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ABSTRACT

AdamW modifies vanilla Adam by decaying network weights per training iter-
ation, and shows remarkable generalization superiority over Adam and its `2-
regularized variant. In context of adaptive gradient algorithms (e.g. Adam), the
decoupled weight decay in AdamW differs from the widely used `2-regularizer,
since the former does not affect optimization steps, while the latter changes the
first- and second-order gradient moments and thus the optimization steps. Despite
its great success on both vision transformers and CNNs, for AdamW, its conver-
gence behavior and its generalization improvement over (`2-regularized) Adam
remain absent yet. To solve this issue, we prove the convergence of AdamW and
justify its generalization advantages over Adam and its `2-regularized version.
Specifically, AdamW can provably converge but minimizes a dynamically regu-
larized loss that combines a vanilla loss and a dynamical regularization induced
by the decoupled weight decay, thus leading to its different behaviors compared
with Adam and its `2-regularized version. Moreover, on both general nonconvex
problems and PŁ-conditioned problems, we establish the stochastic gradient com-
plexity of AdamW to find a stationary point. Such complexity is also applicable to
Adam and its `2-regularized variant, and indeed improves their previously known
complexity, especially for modern over-parametrized networks. Besides, we the-
oretically show that AdamW often enjoys smaller generalization error bound than
both Adam and its `2-regularized variant from the Bayesian posterior aspect. This
result, for the first time, explicitly reveals the benefits of the unique decoupled
weight decay in AdamW. We hope the theoretical results in this work could mo-
tivate researchers to propose novel optimizers with faster convergence and better
generalization. Experimental results testify our theoretical implications.

1 INTRODUCTION

Adaptive gradient algorithms, e.g. Adam (Kingma & Ba, 2014), have become the most popular
optimizers to train deep networks because of their faster convergence speed than SGD (Robbins &
Monro, 1951), with many successful applications witnessed to computer vision (Dosovitskiy et al.,
2020; Zhou et al., 2022) and natural language processing (Sainath et al., 2013; Abdel-Hamid et al.,
2014), to name a few. Similar to the precondition spirit in the second-order algorithms (Süli &
Mayers, 2003), adaptive gradient algorithms precondition the landscape curvature of loss objective,
and accordingly adjust the learning rate for each gradient coordinate. This precondition often helps
these adaptive algorithms achieve faster convergence speed than their non-adaptive counterparts
across many applications, e.g. SGD which uses a single learning rate for all gradient coordinates.
Unfortunately, this precondition also brings negative effect. That is, adaptive algorithms usually
suffer from worse generalization performance than SGD (Keskar & Socher, 2017; Luo et al., 2019).

As a recent leading adaptive gradient approach, AdamW (Loshchilov & Hutter, 2018) greatly im-
proves the generalization performance of adaptive algorithms, and has shown superior generalization
performance over other adaptive and non-adaptive algorithms, e.g. Adam and SGD, on vision trans-
formers, such as ViTs (Touvron et al., 2021) and Swin (Liu et al., 2021), and CNN, e.g. ResNet (He
et al., 2016; Touvron et al., 2021) and ConvNext (Liu et al., 2022). The core of AdamW is a decou-
pled weight decay and also its integration with Adam. Specifically, AdamW first uses an exponential
moving average to estimate the first-order momentmk and second-order momentnk of gradient like
Adam, and then updates network weights xk+1 =xk−ηmk/

√
nk+δ−ηλxk with a learning rate

η, a weight decay parameter λ, and a small constant δ. One can observe that the update of AdamW

1



Under review as a conference paper at ICLR 2023

decouples the weight decay from the optimization steps taken w.r.t. the loss function, since the
weight decay is always −ηλxk no matter what the loss and optimization step are. This decoupled
weight decay degenerates to `2-regularization for SGD, but differs from `2-regularization for adap-
tive algorithms. Because of its simplicity and strong compatibility, AdamW has been widely used
in network training. But there remain many mysteries about AdamW yet. Firstly, for convergence,
it is still not clear whether AdamW can theoretically converge or not, and if yes, what convergence
rate it can achieve. Moreover, for the generalization superiority of AdamW over the widely used
(`2-regularized) Adam, the theoretical reasons are rarely investigated though heavily desired.

Contributions: In this work, to resolve these issues, we provide a new viewpoint to understand the
convergence and generalization behaviors of AdamW. Particularly, we theoretically prove the con-
vergence of AdamW, and also further justify the generalization superiority of AdamW over Adam
and its `2-regularized version. Our main contributions are highlighted below.

Firstly, we prove that AdamW can converge but minimizes a dynamically regularized loss that com-
bines the vanilla loss and a dynamical regularization induced by the decoupled weight decay. In-
terestingly, this dynamical regularization distinguishes from the commonly used `2-regularization,
and thus leads to the different behaviors between AdamW and (`2-regularized) Adam. For conver-
gence speed, on general nonconvex problems, AdamW can find an ε-accurate first-order station-
ary point within stochastic gradient complexity O(c2.5∞ ε−4) when using constant learning rate and
O(c1.25

∞ ε−4 log( 1
ε )) with decayed learning rate, where c∞ is the `∞-norm upper bound of stochastic

gradient. When ignoring constant and logarithm terms, both complexities match the lower complex-
ity boundO(ε−4) in (Arjevani et al., 2019) under the same assumptions. These complexities are also
applicable to Adam and its `2-regularized version, and improve their previously known complexi-
tiesO(c∞

√
dε−4) andO(c∞

√
dε−4 log( 1

ε )) when respectively using constant and decayed learning
rate (Zhou et al., 2018; Chen et al., 2021; Guo et al., 2021), since c∞ is often much smaller than
the network dimension d, especially for modern over-parametrized networks. On PŁ-conditioned
nonconvex problems, our established complexity of AdamW also enjoys similar advantages.

Next, we theoretically show the benefits of the decoupled weight decay in AdamW to the generaliza-
tion performance from the Bayesian posterior aspect. Specifically, we show that a proper decoupled
weight decay λ > 0 helps AdamW achieve smaller generalization error, indicating the superiority
of AdamW over vanilla Adam (without `2-regularization) which corresponds to λ = 0. Moreover,
we further analyze `2-regularized Adam, and observe that AdamW often enjoys smaller generaliza-
tion error bound than `2-regularized Adam. To our best knowledge, this work is the first one that
explicitly shows the superiority of AdamW over Adam with or without `2-regularization.

2 RELATED WORK

Convergence Analysis. Adaptive gradient algorithms, e.g. Adam (Kingma & Ba, 2014), have be-
come the default optimizers in deep learning because of their fast convergence speed. Subsequently,
many works investigate their convergence to deepen their understanding. On convex problems,
Adam-type algorithms, e.g. Adam and AMSGrad (Reddi et al., 2019), are well studied and shown to
enjoy the regret O(

√
T ) under the online learning setting with the time horizon T . For more practi-

cal nonconvex problems widely occurred in deep learning, under Lipschitz gradient condition, Guo
et al. (2021) and Chen et al. (2018) established the stochastic gradient complexity O

(
c∞
√
dε−4

)
of

Adam-type algorithms to achieve an ε-accurate stationary point, where d is the problem dimension
and c∞ is the `∞-norm upper bound of stochastic gradient. RMSProp and Padam (Chen et al., 2021)
are proved to have the complexity O

(√
c∞dε

−4
)

(Zhou et al., 2018), and Adabelief (Zhuang et al.,
2020) has O

(
c62ε
−4
)

complexity, where c2 is the `2-norm upper bound of stochastic gradient. The
recently proposed Adan (Xie et al., 2022) enjoys the complexity O(c∞ε

−4) which is slightly better
than the aforementioned complexity. Unfortunately, the convergence behaviors of AdamW remains
unclear, even though it is the dominant optimizer with higher and more stable performance on vision
transformers (Touvron et al., 2021; Liu et al., 2021) and CNNs (Touvron et al., 2021).

Generalization Analysis. Most works, e.g. (Mandt et al., 2016; Zhu et al., 2018), analyze the
generalization of an algorithm through studying its stochastic differential equations (SDEs) because
of the similar convergence behaviors of an algorithm and its SDE. For instance, Jastrzkebski et al.
(2017) and Simsekli et al. (2019) respectively formulated SGD into Brownian- and Lévy-driven
SDEs via assuming Gaussian or heavy-tailed gradient noise, and both proved that SGD tends to
converge to flatter minima instead of sharp minima and thus enjoys good generalization. See more
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results in (Pavlyukevich, 2011; Chaudhari & Soatto, 2018). But they all do not analyzed AdamW.
Recently, some works also study the effects of weight decay. The works (Van Laarhoven, 2017;
Zhang et al., 2018; Hoffer et al., 2018) intuitively claim that for layers followed by normalizations,
e.g. BatchNormalization (Ioffe & Szegedy, 2015), weight decay increases the effective learning rate
by reducing the scale of the network weights, and higher learning rates give larger gradient noise
which often acts a stochastic regularizer. But Zhou et al. (2021b) argued the benefits of weight decay
to the layers without normalization, e.g. fully-connected networks, and further empirically found the
effects of weight decay to the last fully-connected layer of a network: it constrains the weight norm
and controls the cross-boundary risk. Unfortunately, none of them explicitly show the generalization
benefits of weight decay in AdamW. In this work, we borrow the aforementioned SDE tool and
PAC Bayesian framework (McAllester, 1999) to explicitly and rigorously analyze the generalization
effects of decoupled weight decay of AdamW and also its superiority over (`2-regularized) Adam.

3 NOTATION AND PRELIMINARILY

AdamW & `2-regularized Adam. Here we first briefly recall the steps of AdamW and (`2-
regularized) Adam to solve the following stochastic nonconvex optimization problem:

minx∈Rd F (x) := Eξ∼D[f(x, ξ)], (1)

where loss f is differentiable and nonconvex, sample ξ is drawn from a distribution D. To solve
(1), at the k-th iteration, AdamW estimates the current gradient ∇F (xk) as the minibatch gradient
gk= 1

b

∑b
i=1∇f(xk; ξi), and updates the variable x with β1∈ [0, 1], β2∈ [0, 1] and δ > 0 as

mk=(1−β1)mk−1+β1gk, nk=(1−β2)nk−1+β2g
2
k, xk+1 =xk−ηmk/

√
nk+δ−ηλxk, (2)

where m0 = g0 and n0 = g2
0 . See detailed AdamW algorithm in Algorithm 1 in Appendix C. The

term (−ηλxk) comes from the decoupled weight decay. AdamW only differs from vanilla Adam in
the third step in Eqn. (2). Specifically, AdamW decouples the weight decay from the optimization
steps, as the weight decay is always −ηλxk no matter what the loss and optimization step are,
while Adam often directly employs the `2-regularization. In this way, Adam adds a conventional
weight decay λxk into the gradient estimation gk = 1

b

∑b
i=1∇f(xk; ξi)+λxk, then updates mk

and nk as in (2), and finally updates xk+1 = xk − ηmk/
√
nk+δ. The decoupled weight decay in

AdamW often achieves better generalization than the conventional one in Adam on many networks,
e.g. ViTs (Touvron et al., 2021; Liu et al., 2021), and CNNs (Touvron et al., 2021; Liu et al., 2022).

Analysis Assumptions. Here we introduce necessary assumptions for theoretical analysis, which
are commonly used in (Kingma & Ba, 2014; Reddi et al., 2019; Luo et al., 2019; Duchi et al., 2011).
Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth w.r.t. the parameter, if ∃L > 0,

‖∇f(x1, ξ)−∇f(x2, ξ)‖2 ≤ L ‖x1 − x2‖2 , ∀x1,x2 and ξ ∼ D.

Assumption 2 ( Gradient estimation assumption). The gradient estimation gk is unbiased, and its
magnitude and variance are bounded as follows

E[gk] = ∇F (xk), ‖gk‖∞ ≤ c∞, E[‖∇F (xk)− gk‖2] ≤ σ, ∀k.

When a nonconvex problem satisfies both Assumptions 1 and 2, the lower bound of the stochastic
gradient complexity (a.k.a. IFO complexity) to find an ε-accurate first-order stationary point is
Ω(ε−4) (Arjevani et al., 2019; 2020). Next, we introduce Polyak-Łojasiewicz (PŁ) condition which
is widely used in deep network analysis, since as observed or proved in (Hardt & Ma, 2016; Xie
et al., 2017; Li & Yuan, 2017; Charles & Papailiopoulos, 2018; Zhou & Liang, 2018; Zhou et al.,
2021a), deep neural networks often satisfy PŁ condition at least around a local minimum.
Assumption 3 (PŁ Condition). Let x∗ ∈ argminx F (x). We say a function F (x) satisfies µ-PŁ
condition if it satisfies 2µ(F (x)− F (x∗))≤‖∇F (x)‖22 (∀x) with a universal constant µ.

4 CONVERGENCE ANALYSIS

In this section, we first investigate the convergence performance of AdamW on general noncon-
vex problems and then show its performance improvement when the problems further satisfy the
PŁ condition. Since AdamW is mostly used in the highly nonconvex deep networks, in this work
we analyze it on the nonconvex problems to match its real application setting.
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To begin with, we first define the following dynamic function Fk(x) at the k-th iteration which is
indeed the combination of the vanilla loss F (x) in Eqn. (1) and a dynamic regularization λ

2 ‖x‖
2
vk

:

Fk(x) = F (x) +
λ

2
‖x‖2vk = Eξ [f(x; ξ)] +

λ

2
‖x‖2vk , (3)

where vk =
√
nk + δ and ‖x‖vk =

√
〈x,vk⊗x〉 in which ⊗ denotes element-wise product. To

obtain (3), one can approximate vanilla loss F (x) by its Taylor expansion, and compute xk+1:

xk+1≈argminx F (xk)+〈∇F (xk),x−xk〉+
1

2η
‖x−xk‖2vk+

λ

2
‖x‖2vk=

1

1 + λη

[
xk − η

∇F (xk)

vk

]
,

In this approximation, similar to adaptive gradient algorithms, e.g. Adam, vk plays a role similar
to the Hessian at the point xk. Then considering η is very small in practice, one can approximate

1
1+λη ≈ 1−λη, and the factor λη2 for the term F (xk)/vk is too small and can be ignored compared
with η. Finally, in stochastic setting, one can use the gradient estimation mk to estimate the full
gradient ∇F (xk), and thus achieves xk+1 = (1 − λη)xk − ηmk/vk which accords with the
update (2) of AdamW. From this process, one can also observe that the dynamic regularizer λ2 ‖x‖

2
vk

is induced by the decoupled weight decay −ληxk in AdamW. In the following, we will show that
AdamW actually minimizes this dynamic function Fk(x) instead of the vanilla loss F (x).

4.1 RESULTS ON GENERAL NONCONVEX PROBLEMS

Following many works which analyze adaptive gradient algorithms, e.g. (Tijmen & Geoffrey, 2012;
Zhou et al., 2018; Zhuang et al., 2020; Guo et al., 2021; Xie et al., 2022), we first provide the
convergence results of AdamW by using a constant learning rate η. Theorem 1 summarizes the
main results on a general nonconvex problem with its proof in Appendix E.1.

Theorem 1. Suppose Assumptions 1 and 2 hold, x∗∈argminx F (x). By setting η≤ δ1.25bε2

6(c2∞+δ)0.75σ2L ,

β1≤ δ0.5bε2

3(c2∞+δ)0.5σ2 and β2∈(0, 1) for all iterations, after T =O
(

max
( c2.5∞ L∆σ2

δ1.25bε4 ,
c2∞σ

4

δb2ε4

))
iterations

with ∆=F (x0)−F (x∗), the sequence {xk}Tk=0 generated by AdamW in Eqn. (2) obeys

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖22

]
≤ε2, 1

T

T−1∑
k=0

E
[
‖xk − xk+1‖2vk

]
≤ η

2ε2

4
,

1

T

T−1∑
k=0

E
[
‖mk−∇F (xk)‖22

]
≤8ε2.

(4)

Moreover, the total stochastic gradient complexity to achieve (4) is O
(

max
( c2.5∞ L∆σ2

δ1.25ε4 ,
c2∞σ

4

δbε4

))
.

Theorem 1 guarantees the convergence of AdamW on the general nonconvex problems. Specifically,
within T = O

(
max

( c2.5∞ L∆σ2

δ1.25bε4 ,
c2∞σ

4

δb2ε4

))
iterations, the average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
is smaller than ε2, indicating the convergence of AdamW. The second inequality in Eqn. (4) guar-
antees the small distance between two neighboring solutions xk and xk+1, also showing the good
convergence behaviors of AdamW. The last inequality in Eqn. (4) reveals that the exponential mov-
ing average (EMA) mk of all historical stochastic gradient is indeed very close to the full gradient
∇F (xk) and thus helps explain the success of EMA gradient estimation.

Besides, as shown in Theorem 1, to find an ε-accurate first-order stationary point (ε-ASP), the
stochastic gradient complexity of AdamW isO

(
c2.5∞ ε−4

)
when ignoring some other constant factors

like other algorithms (Zhuang et al., 2020; Guo et al., 2021; Xie et al., 2022). Such a complexity
accords with the lower bound Ω(ε−4) in (Arjevani et al., 2019; 2020) (up to constant factors). Com-
pared with other optimizers, AdamW enjoys lower complexity thanO

(
c62ε
−4
)

of Adabelief (Zhuang
et al., 2020) and O

(
c2
√
dε−4

)
of LAMB (You et al., 2019) , especially on over-parameterized

networks, where c2 upper bounds the `2-norm of stochastic gradient. This is because for the d-
dimensional gradient, compared with its `2-norm c2, its `∞-norm c∞ is usually much smaller, and
can be

√
d× smaller for the best case. For Adam and its `2-regularized variant, since our Theorem 1

still holds for the cases where 1) λ = 0 or 2) the objective loss F (x) is a combination of objec-
tive loss and an `2-regularization, they also enjoy the complexity O

(
c2.5∞ ε−4

)
. Such complexity is

superior than the previously known complexity O(c∞
√
dε−4) of Adam-type optimizers analyzed

in (Zhou et al., 2018; Chen et al., 2021; Guo et al., 2021), e.g. Adam with or without `2-regularizer,
AdaGrad (Duchi et al., 2011), AdaBound (Luo et al., 2018), etc. Though sharing the same com-
plexity with (`2-regularized) Adam, AdamW separates the `2-regularizer with the loss objective via
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the decoupled weight decay whose generalization benefits have been validated empirically in many
works, e.g. (Touvron et al., 2021; Liu et al., 2021), and theoretically in our Sec. 5.

Now we investigate the convergence performance of AdamW when using a decayed learning rate
ηk. Compared with the constant learning rate, this decay strategy is more widely used in practice,
but is rarely investigated in other optimization analysis (e.g. (Zhou et al., 2018; You et al., 2019;
Zhuang et al., 2020)) except for (Guo et al., 2021). Theorem 1 formally states our main results.

Theorem 2. Suppose Assumptions 1 and 2 hold, and x∗ ∈ argminx F (x). By setting ηk =
γδ0.75

2(c2∞+δ)0.25L
√
k+1

, β1k = γ√
k+1

and β2k = β2 ∈ (0, 1) with γ = max
(
1,

c0.252 L0.5∆0.5

δ0.125σ

)
for the

k-th training iteration, then to achieve the results in Eqn. (4) with η replaced by η1, the stochastic
gradient complexity of AdamW in Eqn. (2) is O

(
max

( c1.25∞ L0.5∆0.5σ
δ0.625ε4 log

(
1
ε

)
, c∞σ

2

δ0.5ε4 log
(

1
ε

)))
.

See its proof in appendix E.2. Theorem 2 shows that by using the decayed learning rate ηk =
γδ0.75

2(c2∞+δ)0.25L
√
k+1

for the k-th iteration, AdamW can converge and share almost the same results (4)
in Theorem 1 when it uses the constant learning rate. To achieve ε-ASP, the stochastic gradient com-
plexity of AdamW with decayed learning rate is O

(
max

( c1.25∞ L0.5∆0.5σ
δ0.625ε4 log

(
1
ε

)
, c∞σ

2

δ0.5ε4 log
(

1
ε

)))
and slightly differs from the one O

(
max

( c2.5∞ L∆σ2

δ1.25ε4 ,
c2∞σ

4

δbε4

))
of AdamW using constant learning

rate. Indeed, by comparing each term in the complexity, decayed learning rate respectively im-
proves the constant one by factors c1.25∞ L0.5∆0.5σ

δ0.625 log−1( 1
ε ) and c2∞σ

2

δ0.5 log−1( 1
ε ). Consider the fact

that c
1.25
∞ L0.5∆0.5σ

δ0.625 and c∞σ
2

δ0.5 are often large than log( 1
ε ) because the `1-norm upper bound c∞ of

stochastic gradient is often not small and δ is usually very small, e.g. 10−4 in default, decayed
learning rate is superior than constant learning rate which accords with the practical observations.
When 1) λ = 0 or 2) the loss F (x) is a `2-regularized objective loss, Theorem 2 still holds. So the
stochastic complexity in Theorem 2 is also applicable to Adam and its `2-regularized variant. Guo
et al. (2021) proved the stochastic gradient complexityO

(
max

( c2.5∞ L2σ2

δ2.5ε4 log
(

1
ε

)
,
c2∞σ

4

δ2ε4 log
(

1
ε

)))
of

Adam-type algorithms, e.g. Adam and its `2-regularized variant, with decayed learning rate, which,
however, is inferior than the complexity in this work, since as aforementioned, δ is often very small.

4.2 RESULTS ON PŁ-CONDITIONED NONCONVEX PROBLEMS

In this work, we are also particularly interested in the nonconvex problems under PŁ condition,
since as observed or proved in (Hardt & Ma, 2016; Xie et al., 2017; Li & Yuan, 2017; Zhou &
Liang, 2018), deep learning models often satisfy PŁ condition at least around a local minimum.
For this special nonconvex problem, we follow (Reddi et al., 2016; Guo et al., 2021), and divide
the whole optimization into K stages. Specifically, for constant learning rate setting, AdamW uses
learning rate ηk in the whole k-th stage; while for decayed learning rate setting, it uses a decayed
ηki for the k-th stage which satisfies ηki < ηkj if i > j, where ηki denotes the learning rate of the
i-th iteration of the k-th stage. Moreover, for both learning rate settings, at the k-th stage, AdamW is
allowed to run Tk iterations for achieving E [Fk(xk)− Fk(x∗)] ≤ εk, where x∗ ∈ argminx F (x),
xk is the output of the k-stage and εk = 1

2k [F0(x0) − F0(x∗)] denotes the optimization accuracy.
See detailed Algorithm 2 in Appendix C. At below, we provide the convergence results of AdamW
under both settings of constant or decayed learning rate in Theorem 3 with proof in appendix E.3.

Theorem 3. Suppose Assumptions 1 and 2 hold, and x∗ ∈ argminx F (x). Assume the loss Fk(xk)
in (3) and Fk(x∗) satisfy the PŁ condition in Assumption 3.
1) For constant learning rate setting, assume a constant learning rate ηk≤ δ1.25µbεk

12(c2∞+δ)0.75σ2L , constant

β1k≤ δ0.5µbεk
6(c2∞+δ)0.5σ2 and β2k∈(0, 1) at the k-th stage. We have the following two properties:

1.1) For the k-th stage, AdamW runs at most Tk = O
(

max
( c2.5∞ ∆σ2L

δ1.25µ2bε2k
,
c2∞σ

4

δµ2b2ε2k

))
iterations to

achieve E [Fk(xk)− Fk(x∗)] ≤ εk, where the output xk is uniformly randomly selected from
the sequence {xki}

Tk
i=1 at the k-th stage.

1.2) For K stages, the total stochastic complexity is O
(

max
( c2.5∞ L∆σ2

δ1.25µ2ε2 ,
c2∞σ

4

δµ2ε2

))
to achieve

min1≤k≤K E [Fk(xk)− Fk(x∗)] ≤ ε. (5)
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2) For decayed learning rate setting, we set ηki ≤
γδ0.75

2(c2∞+δ)0.25L
√
i+1

, β1ki ≤
γ√
i+1

, β2ki = β2k ∈

(0, 1) at the i-th iteration of the k-th stage where γ=max
(
1,

(c2∞+δ)0.125L0.5∆0.5

δ0.125σ

)
.

2.1) For the k-th stage, AdamW runs at most Tk = O
(

max
( c1.25∞ L0.5∆0.5

k σ

δ0.625bµ2ε2k
, c∞σ

2

δ0.5bµ2ε2k

)
log
(

1
εk

))
iterations to achieve E [Fk(xk)− Fk(x∗)] ≤ εk, where the output xk is randomly selected from
the sequence {xki}

Tk
i=1 at the k-th stage according to the probability distribution

{ ηki∑Tk
j=1 ηkj

}Tk

i=1
.

2.2) ForK stages, the total stochastic complexity isO
(

max
( c1.25∞ L0.5σ
δ0.625µ2ε2 ,

c∞σ
2

δ0.5µ2ε2

))
to achieve (5).

By inspecting Theorem 3, one can observe that AdamW can always converge under both constant
and decayed learning rate settings. Moreover, by comparison, to achieve ε-ASP in Eqn. (5), decayed
learning rate has the total stochastic complexity O

(
max

( c1.25∞ L0.5σ
δ0.625µ2ε2 ,

c∞σ
2

δ0.5µ2ε2

))
, and shows the su-

periority over the constant learning rate whose complexity is O
(

max
( c2.5∞ L∆σ2

δ1.25µ2ε2 ,
c2∞σ

4

δµ2ε2

))
. This

conclusion is consistent with the one on the general nonconvex problems. It should be also noted
that the complexity of AdamW on this special nonconvex problems (i.e. with PŁ condition) enjoys
lower complexity than the one on the general nonconvex problems, since PŁ condition ensures a
convexity-alike landscape of the loss objective and thus can be optimized faster.

5 GENERALIZATION ANALYSIS

Here we first investigate the generalization error of AdamW via analyzing its hypothesis posterior,
and then compare AdamW with (`2-regularized) Adam in terms of generalization performance.

5.1 GENERALIZATION RESULTS

Analysis on hypothesis posterior. As shown in the classical PAC-Bayesian framework (McAllester,
1999), there is strong relations between the generalization error bound and the hypothesis poste-
rior learned by an algorithm. So we first analyze the hypothesis posterior learned by AdamW,
and then accordingly investigate the generalization error bound of AdamW. Specifically, follow-
ing the works (Xie et al., 2021; Mandt et al., 2016; Chaudhari & Soatto, 2018; Jastrzkebski
et al., 2017; Zhu et al., 2018; Zhou et al., 2020), we also study the corresponding stochastic
differential equations (SDEs) of an algorithm to investigate its posterior and generalization be-
haviors because of the similar convergence behaviors of an algorithm and its SDE. For analysis,
here we follow (Staib et al., 2019), and consider the matrix form of the second-order moment
nt+1 = (1 − β2)nt + β2gtg

>
t which is actually the vanilla version of second-order moment in

AdaGrad (Duchi et al., 2011) and can reveal very similar functionality of the diagonal approxima-
tion diag (nt+1). Meanwhile, because we analyze the local convergence around an optimum since
Sec. 4 already guarantees the convergence of AdamW to a local minimum, the observed fisher in-
formation matrix 1

n

∑n
i=1∇F (xt; ξi)∇F (xt; ξi)

> can well approximate the Hessian matrix Hxt

near a minimum (Pawitan, 2001; Jastrzkebski et al., 2017; Zhu et al., 2018). Then we follow these
works and approximate nt as the Hessian matrix:

nt ≈Hxt
. (6)

The validity of this approximation is also proved in a recent work (Staib et al., 2019). Accordingly,
the updating rule of AdamW can be formulated as follows:

xt+1 = xt − ηQtmt − ηλxt = xt − ηQt∇F (xt)− ηλxt + ηQtut, (7)

where ut =∇F (xt) −mt denotes gradient noise, Qt =n
− 1

2
t is defined for brevity. In the above

AdamW formulation, the small constant δ in (2) is ignored for convenience which but does not affect
our following results. Then following (Mandt et al., 2017; Smith & Le, 2017; Chaudhari & Soatto,
2018; Zhu et al., 2018), we assume the gradient noise ut satisfies Gaussian distribution N (0,Cxt

)
because of the Central Limit theory. Accordingly, one can write SDE of AdamW as follows:

dxt = −Qt∇F (xt)dt− λxtdt+Qt (2Σt)
1
2 dζt,

where dζt ∼ N (0, Idt) and Σt = η
2Cxt

in which Cxt
is defined in the above literatures as

Cxt
=

1

b

[ 1

n

∑n

i=1
∇f(xt; ξi)∇f(xt; ξi)

> −∇F (xt)∇F (xt)
>
]
,

where n is the training sample number of a dataset, and b is minibatch size. Since we analyze the
local convergence around an optimum, this means ∇F (xt) ≈ 0 and the variance of the gradient
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noise would dominate (Mandt et al., 2017; Smith & Le, 2017; Chaudhari & Soatto, 2018; Zhu et al.,
2018). So following these works, we approximate Cxt

as

Cxt
≈ 1

b

[ 1

n

∑n

i=1
∇f(xt; ξi)∇f(xt; ξi)

>
]
≈ 1

b
Hxt

. (8)

Based on these approximations, we can derive the distribution of the hypothesis posterior learnt by
AdamW, and summarize the main results in Lemma 4. See its proof in Appendix F.1.

Lemma 4. Assume the objective loss can be approximated by a second-order Taylor approximation,
namely, F (x) = F (x∗)+

1
2 (x−x∗)>H∗(x−x∗). Then the solutionxt of AdamW obeys a Gaussian

distribution N (x∗,MAdamW) where the covariance matrixMAdamW = E
[
xtx

>
t

]
is defined

MAdamW =
η

2B
U(S

1
2 + λI)−1U>,

where USU> is the SVD ofH∗ in which S=diag (σ1, σ2, · · · , σd) with singular values {σi}di=1.

Lemma 4 tells that AdamW can converge to a solution which concentrates around the minimum x∗.
This also guarantees the good convergence behaviors of AdamW but from a SDE aspect. Then we
look at the effects of the decoupled weight decay parameter λ. By observing the covariance matrix
MAdamW, one can see that all singular values of MAdamW becomes smaller when λ increases. It
indeed indicates that decoupled weight decay in AdamW can make the algorithm more stable, and
also benefits its convergence to the minimizer x∗ which often enjoys better test performance.

Generalization analysis. Based on the above posterior analysis, we employ PAC Bayesian frame-
work (McAllester, 1999) to explicitly analyze the generalization performance of AdamW. Given
an algorithm A and a training dataset Dtr whose samples ξ are drawn from an unknown distri-
bution D, one often trains a model to obtain a posterior hypothesis x drawn from a hypothesis
distribution P ∼ N (x∗,MAdamW) in Lemma 4. Then we denote the expected risk w.r.t. the hy-
pothesis distribution P as Eξ∼D,x∼P [f(x, ξ)] and the empirical risk w.r.t. the distribution P as
Eξ∈Dtr,x∼P [f(x, ξ)]. In practice, one often assumes the prior hypothesis satisfies Gaussian distribu-
tion Ppre∼N (0, ρI) (Lin et al., 2013; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al.,
2016; Dosovitskiy et al., 2020), because we do not know any information on the posterior hypothe-
sis. Based on Lemma 4, we can derive the generalization error bound of AdamW in Theorem 5.

Theorem 5. Assume the prior hypothesis x0 satisfies Ppre∼N (0, ρI). Then the expected risk for
the posterior hypothesis x∼P of AdamW learned on training dataset Dtr∼D with n samples holds

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤
√

8√
n

( d∑
i=1

log
2ρb(σ

1
2
i +λ)

η
+

η

2ρb

d∑
i=1

1

σ
1
2
i +λ

+ c0

)1
2

,

with at least probability 1− τ , where τ ∈ (0, 1) and c0 = 1
2ρ‖x∗‖

2 − d
2 + 2 ln

(
2n
τ

)
.

See its proof in Appendix F.2. Theorem 5 guarantees that the generalization error of AdamW on a
general learning problem can be upper bounded by O

(
1√
n

)
(up to other factors) which matches the

error bound in (Vapnik, 2006; Hardt et al., 2016; Zhou & Feng, 2018a;b; Shalev-Shwartz & Ben-
David, 2014) which but are derived from PAC theory or stability or uniform convergence aspects.

Then we inspect the effect of the decoupled weight decay parameter λ to the upper bound of AdamW.
When λ increases, the first term

∑d
i=1log 2ρb(σ

1
2
i +λ)η−1 in the bound becomes larger, while the

second term η
2ρb

∑d
i=1(σ

1
2
i +λ)−1 in the bound decreases. Though in practice, it is hard to precisely

decide the value of λ, from the above discussion, at least we know that tuning λ can yield smaller
generalization error. Since the empirical risk Eξ∈Dtr,x∼P [f(x, ξ)] is often small especially for a
modern over-parametrized network, a proper λ can benefit AdamW in terms of the expected risk er-
ror, explaining the better test performance of AdamW over vanilla Adam (without `2-regularization)
which corresponds to λ = 0 in AdamW. Finally, our result is the first one that theoretically and
explicitly show the benefits of the decoupled weight decay to the generalization of AdamW.

5.2 COMPARISON WITH `2-REGULARIZED ADAM

Now we compare AdamW (i.e. decoupled weight decay) with `2-regularized Adam (i.e. conven-
tional weigh decay). To diminish the effects of historical gradient to the current optimization and
also analyze the effects of current gradient to the behaviors of adaptive algorithms, many works,
e.g. (Lyu et al., 2022; Malladi et al., 2022), set β1 =β2 = 1 in (2) to focus on concurrent optimiza-
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Figure 1: Visualization of singular values in ResNet50 and ViT-small trained by AdamW and `2-
regularized Adam. See more visualization results, e.g. ResNet18, in Fig. 3 of Appendix B.

tion process of adaptive algorithms. Here we also follow this setting to investigate `2-regularized
Adam whose updating rule can be formulated as follows:

xt+1 = xt − ηQt(mt + λxt) = xt − ηQt(∇F (xt) + λxt) + ηQtut,

where bothut = ∇F (xt)−mt andQt = n
− 1

2
t have the same meanings in Eqn. (7). Then similarly,

one can write the SDE of `2-regularized Adam as follows:

dxt = −Qt(∇F (xt) + λxt)dt+Qt (2Σt)
1
2 dζt,

where dζt ∼ N (0, Idt) and Σt = η
2Cxt in which Cxt is given in (8).

Theorem 6. Assume the prior hypothesis x0 satisfies Ppre ∼ N (0, ρI). Then with at least probabil-
ity 1−τ and a constant c0 in Theorem 5, the expected risk for the posterior hypothesis x ∼ PAdam+`2
of `2-regularized Adam on a training dataset Dtr ∼ D with n samples can be upper bounded by

Eξ∼D,x∼PAdam+`2
[f(x,ξ)]−Eξ∈Dtr,x∼PAdam+`2

[f(x,ξ)]≤
√

8√
n

( d∑
i=1

log
2ρb(σi+λ)

ησ
1
2
i

+
η

2ρb

d∑
i=1

σ
1
2
i

σi+λ
+c0

)1
2

.

See its proof in Appendix F.3. Theorem 6 shows the generalization error boundO
(

1√
n

)
(up to other

factors) of `2-regularized Adam. Moreover, when λ = 0, AdamW and `2-regularized Adam are
exactly the same, and their error bounds are also the same as shown in Theorems 5 and 6.

Next, we compare the generalization error bounds of AdamW and `2-regularized Adam by compar-
ing their different terms, i.e. erradamw =

∑d
i=1h(x

(i)
adamw) with x(i)

adamw =2η−1ρb(σ
1
2
i +λ) in AdamW

and erradam+`2 =
∑d
i=1h(x

(i)
adamw) with x(i)

adam+`2 =2η−1ρb(σ
1
2
i +λσ

− 1
2

i ) in `2-regularized Adam, where
h(x) = log x+ 1

x . For h(x), we know h′(x) = x−1
x2 and thus h(x) will increase when x∈ (1,+∞).

Meanwhile, generally, we have x(i)
adam+`2 >x

(i)
adamw>1 for most i ∈ [d] because of the following rea-

sons. 1) Most of the singular values {σi}di=1 of Hessian matrix in deep networks are much smaller
than one which is well observed in many works, e.g. fully connected networks, AlexNet, VGG and
ResNet (Sagun et al., 2016; 2017; Ghorbani et al., 2019; Sankar et al., 2021) and our experimental
results on ResNet50 and ViT-small in Fig. 1. 2) The learning rate when reaching the minimum is
often set to be very small in practice. 3) The minibatch size b is of order of thousand to train a
modern network, and the variance ρ for the Gaussian initialization distribution Ppre ∼N (0, ρI) is
often at the order ofO(1/

√
di) (Glorot & Bengio, 2010; He et al., 2015), where di denotes the input

dimension. So these factors together would indicate x(i)
adam+`2 > x

(i)
adamw > 1. So the generalization

error term erradamw of AdamW is smaller than erradam+`2 of `2-regularized Adam, which actually
is also empirically testified by our experimental results on ResNet18, ResNet50 and ViT-small in
Sec. 6. So AdamW often enjoys better generalization performance than `2-regularized Adam, also
validated in Sec. 6. This actually shows the superiority of decoupled weight decay in AdamW over
the conventional weight decay used in Adam.

The above analysis shows the generalization benefits of the dynamic regularization λ
2 ‖x‖

2
vk

of
AdamW in Eqn. (3). So we hope the theoretical results in this work could motivate more explo-
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(a) ResNet18 (b) ViT-small
Figure 2: Training and test curves comparison on ImageNet. See more results in Appendix B.

Table 1: Generalization investigation of AdamW and `-regularized Adam on ImageNet.
model ResNet18 ResNet50 ViT-small

train epoch 90 100 100 200 300
optimizer AdamW Adam+`2 AdamW Adam+`2 AdamW Adam+`2 AdamW Adam+`2 AdamW Adam+`2

err in bound 3.43 3.85 3.42 3.78 3.62 3.75 3.58 3.72 3.47 3.70

test acc. (%) 67.9 67.2 77.0 76.5 76.1 75.3 79.2 77.6 79.8 78.5

ration on how to improve this dynamic regularization or propose a new dynamic regularizer for
further generalization improvement in adaptive gradient algorithms.

6 EXPERIMENTS

Investigation on singular values of Hessian. We first respectively use AdamW and `2-regularized
Adam to train two popular network architectures on ImageNet (Deng et al., 2009), i.e. ResNet50 (He
et al., 2016) and vision transformer small (ViT-small) (Dosovitskiy et al., 2020) for both 100 epochs.
Then we adopt the method in (Yao et al., 2020) to estimate the singular values of these two trained
networks. Fig. 1 plots the spectral density of these singular values on both training and test data of
ImageNet, and shows that there are more than 99% singular values that are in the range [0, 1] and
indeed are much smaller than one. This also accords with the observations in (Sagun et al., 2016;
2017; Ghorbani et al., 2019; Sankar et al., 2021) that most of the singular values are much smaller
than one in deep networks, e.g. AlexNet (Krizhevsky et al., 2017), VGG (Simonyan & Zisserman,
2014) and ResNet (He et al., 2016). All these observations support the results in Sec. 5.2.

Investigation on generalization. We compare the different terms, i.e. erradamw and erradam+`2 de-
fined at end of Sec. 5.2, in the generalization error bounds of AdamW and `2-regularized Adam.
To this end, we receptively train three models, including ResNet18, ResNet50 and ViT-small, on
ImageNet by using AdamW and `2-regularized Adam, and well tune the hyper-parameters of these
two optimizers, e.g. learning rate and weight decay (regularization) parameter λ. Note, here `2-
regularized Adam includes Adam by setting λ = 0. Next, we compute erradamw and erradam+`2 on
the test dataset of ImageNet, since test dataset can better reveal the generalization ability of an
algorithm. Table 1 shows that on all test cases, erradamw is often smaller than erradam+`2 by a remark-
able margin. These results empirically support the superior generalization error bound of AdamW
over `2-regularized Adam. Moreover, Table 1 also reveals the higher test accuracy of AdamW over
`2-regularized Adam. All these results accord with our theoretical results in Sec. 5.2.

Investigation on convergence. We also plot the training and test curves of AdamW and `2-
regularized Adam on ImageNet in Fig. 2. See multiple experimental trials in Fig. 4 of Ap-
pendix B. One can find that on ResNet50 and ViT-small, 1) AdamW shows slightly faster conver-
gence speed than Adam and `2-regularized Adam when their weight decay parameter are well-tuned,
e.g. λ=5×10−1 for AdamW and λ=5×10−2 for `2-regularized Adam on ViT-small; 2) weight decay
(regularization) parameter λ has big effects to the convergence speed of AdamW and `2-regularized
Adam. So under the same computational cost, the faster convergence of AdamW could also partially
explain the above better generalization performance of AdamW over (`2-regularized) Adam.

7 CONCLUSION

In this work, we first prove the convergence of AdamW using both constant and decayed learning
rates on the general nonconvex problems and PŁ-conditioned problems. Moreover, we find that
AdamW provably minimizes a dynamically regularized loss that combines a vanilla loss and a dy-
namical regularization, and thus its behaviors differ from those in (`2-regularized) Adam. Besides,
for the first time, we explicitly justify the generalization superiority of AdamW over both Adam and
its `2-regularized variant. Finally, experimental results validate the implications of our theory.
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A APPENDIX

The appendix contains the technical proofs of convergence results and some additional experimental
results of the paper entitled “Towards Understanding Convergence and Generalization of AdamW”.
It is structured as follows. In Appendix C, we first give the detailed algorithmic frameworks of
AdamW and its stagewise variant in Algorithms 1 and 2. Then Appendix D provides some auxiliary
lemmas throughout this document. Then Appendix E presents the proof of the convergence results
in Sec. 4, i.e., the proof of Theorems 1 ∼ 3. Next, we introduce the proof of generalization results
in Sec. 5, including Lemma 4 and Theorems 5 and 6. Finally, Appendix G provides the proofs of
some auxiliary lemmas in Appendix D.
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Figure 3: Visualization of singular values in ViT-small trained by `2-regularized Adam and AdamW
for 200 and 300 epochs.

B MORE EXPERIMENTAL RESULTS

Here we give more experimental investigation on singular values of Hessian in deep networks. In
the manuscript, we provide investigation by training ResNet50 (He et al., 2016) and vision trans-
former small (ViT-small) (Dosovitskiy et al., 2020) for both 100 epochs. Here we provide more
visualization results of ResNet50 (He et al., 2016) and vision transformer small (ViT-small) (Doso-
vitskiy et al., 2020) trained by 200 and 300 epochs. Similarly, we adopt the singular value estimation
method in (Yao et al., 2020) to estimate the singular values of these two trained networks. Fig. 3 plots
the spectral density of these singular values, and shows that there are more than 99% singular values
that are in the range [0, 1] and indeed are much smaller than one. All these results also accords with
the observations on ResNet50 and ViT-small trained by 100 epochs. All these observations support
the results in Sec. 5.2.

Algorithm 1: AdamW (Loshchilov & Hutter, 2018)

Input: initialization θ0, step size {ηk}Tk=0, hyper-parameters {β1k}Tk=0 and {β2k}Tk=0 for
first- and second-order moments {mk}Tk=0 and {nk}Tk=0 .

Output: some average of {xk}Tk=0.
1 while k < T do
2 estimate stochastic gradient gk = 1

b

∑b
i=1∇f(xk; ξi);

3 estimate first-order momentmk = (1− β1k)mk + β1kgk;
4 estimate second-order moment nk = (1− β2k)nk + β2kg

2
k;

5 update parameter xk+1 = (1− ληk)xk − ηkmk/
√
nk + δ;

6 end while

For multiple trials of the experiments, we independently test AdamW on ResNet18 by using three
different seeds, and plot the average and variance in Fig. 4. Similarly, we evaluate `2-regularized
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Algorithm 2: Stagewise AdamW
Input: initialization θ0, optimization accuracy {εk}Kk=1 .
Output: some average of {xk}Tk=0.

1 while k < K do
2 optimize the loss objective by AdamW (algorithm 1) to accuracy εk, and output solution xk;
3 end while
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Figure 4: Training and test curves comparison on ImageNet. We independently test AdamW on
ResNet18 by using three different seeds, and plot the average and variance. Similarly, we evaluate
`2-regularized Adam with three different seeds.

Adam with three different seeds. From Fig. 4, one can observe that the performance of these algo-
rithms are stable and consistent. But one can also observe there are too many curves especially with
the variance boundary which weakens the readability. So we only put Fig. 4 in the appendix and
mention readers to refer this Fig. 4 for multiple experiment trials.

C DETAILS OF ADAMW AND ITS STAGEWISE VARIANT

Due to space limitation, in the manuscript, we do not provide the detailed AdamW. Here we give
algorithmic framework of AdamW in Algorithm 1 to help understand. Since in Sec. 4.2 we further
propose the stagewise AdamW algorithm to solve PŁ-conditioned nonconvex problems, here we
also provide the algorithmic framework of stagewise AdamW in Algorithm 2.

D AUXILIARY LEMMAS

Before giving our analysis, we first provide some important lemmas.

Lemma 7. Assume cs,∞ ≤ ‖gk‖∞ ≤ c∞, then we have

‖mk‖∞ ≤ c∞, ‖ni + δ‖∞ ≤ c
2
∞ + δ,

∥∥∥∥ (nk + δ)p

(nk+1 + δ)p

∥∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]),

where µ =
β2c

2
∞

c2s,∞+δ .

See its proof in Appendix G.1.

Lemma 8. (Xie et al., 2022) The sequence {xk}Tk=0 generated by AdamW in Eqn. (2) satisfies

λk+1

1− µ
‖xk+1‖2vk ≤ λk ‖xk‖

2
vk

+ λ 〈xk+1 − xk,xk〉vk +
λ

2
‖xk+1 − xk‖2vk .
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Lemma 9. (Xie et al., 2022) The sequence {xk}Tk=0 generated by AdamW in Eqn. (2) satisfies

E
[
‖mk −∇F (xk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (xk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖xk − xk−1‖2

]
+
β2

1σ
2

b
.

E PROOF OF THEOREM 4

E.1 PROOF OF THEOREM 1

Proof. For brevity, we let
vk =

√
nk + δ.

When ‖gi‖∞ ≤ c∞, we have ‖mk‖∞ ≤ c∞ and δ ≤ ‖ni + δ‖∞ ≤ c2∞ + δ in Lemma 7. For
brevity, let

c1 := δp ≤ ‖vk‖∞ ≤ c2 := (c2∞ + δ)p.

Also we define

uk := mk + λxk⊗vk, xk+1 − xk = −ηmk + λxk⊗vk
vk

= −ηuk
vk
.

Moreover, we also define F̃k(xk) as follows:

F̃k(xk) = F (x) + λk ‖x‖2vk = Eξ [f(θ; ξ)] + λk ‖x‖2vk ,

where λk = λ
2

∑k
i=1

(
1−µ

2

)i
(k > 0) and λ0 = 0 in which µ =

β2c
2
∞
δ .

Then by using the smoothness of f(x; ξ), we can obtain

F̃k+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 + λk+1 ‖xk+1‖2vk+1

¬
≤F (xk) + 〈∇F (xk),xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk+1

1− µ
‖xk+1‖2vk

­
≤F (xk) + λk ‖xk‖2vk + 〈∇F (xk) + λxk⊗vk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1 − xk‖2vk

=F̃k(xk)− η
〈
∇F (xk) + λxk⊗vk,

uk
vk

〉
+
Lη2

2

∥∥∥∥ukvk
∥∥∥∥2

+
λη2

2

∥∥∥∥ukvk
∥∥∥∥2

vk

=F̃k(xk) +
1

2

∥∥∥∥√ η

vk
(∇F (xk) + λxk⊗vk − uk)

∥∥∥∥2

− 1

2

∥∥∥∥√ η

vk
(∇F (xk) + λxk⊗vk)

∥∥∥∥2

− 1

2

∥∥∥∥√ η

vk
uk

∥∥∥∥2

+
Lη2

2

∥∥∥∥ukvk
∥∥∥∥2

+
λη2

2

∥∥∥∥ukvk
∥∥∥∥2

vk

≤F̃k(xk) +
η

2c1
‖∇F (xk)−mk‖2 −

η

2c2
‖∇F (xk) + λxk⊗vk‖2 −

[
η

2c2
− Lη2

2c21
− λη2

2c1

]
‖uk‖2

®
≤F̃k(xk) +

η

2c1
‖∇F (xk)−mk‖2 −

η

2c2
‖∇F (xk) + λxk⊗vk‖2 −

η

4c2
‖uk‖2

(9)

where ¬ holds since Lemma 7 proves
∥∥∥∥ (nk+δ)

1
2

(nk+1+δ)
1
2

∥∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which

µ =
β2c

2
∞
δ ; ­ holds because in Lemma 8, we have

λk+1

1− µ
‖xk+1‖2vk ≤ λk ‖xk‖

2
vk

+ λ 〈xk+1 − xk,xk〉vk +
λ

2
‖xk+1 − xk‖2vk ;
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® holds, since we set η ≤ c21
2c2(L+λc1) such that η

4c2
≥ Lη2

2c21
+ λη2

2c1
.

From Lemma 9, we have

E
[
‖mk −∇F (xk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (xk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖xk − xk−1‖2

]
+
β2

1σ
2

b

≤(1− β1)E
[
‖mk−1 −∇F (xk−1)‖2

]
+

(1− β1)2L2η2

β1c21
E
[
‖uk‖2

]
+
β2

1σ
2

b

(10)

where we use xk − xk−1 = ηuk

vk
.

Then we add Eqn. (12) and α× (13) as follows:

F̃k+1(xk+1) + αE
[
‖mk+1 −∇F (xk+1)‖2

]
≤F̃k(xk)− η

2c2
‖∇F (xk) + λxk⊗vk‖2 +

[
(1− β1)α+

η

2c1

]
E
[
‖mk−1 −∇F (xk−1)‖2

]
−
[
η

4c2
− α(1− β1)2L2η2

β1c21

]
E
[
‖uk‖2

]
+
αβ2

1σ
2

b
.

Then by setting α = η
2c1β1

and G(xk+1) = F̃k+1(xk+1) + η
2c1β1

E
[
‖mk+1 −∇F (xk+1)‖2

]
, we

can obtain

G(xk+1) ≤G(xk)− η

2c2
E ‖∇F (xk) + λxk⊗vk‖2 −

η

4c2

[
1− 2c2(1− β1)2L2η2

β2
1c

3
1

]
E
[
‖uk‖2

]
+
ηβ1σ

2

2c1b

¬
≤G(xk)− η

2c2
E
[
‖∇F (xk) + λxk⊗vk‖2

]
− η

8c2
E
[
‖uk‖2

]
+
ηβ1σ

2

2c1b
,

where ¬ holds since set η ≤ β1c1
2(1−β1)L

√
c1
c2

such that 2c2(1−β1)2L2η2

β2
1c

3
1

≤ 1
2 .

Then summing the above inequality from k = 0 to k = T − 1 gives

1

T

T−1∑
k=0

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖uk‖2

]
≤2c2
ηT

[G(x0)−G(xT )] +
c2β1σ

2

c1b

≤2c2∆

ηT
+

c2σ
2

c1β1bT
+
c2β1σ

2

c1b

≤ε2,

(11)

where we set T ≥ max
(

6c2∆
ηε2 ,

3c2σ
2

c1β1bε2

)
and β1 ≤ c1bε

2

3c2β1σ2 , in which

G(x0)−G(xT )

=F̃0(x0) +
η

2c1β1
E
[
‖m0 −∇F (x0)‖2

]
− F̃T (xT )− η

2c1β1
E
[
‖mT −∇F (xT )‖2

]
=F (x0) +

η

2c1β1
E
[
‖m0 −∇F (x0)‖2

]
− F (xT )− λT ‖xT ‖vT −

η

2c1β1
E
[
‖mT −∇F (xT )‖2

]
≤F (x0) +

η

2c1β1
E
[
‖m0 −∇F (x0)‖2

]
− F (xT )

≤∆ +
η

2c1β1
E
[
‖m0 −∇F (x0)‖2

]
≤∆ +

ησ2

2c1β1b
,

where ∆ = F (x0)− F (x∗). This result directly bounds

1

T

T−1∑
k=0

‖vk⊗(xk − xk+1)‖2 =
η2

T

T−1∑
k=0

‖mk + λxk⊗vk‖2 ≤
η2

T

T−1∑
k=0

‖uk‖2 ≤4η2ε2.
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and

1

T

T−1∑
k=0

‖xk − xk+1‖2 ≤
4η2ε2

c21
.

Besides, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λxk⊗vk −∇F (xk)− λxk⊗vk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λxk⊗vk‖2 + ‖∇F (xk)− λxk⊗vk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λxk⊗vk‖2 + ‖uk‖2

]
≤2

[
ε2 +

3

4
× 4ε2

]
≤ 8ε2.

For all hyper-parameters, we put their constrains together:

β1 ≤
c1bε

2

3c2σ2
,

where c1 = δp ≤ ‖vk‖∞ ≤
(
c2∞ + δ

)p
= c2 = O

(
c2p∞
)
. For η, it should satisfy

η ≤ β1c1
2(1− β1)L

√
c1
c2
≤ c1bε

2

3c2σ2

c1
2L

√
c1
c2

=
c21bε

2

6c2σ2L

√
c1
c2
.

where δ is often much smaller than one, and β1 is very small. For T , we have

T ≥max

(
6c2∆

ηε2
,

3c2σ
2

c1β1bε2

)
= O

(
max

(
6c2∆

ε2
6c2σ

2L

c21bε
2

√
c2
c1
,

3c2σ
2

c1bε2
3c2σ

2

c1bε2

))
=O

(
max

(
36c2.52 ∆σ2L

c2.51 bε4
,

9c22σ
4

c21b
2ε4

))
= O

(
max

(
36c2.5∞ ∆σ2L

δ1.25bε4
,

9c2∞σ
4

δb2ε4

))
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(

max

(
36c2.52 ∆σ2L

c2.51 ε4
,

9c22σ
4

c21bε
4

))
= O

(
max

(
36c2.5∞ ∆σ2L

δ1.25ε4
,

9c2∞σ
4

δbε4

))
.

The proof is completed.

E.2 PROOF OF THEOREM 2

Proof. For brevity, we let vk =
√
nk + δ. Since we have ‖mk‖∞ ≤ c∞ and δ ≤ ‖ni + δ‖∞ ≤

c2∞ + δ in Lemma 7, for brevity, let

c1 := δ0.5 ≤ ‖vk‖∞ ≤ c2 := (c2∞ + δ)0.5.

Also we define

uk := mk + λxk⊗vk, xk+1 − xk = −ηk
mk + λxk⊗vk

vk
= −ηk

uk
vk
.
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Then by using the smoothness of f(x; ξ), we can obtain

F̃k+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 + λk+1 ‖xk+1‖2vk+1

¬
≤F (xk) + 〈∇F (xk),xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk+1

1− µ
‖xk+1‖2vk

­
≤F (xk) + λk ‖xk‖2vk + 〈∇F (xk) + λxk⊗vk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1 − xk‖2vk

=F̃k(xk)− ηk
〈
∇F (xk) + λxk⊗vk,

uk
vk

〉
+
Lη2

k

2

∥∥∥∥ukvk
∥∥∥∥2

+
λη2

k

2

∥∥∥∥ukvk
∥∥∥∥2

vk

=F̃k(xk) +
1

2

∥∥∥∥√ ηk
vk

(∇F (xk) + λxk⊗vk − uk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
vk

(∇F (xk) + λxk⊗vk)

∥∥∥∥2

− 1

2

∥∥∥∥√ ηk
vk
uk

∥∥∥∥2

+
Lη2

k

2

∥∥∥∥ukvk
∥∥∥∥2

+
λη2

k

2

∥∥∥∥ukvk
∥∥∥∥2

vk

≤F̃k(xk) +
ηk
2c1
‖∇F (xk)−mk‖2 −

ηk
2c2
‖∇F (xk) + λxk⊗vk‖2 −

[
ηk
2c2
− Lη2

k

2c21
− λη2

k

2c1

]
‖uk‖2

®
≤F̃k(xk) +

ηk
2c1
‖∇F (xk)−mk‖2 −

ηk
2c2
‖∇F (xk) + λxk⊗vk‖2 −

ηk
4c2
‖uk‖2

(12)

where ¬ holds since Lemma 7 proves
∥∥∥ (nk+δ)0.5

(nk+1+δ)0.5

∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which

µ =
β2c

2
∞
δ ; ­ holds because in Lemma 8, we have

λk+1

1− µ
‖xk+1‖2vk ≤ λk ‖xk‖

2
vk

+ λ 〈xk+1 − xk,xk〉vk +
λ

2
‖xk+1 − xk‖2vk ;

® holds, since we set ηk ≤ c21
2c2(L+λc1) such that ηk

4c2
≥ Lη2k

2c21
+

λη2k
2c1

.

From Lemma 9, we have

E
[
‖mk −∇F (xk)‖2

]
≤(1− β1,k)E

[
‖mk−1 −∇F (xk−1)‖2

]
+

(1− β1,k)2L2

β1,k
E
[
‖xk − xk−1‖2

]
+
β2

1,kσ
2

b

≤(1− β1,k)E
[
‖mk−1 −∇F (xk−1)‖2

]
+

(1− β1,k)2L2η2
k

β1,kc21
E
[
‖uk‖2

]
+
β2

1,kσ
2

b

(13)

where we use xk − xk−1 = ηk
uk

vk
.

Then we add Eqn. (12) and α× (13) as follows:

F̃k+1(xk+1) + αE
[
‖mk+1 −∇F (xk+1)‖2

]
≤F̃k(xk)− ηk

2c2
‖∇F (xk) + λxk⊗vk‖2 +

[
(1− β1,k)α+

ηk
2c1

]
E
[
‖mk−1 −∇F (xk−1)‖2

]
−
[
ηk
4c2
− α(1− β1,k)2L2η2

k

β1,kc21

]
E
[
‖uk‖2

]
+
αβ2

1,kσ
2

b
.
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Then by setting α = ηk
2c1β1,k

and G(xk+1) = F̃k+1(xk+1) + ηk
2c1β1,k

E
[
‖mk+1 −∇F (xk+1)‖2

]
,

we can obtain

G(xk+1)

≤G(xk)− ηk
2c2

E ‖∇F (xk) + λxk⊗vk‖2 −
ηk
4c2

[
1− 2c2(1− β1,k)2L2η2

k

β2
1,kc

3
1

]
E
[
‖uk‖2

]
+
ηkβ1,kσ

2

2c1b

¬
≤G(xk)− ηk

2c2
E
[
‖∇F (xk) + λxk⊗vk‖2

]
− ηk

8c2
E
[
‖uk‖2

]
+
ηkβ1,kσ

2

2c1b
,

where ¬ holds since we set ηk ≤ β1,kc1
2(1−β1,k)L

√
c1
c2

such that 2c2(1−β1,k)2L2η2k
β2

1,kc
3
1

≤ 1
2 .

Then summing the above inequality from k = 0 to k = T − 1 gives

T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖uk‖2

]

≤ 2c2∑T−1
k=0 ηk

[G(x0)−G(xT )] +
c2
∑T−1
k=0 ηkβ1,kσ

2

c1b
∑T−1
k=0 ηk

≤ 2c2∆∑T−1
k=0 ηk

+
c2η0σ

2

c1β1,0b
∑T−1
k=0 ηk

+
c2σ

2
∑T−1
k=0 ηkβ1,k

c1b
∑T−1
k=0 ηk

,

(14)

where

G(x0)−G(xT )

=F̃0(x0) +
η0

2c1β1,0
E
[
‖m0 −∇F (x0)‖2

]
− F̃T (xT )− η0

2c1β1,0
E
[
‖mT −∇F (xT )‖2

]
=F (x0) +

η0

2c1β1,0
E
[
‖m0 −∇F (x0)‖2

]
− F (xT )− λT ‖xT ‖vT −

η0

2c1β1,0
E
[
‖mT −∇F (xT )‖2

]
≤F (x0) +

η0

2c1β1,0
E
[
‖m0 −∇F (x0)‖2

]
− F (xT )

≤∆ +
η0

2c1β1,0
E
[
‖m0 −∇F (x0)‖2

]
≤∆ +

η0σ
2

2c1β1,0b
,

where ∆ = F (x0)− F (x∗). Then by setting β1,k = γ1√
k+1

and ηk = γ2β1,k where γ2 =
c1.51

2c0.52 L
γ3

and γ3 = 1 to satisfy ηk ≤ β1,kc1
2(1−β1,k)L

√
c1
c2

, we have

T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖uk‖2

]

≤ 2c2∆∑T−1
k=0 ηk

+
c2η0σ

2

c1β1,0b
∑T−1
k=0 ηk

+
c2σ

2
∑T−1
k=0 ηkβ1,k

c1b
∑T−1
k=0 ηk

¬
≤ c2∆

γ1γ2(
√
T + 1− 2)

+
c2σ

2

2c1bγ1(
√
T + 1− 2)

+
c2γ1σ

2 log(T )

2c1b(
√
T + 1− 2)

=
2c1.52 ∆L

c1.51 γ1γ3(
√
T + 1− 2)

+
c2σ

2

2c1bγ1(
√
T + 1− 2)

+
c2γ1σ

2 log(T )

2c1b(
√
T + 1− 2)

­
≤ 2c2

c1γ1(
√
T + 1− 2)

(
c0.52 L∆

c0.51

+ σ2

)
+

c2γ1σ
2 log(T )

2c1b(
√
T + 1− 2)

≤ε2,
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where ¬ uses
∑T−1
k=0 β1,k ≥

∫ T+1

2
γ1√
x
dx = 2γ1(

√
T + 1 − 2) and

∑T−1
k=0 ηkβ1,k ≤

γ2
1γ2

∫ T
1

1
xdx = γ2

1γ2 log(T ), and ­ holds by setting

T =O

(
max

(
4c2

c1γ1ε4

(
c0.52 L∆

c0.51

+ σ2

)
,
c2γ1σ

2 log
(

1
ε

)
2c1bε4

))

=O

(
max

(
c2

c1γ1ε4

(
c0.52 L∆

c0.51

+ σ2

)
,
c2γ1σ

2 log
(

1
ε

)
c1bε4

))

=O

max

 c2

c1ε4 max
(

1,
c0.252 L0.5∆0.5

c0.251 σ

) (c0.52 L∆

c0.51

+ σ2

)
,
c2σ

2 log
(

1
ε

)
max

(
1,

c0.252 L0.5∆0.5

c0.251 σ

)
c1bε4


=O

(
max

(
c2σ

2

c1bε4
log

(
1

ε

)
,
c1.25
2 L0.5∆0.5σ

c1.25
1 bε4

log

(
1

ε

)))
where we set γ1 = max

(
1,

c0.252 L0.5∆0.5

c0.251 σ

)
.

For all hyper-parameters, we put their constrains together:

β1,k =
γ√
k + 1

, ηk =
c1.51

2c0.52 L
β1,k =

γc1.51

2c0.52 L
√
k + 1

=
γδ0.75

2(c2∞ + δ)0.25L
√
k + 1

,

where γ = max
(

1,
c0.252 L0.5∆0.5

c0.251 σ

)
, c1 = δ0.5 ≤ ‖vk‖∞ ≤

(
c2∞ + δ

)0.5
= c2. Then by setting

minibatch size as one, one can easily compute the stochastic gradient complexity

O (Tb) =O
(

max

(
c2σ

2

c1ε4
log

(
1

ε

)
,
c1.25
2 L0.5∆0.5σ

c1.25
1 ε4

log

(
1

ε

)))
=O

(
max

(
c∞σ

2

δ0.5ε4
log

(
1

ε

)
,
c1.25
∞ L0.5∆0.5σ

δ0.625ε4
log

(
1

ε

)))
.

The above result directly bounds

T−1∑
k=0

ηk∑T−1
k=0 ηk

‖vk⊗(xk − xk+1)‖2 =

T−1∑
k=0

η3
k∑T−1

k=0 ηk
‖mk + λxk⊗vk‖2

= max
k

η2
k

(
T−1∑
k=0

ηk∑T−1
k=0 ηk

‖mk + λxk⊗vk‖2
)

≤η2
1

T−1∑
k=0

ηk∑T−1
k=0 ηk

‖uk‖2

≤4η2
1ε

2.

Besides, we have
T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖mk −∇F (xk)‖2

]
≤
T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖mk + λxk⊗vk −∇F (xk)− λxk⊗vk‖2

]
≤2

T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖mk + λxk⊗vk‖2 + ‖∇F (xk)− λxk⊗vk‖2

]
=2

T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖mk + λxk⊗vk‖2 + ‖uk‖2

]
≤2

[
ε2 +

3

4
× 4ε2

]
≤ 8ε2.

The proof is completed.
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E.3 PROOF OF THEOREM 3

Proof. Step 1. Results under constant learning rate. Here we first consider the conventional one
stage training. Firstly, we borrow the results in Eqn. (11) in Appendix E.1 (proofs for Theorem 1),
we have

1

T

T−1∑
k=0

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖mk + λxk⊗vk‖2

]
≤2c2∆

ηT
+

c2σ
2

c1β1bT
+
c2β1σ

2

c1b
,

where ∆ = F (x0)−F (x∗). In this way, by setting T ≥ max
(

12c2∆
ηµε2 ,

6c2σ
2

c1µβ1bε2

)
and β1 ≤ c1µbε

2

6c2β1σ2 ,

1

T

T−1∑
k=0

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖mk + λxk⊗vk‖2

]
≤µε

2

2
.

Then we consider all constrains of hyper-parameters in Appendix E.1 together:

β1 ≤
c1µbε

2

6c2σ2
, η ≤ β1c1

2(1− β1)L

√
c1
c2
≤ c1µbε

2

6c2σ2

c1
2L

√
c1
c2

=
c21µbε

2

12c2σ2L

√
c1
c2
,

where c1 = δ0.5 ≤ ‖vk‖∞ ≤
(
c2∞ + δ

)0.5
= c2. For T , we have

T ≥max

(
12c2∆

ηµε2
,

6c2σ
2

c1µβ1bε2

)
= O

(
max

(
12c2∆

µε2
12c2σ

2L

c21µbε
2

√
c2
c1
,

6c2σ
2

c1µbε2
6c2σ

2

c1µbε2

))
=O

(
max

(
144c2.52 ∆σ2L

c2.51 µ2bε4
,

36c22σ
4

c21µ
2b2ε4

))
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(

max

(
144c2.52 ∆σ2L

c2.51 µ2ε4
,

36c22σ
4

c21µ
2bε4

))
.

Then we consider multiple stage training. For each stage, by setting εk = ε0
2k , we run Tk iterations

and hope to achieve

E [Fk(xk)− Fk(x∗)] ≤
1

Tk

Tk−1∑
i=0

E [Fi(xi)− Fi(x∗)] ≤
1

2µTk

Tk−1∑
i=0

E
[
‖∇Fi(xi)‖2

]
≤ εk,

(15)

where the last inequality uses the PŁ condition. This εk-accuracy solution can be achievable accord-
ing to the above results. Specifically, by setting

β1k ≤
c1µbεk
6c2σ2

=
δ0.5µbεk

6(c2∞ + δ)0.5σ2
, η ≤ c2.51 µbεk

12c1.52 σ2L
=

δ1.25µbεk
12(c2∞ + δ)0.75σ2L

,

Tk ≥ O
(

max

(
144c2.52 ∆σ2L

c2.51 µ2bε2k
,

36c22σ
4

c21µ
2b2ε2k

))
= O

(
max

( c2.5∞ ∆σ2L

δ1.25µ2bε2k
,
c2∞σ

4

δµ2b2ε2k

))
.

we can achieve the target in (15) with stochastic complexity as O (Tkb) =

O
(

max
(

144c2.52 ∆σ2L

c2.51 µ2ε2k
,

36c22σ
4

c21µ
2bε2k

))
.

Finally, to achieve ε-accuracy solution, we only need to run at most K stages which should satisfy

εK =
ε0
2K
≤ ε.

So it means that K should obey

K ≥ log2

(
1

ε

)
.
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In this way, we can compute the total computational complexity as follows:
K∑
k=1

E [Tkb] =E

[
K∑
k=1

O
(

max

(
144c2.52 ∆σ2L

c2.51 µ2ε2k
,

36c22σ
4

c21µ
2bε2k

))]

=O

(
max

(
144c2.52 ∆σ2L

c2.51 µ2
,

36c22σ
4

c21µ
2b

)
E

[
K∑
k=1

1

ε2k

])

=O
(

max

(
144c2.52 ∆σ2L

c2.51 µ2ε2
,

36c22σ
4

c21µ
2bε2

))
= O

(
max

(c2.5∞ L∆σ2

δ1.25µ2ε2
,
c2∞σ

4

δµ2ε2
))

where

E

[
K∑
k=1

1

ε2k

]
=E

[
K∑
k=1

22k

ε20

]
=

16(22K − 1)

15ε20
≤

16(
ε20
ε2 − 1)

15ε20
= O

(
1

ε2

)
Step 2. Results under decaying learning rate. Firstly, we borrow the results in Eqn. (14) in
Appendix E.2 (proofs for Theorem 2), we have

T−1∑
k=0

ηk∑T−1
k=0 ηk

E
[
‖∇F (xk) + λxk⊗vk‖2 +

1

4
‖mk + λxk⊗vk‖2

]

≤ 2c2∆∑T−1
k=0 ηk

+
c2η0σ

2

c1β1,0b
∑T−1
k=0 ηk

+
c2σ

2
∑T−1
k=0 ηkβ1,k

c1b
∑T−1
k=0 ηk

,

where ∆ = F (x0)− F (x∗). In this way, by setting

β1,k =
γ√
k + 1

, ηk =
c1.51

2c0.52 L
β1,k =

γc1.51

2c0.52 L
√
k + 1

,

T =O
(

max

(
c2σ

2

c1bµ2ε4
log

(
1

ε

)
,
c1.25
2 L0.5∆0.5σ

c1.25
1 bµ2ε4

log

(
1

ε

)))
,

where γ = max
(

1,
c0.252 L0.5∆0.5

c0.251 σ

)
, c1 = δp ≤ ‖vk‖∞ ≤

(
c2∞ + δ

)p
= c2, we have

E
[
‖∇F (xk′) + λxk′⊗vk′‖2 +

1

4
‖mk′ + λxk′⊗vk′‖2

]
≤ 2c2

c1γ1(
√
T + 1− 2)

(
c0.52 L∆

c0.51

+ σ2

)
+

c2γ1σ
2 log(T )

2c1b(
√
T + 1− 2)

≤ µε2

2
.

where xk′ is the final output, and k′ is selected from {1, · · · , T} according to the distribution
{ ηk∑T−1

i=0 ηi
}. Then by setting minibatch size as one, one can easily compute the stochastic gradi-

ent complexity

O (Tb) =O
(

max

(
c2σ

2

c1µ2ε4
log

(
1

ε

)
,
c1.25
2 L0.5∆0.5σ

c1.25
1 µ2ε4

log

(
1

ε

)))
.

Then we consider multiple stage training. For each stage, by setting εk = ε0
2k , we run Tk iterations

and hope to achieve

∆k = E [Fk(xk)− Fk(x∗)] ≤
1

Tk

Tk−1∑
i=0

E [Fi(xi)− Fi(x∗)] ≤
1

2µTk

Tk−1∑
i=0

E
[
‖∇Fi(xi)‖2

]
≤ εk,

(16)
where the last inequality uses the PŁ condition. This εk-accuracy solution can be achievable accord-
ing to the above results. Specifically, by setting

β1,ki =
γ√
i+ 1

, ηki =
c1.51

2c0.52 L
β1,ki =

γc1.51

2c0.52 L
√
i+ 1

=
γδ1.5p

2(c2∞ + δ)0.5pL
√
i+ 1

,

Tk =O
(

max

(
c2σ

2

c1bµ2ε2k
log

(
1

εk

)
,
c1.25
2 L0.5∆0.5

k σ

c1.25
1 bµ2ε2k

log

(
1

εk

)))
=O

(
max

( c∞σ
2

δ0.5bµ2ε2k
log
( 1

εk

)
,
c1.25
∞ L0.5∆0.5

k σ

δ0.625bµ2ε2k
log
( 1

εk

)))
,
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where γ = max
(

1,
c0.252 L0.5∆0.5

c0.251 σ

)
, c1 = δ0.5 ≤ ‖vk‖∞ ≤

(
c2∞ + δ

)0.5
=

c2, we can achieve the target in (16) with stochastic complexity as O (Tkb) =

O
(

max
(

c2σ
2

c1µ2ε2k
log
(

1
εk

)
,
c1.252 L0.5∆0.5

k σ

c1.251 µ2ε2k
log
(

1
εk

)))
Finally, to achieve ε-accuracy solution, we only need to run at most K stages which should satisfy

εK =
ε0
2K
≤ ε.

So it means that K should obey

K ≥ log2

(
1

ε

)
.

In this way, we can compute the total computational complexity as follows:
K∑
k=1

E [Tkb] =E

[
K∑
k=1

O
(

max

(
c2σ

2

c1µ2ε2k
log

(
1

εk

)
,
c1.25
2 L0.5∆0.5

k σ

c1.25
1 µ2ε2k

log

(
1

εk

)))]

=O

(
max

(
c2σ

2

c1µ2
E

[
K∑
k=1

1

ε2k
log

(
1

εk

)]
,
c1.25
2 L0.5σ

c1.25
1 µ2

E

[
K∑
k=1

∆0.5
k

ε2k
log

(
1

εk

)]))

=O
(

max

(
c2σ

2

c1µ2ε2
,
c1.25
2 L0.5σ

c1.25
1 µ2ε2

))
= O

(
max

( c∞σ
2

δ0.5µ2ε2
,
c1.25
∞ L0.5σ

δ0.625µ2ε2
))

where

E

[
K∑
k=1

1

ε2k
log

(
1

εk

)]
¬
=E

[
K∑
k=1

22k

ε20
log

(
2k

ε0

)]
= O

(
E

[
K∑
k=1

k · 22k

ε20

])
= O (E [SK ])

­
= O

(
1

ε2

)

E

[
K∑
k=1

∆0.5
k

ε2k
log

(
1

εk

)]
®
≤E

[
K∑
k=1

ε0.5k
ε2k

log

(
1

εk

)]
= E

[
K∑
k=1

k · 21.5k

ε1.50

]
= E [S′K ] = O

(
1

ε2

)
where we use εk = ε0

2k in ¬, and Eqn. (16) in ®. For ­, we can compute

SK − 4SK−1 =

K∑
k=1

k · 22k

ε20
− 4

K−1∑
k=1

k · 22k

ε20
=

4

ε20
.

Consider S1 = 4
ε20

, then we have

SK +
4

3ε20
= 4

(
SK−1 +

4

3ε20

)
= 4K−1

(
S1 +

4

3ε20

)
=

4K+2

3ε20
=

16

3ε2
,

where we use ε0
2K = ε. Similarly, we compute

S′K +
21.5

(21.5 − 1)ε1.50

=21.5

(
S′K−1 +

21.5

(21.5 − 1)ε1.50

)
= 21.5(K−1)

(
S′1 +

21.5

(21.5 − 1)ε1.50

)
=

2 · 21.5(K+1)

ε1.50

≤ 8

ε2
.

The proof is completed.

F PROOF OF RESULTS IN SEC. 5

To begin with, we first give one useful lemma to prove our generalization error bound.
Lemma 10. (PAC-Bayesian generalization bound) (McAllester, 1999) For any τ ∈ (0, 1), the ex-
pected risk for the posterior hypothesis of an algorithm over a training dataset Dtr ∼ D with n
samples holds with at least probability 1− τ :

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤ 4

√
1

n

(
KL(P‖Ppre) + ln

(
2n

τ

))
,

where KL(P‖Ppre) denotes the Kullback-Leibler divergence from prior Ppre to posterior P .
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F.1 PROOF OF LEMMA 4

Proof. Based on the assumptions in Lemma 4 and Eqn. (8), we can write the SDE equations as
follows:

dxt =−Qt∇F (xt)dt− λxtdt+Qt (2Σt)
1
2 dζt

=−QtH∗xtdt− λxtdt+Qt (2Σt)
1
2 dζt

=− (H
1
2
∗ + λI)xtdt+

√
η

b
dζt,

where dζt ∼ N (0, Idt), Σt ≈ η
2BH∗; Qt = H

− 1
2

∗ . Then for this Ornstein–Uhlenbeck process,
we can compute its closed form solution as follows:

xt = exp
(
−(H

1
2
∗ + λI)t

)
x0 +

√
η

b

∫ t

0

exp
(
−(H

1
2
∗ + λI)(t− t′)

)
dζt′ .

Let M = E
[
xtx

>
t

]
. In this way, considering (H

1
2
∗ + λI) = (H

1
2
∗ + λI)>, we follow (Mandt

et al., 2017) (see their Appendix b) and can further compute the algebraic relation for the stationary
covariance of the multivariate Ornstein–Uhlenbeck process as follows:

(H
1
2
∗ + λI)M +M(H

1
2
∗ + λI)

=
η

b

∫ t

−∞
(H

1
2
∗ + λI) exp

(
−(H

1
2
∗ + λI)(t− t′)

)
exp

(
−(H

1
2
∗ + λI)(t− t′)

)
dt′

+
η

b

∫ t

−∞
exp

(
−(H

1
2
∗ + λI)(t− t′)

)
exp

(
−(H

1
2
∗ + λI)(t− t′)

)
dt′(H

1
2
∗ + λI)

=
η

b

∫ t

−∞

d
dt′
(

exp
(
−(H

1
2
∗ + λI)(t− t′)

)
exp

(
−(H

1
2
∗ + λI)(t− t′)

))
=
η

b
I,

where we use the lower limits of the integral vanishes by the positivity of the eigenvalues of H
1
2
∗ +

λI . Next, let USU> is the SVD ofH∗, where S = diag (σ1, σ2, · · · , σd). Then we have

U(S
1
2 + λI)U>M +MU(S

1
2 + λI)U> =

η

b
I.

Then multiplying U> from left side and also U from right side gives

(S
1
2 + λI)U>MU +U>MU(S

1
2 + λI) =

η

b
I.

Therefore, we know

MAdamW =
η

2B
U(S

1
2 + λI)−1U>.

The proof is completed.

F.2 PROOF OF THEOREM 5

Proof. According to the assumption in Theorem 5 and Lemma 4, we know that for AdamW, its
prior and posterior distributions are both Gaussian distribution, namely Ppre ∼ N (0, ρI) and P ∼
N (x∗,MAdamW) where

MAdamW =
η

2B
U(S

1
2 + λI)−1U>,

where USU> is the SVD ofH∗ in which S = diag (σ1, σ2, · · · , σd).

On the other hand, for KL between two Gaussian distributionsW1 ∼ (u1,Σ1) andW2 ∼ (u2,Σ2),
we can follow (Pardo, 2018) and compute it as follows:

KL(W2‖W1) =
1

2

[
log

det(Σ1)

det(Σ2)
+ Tr

(
Σ−1

1 Σ2

)]
+

1

2
(u1 − u2)>Σ−1

1 (u1 − u2)− d

2
.
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Accordingly, for AdamW, we can compute

KL(P‖Ppre) =
1

2

log
ρd(

η
2b

)d∏d
i=1

1

σ
1
2
i +λ

+
η

2ρb

d∑
i=1

1

σ
1
2
i + λ

+
1

2ρ
‖x∗‖2 −

d

2


=

1

2

[
d∑
i=1

log
2ρb(σ

1
2
i + λ)

η
+

η

2ρb

d∑
i=1

1

σ
1
2
i + λ

+
1

2ρ
‖x∗‖2 −

d

2

]
.

Then by using Lemma 10, it further yields the generalization bound of AdamW as follows:

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)]

≤4

√√√√ 1

2n

(
d∑
i=1

log
2ρb(σ

1
2
i + λ)

η
+

η

2ρb

d∑
i=1

1

σ
1
2
i + λ

+ c0

)
,

where c0 = 1
2ρ‖x∗‖

2 − d
2 + 2 ln

(
2n
τ

)
. The proof is completed.

F.3 PROOF OF THEOREM 6

Proof. Step 1. Posterior Analysis on Adam+`2-Regularization. Here we borrow the same idea
in Lemma 4 and Theorem 5 to analyze the covariance matrix M = E

[
xtx

>
t

]
. To begin with, we

simplify the SDE of Adam+`2-Regularization. Based on the assumptions in Theorem 6 and Eqn. (8),
we can write the SDE equations as follows:

dxt =−Qt∇F (xt)dt− λQtxtdt+Qt (2Σt)
1
2 dζt

=−QtH∗xtdt− λQtxtdt+Qt (2Σt)
1
2 d

=− (H
1
2
∗ + λH

− 1
2

∗ )xtdt+

√
η

b
dζt,

where dζt ∼ N (0, Idt), Σt ≈ η
2BH∗; Qt = H

− 1
2

∗ . Then for this Ornstein–Uhlenbeck process,
we can compute its closed form solution as follows:

xt = exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )t
)
x0 +

√
η

b

∫ t

0

exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

dζt′ .

Let M = E
[
xtx

>
t

]
. In this way, considering (H

1
2
∗ + λH

− 1
2

∗ )) = (H
1
2
∗ + λH

− 1
2

∗ ))>, we follow
(Mandt et al., 2017) (see their Appendix b) and can further compute the algebraic relation for the
stationary covariance of the multivariate Ornstein–Uhlenbeck process as follows:

(H
1
2
∗ + λH

− 1
2

∗ )M +M(H
1
2
∗ + λH

− 1
2

∗ )

=
η

b

∫ t

−∞
(H

1
2
∗ + λH

− 1
2

∗ ) exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

dt′

+
η

b

∫ t

−∞
exp

(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

dt′(H
1
2
∗ + λH

− 1
2

∗ )

=
η

b

∫ t

−∞

d
dt′
(

exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
)

exp
(
−(H

1
2
∗ + λH

− 1
2

∗ )(t− t′)
))

=
η

b
I,

where we use the lower limits of the integral vanishes by the positivity of the eigenvalues of H
1
2
∗ +

λI . Next, let USU> is the SVD ofH∗, where S = diag (σ1, σ2, · · · , σd). Then we have

U(S
1
2 + λS−

1
2 )U>M +MU(S

1
2 + λS−

1
2 )U> =

η

b
I.
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Then multiplying U> from left side and also U from right side gives

(S
1
2 + λS−

1
2 )U>MU +U>MU(S

1
2 + λS−

1
2 ) =

η

b
I.

Therefore, we know

MAdam+`2-Reg. =
η

2B
US

1
2 (S + λI)−1U>.

Step 2. Generalization Analysis. According to the assumption in Theorem 6 and Lemma 4, we
know that for Adam + `2 regularization, its prior and posterior distributions are both Gaussian dis-
tribution, namely Ppre ∼ N (0, ρI) and P ∼ N (x∗,MAdam+`2-Reg.) where

MAdam+`2-Reg. =
η

2B
US

1
2 (S + λI)−1U>.

where USU> is the SVD ofH∗ in which S = diag (σ1, σ2, · · · , σd).

On the other hand, for KL between two Gaussian distributionsW1 ∼ (u1,Σ1) andW2 ∼ (u2,Σ2),
we can follow (Pardo, 2018) and can compute it as follows:

KL(W2‖W1) =
1

2

[
log

det(Σ1)

det(Σ2)
+ Tr

(
Σ−1

1 Σ2

)]
+

1

2
(u1 − u2)>Σ−1

1 (u1 − u2)− d

2
.

Accordingly, for Adam + `2 regularization, we can compute

KL(P‖Ppre) =
1

2

log
ρd(

η
2b

)d∏d
i=1

σ
1
2
i

σi+λ

+
η

2ρb

d∑
i=1

σ
1
2
i

σi + λ
+

1

2ρ
‖x∗‖2 −

d

2


=

1

2

[
d∑
i=1

log
2ρb(σi + λ)

ησ
1
2
i

+
η

2ρb

d∑
i=1

σ
1
2
i

σi + λ
+

1

2ρ
‖x∗‖2 −

d

2

]
This further yields the generalization bound of Adam+`2-Reg. as follows:

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)]

≤4

√√√√ 1

2n

(
d∑
i=1

log
2ρb(σi + λ)

ησ
1
2
i

+
η

2ρb

d∑
i=1

σ
1
2
i

σi + λ
+ c0

)
,

where c0 = 1
2ρ‖x∗‖

2 − d
2 + 2 ln

(
2n
τ

)
. The proof is completed.

G PROOFS OF AUXILIARY LEMMAS

G.1 PROOF OF LEMMA 7

Proof. Here we use mathematical induction to prove the first two results. Assume for t ≤ k, we
have ‖mt‖∞ ≤ c∞ and ‖nt + δ‖∞ ≤ c∞ + δ. Then for k + 1, we have

‖mk+1‖∞ = ‖(1− β1)mk + β1gk‖∞ ≤ (1− β1) ‖mk‖∞ + β1 ‖gk‖∞ ≤ c∞,
‖nk+1‖∞ =

∥∥(1− β2)nk + β2g
2
k

∥∥
∞ ≤ (1− β2) ‖nk‖∞ + β2

∥∥g2
k

∥∥
∞ ≤ c

2
∞,

where gk = 1
b

∑b
i=1∇f(xk; ξi). On the other hand, we have∥∥∥∥ nk + δ

nk+1 + δ

∥∥∥∥
∞

=

∥∥∥∥1 +
nk − nk+1

nk+1 + δ

∥∥∥∥
∞

=

∥∥∥∥1 +
β2(nk − g2

k)

nk+1 + δ

∥∥∥∥
∞
∈
[
1− β2c

2
∞

c2s,∞ + δ
, 1 +

β2c
2
∞

c2s,∞ + δ

]
where nk+1 = (1− β2)nk + β2g

2
k. Therefore, for any 1 ≥ p ≥ 0, we can easily obtain∥∥∥∥ (nk + δ)p

(nk+1 + δ)p

∥∥∥∥
∞
∈
[(

1− β2c
2
∞

c2s,∞ + δ

)p
,

(
1 +

β2c
2
∞

c2s,∞ + δ

)p]
∈
[
1− β2c

2
∞

c2s,∞ + δ
, 1 +

β2c
2
∞

c2s,∞ + δ

]
.

where nk+1 = (1− β2)nk + β2g
2
k. The proof is completed.

27


