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Abstract

Acoustic individual identification of wild ani-001
mals is an essential task for understanding ani-002
mal vocalizations within their social contexts,003
and for facilitating conservation and wildlife004
monitoring efforts. However, most of the work005
in this space relies on human efforts, as the006
development of methods for automatic indi-007
vidual identification is hindered by the lack of008
data. In this paper, we explore cross-species009
pre-training to address the task of individual010
classification in White-Faced Capuchin mon-011
keys. Using acoustic embeddings from birds012
and humans, we find that they can be effec-013
tively used to identify the calls from individual014
monkeys. Moreover, we find that joint multi-015
species representations can lead to further im-016
provements over the use of one representation017
at a time. Our work demonstrates the potential018
of cross-species data transfer and multi-species019
representations, as strategies to address tasks020
on species with very limited data.021

1 Introduction022

For a long time, researchers viewed the vocaliza-023

tions of non-human species as mere reactions to024

internal emotional states (Lorenz, 1952). Conse-025

quently, early scientific methods in animal com-026

munication research largely overlooked individ-027

ual differences and did not test for the presence028

of linguistic features (e.g., pragmatics, seman-029

tics, syntax) in animal communication systems.030

This simplified view of animal communication has031

been overturned by the growing evidence uncov-032

ering the presence of linguistics features in non-033

human animals (Bergman et al., 2019), leading034

to the emergence of Animal Linguistics as a for-035

mal interdisciplinary research field (Bowling and036

Fitch, 2015; Engesser et al., 2015; Suzuki, 2024;037

Berthet et al., 2023; Suzuki, 2021; Scott-Phillips038

and Heintz, 2023). This shift in perspective high-039

lights the need for individual-level analysis, as it040

Figure 1: (A–D) Capuchin Twitter vocalizations show
diverse structural variations. (E–F) t-SNE of Google
Perch-Whisper embeddings. (E) Call type clusters. (F)
Colored by individual, highlighting four diverse exam-
ples of Twitters.

allows researchers to account for the social and 041

environmental contexts in which vocalizations oc- 042

cur, ultimately improving our ability to test their 043

linguistic capacities more rigorously. 044

Additionally, long-term, individual-level analy- 045

ses are critical for understanding and protecting 046

wildlife. Such analyses support key approaches 047

like social network quantification, assessing animal 048

cognition, and performing capture–recapture tech- 049

niques for tracking population dynamics (Slater, 050

1981; Carlson et al., 2020). Over the past decade, 051

acoustic monitoring has emerged as a widely 052

adopted, cost-efficient strategy in conservation, 053

leading to growing interest in acoustic individual 054

identification. By enabling researchers to recognize 055

individuals from their vocalizations, this approach 056

paves the way for more nuanced insights into ecol- 057

ogy, behavior, evolution, and conservation (Knight 058
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et al., 2024).059

In this paper, we address the task of acoustic060

individual identification (Acoustic ID) in White-061

Faced Capuchins. We collect a two-year dataset of062

individualized focal recordings, a labor-intensive063

yet optimized method that mitigates signal-to-noise064

and cocktail party problems in wild bioacoustic set-065

tings (Bermant, 2021; Miron et al., 2024). Using066

this dataset, we evaluate human speech- and bird067

bioacoustic-based pre-trained networks, compar-068

ing single-embedding models to ensembles that069

merge embeddings from distinct networks. We hy-070

pothesize that human speech embeddings, such as071

Whisper or HuBERT, complement bioacoustic em-072

beddings like Google Perch or BirdNET–originally073

trained on bird sounds–and predict that heteroge-074

neous embedding combinations will outperform075

single-embedding models.076

Transfer learning has significantly advanced077

acoustic classification tasks in non-human animals078

(Miyaguchi et al., 2024; Kahl et al., 2023; Abza-079

liev et al., 2024). Recent studies on gibbons have080

explored the use of self-supervised speech mod-081

els (e.g., HuBERT, Wav2vec 2.0), pre-trained bird082

classifiers (e.g., BirdNET, Perch), and non-transfer-083

learning deep models for primate Acoustic ID, find-084

ing that speech models most effectively capture in-085

dividual vocal signatures, bird classifiers perform086

well in automated detection but are more suscepti-087

ble to background noise, and non-transfer-learning088

models struggle when trained on small datasets089

(Cauzinille et al., 2024; Clink et al., 2024). Never-090

theless, it remains unclear whether using multiple091

joint embeddings leads to better performance by092

exploiting complementary features from different093

training data domains.094

This work makes three main contributions. First,095

we propose White-Faced Capuchin monkeys as a096

model organism for advancing computational re-097

search on animal communication. Second, we098

show that combining embeddings from human099

speech and bird bioacoustics models significantly100

improves acoustic identification performance in101

White-Faced Capuchins, outperforming single-102

embedding baselines. Finally, our findings show103

that acoustic diversity and soundscape similarity104

play a greater role than phylogenetic proximity.105

Smaller models trained on diverse bird vocaliza-106

tions recorded in natural environments outperform107

much larger speech-trained models designed for hu-108

mans, despite humans being more closely related to109

our study species. These results highlight the value110

of cross-species model development in achieving 111

better generalization for the Acoustic ID task. 112

2 Study system: White-Faced Capuchin 113

Monkeys in the Taboga Reserve, Costa 114

Rica 115

White-Faced Capuchin Monkeys (Cebus capuci- 116

nus) are ideal for studying animal communica- 117

tion, with 27 call types (Gros-Louis et al., 2008), 118

complex social behavior and cognition including 119

tool use (Goldsborough et al., 2024), complex so- 120

cial networks (Crofoot et al., 2011) and cultural 121

transmission (Perry et al., 2017). Taboga hosts 122

their highest known density (Tinsley Johnson et al., 123

2020). 124

Data collection. Our field team collected audio 125

recordings of focal individuals by following them 126

in the Taboga forest. We used directional micro- 127

phones aimed at the subjects from January 2021 to 128

December 2022 through the wet and dry seasons, 129

with hours ranging from 5 am to 5 pm. Record- 130

ings were captured at 48 kHz and 16 bit resolution. 131

These raw recordings were subsequently trimmed 132

to isolate the precise moments when vocalizations 133

were detected, and only the calls classified as either 134

a “Peep” or “Twitter” were included in this dataset, 135

according to established criteria in the literature 136

(Gros-Louis et al., 2008). 137

Audio recordings. The full dataset consists of 138

1,257 Twitter recordings and 2,089 Peep recordings 139

from 45 individuals, although 15% of the record- 140

ings were assigned to unknown individuals. We 141

include data from individuals that had at least 30 142

recorded calls, while recordings from unidentified 143

subjects encountered in the field are grouped into 144

an “Unknown” class. For Peeps, this dataset in- 145

cludes 15 individuals, and for Twitters this dataset 146

included 10 individuals (total sample=1609). Peep 147

calls are typically short (mean 0.27 s, SD 0.27 s), 148

whereas Twitter calls are more complex (Figure 1) 149

and longer (mean 0.40 s, SD 0.18 s). 150

3 Cross-Species Embeddings for 151

Individual Classification 152

Collecting focal audio recordings of wild ani- 153

mals in their natural habitat is a challenging and 154

resource-intensive task. Even with dedicated field 155

teams, building large enough datasets to fully ex- 156

ploit deep neural networks is difficult. As a re- 157

sult, transfer learning–which leverages the induc- 158
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tive bias of models pre-trained on larger, related159

datasets–has emerged as the most effective strategy160

for achieving high performance in bioacoustic clas-161

sification under low-data conditions (Ghani et al.,162

2023a).163

Audio Representation Models. We extract pre-164

trained embeddings from Google Perch V8 (Ghani165

et al., 2023a), a model primarily trained on bird166

vocalizations, and Whisper (Radford et al., 2022),167

which was predominantly pre-trained on human168

speech. While additional embeddings were eval-169

uated, we focus on these two in the main text for170

clarity, with results from five other models detailed171

in Appendix A. We apply mean-pooling to ob-172

tain lower-dimensional representations from large173

speech models like Whisper.174

Minimum Redundancy Maximum Relevance.175

To combine representations from multiple species,176

we explore a feature-select model using Minimum177

Redundancy and Maximum Relevance (MRMR)178

(Ding and Peng, 2005), alongside simple concatena-179

tion and summation. Originally developed in can-180

cer research for gene selection, MRMR improves181

feature selection in high-dimensional datasets by182

balancing two key criteria: maximizing relevance183

to the target variable (measured via mutual informa-184

tion) while minimizing redundancy (filtered using185

a correlation coefficient threshold). Our implemen-186

tation starts with the feature that has the highest187

mutual information among both embeddings, re-188

moves any features with a correlation coefficient of189

0.8 or higher, and then iteratively selects the next190

most informative feature. This process continues191

until 1024 embedding features are selected from192

both embeddings, ensuring an optimal balance of193

diversity and informativeness.194

Experimental Setup. To ensure a fair compar-195

ison, we carefully control parameter counts and196

apply hyperparameter tuning. Single-embedding197

models and the MRMR model compress each in-198

put into 512 units, then reduced it to 64 for fi-199

nal classification. Concatenation and summation200

ensembles apply a 256-dimensional compression201

to each embedding separately, then sum or con-202

catenate the outputs before another 64-unit layer.203

For a robust comparison, we generate 50 random204

train-test splits (10 recordings per individual in205

the test set) and train models with all seven sin-206

gle embeddings as well as all pairwise combina-207

tions (concatenation, summation, and MRMR).208

Figure 2: Peak frequency for the Peeps call type record-
ings of six capuchin monkey individuals

To identify the best hyperparameters for each 209

model trained, we conduct a search over learn- 210

ing rates {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} and 211

dropout rates {0.2, . . . , 0.6}, evaluating 30 ran- 212

domly sampled configurations for 100 epochs each 213

with early stopping (patience=10, min ∆F1=0.001), 214

and selected the highest F1-scoring setup. All mod- 215

els are trained using the Adam optimizer. After 216

confirming normality and homoscedasticity, we 217

compare each architecture’s top-performing model 218

via ANOVA and a post-hoc Tukey test. 219

Spectrogram annotations and measurements. 220

To compare explainable acoustic features with non- 221

interpretable deep embeddings, we manually mea- 222

sure Peak Frequency and other acoustic parameters 223

from spectrograms, following standard bioacoustic 224

methods. Using Raven Pro 1.6 (K. Lisa Yang Cen- 225

ter for Conservation Bioacoustics at the Cornell 226

Lab of Ornithology, 2024), we select regions of 227

interest and extract 30 interpretable features (see 228

Appendix A), including Peak Frequency, Center 229

Frequency, and Center Time. These measurements 230

were taken from six individuals—one adult male, 231

one adult female, and one infant from each of the 232

two monkey troops—chosen for their distinct char- 233

acteristics. 234

4 Results 235

Table 1 shows the results of the Acoustic ID task 236

for selected models. We present F1 scores for the 237

models trained on bird vocalizations and human 238

speech data, together with their ensembles. While 239

single-species vocalization models perform reason- 240

ably well, the models with the highest F1 scores 241

are those that combine multiple embeddings (either 242

using summation, concatenation or MRMR). Fur- 243
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thermore, the best-performing ensemble combine244

models developed for bioacoustic vocalizations and245

models developed for human speech. This high-246

lights the potential of cross-species pre-training in a247

limited data regime. Pre-training on human speech248

does not capture enough information for the bioa-249

coustic domain, as shown by the performance of250

Whisper for both vocalization types. But combined,251

those two models achieve an F1 score of 0.70 for252

Peeps and 0.66 for Twitters. This improved perfor-253

mance suggests that combining speech-trained and254

bioacoustic-trained embeddings effectively lever-255

ages complementary information. We also present256

the results for other models in Appendix A.257

Despite its smaller size and more limited train-258

ing dataset, the bioacoustic model Perch outper-259

forms the much larger Whisper model, which was260

developed for human speech. Domain relevance261

is more important than model size, training data262

set size, or phylogenetic proximity for the Acous-263

tic ID task in Capuchins. Trained on data from264

noisy field conditions, Perch learns the acoustic265

variability of field conditions, contributing to its266

strong performance. Although our focal species267

is neither a bird nor a human, the top-performing268

models across architectures are trained using both269

bird- and human-derived embeddings, suggesting270

that joint multi-species embeddings provide better271

generalization for Capuchin acoustic classification272

tasks.273

We visualize the embeddings of the best-274

performing model from table 1 using t-SNE275

(van der Maaten, 2009) in Figure 1. Different276

call types formed well-defined clusters (Figure 1E),277

whereas individual classifications appear more dif-278

fuse (Figure 1F), illustrating the difficulty of the279

Acoustic ID task (see A for more t-SNE visualiza-280

tions). We also analyze the distribution of peak281

frequencies across individuals in Figure 2). Lower-282

pitched sounds characterize Peeps, while Twitters283

span a broader spectral range of peak frequencies.284

Notably, both call types exhibit bimodal distribu-285

tions, with this pattern being more pronounced286

in certain individuals. This bimodal distribution287

could reflect two or more call subtypes with dis-288

tinct pitches and should be investigated further to289

test for the existence of pragmatics or semantics in290

their communication system through pitch modula-291

tion. Variability within the Twitter call type extends292

beyond overall pitch modulation. Some Twitters293

exhibit an n-shaped pitch contour, a continuous294

descending note, a final lower-pitched note, or a295

Table 1: Top-performing models for Twitters and Peeps
(Mean F1 Score ± SD), with significance assessed by
comparison to the best simple model (Perch). Signif-
icance levels: * for p < 0.05 and ** for p < 0.0001
(Tukey’s test).

Model F1 Score

Twitters
Perch (Simple) 0.61 ± 0.03
Whisper (Simple) 0.55 ± 0.03
Perch + Whisper (Concat) 0.63 ± 0.03
Perch + Whisper (Sum) 0.63 ± 0.03*
Perch + Whisper (MRMR) 0.66 ± 0.03**

Peeps
Perch (Simple) 0.66 ± 0.02
Whisper (Simple) 0.62 ± 0.03
Perch + Whisper (Concat) 0.67 ± 0.02*
Perch + Whisper (Sum) 0.68 ± 0.02**
Perch + Whisper (MRMR) 0.70 ± 0.02**

rising pitch throughout the call (Figure 1-A,B,C,D, 296

respectively). Empirical studies incorporating rich 297

social and environmental contexts will be crucial 298

for uncovering the functional significance of this 299

variation in Capuchin calls. 300

5 Conclusion 301

This study examined Acoustic Individual Iden- 302

tification in two call types of White-Faced Ca- 303

puchins. We established performance baselines for 304

pre-trained embeddings and found that combining 305

multiple embeddings (summation, concatenation, 306

and minimum redundancy maximum relevance) 307

improves classification performance. Our find- 308

ings also indicate that domain relevance outweighs 309

model size in noisy environments. Future work 310

should extend these multi-species embeddings to 311

other taxa, confirming broader applicability in bioa- 312

coustics and animal linguistics. 313

6 Limitations 314

While this study focused on Acoustic ID, a deeper 315

investigation into the behavioral and social func- 316

tions of these call types remains relevant for future 317

work. While there are other ways of improving 318

Acoustic ID, such as data augmentation (MacIsaac 319

et al., 2024), we considered those techniques out of 320

scope for the present study and focused on investi- 321

gating the complementarity of joint multi-species 322
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embeddings. Our primary goal with this dataset is323

to make it accessible to the broader scientific com-324

munity. We anticipate making it publicly available325

in a forthcoming study with further analyses.326

7 Ethical Considerations327

No animals were harmed during this study. All328

research adhered to ethical guidelines for animal329

welfare, recognizing the importance of studying an-330

imal communication while prioritizing their well-331

being, particularly in the context of climate change332

and habitat loss affecting this species. Addition-333

ally, all individuals involved in data collection and334

processing were engaged in formal employment or335

academic research under ethical labor practices.336
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Figure 3: Mutual information of the top features for both call type datasets, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features per model.

Figure 4: Mutual information of the top features in the Peeps call type dataset, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features. Asterisks show correlation coefficients above 0.8.
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Figure 5: Mutual information of the top features in the Twitters call type dataset, spanning seven acoustic pre-trained
embeddings. We display the five highest-performing features per pre-trained embedding, along with the top five
interpretable features. Asterisks show correlation coefficients above 0.8.
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Figure 6: t-SNE visualizations of five pre-trained embeddings, primarily trained on human speech data (with
AudioMAE also incorporating internet-sourced audio). The first column presents the t-SNE plot of call types (Peeps
in yellow and Twitters in blue), while the second and third columns show the t-SNE projections of Twitters and
Peeps, respectively, with points colored by individual identity. From top to bottom, the rows correspond to HuBERT,
Wav2Vec, Wav2Vec BERT, Whisper, and AudioMAE.
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Figure 7: tSNE visualizations of five pre-trained embeddings, primarily trained on bioacoustics bird data (with
BirdNET also incorporating other animals). The first column represents the t-SNE plot of call types (Peeps in
yellow and Twitters in blue), while the second and third columns depict the t-SNE projections of Twitters and Peeps
colored by individual, respectively. From top to bottom, the rows correspond to BirdNET and Perch, respectively.
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Model F1 Score (Mean ± Std)

Simple Network

Perch 0.66 ± 0.02
Whisper 0.62 ± 0.03
BirdNet 0.60 ± 0.02
HuBERt 0.55 ± 0.02
Wav2Vec2 0.47 ± 0.02

Concatenation (2 Embeddings)

BirdNET + Perch 0.67 ± 0.02
Perch + Whisper 0.67 ± 0.02
Perch + Hubert 0.66 ± 0.02
Perch + AudioMAE 0.64 ± 0.02
Perch + Wav2Vec2 0.64 ± 0.02

Summation (2 Embeddings)

Perch + Whisper 0.68 ± 0.02
Perch + BirdNET 0.67 ± 0.02
Perch + HuBERT 0.66 ± 0.02
BirdNet + Whisper 0.64 ± 0.02
Perch + Wav2Vec2 0.64 ± 0.02

MRMR (2 Embeddings)

Perch + Whisper 0.70 ± 0.02
Perch + BirdNET 0.69 ± 0.02
Perch + HuBERT 0.68 ± 0.02
Perch + Wav2Vec2 0.67 ± 0.02
Perch + Wav2Vec-bert 0.67 ± 0.02

Table 2: Performance of the top 5 models per method on the Acoustic ID task using the Peeps dataset (Mean F1
Score ± Standard Deviation).
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Model F1 Score (Mean ± Std)

Simple Network

Perch 0.61 ± 0.03
BirdNet 0.60 ± 0.04
HuBERT 0.56 ± 0.04
Whisper 0.55 ± 0.03
Wav2Vec-bert 0.43 ± 0.03

Concatenation (2 Embeddings)

BirdNET + Whisper 0.63 ± 0.03
BirdNET + Perch 0.62 ± 0.03
Perch + Whisper 0.62 ± 0.03
BirdNET + HuBERT 0.62 ± 0.03
Perch + HuBERT 0.61 ± 0.03

Summation (2 Embeddings)

BirdNET + Whisper 0.63 ± 0.04
Perch + Whisper 0.63 ± 0.03
BirdNET + Perch 0.63 ± 0.03
BirdNET + HuBERT 0.62 ± 0.03
Perch + HuBERT 0.62 ± 0.03

MRMR (2 Embeddings)

Perch + Whisper 0.66 ± 0.03
BirdNET + Whisper 0.65 ± 0.03
Perch + HuBERT 0.64 ± 0.03
BirdNET + Perch 0.64 ± 0.03
Perch + Wav2Vec2 0.64 ± 0.03

Table 3: Performance of the top 5 models per method on the Acoustic ID task using the Twitters dataset (Mean F1
Score ± Standard Deviation).
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Measurement Units Definition

Center Freq Hz The frequency that divides the selection into two intervals of
equal energy (i.e., the 50th percentile frequency) measured on
each spectrogram slice.

Freq 25% Hz The 25th percentile frequency (first quartile) measured on each
spectrogram slice.

Freq 75% Hz The 75th percentile frequency (third quartile) measured on each
spectrogram slice.

Freq 5% Hz The 5th percentile frequency measured on each spectrogram
slice, indicating the lower bound of the energy distribution.

Freq 95% Hz The 95th percentile frequency measured on each spectrogram
slice, indicating the upper bound of the energy distribution.

BW 50% Hz The inter-quartile range bandwidth, computed as the difference
between the 75th and 25th percentile frequencies (i.e., the band-
width containing 50% of the energy).

BW 90% Hz The bandwidth encompassing 90% of the signal’s energy, cal-
culated as the difference between the 95th and 5th percentile
frequencies.

Peak Freq Hz The frequency at which the maximum power (or peak power)
occurs within the selection, as observed in each spectrogram
slice.

Center Time s The time that divides the selection into two intervals of equal
energy (i.e., the median or 50th percentile time) for the signal’s
energy distribution.

Time 25% s The time by which 25% of the total energy has been accumulated
within the selection.

Time 75% s The time by which 75% of the total energy has been accumulated
within the selection.

Dur 50% s The duration over which the central 50% of the signal’s energy
is distributed, computed as the difference between the 75th and
25th percentile times.

Time 5% s The time by which 5% of the total energy has been accumulated
within the selection.

Time 95% s The time by which 95% of the total energy has been accumulated
within the selection.

Dur 90% s The duration over which 90% of the signal’s energy is distributed,
computed as the difference between the 95th and 5th percentile
times.

Delta Freq Hz The difference between the upper and lower frequency limits of
the selection.

Delta Time s The difference between the beginning and ending times of the
selection.

Time 5% Rel. – The relative time (as a proportion of total duration) at which 5%
of the signal’s energy is accumulated.

Time 25% Rel. – The relative time at which 25% of the signal’s energy is accumu-
lated.

Center Time Rel. – The relative time corresponding to the median (50%) of the
signal’s energy distribution.

Time 75% Rel. – The relative time at which 75% of the signal’s energy is accumu-
lated.

Time 95% Rel. – The relative time at which 95% of the signal’s energy is accumu-
lated.

Peak Time Relative – The time at which the peak amplitude occurs, expressed as a
proportion of the total selection duration.

PFC Avg Slope Hz/ms The average slope of the peak frequency contour over time,
computed as the mean of the differences between successive
peak frequencies.

PFC Max Freq Hz The maximum frequency reached in the peak frequency contour.
PFC Max Slope Hz/ms The maximum rate of change (slope) observed in the peak fre-

quency contour.
PFC Min Freq Hz The minimum frequency reached in the peak frequency contour.
PFC Min Slope Hz/ms The minimum rate of change (slope) observed in the peak fre-

quency contour.
PFC Num Inf Pts – The number of inflection points in the peak frequency contour,

indicating how frequently the slope changes sign.

Table 4: Summary of acoustic measurements derived from Raven Pro 1.6. Definitions are adapted from the Raven
Pro manual.
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Model name Number of parameters Training data (hours) Reference

BirdNET 27M 8300 Kahl et al. (2021)
Hubert-Large 1B 60960 Hsu et al. (2021)
Perch 7.8M <10k Ghani et al. (2023b)
Wav2vec2 317M 54000 Baevski et al. (2020)
W2v-BERT 2.0 600M 60960 Hsu et al. (2021)
Whisper-Large-v2 1.55B 680000 Radford et al. (2022)
AudioMAE 304M 5500 Huang et al. (2023)

Table 5: List of considered models for acoustic embeddings, including their size, training data, and references.
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