) that preserve the discovered causal dependencies among features. Real and synthetic
samples are mixed in equal proportion to fine-tune the tabular foundation model (TFM), which is
optimized by cross-entropy loss. Validation is performed only on real data, and fine-tuning continues

as long as validation performance improves.

3 Methodology

Our method extends the fine-tuning framework of Biihler et al. [5] by mixing real and causally
grounded synthetic samples into the fine-tuning process, adding more recent baselines, evaluating
a TFM optimized for fine-tuning and evaluating across a broad collection of real world datasets.
Specifically, we generate synthetic data using SCMs fitted to the target dataset, enabling the model to
learn jointly from real samples and causally coherent augmentations. This design preserves feature
dependencies while expanding sample diversity, which enhances robustness and generalization under
low-data constraints.

SCM-Based Synthetic Augmentation (CausalMixFT). Unlike purely statistical generators,
SCMs explicitly encode causal dependencies among features through a directed acyclic graph
(DAG) and a set of structural equations, allowing data augmentation to respect the underlying data-
generating process. We first estimate the structural relations between the features using the PC and
FCT algorithms [34] [35]], producing a probabilistic adjacency matrix that encodes edge strengths
between variables. DAGs are then sampled and fitted using DoWhy’s SCM framework with additive
noise models [32]. Numerical features are modeled with regressors, and categorical features with
classifiers. The complexity of the internally used model types can be controlled through a quality
hyperparameter. Synthetic samples are generated by sampling exogenous noise and propagating it
through the fitted SCM, yielding data that captures both causal structure and realistic variability. See
Appendix [J] for more details.

Model & Data Overview.  We adopt the Mitra foundation model as the tabular backbone, as
it is explicitly designed for per-dataset fine-tuning and has achieved state-of-the-art performance
on the TabArena benchmark. Further, Mitra is provided with strong default hyperparameters. Our
experiments cover 33 classification datasets from the TabArena benchmark suite, excluding datasets
with more than 200 features (OpenML IDs 46912, 46919, 46939, 46908, 46933) using 10 folds
each. Datasets with more than 200 features were excluded to ensure SCM fitting remains within a
one-hour runtime limit. Each dataset is split into training, validation, and test subsets using stratified
sampling, with training and validation sets capped at 600 and 200 samples respectively to simulate
small-data conditions. Further details about the data splitting and light pre-processing are provided in

Appendix [[]and [M]

Fine-Tuning and Implementation. Let the downstream dataset be denoted as D™
syn _syn

{(@i,yi)}7=; and the corresponding SCM-generated data as D" = {(27", y;") }7;. The model is

fine-tuned on the combined dataset D™* = D™ U D", where both sources are equally represented
in each batch. To balance contributions from real and synthetic data, we define a weighted fine-tuning
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Figure 2: Performance comparison across data generation strategies. (left) Normalized ROC-
AUC improvements relative to the pre-trained baseline (dashed line). Whiskers represent 1.5x IQR;
medians and standard deviations are annotated. Higher score is better. (right) Critical difference
diagram (significance level = 0.05) Lower rank is better [7].

objective:
L= aE(w,y)ND"“' [€<f0’ (m)> y)] + (1 - Oé) IE(az:,y)~DSY“ [Z(fO’ (33), y)]a

where a = 0.5 unless specified otherwise. Validation is performed exclusively on D' to ensure
that improvements reflect genuine generalization rather than memorization of synthetic data. Early
stopping is triggered when validation log-loss fails to improve for a fixed number of iterations.
Optimization uses the default Mitra hyperparameters. A schematic overview of the iterative fine-
tuning steps is shown in Figure[T} Additional implementation details and hyperparameter settings are
provided in Appendix I}

4 Results

We evaluate whether CausalMixFT improves the robustness and generalization of tabular foundation
models under data scarcity. Experiments are conducted on the Mitra model across 33 classification
datasets with 10 folds each from the TabArena benchmark suite, totaling 2,310 fine-tuning runs.
Model performance is reported as normalized ROC-AUC relative to the pre-trained model (see

Appendix [H).

Fine-Tuning Performance. Figure[2]summarizes the normalized test performance across all data
generation strategies. On the left plot the proposed CausalMixFT, which combines real and causally
generated samples, achieves the highest median improvement of (+0.12+0.63) over the pre-trained
model, outperforming both the default fine-tuning baseline (+0.10 +0.98) and all purely synthetic
augmentation methods, including CTGAN, SCM, TabEBM, TableAugment and MixedModel (which,
in fact, show negative median improvements).

While default fine-tuning occasionally achieves higher peak performance on individual datasets, its
variability is substantially larger than that of our method (Default: +£0.98 vs. CausalMixFT: +0.63).
This indicates greater instability across datasets, whereas the CausalMixFT configuration acts as a
consistent regularizer, improving median performance and reducing variance. These results show that
SCM-based augmentation stabilizes fine-tuning under small-data conditions by introducing causally
structured synthetic diversity.

Figure [2] (right) presents the average ranks and corresponding critical difference (CD) intervals across
datasets. CausalMixFT ranks first overall, followed by the default fine-tuning baseline, while
purely synthetic generators occupy lower ranks, confirming the results of the boxplot. We further
analyze the validation-test performance gap in Appendix [A] showing that early stopping based on
limited validation data leads to significant validation set overfitting depending on the fine-tuning data
mix used.

5 Discussion

We empirically find that fine-tuning tabular foundation models (TFMs) in tiny-to-small data regimes
remains highly challenging. To address this, we propose CausalMixFT, a causally grounded fine-
tuning approach that leverages SCM-based augmentation to improve both stability and generalization.



Across a curated benchmark, CausalMixFT consistently outperforms standard fine-tuning, achieving
a superior balance between robustness and data efficiency. This provides a principled path forward
for more reliable adaptation of TFMs under scarce supervision.
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Figure 3: Validation—test performance correlation across datasets and data generators. Each
cell shows the Pearson correlation between validation and test log-loss for a given dataset and
generator configuration. Low or negative correlations indicate that validation performance is not a
reliable proxy for generalization under small-data conditions. The columns and rows are sorted by
average correlation coefficients from left (higher) to right (lower) and top (higher) to bottom (lower).
Incomplete runs due to the time limit of 1h or too many features are marked with "!" (TabEBM uses
TabPFNv1 internally, which only allows for 100 features)

Appendix Overview

This appendix provides additional analyses, figures, and implementation details that complement
the main text. It includes extended evaluations of validation-test correlations, overfitting behavior,
performance heterogeneity across data generators, as well as in-depth analyses of model weight
adaptation and normalization procedures.

A Validation—-Test Performance Gap

To better understand the relationship between validation and test performance during fine-tuning,
we analyze the Pearson correlation between validation log-loss and test log-loss across all generator
configurations. While validation metrics often suggest strong improvements, the corresponding test
results frequently show diminished gains. This discrepancy indicates that validation performance
provides a weak and noisy signal for true generalization, particularly in the low-data regime where
validation splits are small.

Figure 3] presents the correlation heatmap between validation and test performance across datasets
and generator types. Correlations vary substantially, with several negative or near-zero values,
highlighting the instability of validation-based early stopping under data-scarce conditions. Among
all methods, the CausalMixFT configuration yields relatively higher and more consistent correlations,
suggesting that incorporating causally structured synthetic data mitigates some of this instability.
Nonetheless, across most settings, validation performance remains an unreliable predictor of test
performance, underscoring the need for more robust fine-tuning criteria for tabular foundation models.
The general low generalization from validation to test performance is one of the main factors we
identified for fine-tuning TFMs to generally be very challenging.

B Validation Performance and Overfitting Analysis

To complement the test-set evaluation, we analyze the normalized ROC-AUC performance on the
validation sets across all generator configurations. Comparing validation and test performance
provides insight into the degree of overfitting introduced during fine-tuning and the reliability of
validation metrics as an early-stopping signal. A smaller discrepancy between validation and test
performance indicates a more stable and trustworthy proxy for generalization.

Figure[d]summarizes validation performance and the corresponding ranks across generators. Figure[a]
reveals that the TableAugment generator achieves the highest median normalized validation ROC-
AUC, despite ranking among the weakest methods on the test set (Section [C). This discrepancy
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Figure 4: Validation performance comparison across generators. The results reveal that validation-
based ranking can be misleading under small-data conditions, with methods such as TableAugment
and Default showing strong validation performance but large decrease in test performance and thus
generalization. The CausalMixFT configuration demonstrates a smaller validation-test discrepancy,
suggesting more stable and generalizable fine-tuning behavior.

suggests strong overfitting to the validation data, leading to poor generalization. Similarly, the default
fine-tuning baseline configuration exhibits the second-highest validation performance but also a
pronounced drop on the test set, with a median validation-test difference of 0.67 normalized units. In
contrast, the CausalMixFT combination shows a much smaller difference of 0.30 units, indicating
that SCM-based augmentation produces a more reliable and stable validation signal.

The critical difference diagram in Figure fib] further supports these observations. The Default baseline
achieves the lowest (best) rank on validation performance, reflecting its overconfident behavior on
small validation splits. However, this high validation ranking does not translate into superior test
performance, reinforcing the conclusion that validation metrics can be misleading under data-scarce
conditions. Across all methods, the majority of validation ROC-AUC scores exceed those of the
pre-trained model, which to an extent is an expected outcome due to early stopping. Certain datasets
display lower validation performance, relative to the pre-trained model, likely caused by divergence
between the early-stopping criterion (log-loss) and the evaluation metric (ROC-AUC).

C Heterogeneity of Test Performance across Generators

To investigate how fine-tuning outcomes differ across data generation strategies, we analyze the
normalized test ROC-AUC for each dataset and generator combination. This evaluation highlights the
degree of heterogeneity in model performance and the dataset-specific behavior of each augmentation
method. We note that the TabEBM generator is not compatible with the "MIC" dataset, as it internally
relies on TabPFNv1, which only supports up to 100 features, while the dataset has 112 features.

Figure [5] presents the normalized test performance heatmap across all generators and datasets.
Consistent with the findings in Section[d] we observe substantial variability in fine-tuning outcomes.
While the CausalMixFT and Default configurations achieve strong and stable performance on average,
their relative advantage varies across datasets. Some datasets favor purely synthetic approaches such
as CTGAN or TabEBM, whereas others benefit most from hybrid or causally informed augmentation.
The CTGAN generator achieves highes normalized performance of 3.89, while the TableAugment
generator yields the lowest normalized performance of -2.79.

This heterogeneity suggests that the effectiveness of a generator is strongly dataset dependent and
influenced by the underlying feature distribution, sample size, and causal complexity. The absence of
a universally superior generator underscores the importance of adaptive fine-tuning strategies that
can leverage multiple synthetic sources or dynamically adjust augmentation ratios based on dataset
characteristics.
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Figure 5: Normalized test ROC-AUC performance across datasets and generator configurations.
Each cell reports the normalized ROC-AUC (mean + standard deviation) for a given generator
on a specific dataset. The observed heterogeneity indicates that fine-tuning performance varies
considerably across generators and datasets, highlighting the need for dataset-adaptive augmentation
strategies.
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Figure 6: Normalized test ROC-AUC performance across mixed generator configurations. Each
box represents the distribution of normalized test performance relative to the pre-trained model
across datasets. Mixed configurations that combine real and synthetic data consistently outperform
single-generator baselines.

D Combinations of Generators

Building on the strong performance of our proposed SCM-based augmentation, we extend our
analysis to explore hybrid generator configurations that combine multiple data sources. Given the
competitive baseline performance of the default fine-tuning setup (Default) relative to single synthetic
generators, we systematically pair it with one or more synthetic generation methods to examine
potential complementarity effects. We evaluate normalized test ROC-AUC performance across all
datasets to assess whether combining generators yields more robust fine-tuning behavior.

As shown in Figure[6] hybrid configurations that mix real and synthetic data achieve consistently
strong results across datasets. The five mixed-generator variants occupy the top six median perfor-
mance positions, with CausalMixFT achieving the highest median improvement of +0.12 (+0.63),
followed closely by Default/TableAugment/SCM (+0.11 £0.65). The latter finding is particularly
noteworthy, as TableAugment alone performs poorly when used in isolation. This suggests that
combining heterogeneous data sources enables the foundation model to leverage complementary
structural and distributional properties—an effect reminiscent of ensemble learning.

Furthermore, the Default/MM configuration exhibits both competitive median performance (+0.10)
and a notably small interquartile range (1.5 XIQR) shown by the whiskers, indicating stable and
predictable improvements across datasets. Such stability makes it a strong candidate when reliable
gains over the pre-trained baseline are prioritized alongside generalization consistency. Overall,
these results demonstrate that mixing real data with diverse synthetic generators enhances fine-tuning
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Figure 7: Total parameter distance between fine-tuned and pre-trained model weights across
generator configurations. Each box represents the distribution of elementwise Euclidean weight
differences across all datasets. Smaller values indicate that the fine-tuned model remains closer to the
pre-trained parameter space.

robustness and generalization, highlighting the potential of multi-generator augmentation for tabular
foundation models operating in the low-data regime.

E Fine-Tuned Weight Distance from the Pre-Trained Model

We analyze how far the fine-tuned model weights deviate from the pre-trained checkpoint across
different generator configurations. Specifically, we compute the elementwise Euclidean distance
between the fine-tuned parameters and the original pre-trained weights. Prior work has suggested
that constraining the degree of weight divergence through regularization (e.g. euclidean distance) can
improve fine-tuning stability and generalization [[10,21]]. By quantifying the total weight displacement
per generator, we aim to understand how different augmentation strategies influence model adaptation
dynamics and parameter stability.

As shown in Figure [/} the TableAugment generator exhibits the largest variance in weight displace-
ment from the pre-trained model. Although its median distance is relatively low (approximately
0.01), several runs show extreme deviations up to 0.35, indicating unstable optimization behavior.
Combined with its previously observed weak generalization performance, this pattern is consistent
with phenomena associated with catastrophic forgetting [19, 3| [L1], where fine-tuning overwrites
pre-trained representations, leading to significant loss of learned capabilities.

In contrast, the MixedModel, Default, and CTGAN configurations display similar median distances
(around 0.01) but diverge substantially in their downstream performance, suggesting that weight
distance alone is an unreliable indicator of fine-tuning success. Notably, the TabEBM and SCM
generators show almost no displacement from the pre-trained weights, implying that their training
signals were too weak or misaligned to induce meaningful parameter updates. This observation
highlights that small weight changes do not necessarily imply better generalization, emphasizing the
importance of evaluating both representational stability and downstream performance jointly.

F Layer wise Weight Adaptation

We next examine which components of the TEM undergo the largest updates relative to the pre-trained
checkpoint. The pre-trained model has been optimized on a broad distribution of purely synthetic
tasks, which encourages storage of general representational structure rather than dataset-specific
heuristics. Fine-tuning, in contrast, repeatedly exposes the model to related (or even equal) samples
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Figure 9: Component-wise weight deviation across model depth. Comparison of parameter shifts
for feed-forward (linear) and attention layers relative to the pre-trained model. Linear layers show the
strongest adaptation across all generators, followed by the attention layers.

from a generator, which promotes specialization towards these samples. Quantifying where parameter
drift concentrates within the network can therefore provide insight into how specialization emerges.

Figure 8] shows the distribution of layerwise weight distances for each generator. The TableAugment
configuration displays a pronounced depth trend: distances increase toward later blocks and the
decoder head, indicating strong adaptation in task-specific layers. A similar pattern, though less
pronounced, appears for the Default, SCM, and CTGAN settings. In contrast, MixedModel and
TabEBM show relatively flat profiles with smaller shifts across depth. These observations align
with the common view that early layers encode general computations while deeper layers encode
task-specific transformations; specialization during fine-tuning therefore concentrates in later blocks.

Coupling these results with Section [B|suggests a practical implication. When depth-wise drift is steep
and accompanied by weak test generalization, as observed for TableAugment, regularization that
limits deviation from the pre-trained manifold may improve stability of early stopping and reduce
overfitting.

G Component-Wise Weight Adaptation

The layer wise analysis in Figure [§]indicates that certain model components undergo substantial
parameter updates during fine-tuning, whereas others remain largely unchanged across generators.
To investigate this in greater detail, we isolate and compare the two component groups exhibiting the
strongest deviations from the pre-trained checkpoint.

Figure O] highlights that the linear layers, including the feed-forward networks between each trans-
former block. We observe that especially the feed-forward networks between the attention compu-
tation undergo the largest parameter shifts across all generator configurations, while the decoder
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head has (not marked on the plot) only minimal distance compared to the pre-trained model weights.
This suggests that most dataset-specific specialization is concentrated in the linear layers, while
other components retain more general representations. These findings point to a potential strategy
for mitigating overfitting: selectively constraining the deviation of linear layer parameters from the
pre-trained checkpoint may preserve adaptability in other components while reducing excessive
specialization. Such a targeted regularization offers an interesting direction for future research.

The attention layers (key, query, value, and output projection matrices) exhibit the second-largest
parameter shifts, consistent with earlier findings that fine-tuning induces measurable but in our case
less pronounced adaptation in attention modules [31]. This supports the hypothesis that attention
mechanisms encode more generalizable computations that remain relatively stable across datasets.
Notably, the extent of attention-layer adaptation varies strongly with the generator type: TableAugment
produces the largest deviations, followed by the MixedModel, while Default, CTGAN, TabEBM, and
SCM lead to comparatively minor changes. These results further reinforce that the fine-tuning signal
introduced by different generators differentially influences the degree to which the model parameters
are adjusted.

H Performance Normalization

to compare the performance across different data generators, we apply the normalization strategy
suggested by Gorishniy et al. [12]. We choose the base model’s (Mitra’s) zero-shot performance as
performance baseline, to measure the improvement after fine-tuning over the pre-trained model. To
normalize the performance of the fine-tuned model we compute: scorenormalized = MeETiCsign X
(W — 1) x 100%, where metricsig, = 1 for metrics, where higher is better (e.g. ROC-
AUC) and metricg;gn = —1 for metrics, where lower is better (e.g. Log-loss). If fine-tuning and the
pre-trained models achieve the same performance then score, ormatized = 0, if fine-tuning improves
over the pre-trained model then score,ormaiized > 0 and if fine-tuning decreases performance
then scorenormatized < 0. The choice of normalization method allows averaging the normalized
performance across datasets and compare the data generating methods.

I Notation.

We denote the real downstream dataset as D™ and the synthetically generated dataset as D%,

Each dataset is partitioned into training, validation, and test subsets, represented as Dt{rzil/sy"},
DI “and DI | respectively. For context—query splits used during in-context fine-tuning,
we write D™ and D{ay™™ . Given that each dataset contains a predefined target column, we
X{ real/syn}
s train

as YIS ¢ Rnx1 A there is a optional normalization step, between the training samples and
the generator data, we sometimes write Dienerator t0 specify this. This notation is used consistently

throughout the methodology and experimental sections.

represent the non-target feature matrix as € R™*? and the corresponding target vector

J Generator Details

In this section, we describe the different data-generating methods, which are used for the experiments.
We start with our baseline, which uses D7¢% directly, followed by a heuristic method and then go

into the methods, optimized on the dataset.

J.1 Default Generator (baseline)

In our experiments, fine-tuning directly on the raw training data without any form of augmentation
represents our baseline. This approach reflects the standard practice of utilizing available data for
fine-tuning, as employed in prior work [4} 8, [31]]. Since the experiments focus on tiny-to-small
datasets, all foundation models considered are capable of processing the entire dataset within one
forward pass, without requiring any context retrieval mechanisms.
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Figure 11: The TableAugment Generator. Real data features are green and blue, while synthetized
features are orange and yellow.

J.2 TableAugment Generator

The TableAugment generator is inspired by the data augmentation approach introduced by Ma et al.
[24]], who used real-world tabular datasets to pre-train a TabPFN variant. Due to the limited number
of publicly available tabular datasets, the authors augmented their collection using different views of
each dataset by subsampling and shuffling features and random selection of a target column in each
iteration.

In contrast to their pre-training method, our goal is to improve the model’s performance on one
specific target dataset, and therefore we only need to augment the same dataset over and over again.
To this end, our implementation supports a range of configurable augmentation strategies involving
feature subselection and target column assignment.

Feature Subseletion. Feature subselection can be toggled on or off. If disabled, the model uses
all features from the generator dataset Dg;f‘elrator. If enabled, a subset of features is selected in each
iteration by uniformly sampling a proportion of features between 50% and 100%. Additionally, we
provide control over the inclusion of the original target column (hereafter referred to as the “old
target”) within the selected feature subset. The old target can be configured to be always included,

never included, or included with the same probability as all other features.
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Target Column Selection.  After the feature subselection, we assign a new target column for the
foundation model to predict in this iteration. This functionality can also be enabled or disabled. If
disabled, the old target remains the target throughout all iterations. If enabled, a new target column is
sampled randomly from the set of selected features. The inclusion of the old target column in the
candidate pool for new targets is controllable: it can always be included, never included, or included
at random. If the newly selected target column is continuous or exhibits high cardinality, it may
need to be discretized. The number of discretized classes, denoted by ¢, can either match the number
of classes in the old target or be sampled uniformly from a user-specified range (default range is
between 2 and 10). To discretize a target column into ¢ classes, we assign the ¢ — 1 most frequent
values to individual classes and group all remaining values into the & class.

The new resulting dataset D*Y™ is the composed of the subselected features and the new selected
target column.

J.3 Mixed-Model Generator

Classifier model search space

+ Random Forest Sample & fit »
- Max Trees: range(10, 100), EICRCEM Classifier Model
- e xreal _, yreal
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Figure 12: The Mixed-Model generator. First the internal density estimator and classifier model are
sampled from predefined search spaces and fitted on Dgﬁf‘llemtor. Secondly, to generate synthetic data,
we sample features from the density estimator and propagate the samples through the classifier, which

yields the labels. The features and labels are concatenated, which results in the synthetic dataset.

The Mixed-Model Generator is the first proposed augmentation method that incorporates learnable
internal models to generate synthetic datasets, as shown in figure[I2} Breejen et al. [4] showed that
during pre-training data generated through machine learning models can capture complex feature-
target relations and thus is very efficient for improving in-context learning capabilities. Based on
this insight, we create a generator, which leverages internal machine learning models to generate
synthetic datasets, which incorporate information about the real feature to target mapping. It consists
of two primary components:

* A density estimator, which models the distribution of the feature space.
* A classifier, which learns mapping between the features and targets.

Together, these components are used to produce labeled synthetic datasets. The generator exposes a
range of hyperparameters that control the behavior of both components, as described below.

Density Estimator.  We support four types of density estimators: Gaussian Mixture Model (GMM),
Bayesian Gaussian Mixture (BGM), Kernel Density Estimation (KDE), and Uniform Density Model.
The first three options use the implementations provided by scikit-learn, while the uniform estimator
is custom implemented. For the uniform estimator, continuous features are sampled from a uniform
float distribution bounded by the observed range in the training data, while categorical features are
sampled uniformly from the set of observed integer values.

A special case is handled for the Bayesian Gaussian Mixture model. When the covariance matrix
becomes singular (which can occur in highly imbalanced datasets), we iteratively increase the cov_reg
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parameter by a factor of 10, up to 10 times. If this fails to resolve the issue, we default to using the
uniform density estimator.

Classifier Model. Once the density estimator is selected and fitted, we sample a classifier
model from the following set: Decision Tree (DT), Random Forest (RF), Gradient Boosted Trees
(GradBoost), Support Vector Classifier (SVC) and Multi-Layer Perceptron (MLP). Each classifier is
associated with a predefined set of hyperparameters, which are shown in (TODO).

Synthetic Data Generation. To generate synthetic data, we first sample a density estimator with
corresponding hyperparameters and a classifier with corresponding hyperparameters. The density

estimator is trained on the generator’s real feature set, X™2._while the classifier is trained usin
generator

both the real features X é‘;ﬁlerawr and the corresponding real targets Ygg;;m. Further, we sample 7;
new feature samples from the density estimator (default: 20,000). These features are forwarded
through the trained classifier to produce the corresponding synthetic labels YY", forming a complete

synthetic dataset (X,.. Y, 20 ).

train’ ~ train

J.4 SCM-Based Generator
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Figure 13: The SCM generator consists of two phases. First, discovering the structural relationships
between the features, and secondly sampling DAGs and fitting SCMs on the generator dataset
Dreal

generator*

In this method, we estimate dependencies between features through structure discovery and use
Structural Causal Models (SCMs) to generate synthetic datasets. The process consists of two phases:
first we discover the structural relationships between the features, and secondly we sample and fit
SCMs from which we sample synthetic data.

Structural Dependencies Discovery. In the first phase, which we only have to do once per
fine-tuning run, we want to find structural dependencies between the features. Therefore, we apply
the Peter-Clark (PC) and Fast Causal Inference (FCI) algorithms from the causal-learn library,
each executed 50 times with differently sampled hyperparameters, resulting in a total of 100 discovery
runs. The procedure is as follows:

* Each run is limited to a maximum runtime of 20 minutes to avoid infinite loops or long
convergence times.

* The input data is subsampled to a maximum of 1,000 rows and 50 columns if these thresholds
are exceeded.

* Each run returns an adjacency matrix that indicates detected edges between features.

* These 100 adjacency matrices are aggregated into a probabilistic adjacency matrix C, where
each cell ¢; ; denotes the relative frequency with which an edge from feature i to feature j
was discovered:

Cij =

Number of runs where edge ¢ — j was found
Total number of runs '
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Although PC and FCI are typically used to recover causal graphs under strict assumptions, our use
case only requires discovery of correlational structure. As such, potential violations of assumptions
are acceptable, and the discovered graphs are treated as representations of meaningful (though not
necessarily causal) dependencies. This step is performed once during initialization. Section[I8]shows
an exemplary probabilistic adjacency matrix.

SCM Fitting and Data Generation. Once the probabilistic adjacency matrix is computed, the
following steps are performed each time a synthetic dataset is generated:

* Graph Sampling:

— A directed graph is sampled from the probabilistic adjacency matrix C.
— Bidirectional edges are resolved by randomly removing one direction.

— Cycles are removed by randomly deleting edges until the graph becomes a Directed
Acyclic Graph (DAG).

¢ SCM Fitting:

— The resulting DAG is passed to DoWhy’s SCM fitting API, which fits an additive noise

model using the structure and the generator data Dggr;glrm.

— The fitting quality can be configured via a quality parameter, with the following
options:
# GOOD: Fast and simple models.
- Numerical: Linear regressors (with/without polynomial features), Histogram
Gradient Boost Regressor.
- Categorical: Logistic regression (with/without polynomial features), Histogram
Gradient Boost Classifier.
+ BETTER: Wider model variety for better accuracy.
- Numerical: Adds Ridge, Lasso, Random Forest, SVR, Extra Trees, KNN, Ad-
aBoost.
- Categorical: Adds Random Forest, Extra Trees, SVC, KNN, Gaussian Naive
Bayes, AdaBoost.

# BEST: Uses AutoGluon (AutoML). Offers highest accuracy but slower training
and inference.

Synthetic samples are generated using DoWhy’s API by drawing noise for exogenous variables and
propagating it through the SCM. The default number of samples per synthetic dataset is set to 20,000.

J.5 TabEBM Generator

The TabEBM generator is a class conditional generating method. Using the TabEBM official
implementation, this returns data, where each class is present with the same number of samples.
To have a dataset, which is more representative of the real training data, we subsample from the
synthetic dataset, such that the class distribution of the real training dataset is maintained. After this,
the subsampled dataset is returned. As the sampling of TabEBM works purely through in-context
learning, the TabEBM generator needs to be fitted every time we generate a new synthetic dataset.

J.6 CTGAN Generator

For the CTGAN generator, before generating any synthetic data, we fit the GAN on the training data
using a set of sampled hyperparameters from a predefined search space. Once the GAN model is
fitted, we can directly sample synthetic data from it (default 20,000 samples), which represent the
synthetic dataset.
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K Generator Hyperparameters

K.1 MixedModel Generator Hyperparameters

Table 1: Overview of hyperparameter ranges for classifiers used in the MixedModel generator.

Classifier Hyperparameter Type / Choices Range or Values
n_estimators Integer (Uniform) [1, 10]
TabPFNClassifier n_jobs Categorical {1}
device Categorical {"cpu"}
n_estimators Integer (Log-Uniform) [10, 500]
criterion Categorical {"gini", "log_loss", "entropy"}
max_depth Integer (Log-Uniform) [10, 100]
RandomForestClassifier min_samples_split Integer (Uniform) [2, 20]
min_samples_leaf Integer (Uniform) [1, 10]
max_leaf_nodes Integer (Uniform) [10, 100]

bootstrap Categorical {True, False}
criterion Categorical {"gini", "entropy", "log_loss"}
splitter Categorical {"best", "random"}
S max_depth Integer (Log-Uniform)  [5, 100]

DecisionTreeClassifier min_samples_split Integer (Uniform) [2, 20]
min_samples_leaf Integer (Uniform) [1, 10]
max_features Categorical {0.1, 0.25, 0.5, 0.75, 1.0, "sqrt", "log2", None}
hidden_layer_sizes Integer (Uniform) [1, 100]

activation Categorical {"relu", "logistic", "tanh"}

solver Categorical {"adam", "sgd", "lbfgs"}

alpha Float (Uniform) [0.0001, 0.1]
MLPClassifier batch_size Categorical {"auto", 32, 64, 128}

learning_rate
learning_rate_init

Categorical
Float (Uniform)

{"constant", "invscaling", "adaptive"}
[0.0001, 0.01]

max_iter Integer (Uniform) [100, 1000]
momentum Float (Uniform) [0.5,0.95]
nesterovs_momentum / early_stopping Categorical {True, False}
kernel Categorical {"linear", "rbf", "poly", "sigmoid"}
[ Float (Log-Uniform) [1e-6, 1e6]
degree Integer (Uniform) [1, 5]
gamma Categorical {"scale", "auto"}
coef0 Float (Uniform) [-1,1]

svc shrinking Categorical {True, False}
probability Categorical {True, False}
tol Float (Log-Uniform) [le-5, le-2]
cache_size Float (Uniform) [200, 1000]

class_weight Categorical {None, "balanced"}
max_iter / break_ties Integer / Bool [100, 1000] / { True, False}
loss Categorical {"log_loss"}
learning_rate Float (Uniform) [0.01, 1.0]
max_iter Integer (Uniform) [50, 1000]

. o . e max_leaf_nodes Integer (Uniform) [5, 100]

HistGradientBoostingClassifier max_depth Integer (Uniform) [3.15]

min_samples_leaf Integer (Uniform) [5, 100]
12_regularization Float (Uniform) [0.0, 1.0]
max_bins Integer (Uniform) [10, 255]

K.2 SCM Generator Hyperparameters

Table 2: Overview of the quality hyperparameter for internal model assignment in the SCM
generator.
Quality Setting Included Models (Examples)

Numerical: Linear Regressor, Polynomial Regressor,
Histogram Gradient Boost Regressor

Categorical: Logistic Regressor, Polynomial Logistic Regressor,
Histogram Gradient Boost Classifier

Description / Characteristics

GOOD Small, efficient model set for fast training and inference; medium predictive accuracy.

Numerical: Ridge, Lasso, Random Forest, SVR,
Extra Trees, KNN, AdaBoost

Categorical: Random Forest, Extra Trees, SVC,
KNN, GaussianNB, AdaBoost

BEST AutoML backend (AutoGluon)

BETTER Expanded model pool for higher accuracy while maintaining reasonable training speed.

Full AutoML configuration offering the best accuracy, but with increased computational cost.

20



K.3 TabEBM Generator Hyperparameters

Table 3: Overview of hyperparameter ranges for the TabEBMGenerator.

Generator Hyperparameter Type / Choices Range or Values
n_samples_per_class Integer (Fixed) 150
TabEBMGenerator device Categorical {"cpu"
name Categorical {"TabEBMGenerator" }

K.4 CTGAN Generator Hyperparameters

Table 4: Overview of hyperparameter ranges for the CTGANGenerator.

Generator Hyperparameter Type / Choices Range or Values
refit_interval Integer (Fixed) 10
n_synthetic_samples Integer (Fixed) 20,000
n_sample_attempts Integer (Fixed) 10
model_cache_lower_bound Integer (Fixed) 2
model_cache_upper_bound Integer (Fixed) 5
cuda Categorical {True}

CTGANGenerator embedding_dim Integer (Uniform) [8, 256]
generator_lr Float (Log-Uniform) [le-5, le-2]
generator_decay Float (Log-Uniform) [le-5, le-2]
discriminator_1lr Float (Log-Uniform) [le-5, le-2]
discriminator_decay Float (Log-Uniform) [le-5, le-2]
discriminator_steps Integer (Uniform) [1, 10]
epochs Integer (Uniform) [100, 200]

K.5 TableAugment Generator Hyperparameters

Table 5: Overview of hyperparameter ranges for the TableAugmentGenerator.

.min_discrete_values
.max_discrete_values

random_sample_target
random_sample_target

Integer (Fixed) 2
Integer (Fixed) 10

Generator Hyperparameter Type / Choices  Range or Values
name Categorical {"TableAugmentGenerator" }
normalize Categorical {False}
sub_sample_features.active Categorical {True}
sub_sample_features.min_ratio Float (Uniform) [0.5, 1.0]
sub_sample_features.max_ratio Float (Uniform [0.5, 1.0]

TableAugmentGenerator sub_sa.mile_features .include_target Caleg(()rical : {"random", "always", "never"}
random_sample_target.active Categorical {True}
random_sample_target.include_target Categorical {"random", "always", "never"}
random_sample_target.allow_target_as_target Categorical {True}
random_sample_target.use_dataset_num_classes Categorical {True}

L Data-Splitting

Given a target dataset D™, we partition it into three mutually exclusive subsets: training, validation,
and test. Formally, this decomposition is expressed as:

Dreal ) Dreal _ @

val test

Dreal

train

Dreal

real __ pyreal real real
D - Dtrain U Dval U Dtesl ’ train

N Dreal _ m,

val —

N Dreal _ (2)7

test

with

To evaluate the performance of fine-tuning under limited data conditions, we constrain the dataset
sizes used for training and validation. Including, if the total number of samples N™¥ exceeds 1000,
we apply truncation as follows:
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Figure 16: Splitting the full dataset into a train, validation and test set.

« The training set D% € RN 2™ with

Nl = min(0.6 - N™ 600).
« The validation set D™ € RN *L™ | with

N = min(0.2 - N™ 200).

real real
* The test set D' € RVesx XL™ | where

test
N = max(0.2 - N, NS Nk — ).
Regarding the validation split, we first apply a test, train split, and then get the train, val split only
based on train. This procedure ensures that the training and validation subsets comprise at most 60%
and 20% of the full dataset, capped at 600 and 200 samples respectively. The test set comprises the
remaining data, ensuring at least 20% coverage.

To preserve the distribution of class labels, all splits are generated using stratified sampling with
respect to the class labels. This partitioning process is repeated across K different folds to support
robust evaluation. The overall splitting strategy is illustrated in Figure [I6]

M Data Pre-processing

Having obtained the training, validation, and test splits, we proceed with data pre-processing to
ensure compatibility with both the data-generating procedures and the foundation model.

For the foundation model, all non-numerical (categorical or textual) features are encoded into
numerical representations to enable model compatibility. This step is essential for ensuring that
the input conforms to the expected numerical format of the foundation model. For this, we use
Autogluon’s AutoMLPipelineFeatureGenerator, with the default setting.

Further, for the data-generating methods, we create a working copy of the training dataset D3 —

train
Dg?;}eramr. On this cloned dataset, we perform the following pre-processing steps:

* Mean imputation is applied to continuous (real-valued) features to handle missing values.

* Mode imputation is used for categorical features, ensuring that missing entries are filled
with the most frequent category.

* Optionally, Z-score normalization is applied to standardize the input distribution.

: : real : real real : 3
During the fine-tuning we use Diglepyor o build our generators, and Dith . DU to assess validation

performance. This pre-processing workflow is illustrated in Figure [I7}
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Figure 17: Pre-processing the data. Non-numerical features and numerically encoded. Further, the
training data is cloned for the data generating methods with mean/mode imputation and optional
z-score normalization applied.

N Fine-tuning Hyperparameters

Table 6: Default parameter values of the training hyperparameter configuration.

Parameter Default Value
initial_learning_rate 1x107*
finetune_steps 50
shuffle_classes False
shuffle_features False
use_random_transforms False
random_mirror_x True
patience 40

O Probabilistic Adjacency Matrix

In the first step of our method, we apply a set of causal discovery algorithms with varying hyper-
parameters and aggregate their outputs into a probabilistic adjacency matrix. Each matrix entry
represents the relative frequency of a directed edge across all discovered graphs.

Figure[T§]illustrates an example probabilistic adjacency matrix for the Is-this-a-good-customer dataset
(fold 5). Qualitatively, we observe that most matrices are relatively sparse across datasets, consistent
with prior findings on sparse real-world data structures [13]]. This sparsity facilitates efficient causal
structure learning even in high-dimensional settings (up to 200 features in our setup).
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Figure 18: Example probabilistic adjacency matrix for the *Is-this-a-good-customer* dataset (fold
5). Each entry encodes the empirical frequency of a directed edge across multiple causal discovery
runs with varying hyperparameters. Brighter values indicate higher consensus about the presence and
direction of an edge. The overall sparsity reflects the typically sparse causal structure of real-world
tabular data.
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