
Published as a conference paper at COLM 2025

NoWag: A Unified Framework for Shape Preserving Com-
pression of Large Language Models

Lawrence Liu1 Inesh Chakrabarti1 Yixiao Li2 Mengdi Wang3 Tuo Zhao2

Lin F. Yang1

1University of California, Los Angeles 2Georgia Institute of Technology 3Princeton University
{lawrencerliu, inesh33}@ucla.edu, yixiaoli@gatech.edu
mengdiw@princeton.edu, tourzhao@gatech.edu, linyang@ee.ucla.edu

Abstract

Large language models (LLMs) exhibit remarkable performance across
various natural language processing tasks but suffer from immense com-
putational and memory demands, limiting their deployment in resource-
constrained environments. To address this challenge, we propose NoWag
(Normalized Weight and Activation Guided Compression), a unified
framework for one-shot shape preserving compression algorithms. We
apply NoWag to compress Llama-2 (7B, 13B, 70B) and Llama-3 (8B, 70B)
models using two popular shape-preserving techniques: vector quanti-
zation (NoWag-VQ) and unstructured/semi-structured pruning (NoWag-
P). Our results show that NoWag-VQ significantly outperforms state-of-
the-art one-shot vector quantization methods, while NoWag-P performs
competitively against leading pruning techniques. These findings high-
light underlying commonalities between these compression paradigms
and suggest promising directions for future research. Our code is avail-
able at https://github.com/LawrenceRLiu/NoWag

1 Introduction

Large language models (LLMs) (Brown et al., 2020) have demonstrated remarkable capa-
bilities across a wide range of fields and tasks (Huang & Yang, 2025; Wei et al., 2022; Park
et al., 2023), but their immense computational and memory requirements during inference
pose significant challenges for deployment. Consequently, post-training compression tech-
niques have emerged as a promising tool to reduce model size and computational overhead
while maintaining accuracy. Two promising families of methods for post-training compres-
sion are Pruning (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015) and Quantization
(Yao et al., 2022; Dettmers et al., 2022; Ahmadian et al., 2023; Li et al., 2025).

Pruning aims to remove redundant parameters from LLMs while preserving performance.
We will focus on two forms of pruning, unstructured pruning (Liao et al., 2023), which
removes/zeros out individual elements without any structure, and N:M semi-structured
pruning (Huang et al., 2025), where strictly N of every M elements are zeroed out.
SparseGPT (Frantar & Alistarh, 2023) introduced an efficient, unstructured and semi-
structured pruning method that leverages Hessian-based weight updates to minimize per-
formance loss. More recently, Wanda (Sun et al., 2023) demonstrated a simple yet effec-
tive unstructured and semi-structured pruning method that requires no weight updates
or hessian computation, making it significantly faster and easier to apply than SparseGPT.
However, current hardware only supports 2:4 semi-structured sparsity, which leads to sig-
nificant performance degradation after compression.

A more effective compression method is quantization, which reduces the number of bits
used to store each weight (Kuzmin et al., 2023). In this paper, we focus on weight-only
Post-Training Quantization (PTQ), a common form of quantization. Pioneering works
(Frantar et al., 2022; Lin et al., 2024; Kim et al., 2023) focused on scalar quantization. For
extreme compression (e.g., ≤ 4 bits per weight), Vector Quantization (VQ), where groups
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Figure 1: Illustration of proposed NoWag (Normalized Weight and Activation Guided
Compression). Given a LLM, compression of each weight matrix W is performed inde-
pendently. Vectors r(1) and r(2) are used to normalize W. With the second moment of the
activations diag

(
XXT) guiding the importance of each weight for the compression algo-

rithm, such as K-means VQ (NoWag-VQ) and Pruning (NoWag-P)

of d consecutive weights are quantized together, has demonstrated superior performance
because the codebook can be shaped to the distribution of weights (Egiazarian et al., 2024;
Van Baalen et al., 2024; Tseng et al., 2024a; Liu et al., 2024). However, most current algo-
rithms all share at least one of the following two drawbacks. First, an expensive weight-
update process necessitating matrix inversion, similar to SparseGPT. Second, sampling a
sufficiently accurate Hessian for quantization can require up to 25 million tokens and ∼ 1
TB of CPU memory for a model like Llama-3 70B, introducing a new computational bottle-
neck.

In this work, we address these issues by formulating a unifying framework for shape-
preserving compression algorithms, where the compressed weight matrix has the same
shape as the original uncompressed counterpart but can be stored with less memory. This
method is weight update free, less dependent on calibration data, and features a novel nor-
malization technique that benefits both pruning and quantization. We term this family of
compression methods NoWag (Normalized Weight and Activation Guided Compression).
We show that the VQ variation of NoWag, NoWag-VQ (NoWag for Vector Quantization),
outperforms the SOTA one-shot VQs QuIP# (Tseng et al., 2024a), at bits per value, while us-
ing 48x less calibration data. Furthermore, we show that the pruning variation of NoWag,
NoWag-P (NoWag for Pruning), outperforms Wanda, a SOTA pruning algorithm at retain-
ing language modeling performance.

2 Problem Formulation

Given a trained LLM, our goal is to obtain a compressed model that significantly reduces
the computational and memory requirements while retaining as much general perfor-
mance as possible. Due to the large number of parameters, using global optimization for
compression is computationally infeasible. As a result, a common approach is to indepen-
dently perform data aware compression of each linear layer (Nagel et al., 2020), as well
as to finetune the compressed LLM, (Egiazarian et al., 2024; Malinovskii et al., 2024; Tseng
et al., 2024a) to recover performance.

More formally, the objective for shape preserving compression algorithms is: For a linear
layer in an LLM with weight matrix W ∈ Rdout×din , find a compressed weight matrix Ŵ ∈
Rdout×din to replace W that requires less memory while minimizing the deviation from the
original model’s behavior.
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In standard notation, given input activations x ∈ Rdin , the output is computed as y = Wx,
where y ∈ Rdout . To incorporate data awareness, we sample n sequences of length l from
a calibration dataset and collect the corresponding activation samples XT ∈ Rm×din where
m = n× l.

3 Related Works

Many existing works for shape preserving compression algorithms aim to minimize the
expected error between the outputs of the original layer and the compressed layer (Nagel
et al., 2020; Frantar & Alistarh, 2023; Frantar et al., 2022):

ℓ(Ŵ) = Ex

[
∥(W− Ŵ)x∥2

2

]
= tr(

((
W− Ŵ

)
Ex[xxT ]

(
W− Ŵ

)T
)

(1)

Because the underlying distribution of x is unknown, the expected value of the hessian
Ex[xxT ] of the activations is estimated through the sample activations Ĥ = 1

m XXT ∈
Rdin×din , allowing for the following approximation, ℓ′ of ℓ:

ℓ′(Ŵ) = tr
((

W− Ŵ
)

Ĥ
(
W− Ŵ

)T
)

(2)

The challenge of minimizing such an objective is that it cannot be broken down into inde-
pendent element wise subproblems. As a result, solving for the optimal pruned or quan-
tized Ŵ is NP-hard. Even greedy approximations to these solution are themselves compu-
tationally expensive; for example, a common approach is a group wise greedy approach
with linear feedback updating (Frantar et al., 2022; Tseng et al., 2024a; Liu et al., 2024;
Van Baalen et al., 2024; Chee et al., 2023; Frantar & Alistarh, 2023). In such an approach,
groups of rows are iteratively quantized/pruned in a greedy fashion, and the remaining
non compressed rows are adjusted to compensate. Calculating the optimal compensation
requires calculating the inverse of Ĥ, which carries a computational overhead of O(d3

in).

However, recent works appear to show that simplified approximations of equation 2 are
sufficient, and even superior. For example, Wanda (Sun et al., 2023), only considers the
diagonal elements of the sample hessian. This results in a pruning algorithm that prunes
based on a score metric Sij = |Wij|∥Xj∥2 without any feedback. Furthermore, for unstruc-
tured pruning, pruning is performed independently in per-output groups. In other words,
instead of constraining each weight matrix, each individual row is constrained to x% spar-
sity. Although this constraint is more restrictive, Wanda reports that it results in superior
performance competitive with SparseGPT. Likewise, for quantization, SqueezeLLM (Kim
et al., 2023), replaces the Hessian with the diagonal of the Fischer information matrix, al-
lowing for K-means to be used to cluster the weights without any computationally expen-
sive weight updates. SqueezeLLM is able to outperform some linear feedback based scalar
quantization algorithms such as GPTQ Frantar et al. (2022).

4 NoWag: (Normalized Weight and Activation Guided Compression)

Compression Objective To ensure numerical stability and enhance compression effi-
ciency, we first normalize W as per Algorithm 1 to obtain W̄ ∈ Rdout×din using normal-
ization vectors r(1) ∈ Rdin and r(2) ∈ Rdout :

W̄ij =
1

r(2)i

Wij

r(1)j

 , r(1)j =

√√√√dout

∑
i=1

W2
ij, ∀j ∈ [din], r(2)i =

√√√√√ din

∑
j=1

Wij

r(1)j

2

, ∀i ∈ [dout].

The compressed weight matrix Ŵ is obtained by minimizing the following weighted Frobe-
nius norm:

ℓ̃(Ŵ) = ∥ W̄− Ŵ ∥2
F,diag(XXT) = ∑

i
∑

j
(W̄ij− Ŵij)

2∥Xj∥2
2. (3)
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Algorithm 1 NoWag Normalization
Require: Weight matrix W ∈ Rdout×din

Ensure: Normalized weight matrix W̄, normalization vectors
r(1) , r(2)

Compute column norms: r(1)j =
√

∑
dout
i=1 W2

ij for j ∈ [1, din]

Normalize columns: W ′
ij =

Wij

r(1)j +ε
∀i, j

Compute row norms: r(2)i =
√

∑
din
j=1 W ′2

ij for i ∈ [1, dout]

Normalize rows: W̄ij =
W′ij

r(2)i +ε
∀i, j

return W̄, r(1) , r(2)

Algorithm 2 NoWag Inference
Require: Input activation x ∈ Rdin , compressed weight ma-

trix Ŵ ∈ Rdout×din , normalization vectors r(1) ∈ Rdin ,
r(2) ∈ Rdout

Ensure: Output activation y ∈ Rdout

Normalize input: x̃j ← xj/r(1)j , ∀j ∈ [1, din]

Compute intermediate output: ỹi ← Ŵi x, ∀i ∈ [1, dout]

Denormalize output: yi ← ỹi · r(2)i , ∀i ∈ [1, dout]
return y

Algorithm 3 NoWag-VQ
Require: Weight matrix W ∈ Rdout×din , activation samples

X ∈ Rm×din , subvector dimension d, target bits per value
nbits, number of iterations niter

Ensure: Quantized weight matrix Ŵ ∈ Rdout×din , codebook
C, assignments A
(r(1) , r(2) , W̄) ← NoWag Normalization(W) {See Algo-
rithm 1}
(W̄padded, din, padded) ← VQPadding(W̄, din, d) {See Algo-
rithm 4}
Hj ← ∥Xj∥2

2, ∀j ∈ [1, din] {Diagonal of sample hessian}
if din ̸= din, padded then

Pad H with zeros to length din, padded
end if
Reshape W̄padded into subvectors: W̄sub ∈ RN×d where N =
dout×din, padded

d
Reshape H into subvector weights: Hsub ∈ RN×d

ncentroids ← 2nbits ·d

(C, A) ← Weighted KMeans(W̄sub, Hsub, ncentroids, niter) {See
Algorithm 6}
Ŵsub ← Map each subvector to its assigned centroid using
A
Reshape Ŵsub back to matrix form and remove padding to
get Ŵ ∈ Rdout×din {Reverses padding from Algorithm 4}
return Ŵ, C, A

Here, Xj ∈ Rm represents the calibration activations for the jth input channel, and ∥Xj∥2
2

acts as a weighting term that prioritizes important elements of W. A key benefit of such an
objective is that it can be decomposed into independent subproblems at the element level,
subject to global constraints imposed by the chosen compression algorithm. This allows
for compression algorithms that do not require any feedback methods.

Denormalization can be done on the fly by multiplying the inputs by r(2) and the out-
puts by r(1) as noted in Algorithm 2. The additional computational cost of these opera-
tions scales linearly with the input and output dimensions respectively. They are therefore
largely neglible compared with the overall computational cost of Matrix multiplication.
Furthermore, even though these normalization vectors vectors are stored in fp16, the ad-
ditional overhead is minimal: in terms of bits per value, they account for < 0.01 bits per
value.

Paradigms of Compression The above formulation unifies the following two paradigms
of shape preserving compression.

1. Quantization (NoWag-VQ): With the discretization constraints imposed by quan-
tization, optimizing equation 3 can be approximated by weighted K-means, where
the weights are determined by diag(XXT). For initialization, a modified version of
K-means++ was used, with the possible centroids sampled from a random subsam-
ple of the subvectors. The computational complexity of d dimensional K-means is
O(dNTK) where N is the number of data points, K is the number of clusters, and
T is the number of iterations. Therefore the computational complexity of d di-
mensional NoWag-VQ for quantization to nbpv bits per value is O(dindoutT2nbpvd).
Note that in our experiments T << min(din, dout). The pseudo-code for this algo-
rithm is detailed in Algorithm 3 and a detailed formulation of VQ can be found in
Appendix A.

2. Unstructured/Semi-Structured Pruning (NoWag-P): For an x%-unstructured
pruning pattern, where x% of the weight matrix entries (i, j) are zeroed out, our
method selects the x% of entries with the smallest W̄2

ij∥Xj∥2
2, thereby minimizing

Equation 3. For N:M Semi-Structured Pruning, our method selects the N entries
in each group of M with the smallest W̄2

ij∥Xj∥2
2. Through the quickselect algorithm
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Figure 2: A sample weight from the first attention layer of Llama-2-7B. From left to right:
visualization of the absolute values of the weights, normalized weights, importance scores,
and normalized importance scores all down-sampled to 1:4 scale by max pooling. Individ-
ual elements are visualized in log scale, with blue implying larger value.

(Hoare, 1962), we can find the threshold for x% of the entries linear time on aver-
age (Mahmoud et al., 1995). Thus, NoWag-P has a computational complexity of
O(dindout) on average. The pseudo code for NoWag-P is detailed in Algorithm 5
in Appendix F.

4.1 Why this works

The critical step in our approach is the normalization of W. Our normalization method
effectively normalizes Wij by both the input and output group. This removes the biases
on the compression algorithm to focus on smaller-magnitude rows/columns, leading to a
better retention of the overall performance of an LLM.

To illustrate this, we visualize W and its normalized counterpart, W̄ for an example weight
matrix in figure 2. In addition, to understand the effects of data awareness, we also vi-
sualized the element wise importance scores S̄ij = ∥ W̄ij ∥∥Xj∥2 derived from equation 3.
Likewise, for comparison, we also visualized the naive scores Sij = ∥Wij ∥∥Xj∥2 without
considering normalization.

We observe that non-normalized weights exhibit a structured pattern, with specific outlier
rows and columns, with larger magnitudes. These structures can be attributed to several
phenomenons, such as sensitive attention heads, rotatory embedding patterns, and out-
lier features (Dettmers et al., 2024; Su et al., 2024; Dettmers et al., 2022; Vig, 2019; Olsson
et al., 2022). In comparison, the normalized weights do not exhibit this patterns. This is
highly beneficial for vector quantization, as it projects the d dimensional distribution of
consecutive weights into a bounded [0, 1] “ball shaped” distribution, visualized in Figure
3

The importance visualizations in Figure 2 once again exhibits these row and column wise
structures. Thus, when pruning is applied, the removed elements will be concentrated
away from these rows and columns on the non-outlier columns. In turn, this effectively
removes entire input/output channels, reducing the performance of the compressed LLM.
Normalization largely removes the rowise outlier structures from the importance scores.
In addition some of the columnwise structure is removed, while some still remains. The
remaining structure is due to the ∥Xj∥2 component of the scores S̄ij = ∥ W̄ij ∥∥Xj∥2.

4.2 Comparisons with Other Compression Algorithms

The average computational cost of both NoWag-P and NoWag-VQ scales linearly with
the size of the weight matrices, and thus the size of the LLM. Since din and dout are of
roughly the same magnitude in a modern LLM, NoWag-P and NoWag-VQ offers a signif-
icant speedup for compression over linear feedback based pruning methods, whose com-
putational complexity scales cubically with din.
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Figure 3: 2d PCA visualization of the distribution of d = 6 grouped entries from W and
W̄. Densities are plotted at log scale. Normalization reshapes the distribution into a more
”ball-shaped distribution.

Pruning: Several parallels can be drawn between our approach and Wanda. First, with-
out normalization, NoWag-P is equivalent to Wanda without output grouped pruning.
Second, Wanda takes advantage of the same phenomenon described in Section 4.1 through
output group pruning, only normalizing along dout. However, output grouped pruning
used by Wanda is not as strong as our normalization method in two aspects. First, nor-
malization is only performed on the output dimensions; this breaks up the row wise struc-
ture, but some column-wise structure will still remain. Second, group-wise normalization
cannot be used with semi-structured pruning or quantization. In comparison, our nor-
malization method directly breaks up both row and column structures. Furthermore, our
normalization method is applied directly to the, allowing for support for semi-structured
pruning and other compression algorithms such as quantization.

Quantization Kmeans has been explored for LLM PTQ in several works. In many VQ
algorithms, it is used to initialize before optimizing the quantization (Van Baalen et al.,
2024; Liu et al., 2024; Egiazarian et al., 2024). For scalar quantization, SqueezeLLM (Kim
et al., 2023) has employed weighted K-means using the diagonal of the fisher information
as weights. Our algorithm has several key differences from those aforementioned. First,
we use K-means only, without any computationally expensive optimization procedures
required by previous VQ algorithms. Second, our weights are simply the second moment
of the sample activations which can be calculated without a backwards pass.

5 Experiments

Models. We evaluate NoWag on two popular families of models Llama 2 (Llama-2
7B/13B/70B) (Touvron et al., 2023) and Llama-3 8B/70B (Grattafiori et al., 2024). Due to
resource and time constraints, we did not apply NoWag-VQ to the Llama-3 70B model;
therefore, for the Llama 3 family, we report quantization performance only for the Llama-3
8B model.

Baselines A particular focus in the research community is “one-shot” compression meth-
ods for large language models (LLMs). Here, “one-shot” refers to directly compressing the
model based on the calibration data without fine-tuning to adjust the compressed model
parameters. Such compression methods are desirable because they have minimal computa-
tional overhead associated with it. However in more recent works, for ”extreme” compres-
sion, roughly < 3 bits per value, it has been demonstrated that specialized finetuning post
quantization can significantly recover performance lost during compression (Malinovskii
et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024a).
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The focus of our paper is how to compress. As a result, we primary focus on “one-shot“
compression algorithms. The SOTA for one-shot VQ for LLMs at 2 bits per value is QuIP#
(Tseng et al., 2024a), so we make comparisons against it. QuIP# incorporates VQ with Ham-
mard incoherence matrices and an E8 structured codebook. We did not compare against
QTIP (Tseng et al., 2024b) as our focus was on VQ rounding methods, and because Trellis
coding can be extended to any VQ rounding method (Tseng et al., 2024b).

For pruning, we compare NoWag-P against Wanda (Sun et al., 2023), an unstructured and
semi-structured SOTA pruning algorithm. As discussed previously, the key difference be-
tween Wanda and NoWag-P is our normalization method. Wanda does no normalization,
and only does output group wise pruning for unstructured pruning only, while for semi-
structured pruning, Wanda uses just simple greedy pruning based on the element-wise
importance scores. As such, a comparison between NoWag-P and Wanda serves to high-
light the impact of our normalization scheme in both a unstructured and semi-structured
pruning scheme.

Calibration dataset We use 128 samples at the model’s native sequence length (4096 for the
Llama 2 family and 8192 for the Llama 3 family) of the RedPajama 1T dataset (Weber et al.,
2024) as our calibration data for both pruning and quantization. This is the same dataset
used by QuIP#, which uses 6144 samples, or 48x times more data.

Evaluation To evaluate NoWag-VQ, we follow standard evaluation metrics for quantized
models of measuring the perplexity on the test splits of the C4 (Dodge et al., 2021) and
Wikitext2 (Merity et al., 2016). Furthermore, we performed task specific sequence classifi-
cation zero shot accuracy through the Eleuther AI LM Harness (Gao et al., 2024). For equal
comparison with QuIP#, we used the same version of LM Harness (Version 0.3.0). The
exact tasks are listed in appendix B. It is worth noting that the zeroshot tasks have some
intrinsic randomness, even FP16 numbers can disagree by up to 0.5%, due to their element
of randomness.

5.1 Quantization Evaluation

Method Bits Wiki2 (↓) C4 (↓)
fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (2-70B) 16 3.12 4.97
fp16 (3-8B) 16 5.54 7.01
QUIP (2-7B) # 2 8.23 10.8
NoWag-VQ (2-7B) 2.02 7.07 9.12
QuIP # (2-13B) 2 6.06 8.07
NoWag-VQ (2-13B) 2.01 5.93 7.94
QuIP # (2-70B) 2 4.16 6.01
NoWag-VQ (2-70B) 2.02 4.15 5.94
QuIP# (3-8B) 2 13.8 15.6
NoWag-VQ (3-8B) 2.02 10.68 11.92

Table 1: Perplexity on WikiText2
and C4 for 2-bit quantized Llama 2
(7B/13B/70B) and Llama 3 (8B) mod-
els without fine-tuning. Evaluations
were performed at the models’ native
sequence lengths (4096 for Llama 2 and
8192 for Llama 3).

Method Bits Wiki2 (↓) C4 (↓)
fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (2-70B) 16 3.12 4.97
AQLM (2-7B) 2.02 6.59 8.54
NoWag-VQ (2-7B) 2.02 6.51 8.50
AQLM (2-13B) 1.97 5.60 7.49
NoWag-VQ (2-13B) 2.01 5.53 7.39
AQLM (2-70B) 2.07 3.94 5.72
NoWag-VQ (2-70B) 2.02 3.99 5.77

Table 2: Perplexities for WikiText2 and
C4 with blockwise finetuning for 2-bit
Quantized Llama-2 7B/13B/70B com-
pared with AQLM.

For Llama-2 7B/13B and Llama-3 8B, VQ was performed with groups of d = 6 elements
together. This means that the codebook will be able to fit inside the L1 cache of an Nvidia
A6000 GPU, enabling fast decoding. For Llama-2 70B, VQ was performed with groups
of d = 7 elements together, since the relative overhead of the codebook was diminished

1QuIP# accuracies are taken from CALDERA (Saha et al., 2024).
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Bits Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 16 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 16 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 16 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 16 73.5 68.6 79.7 80.1 50.2 70.42
QuIP# (2-7B ) 2 61.7 57.8 69.6 61.2 29.9 56.04
NoWag-VQ (2-7B) 2.02 64.4 54.5 73.6 60.7 31.7 56.99
QuIP # (2-13B) 2 63.6 54.5 74.2 68.7 36.2 59.44
NoWag-VQ (2-13B) 2.01 68.1 62.5 75.9 67.3 37.9 62.34
QuIP # (2-70B) 2 74.2 70.0 78.8 77.9 48.6 69.9
NoWag-VQ (2-70B) 2.02 74.5 69.0 79.4 75.4 46.2 68.9
QuIP # (3-8B) 2 63.2 52.7 67.6 57.6 28.2 53.86
NoWag-VQ (3-8B) 2.02 67.7 53.0 72.3 68.4 33.2 58.93

Table 3: Zeroshot sequence classification accuracies (%) across 5 tasks and the average
accuracies of Quantized Models without finetuning. 1

Wikitext2 PPL (↓) C4 PPL (↓)
Method Bits 2-7B 2-13B 2-70B 2-7B 2-13B 2-70B
Dense 0% 5.47 4.88 3.32 6.97 6.47 5.52

One Shot
GPTVQ 2.125 8.23 6.5 4.64 - - -
ClusComp− < 2.01 52.38 22.9 9.84 50.08 24.47 13.96
NoWag-VQ < 2.02 7.59 6.37 4.41 9.28 8.16 6.34

Blockwise Finetuned
ClusComp < 2.01 7.5 6.17 4.83 10.29 8.49 7.02
NoWag-VQ < 2.02 7.01 5.93 4.25 8.07 7.64 6.18

Table 4: Wikitext2 and C4 Perplexities of NoWag-VQ, GPTVQ, and ClusComp at ∼ 2 bits
per value for Llama-2 7B/13B/70B at 2048 context length. One shot and blockwise fine-
tuned results are provided

with the larger model size. While larger, this codebook is still able to fit inside the L1
cache of a Nvidia H100 GPU. In Table 3 we compare the Zero Shot accuracies of NoWag-
VQ against QuIP#. In Table 1 we compare the perplexities of NoWag-VQ against QuIP#,
both at ∼ 2 bits per value. NoWag-VQ outperforms QuIP# in perplexity for all models for
both Wikitext2 and C4. In terms of zero shot accuracies, NoWag-VQ beats QuIP# for all
models beyond Llama-2 70B. We would like to draw attention to how NoWag-VQ is able
to significantly improve the quantized performance of Llama-3-8B compared with QuIP#.
This is worth noting as the Llama-3 family of models is significantly harder to quantize
(Huang et al., 2024).

We also examine the performance of NoWag-VQ beyond the “one-shot” compression
regime. Existing literature has proposed several methods for post quantization finetun-
ing. One popular method is finetuning the remaining continuous parameters of each
transformer block to minimize the block output errors (Egiazarian et al., 2024). Another
is model-wise finetuning to minimize the overall Kullback–Leibler divergence with the
original model, optimizing over the continuous (Tseng et al., 2024a), and the discrete pa-
rameters (Malinovskii et al., 2024). Because of our limited computational resources, we
were only able to perform block-wise finetuning. We compare the perplexities of those
models against those of AQLM (Egiazarian et al., 2024) in table 2. NoWag-VQ outperforms
AQLM for Llama 2 7B and 13B, but falls short for Llama-2 70B. We suspect this is due to
AQLM using d = 8 VQ rather than d = 7, which allows for more than 4x the parameters.
However, our codebook fits into the L1 cache of an H100 and AQLM’s does not.

For additional baselines, we compared the performance of NoWag-VQ against two other
recent LLM VQ methods, GPTVQ (Van Baalen et al., 2024), and ClusComp (Liao & Monz,
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2025) in Table 4. ClusComp consists of several variants, including a zero-shot compres-
sion variant ClusComp−, and a blockwise finetuned variant, ClusComp. We included our
one-shot and blockwise finetuned variants to provided an apples to apples comparison.
We believe these comparisons offer additional clarity for the benefits for the two main
differences between NoWag and ClusComp. First, ClusComp does not incorporate any
normalization, unlike our method. Second, ClusComp performs vanilla vector K-means,
rather than weighted K-means, meaning that ClusComp has no data awareness and treats
all input channels with equal importance. The benefits of these methods are especially
evident in the one-shot regime.

5.2 Pruning Evaluation

Wikitext2 PPL (↓) C4 PPL (↓)
Method Sparsity 2-7B 2-13B 2-70B 3-8B 3-70B 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 5.12 4.57 3.12 5.54 2.58 6.63 6.05 4.97 7.01 5.78
Wanda 50% 6.46 5.58 3.97 9.06 5.34 8.39 7.47 5.77 10.19 7.00
NoWag-P 50% 6.37 5.49 3.89 8.32 4.95 8.27 7.35 5.71 9.67 6.81
Wanda 4:8 8.07 6.55 4.49 13.39 6.50 10.19 8.68 6.39 13.95 7.95
NoWag-P 4:8 8.04 6.47 4.45 12.66 6.24 10.17 8.67 6.38 13.86 7.69
Wanda 2:4 11.35 8.36 5.20 22.42 8.29 13.80 10.96 7.19 21.63 9.63
NoWag-P 2:4 11.14 8.28 5.17 24.0 7.52 13.91 11.05 7.23 23.5 9.18

Table 5: Wikitext2 and C4 Perplexities NoWag-P and Wanda at 50% unstructured, and 4:8
and 2:4 semistructured pruning for Llama-2 7B/13B/70B and Llama-3 8B/70B. Context
length was at the model’s native context length, 4096 for Llama-2 and 8192 for Llama-3.

Avg Zero Shot Accuracy (↑)
Method Sparsity 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 63.66 65.76 70.96 70.42 75.89
Wanda 50% 60.24 63.66 70.16 63.49 73.45
NoWag-P 50% 60.48 63.57 70.28 62.93 72.3
Wanda 4:8 58.27 61.32 68.7 57.84 70.42
NoWag-P 4:8 56.71 60.6 68.43 57.46 70.76
Wanda 2:4 55.37 58.24 66.73 52.59 68.08
NoWag-P 2:4 54.3 58.14 66.95 51.21 67.71

Table 6: Zeroshot Accuracies for Llama-2 7B/13B/70B and Llama-3 8B/70B pruned using
NoWag-P and Wanda for 50% unstructured, 2:4 semi-structured, and 4:8 semi-structured

Because Wanda did not report C4 perplexities, we modified the code to compute them,
furthermore we added support for pruning the Llama-3 family of models. Because of this,
several libraries had to be upgraded from what the original Wanda paper used, resulting
perplexities in Wikitext2 that are slightly different to those reported in Wanda.

Table 5 shows a comparison of the language modeling abilities of NoWag-P and Wanda
pruned models, measured through Wikitext2 and C4 perplexity. Three different lev-
els of pruning patterns were evaluated, 50% unstructured, 4:8 semi-structured, and 2:4
semi-structured pruning. NoWag-P uniformly outperforms Wanda at 50% and 4:8 semi-
structured pruning. This empirically demonstrates the benefits of the NoWag normalizer.
However at 2:4 semi-structured pruning, NoWag-P only roughly matches the performance
of Wanda. We believe that this is due to the more structured pattern, which negates the
impact of the normalizer. To confirm, we conducted a sweep of pruning using NoWag-
P and Wanda for a range of N:M structures for Llama-2-13B and Llama-3-8B, the results
are visualized in Figure 4. The relative reduction of C4 perplexity between NoWag-P and
rapidly diminishes as the pattern becomes more structured (N becomes smaller).

Table 6 shows a comparison of the average zero shot task accuracy for NoWag-P and
Wanda pruned models. Once again, three different levels of pruning patterns were eval-
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Figure 4: Relative difference in C4 perplexity NoWag-P between Wanda:
(NoWag Perplexity)/(Wanda Perplexity) − 1. Calculated for a range of semi struc-
tured patterns for Llama-2-13B and Llama-3-8B

uated, 50% unstructured, 4:8 semi-structured, and 2:4 semi-structured pruning. For most
models across most pruning methods NoWag-P and Wanda produce models similar aver-
age zero shot task accuracy.

6 Conclusion

In this work, we introduced NoWag, a novel framework unifying pruning and quantiza-
tion under a common normalization-based approach. Our experimental results demon-
strate that NoWag-P improves upon existing pruning techniques in maintaining language
modeling accuracy, while NoWag-VQ achieves superior quantization performance with
substantially less calibration data. By leveraging a structured normalization strategy,
NoWag reduces the sensitivity of compression to outlier weights and enhances the effi-
ciency of both pruning and quantization. These findings establish NoWag as a scalable and
adaptable compression paradigm for LLMs, facilitating their deployment in real-world ap-
plications with reduced computational costs.
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Appendix

A Detailed Formulation of Quantization

To quantize a model, we map each weight entry or a contiguous vector of weight entries to
a codebook. Without loss of generality, we assume that use a vector quantization algorithm
where we quantize every d parameters, wi,j:j+d together. Then quantization results in the
following:

• A codebook C = {c1...ck|ck ∈ Rd}
• A mappingM(wi,j:j+d) = cl ∈ C.

when we represent the quantized weights for inference, these mappings become a string of
bits of length ⌈|C|⌉. Therefore the resulting in a bits per value of (log2 (⌈|C|⌉) + ϵ) 1

d , where
ϵ is the bits needed to represent the overhead of normalization parameters, codebooks, etc.
Note that we can inverse this relationship to find that if we have a target bits per values
∼ nbpv, the size of the codebook should be |C| = 2nbpvd. The main benefit of vector quan-
tization is that it allows for the quantization codebook to be better shaped to the weights.
However, the size of the codebook increases exponentially with the dimension d, which
leads to ϵ/d no longer becoming a negligible quantity compared with the bits used to en-
code each value. Furthermore, for fast inference, C must fit inside the L1 cache of a GPU.
This has lead to a line of work on more efficient encoding schemes, such as trellis encoding
schemes pioneered by (Tseng et al., 2024b).

A.1 Weighted Vector K-Means Formulation

As discussed in section 4, for quantization we used weighted vector K-Means, this con-
sists of two steps, an assignment step and an update step, below we explicitly write each
step. Traditionally, K-Means is run with several random initializations, and allowed to
converge for each initialization. However, in the interests of runtime, for each layer, we
only initialized once using the K-means++ algorithm (Arthur & Vassilvitskii, 2007), and
only performed 100 assignment update step pairs. We did observe increasing performance
scaling from 20 to 100 assignment steps, therefore we believe that the results reported in
tables 1 3 do not demonstrate the full performance of NoWag-VQ.

Assignment step: For each vector W̄i,j:j+d we select the mappings to such that the weighted
l2 norm is minimized.

M(W̄i,j:j+d) = arg min
cl∈C

(
W̄i,j:j+d − cl

)T (
diag(XXT)j:j+d ⊙

(
W̄i,j:j+d − cl

))
(4)

Update step: For each vector in the codebook, we take the weighted average of the assign-
ments:

cl =

 ∑
i,j∀M(W̄i,j:j+d)=cl

diag(XXT)j:j+d ⊙ W̄i,j:j+d

 ⊘
 ∑

i,j∀M(W̄i,j:j+d)=cl

diag(XXT)j:j+d


(5)

B Zero Shot Task Descriptions

NoWag-P was evaluated on zero-shot accuracy as noted Tables 10, 11, and 12. The classifi-
cation sequence classification tasks are as follows:

1. WinoGrande (Sakaguchi et al., 2021) — WINOGRANDE is a large-scale dataset
of 44k problems based on the Winograd Schema Challenge, specifically crafted to
minimize biases in training data. It features a two-choice fill-in-the-blank format
that requires deep commonsense reasoning.
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2. RTE (Dagan et al., 2006; Giampiccolo et al., 2007; Dzikovska et al., 2013) — The
Recognizing Textual Entailment (RTE) Challenge has participants determine se-
mantic relationships like entailment, contradiction, or neutrality between sentence
pairs.

3. PIQA (Bisk et al., 2020) — PIQA is a benchmark dataset for physical commonsense
reasoning, having AI answer questions about everyday interactions without direct
physical experience.

4. ARC-e (Clark et al., 2018) — A subset of the AI2 Reasoning Challenge (ARC), ArcE
consists of multiple-choice questions designed to assess grade-school level knowl-
edge and represents the ”Easy” portion of the dataset.

5. ARC-c (Clark et al., 2018) — The ARC-Challenge subset follows the same format as
ARC-Easy but includes only questions that baseline algorithms previously failed
to answer correctly.

C Quantization Additional Evaluations

We include additional comparisons with three more VQ algorithms, AQLM (Egiazarian
et al., 2024), VPTQ (Liu et al., 2024) and CALDERA (Saha et al., 2024). AQLM (Additive
Quantiztation for Language Models) performs quantization through additive multi code-
book VQ. VPTQ combindeds are vector quantization extension of GPTQ (Frantar et al.,
2022) with residual quantization. CALDERA builds ontop of QuIP# by adding additional
quantized low rank matrices, and as a result, requires higher bits per value.

For AQLM and VPTQ, their appendices included zero shot ablation results for perplexity
of Wikitext2 and C4. For VPTQ, because a very detailed ablation was chosen, we simply
chose the best performing zero-shot quantization. For CALDERA, we chose the compres-
sion with the least equivalent bits per value. Perplexities are shown in table 7, and zero
shot results with CALDERA are show in table 8. We can see that our algorithm performs
competitively to these modern VQ algorithms as well.

Method Bits Wiki2 (↓) C4 (↓)

fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (3-8B) 16 5.54 7.01
fp16 (2-70B) 16 3.12 4.97

AQLM (2-7B) 2.02 8.18 10.59
QUIP # (2-7B) 2 8.23 10.8
CALDERA (7B) 2.1 7.37 9.74
NoWag-VQ (2-7B) 2.02 7.07 9.02

QuIP # (2-13B) 2 6.06 8.07
CALDERA (2-13B) 2.08 6.04 7.98
VPTQ (2-13B) 2.07 6.02 7.96
NoWag-VQ (2-13B) 2.01 5.93 7.94

QuIP# (3-8B) 2 13.8 15.6
CALDERA 2.1 10.6 11.8
NoWag-VQ (3-8B) 2.02 10.68 11.92

QuIP# (2-70B) 2 4.16 6.01
CALDERA (2-70B) 2.1 4.11 5.95
NoWag-VQ (2-70B) 2.01 4.15 5.94

Table 7: Performance comparison of different methods on Wiki2 and C4 datasets.
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Bits Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 16 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 16 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (3-8B) 16 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (2-70B) 16 77.0 67.9 81.1 77.7 51.1 70.96
QuIP# (2-7B ) 2 61.7 57.8 69.6 61.2 29.9 56.04
Caldera (2-7B) 2.1 63.7 62.1 72.3 60.9 31.7 58.14
NoWag-VQ (2-7B) 2.02 64.4 54.5 73.6 60.7 31.7 56.99
QuIP # (2-13B) 2 63.6 54.5 74.2 68.7 36.2 59.44
Caldera (2-13B) 2.08 66.9 61.0 76.0 69.5 37.2 62.12
NoWag-VQ (2-13B) 2.01 68.1 62.5 75.9 67.3 37.9 62.34
QuIP # (3-8B) 2 63.2 52.7 67.6 57.6 28.2 53.86
Caldera (3-8B) 2.1 66.9 58.5 71.8 68.2 34.3 59.94
NoWag-VQ (3-8B) 2.02 67.7 53.0 72.3 68.4 33.2 58.93
QuIP # (2-70B) 2 74.2 70.0 78.8 77.9 48.6 69.9
Caldera (2-70B) 2.1 75.5 69.3 79.8 76.9 47.7 69.84
NoWag-VQ (2-70B) 2.02 74.5 69.0 79.4 75.4 46.2 68.9

Table 8: Zeroshot accuracies (%) across 5 tasks and the average accuracies of Quantized
Models without finetuning.

D Additional Pruning Results

Wikitext2 PPL (↓)
Sparsity 2-7b 2-13b 2-70b 3-8b 3-70b

SparseGPT 50% 6.51 5.63 3.98 8.53 5.31
NoWag-P 50% 6.37 5.49 3.89 8.32 4.95
SparseGPT 4:8 7.99 6.58 4.59 10.92 6.56
NoWag-P 4:8 8.04 6.47 4.45 12.66 6.24
SparseGPT 2:4 10.23 8.29 5.38 14.31 8.62
NoWag-P 2:4 11.14 8.28 5.17 24.0 7.52

Table 9: Comparison of NoWag-P and SparseGPT (Frantar & Alistarh, 2023) perplexities
for Llama-2 7B/13B/70B and Llama-3 8B/70B

Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 50% 66.9 55.6 75.6 66.2 37.0 60.24
NoWag-P (2-7B) 50% 65.7 60.7 75.7 65.5 34.9 60.48
Wanda (2-13B) 50% 68.9 58.5 78.4 71.6 41.0 63.66
NoWag-P (2-13B) 50% 68.9 59.6 77.8 71.3 41.0 63.57
Wanda (2-70B) 50% 76.9 69.3 80.5 75.9 48.2 70.16
NoWag-P (2-70B) 50% 76.6 71.1 80.7 75.5 47.4 70.28
Wanda (3-8B) 50% 71.0 59.9 74.9 71.4 40.3 63.49
NoWag-P (3-8B) 50% 70.0 56.7 75.8 71.7 40.4 62.93
Wanda (3-70B) 50% 78.0 70.0 81.3 83.0 55.0 73.5
NoWag-P (3-70B) 50% 76.7 67.9 81.2 82.8 52.9 72.30

Table 10: Zeroshot accuracies for each task for 50% Pruning
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Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 4:8 65.35 58.12 73.61 62.46 31.83 58.27
NoWag-P (2-7B) 4:8 64.7 54.2 72.7 61.7 30.2 56.71
Wanda (2-13B) 4:8 68.98 55.96 75.79 67.47 38.4 61.32
NoWag-P (2-13B) 4:8 69.0 57.0 75.0 65.5 36.5 60.60
Wanda (2-70B) 4:8 74.9 67.87 79.54 74.71 46.5 68.7
NoWag-P (2-70B) 4:8 75.6 67.2 79.3 74.0 46.2 68.43
Wanda (3-8B) 4:8 66.69 53.07 71.0 64.31 34.13 57.84
NoWag-P (3-8B) 4:8 65.0 54.5 70.7 63.6 33.4 57.46
Wanda (3-70B) 4:8 73.8 66.06 80.09 80.89 51.28 70.42
NoWag-P (3-70B) 4:8 76.1 65.7 79.7 81.4 50.9 70.76

Table 11: Zeroshot accuracies for each task for 4:8 Pruning

Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 2:4 60.5 58.5 70.1 57.6 30.2 55.37
NoWag-P (2-7B) 2:4 60.5 58.1 69.3 55.8 27.9 54.30
Wanda (2-13B) 2:4 65.8 54.5 73.1 63.8 34.0 58.2
NoWag-P (2-13B) 2:4 65.6 58.1 72.4 62.9 32.7 58.14
Wanda (2-70B) 2:4 73.6 64.6 78.9 72.9 43.2 66.70
NoWag-P (2-70B) 2:4 75.1 66.8 77.6 72.5 42.7 66.95
Wanda (3-8B) 2:4 59.9 52.7 67.5 56.9 25.9 52.59
NoWag-P (3-8B) 2:4 58.1 52.7 66.6 54.4 24.2 51.21
Wanda (3-70B) 2:4 71.7 63.9 78.1 78.5 48.2 68.08
NoWag-P (3-70B) 2:4 72.9 62.5 78.5 77.8 46.9 67.71

Table 12: Zeroshot accuracies for each task for 2:4 Pruning

E Inference Speedup

A primary objective of model compression is to reduce the memory footprint during in-
ference. NoWag-P, at 50% sparsity, achieves a 2× reduction in memory required to store
weights, while NoWag-VQ compresses weights to 2 bits per value—resulting in an 8× re-
duction compared to fp16 precision.

In addition to memory savings, our method also leads to inference speedups due to the
alleviation of memory bandwidth bottlenecks and the use of structured sparsity. To illus-
trate this, in Table 13 we report the matrix multiplication runtimes for 2:4 NoWag-P on an
NVIDIA A6000 GPU, matching the evaluation setup used in prior work such as SparseGPT,
Wanda, and AQLM. Specifically, we benchmark matrix-vector multiplication on the gate
projection layers of LLaMA-2 models of varying sizes (7B, 13B, and 70B).

18



Published as a conference paper at COLM 2025

2-7B 2-13B 2-70B
FP-16 0.137ms 0.205ms 0.673ms
NoWag-P 0.117ms (1.173x) 0.15ms (1.373x) 0.401ms (1.679x)

Table 13: Benchmarked matrix-vector multiplication on the gate projection layers of
LLaMA-2 models of varying sizes (7B, 13B, and 70B), compared between the original dense
FP-16 matrices and the NoWag-P compressed matrices

F Additional Algorithms

Algorithm 4 VQ Padding

Require: Normalized weight matrix W̄ ∈ Rdout×din , input dimension din, subvector di-
mension d

Ensure: Padded weight matrix W̄padded, padded input dimension dpadded
in

1: if din mod d ̸= 0 then
2: pad size← d− (din mod d)
3: pad value← mean(W̄)
4: Pad W̄ with pad value to shape (dout, din + pad size)
5: dpadded

in ← din + pad size
6: else
7: W̄padded ← W̄

8: dpadded
in ← din

9: end if
10: return W̄padded, dpadded

in

Algorithm 5 NoWag Pruning (NoWag-P)

Require: Weight matrix W ∈ Rdout×din , activation samples X ∈ Rm×din , target sparsity s,
sparsity pattern P ∈ {unstructured, N:M}

Ensure: Pruned weight matrix Ŵ
1: (r(1), r(2), W̄)← NoWag Normalization(W) {Apply normalization}
2: Sij ← W̄2

ij · ∥Xj∥2
2, ∀i ∈ [1, dout], ∀j ∈ [1, din] {Importance scores}

3: if Pattern is unstructured then
4: τ ← {s-th percentile of all elements in S}
5: M← 1S>τ {Binary mask where Mij = 1 if Sij > τ, else 0}
6: else if Pattern is N:M then
7: for each row i ∈ [1, dout] do
8: for g = 0 to ⌊din/M⌋ − 1 do
9: Ig ← {gM + 1, gM + 2, . . . , gM + M} {Indices of group g}

10: Tg ← top-N({Sij : j ∈ Ig}) {Indices of top N scores}

11: Mij ←
{

1 if j ∈ Tg
0 otherwise

, ∀j ∈ Ig {Set mask}

12: end for
13: end for
14: end if
15: Ŵ ←W ⊙M {Element-wise multiplication}
16: return Ŵ
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Algorithm 6 Weighted K-Means with K-Means++ Initialization

Require: Subvectors W̄sub ∈ RN×d, importance weights Hsub ∈ RN×d, number of cen-
troids ncentroids, number of iterations niter

Ensure: Codebook C ∈ Rncentroids×d, assignments A ∈ RN

1: Initialize codebook C ∈ Rncentroids×d:
2: Select random indices I = {i1, i2, . . . , incentroids} from [1, N] without replacement
3: Cl ← W̄sub,il , ∀l ∈ [1, ncentroids]
4: for t = 1 to niter do
5: Assignment step:
6: for each subvector i ∈ [1, N] do
7: Di,l ← ∑d

j=1 Hsub,i,j · (W̄sub,i,j − Cl,j)
2, ∀l ∈ [1, ncentroids]

8: Ai ← arg minl Di,l
9: end for

10: Update step:
11: for each centroid l ∈ [1, ncentroids] do
12: Sl ← {i : Ai = l}
13: if Sl ̸= ∅ then
14: for dimension j ∈ [1, d] do

15: Cl,j ←
∑i∈Sl

Hsub,i,j ·W̄sub,i,j

∑i∈Sl
Hsub,i,j

{Weighted average}
16: end for
17: end if
18: end for
19: if assignments haven’t changed since last iteration then
20: break
21: end if
22: end for
23: return C, A
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G Implementation Details

G.1 Finetuning

Finetuning was performed in a blockwise fashion. For each transformer block, our objec-
tive was minimizing the l2 norm between the outputs of the original block and those of the
quantized blocks. The parameters to optimize over were the codebooks, and the normal-
ization vectors of each quantized layers, and the RMS norm parameters. In addition we
initialized a bias vector, set to all zeros, for each linear layer in the block.

For Llama-2 7B/13B, finetuning was done using 128 samples of Red Pajamas (Weber et al.,
2024), with 32 held out as a validation set. Optimization was done through Adam Kingma
& Ba (2017), without any weight decay and a learning rate of 10−4. For Llama-2 70B, 256
samples of Red Pajamas was used with a learning rate 10−6. Configuration management
for both one-shot and finetuning was done through hydra (Yadan, 2019).

H Ablations

H.1 K-means iterations for NoWag-VQ

Wikitext2 PPL (↓) C4 PPL (↓)
(2-7B) (2-13B) (3-8B) (2-7B) (2-13B) (3-8B)

QuIP# 8.23 6.06 13.80 10.80 8.07 15.60
NoWag-VQ T = 1 7.32 6.20 12.44 9.58 8.36 13.96
NoWag-VQ T = 10 7.04 6.00 11.08 9.19 8.03 12.35
NoWag-VQ T = 40 7.10 5.99 10.86 9.15 7.98 12.07
NoWag-VQ T = 100 7.07 5.93 10.68 9.12 7.94 11.92

Table 14: Ablation for T = 1, 10, 40 against the default T = 100 for NoWag-VQ for Llama-
2-7b/13b and Llama-3 8B at 2 bits per value. We listed the Wikitext2 and C4 perplexities
below, bolding the smallest for which NoWag outperforms QuIP#. For Llama-2 7b and
Llama-3 8B NoWag with only one iteration of K-means was able to outperform QuIP#,
for Llama-2 13B, after 10 iterations, NoWag-VQ was able to outperform QuIP#. We also
note that the performance of the model continues to increase as we increase the number of
iterations.

H.2 Row and Column Normalization

Across all models and all compression methods, normalizing along row and column out-
performs normalizing along row or along column alone.

Wikitext2 PPL (↓) C4 PPL (↓)
(2-7b) (3-8B) (2-7b) (3-8B)

NoWag-VQ col only 7.45 11.45 9.54 12.53
NoWag-VQ row only 7.68 11.29 10.10 12.53
NoWag-VQ row and column 7.07 10.68 9.12 11.92

Table 15: Ablation for NoWag-VQ at 2 bits per value with row or col only normalization
against the default of row and column normalization for Llama-2 7B and Llama-3 8B
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Wikitext2 PPL (↓) C4 PPL (↓)
(2-7b) (2-13B) (3-8B) (2-7b) (2-13B) (3-8B)

NoWag-P col only 7.01 5.53 9.26 9.22 7.44 10.60
NoWag-P row only 6.42 5.82 8.49 8.37 7.88 9.78
NoWag-P row and column 6.37 5.49 8.32 9.12 7.35 9.67

Table 16: Ablation for NoWag-P at 50% unstructured sparsity with row or col only nor-
malization against the default of row and column normalization for Llama-2 7B/13B and
Llama-3 8B

H.3 Calibration Dataset

Wikitext2 PPL (↓) C4 PPL (↓)
Calibration dataset (2-7b) (3-8B) (2-7b) (3-8B)
Wikitext2 6.9 10.9 9.16 12.55
C4 7.19 11.22 9.12 12.055
RedPajamas (default) 7.07 10.68 9.12 11.92

Table 17: Ablation for different calibration datasets, training splits of Wikitext2 and C4,
compared with the default of RedPajamas, conducted on NoWag-VQ for Llama-2 7B and
Llama-3 8B. 128 samples were used for each dataset.
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