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ABSTRACT

Graph Reasoning has shown great potential recently in modeling long-range de-
pendencies, which are crucial for various computer vision tasks. However, the
graph representation learned by existing methods is not effective enough as the
relation between feature and graph is under-explored. In this work, we propose
a novel method named Contextual Graph Reasoning (CGR) that learns a context-
aware relation between feature and graph. This is achieved by constructing the
projection matrix based on a global set of descriptors during graph projection,
and calibrating the evolved graph based on the self-attention of all nodes during
graph reprojection. Therefore, contextual information is well explored in both
graph projection and reprojection with our method. To verify the effectiveness
of our method, we conduct extensive experiments on semantic segmentation, in-
stance segmentation, and 2D human pose estimation. Our method consistently
achieves remarkable improvements over state-of-the-art methods, demonstrating
the effectiveness and generalization ability of our method.

1 INTRODUCTION

Over the past years, Convolutional Neural Networks (CNN) significantly boost the performance of
computer vision tasks like image classification (Deng et al., 2009; Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016), object detection (Girshick et al., 2014; Girshick, 2015; Ren
et al., 2015), semantic segmentation (Long et al., 2015; Zhao et al., 2017; Chen et al., 2017a),
instance segmentation (He et al., 2017; Bolya et al., 2019) and human pose estimation (Wei et al.,
2016; Chen et al., 2018b; Xiao et al., 2018; Sun et al., 2019) etc.

However, convolution is intrinsically limited in modelling long-range dependencies. Although
stacking multiple convolution layers can enlarge the receptive field, it leads to higher computa-
tional cost and increases the over-fitting risk. Various solutions have been proposed to overcome
the limitations of convolution, including but not limited to Conditional Random Fields (Chen et al.,
2014; Gadde et al., 2016; Liu et al., 2015; Schwing & Urtasun, 2015; Wang et al., 2015; Zheng
et al., 2015), multi-dimensional Long Short-Term Memory (Byeon et al., 2015; Liang et al., 2016),
dilated convolution (Chen et al., 2014; 2017a;b; Yu & Koltun, 2015), pyramid pooling operation
(Chen et al., 2018a; Zhao et al., 2017), non-local operation (Wang et al., 2018) and self-attention
mechanism (Vaswani et al., 2017) to capture the long-range dependencies.

The above methods have shown the effectiveness of modeling long-range dependencies in coordinate
space, however, they are computationally expensive. Recently, inspired by the graph reasoning
mechanism, several works (Li & Gupta, 2018; Liang et al., 2018; Chen et al., 2019b; Zhang et al.,
2019b) are proposed to resolve the problem in graph interaction space, where regions of the feature
are defined as graph nodes and interaction between nodes are regarded as edges (Ladickỳ et al.,
2009). Compared with coordinate space, graph interaction space is more efficient as the number
of graph nodes is much smaller than the number of positions in the feature map. The pipeline
of these works first projects the feature into a graph with the projection matrix. Then, reasoning
based on graph convolution is performed to aggregate the interaction between nodes. Finally, the
evolved graph is reprojected to coordinate space, delivering the feature for prediction. In general,
methods based on graph reasoning consist of three steps: graph projection, graph reasoning and
graph reprojection respectively.

Although existing methods have demonstrated great potential of graph reasoning, the learned graph
representation is not effective enough as the relation between feature and graph is under-explored:
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Existing methods adopt projection matrix to build the mapping between feature and graph. We
carefully revisit two popular paradigms of projection matrix construction, however, neither of them
explores the global contextual information. Apart from this, existing methods directly reproject the
evolved graph to feature, assuming the graph convolution can adequately aggregate the interaction
between nodes. Unfortunately, similar to standard convolutions, graph convolution also fails to
exploit the global context, resulting in less effective feature for prediction. The above analysis
motivates us to explore the context-aware relation for more effective graph representation.

In this work, we propose a novel method named Contextual Graph Reasoning (CGR), aiming to
learn a context-aware relation between feature and graph. This is achieved by considering the con-
textual information during both graph projection and reprojection, leading to a new projection mod-
ule called DGP and a new reprojection module called NCR. To be more specific, in DGP, the feature
is convolved to deliver a global set of descriptors, which will be used to generate the projection
matrix for graph construction. Compared with GloRe (Chen et al., 2019b), which directly predicts
the projection matrix based on local feature, global descriptors can learn sufficient contextual infor-
mation for more effective graph representation. In NCR, before reprojecting the evolved graph into
coordinate space, the graph nodes are calibrated based on the self-attention of all nodes, improving
their capability of capturing long-range dependencies.

To the best of our knowledge, our method is the first work to explore contextual information during
graph projection and reprojection. The context-aware relation learned by CGR can further boost the
performance of graph reasoning, which is evaluated on several computer vision tasks.

Our contributions are summarized as follows:

1. We propose the Descriptor Graph Projection (DGP) module, which constructs the projection
matrix based on a global set of descriptors instead of local feature.

2. We present the Node Collaborative Reprojection (NCR) module, calibrating the graph nodes to
improve its capability of long-range dependencies.

3. We conduct extensive experiments on semantic segmentation, instance segmentation and 2D
human pose estimation, demonstrating the superiority of our approach by remarkable improvements.

2 RELATED WORK

The recent works on modeling global contextual information can be grouped into two categories.
One is modeling contextual dependencies in coordinate space. For instance, (Zhao et al., 2017;
Chen et al., 2017b) propose the novel pyramid sampling methods, improving network’s capability
of multi-scale information. (Wang et al., 2018) adaptively integrates local feature with their con-
textual dependencies. (Hu et al., 2018) calibrates each feature channel with the global contextual
information. (Fu et al., 2019a) proposes the dual branch to calculate spatial-wise and channel-wise
attention simultaneously. To reduce the computaional cost of (Wang et al., 2018), lastest works study
more compact mechanisms. (Zhu et al., 2019) introduces the asymmetric attention map derived from
pyramid sampling. (Huang et al., 2019) proposes a criss-cross attention mechanism. (Li et al., 2019)
formulates the attention mechanism as the problem of expectation maximization. All of them try to
reduce the computational cost and memory usage, while maintaining the network performance.

The other category is modeling the contextual dependencies in graph interaction space. Compared
with coordinate space, graph interaction space is much more efficient since the number of graph
nodes is significantly smaller than the activation of feature map. Graph reasoning (Li & Gupta,
2018; Liang et al., 2018; Chen et al., 2019b; Zhang et al., 2019b; Wu et al., 2020) has been proved
to be an effective way of capturing global dependencies between distant regions. SGR (Liang et al.,
2018) is proposed to construct a graph from local features by voting, and fuses human knowledge
prior to graph reasoning. GCU (Li & Gupta, 2018) utilizes the global distribution to construct
the projection matrix during graph projection, promoting the reasoning ability beyond regular grid.
GloRe (Chen et al., 2019b) aggregates a set of global feature in coordinate space, and then projects
them into graph interaction space via weighted global pooling and broadcasting. LatentGNN (Zhang
et al., 2019b) introduces a mixture of learnable low-rank matrices to capture context between graph
nodes. Our method explores the contextual information during graph projection and reprojection,
achieving more effective representation for graph reasoning.
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(a) Two popular paradigms

#1: Element-wise Operation (Eq. 1)
#2: Point-wise Convolution (Eq. 2) ···

(b) Descriptor Graph Projection

Element-wise operation (Eq. 5)

Eq. 4

···
···

Global descriptor
C'×K

Projection matrix
K×H×W

Projection matrix
K×H×W

Input feature
C'×H×W

Input feature
C×H×W

Figure 1: Illustration of two popular paradigms and our approach for projection matrix construction.
Note that C ′ < C for the consideration of efficiency.

3 APPROACH

In this section, we first revisit two popular paradigms of constructing the projection matrix, which is
important for graph projection and reprojection. Then, we propose a novel Contextual Graph Rea-
soning method (CGR), consisting of Descriptor Graph Projection (DGP), Graph Convolution (GC)
and Node Collaborative Reprojection (NCR). Finally, we present the Contextual Graph Reasoning
Network (CGRNet) built on CGR.

3.1 PROJECTION MATRIX REVISITED

A standard graph can be represented as G = 〈V,A〉, where V and A denote graph nodes and
adjacency matrix respectively. A nonparametric adjacency matrix is primarily adopted by recent
graph reasoning works. Therefore, learning effective graph nodes from input feature is the key to
improving the performance of graph reasoning. Projection matrix is adopted to project the feature
into a graph and then reproject it back after reasoning. Recent works (Liang et al., 2018; Li & Gupta,
2018; Chen et al., 2019b; Zhang et al., 2019b; Wu et al., 2020) present two popular paradigms of
constructing the projection matrix.

Given input feature X = [x0, ..., xN−1] ∈ RC×N , both paradigms aim to obtain a projection matrix
Q = [q0, ..., qK−1] ∈ RN×K for graph nodes V = [v0, ..., vK−1] ∈ RC×K , where C, N = W ×H ,
and K denote the numbers of feature channel, activation and graph node individually. In the first
paradigm,Q is calculated by element-wise operation with two parameters, namely visual codeW =
[w0, ..., wK−1] ∈ RC×K and scaling factor Σ = [σ0, ..., σK−1] ∈ RC×K . The formulation of the
first paradigm can be illustrated as below:

qki =
exp(−‖(xi − wk)/σk‖2 /2)∑
k exp(−‖(xi − wk)/σk‖2 /2)

, (1)

where qki ∈ Q defines the mapping from i-th activation to k-th node. In the second paradigm, a
point-wise convolution is employed to learn Q directly, reducing the computational cost of con-
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Figure 2: Overview of the proposed Contextual Graph Reasoning Network (CGRNet). “DGP”,
“GC” and “NCR” denote Descriptor Graph Projection, Graph Convolution, and Node Collaborative
Reprojection respectively. Best viewed in color.

structing the projection matrix:

Q = θ(X;Wθ), (2)

where θ(·) indicates the point-wise convolution layer, Wθ denotes the parameters of θ(·). As can be
seen from Figure 1, both paradigms derive the projection matrix with local feature, neglecting the
global contextual information. Therefore, it is essential to explore the long-range dependencies for
projection matrix construction, leading to context-aware relation between feature and graph.

3.2 CONTEXTUAL GRAPH REASONING (CGR)

In this section, we present the details of Descriptor Graph Projection, Reasoning by Graph Convo-
lution and Node Collaborative Reprojection.

3.2.1 DESCRIPTOR GRAPH PROJECTION (DGP)

Given input featureX after convolution layers, graph projection aims to transform feature vectors to
a set of graph nodes. As mentioned above, existing methods fail to explore the holistic information,
which is crucial for effective graph representation. Therefore, we propose a novel graph projection
method based on a global set of descriptors D = [d0; ...; dK−1] ∈ RK×C′

, where C ′ < C for the
consideration of efficiency. We tactfully employ two maps to obtain the descriptors, which fully
utilize the global contextual information. Specifically, we first employ a 1 × 1 convolution θ to
compute the base map B = [b0, ..., bN−1] ∈ RC′×N . Then we employ another 1 × 1 convolution
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φ and normalization to compute the weight map L = [l0; ...; lK−1] ∈ RK×N . This process can be
represented as:

B = θ(X;Wθ), L′ = φ(X;Wφ), lk,j =
el

′
k,j∑
j e
l′k,j

, (3)

where lk,j is the element of weight map L. Subsequently, we aggregate the feature of base map
weighted by L, delivering the global descriptors:

dk = lkB
T =

∑
j

lk,jb
T
j . (4)

In order to construct the projection matrix based on input feature and global descriptors, we first re-
duce the channels of input feature by a 1×1 convolution ψ, obtaining a compact feature X̂ ∈ RC′×N

with the same channel dimension as D. This compact feature is used to generate the projection ma-
trix as illustrated by

X̂ = ψ(X;Wψ), q′k = dkX̂
T =

∑
i

di,kx
T
i , qk =

q′k
‖q′
k‖2

, (5)

where WΨ indicates the parameter of ψ. Finally, the graph representation V can be obtained by the
input feature X and the projection matrix Q, which is formulated as

v
′

k =
1∑
j q

j
k

∑
j

qjkxj , vk =
v′k
‖v′
k‖2

. (6)

A graphical illustration of DGP is shown in Figure 2 (a).

3.2.2 REASONING BY GRAPH CONVOLUTION (GC)

We use graph convolution fgc (Kipf & Welling, 2016) to perform global reasoning, aggregating
contextual information in graph interaction space. For the purpose of efficiency, we only use one
graph convolution layer to generate the evolved graph representation Ṽ :

Ṽ = σ(fgc(V ;Wgc)) + V, (7)

where σ(·) is the nonlinear activation function, Wgc is the parameters of graph convolution. Note
that we also adopt Batch Normalization (Ioffe & Szegedy, 2015) after σ(·) to stabilize the training
process.

3.2.3 NODE COLLABORATIVE REPROJECTION (NCR)

Although graph convolution can aggregate the contextual information between nodes, it is still dif-
ficult for each node to exploit the global contextual information of the graph. Inspired by the self-
attention mechanism (Vaswani et al., 2017), we propose a module named Node Collaborative Re-
projection (NCR), which calibrates the evolved graph with channel-wise and spatial-wise attention.
we first squeeze all nodes to obtain a C-dimensional vector by a convolution α:

Ṽα = σ(α(Ṽ ;Wα)), (8)

where Ṽα ∈ RC , σ(·) means PReLU, and Wα denotes the learnable convolutional kernel of α.
This operation is similar to the squeeze operation in SENet (Hu et al., 2018) while we apply it to
graph nodes. The squeezed feature of all nodes captures the global contextual information, which
is essential to calibrate the evolved graph. Subsequently, we perform another convolution γ and
normalization to expand the squeezed feature into scaling weights S ∈ RC×K :

S′ = γ(Ṽα;Wγ), ski =
es

′
i,k∑

k e
s′i,k

, (9)

where ski is the element of scaling weights S. Finally, S is used to calibrate the graph nodes and the
calibrated graph is reprojected back to the coordinate space with QT as

X̃ = (Ṽ � S)QT +X, (10)

where � denotes the hadamard product. Figure 2 (b) shows the detailed architecture of NCR.
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Table 1: Comparison with the state-of-the-art approaches on PASCAL-Context, PASCAL-VOC
2012, ADE20K and COCO Stuff. ”†” means the model has been pre-trained on COCO Stuff. ” ”
means no public results available. ”?” means employing online hard example mining (Shrivastava
et al., 2016). All methods employ ResNet-101 as the backbone.

Method mIoU(%)
PASCAL-Context PASCAL-VOC ADE20K COCO Stuff

PSPNet (Zhao et al., 2017) 47.8 82.6 43.29 -
EncNet (Zhang et al., 2018) 51.7 82.9 44.65 -
SGR† (Liang et al., 2018) 52.5 - 44.32 39.1
GCU (Li & Gupta, 2018) - - 44.81 -
DANet (Fu et al., 2019a) 52.6 82.6 - 39.7
CFNet (Zhang et al., 2019a) 54.0 84.2 44.89 -
APCNet (He et al., 2019) 54.7 84.2 45.38 -
ACNet? (Fu et al., 2019b) 54.1 - 45.90 40.1
SPNet (Hou et al., 2020) 54.5 - 45.60 -
SpyGR (Li et al., 2020) 52.8 84.2 - 39.9
GINet (Wu et al., 2020) 54.9 - 45.54 40.6
CaC-Net (Liu et al., 2020) 55.4 85.1 46.12 -
OCRNet (Yuan et al., 2019) 54.8 - 45.28 39.5
CGRNet (Ours) 56.5 85.7 47.19 41.1

3.3 FRAMEWORK OF CONTEXTUAL GRAPH REASONING NETWORK (CGRNET)

The CGR module can be taken as a plug-and-play component for convolutional neural networks. As
an illustration of the usage, we design the Contextual Graph Reasoning Network (CGRNet). The
whole framework of CGRNet is illustrated in Figure 2. We take ResNet (He et al., 2016) as our
backbone following previous works (Fu et al., 2019a; Hou et al., 2020; Li et al., 2020; Liu et al.,
2020). For the proposed CGR module, we deploy it on the last three stages, which can perform
graph reasoning at multiple scales. After that, we concatenate the output features of CGR blocks
and employ a 3 × 3 convolution layer to fuse them. The fused feature is concatenated with the the
reduced feature, delivering the final feature for network prediction.

4 EXPERIMENTS

The proposed Contextual Graph Reasoning module can be applied to various computer vision tasks.
To demonstrate the effectiveness and generalization ability of our method, we conduct extensive
experiments on four semantic segmentation benchmarks, including PASCAL-Context, PASCAL-
VOC 2012, COCO Stuff and ADE20K (Mottaghi et al., 2014; Everingham et al., 2010; Caesar
et al., 2018; Zhou et al., 2017), achieving the state-of-the-art performance. We also do a careful
ablation study on semantic segmentation, giving a thorough analysis of our method. Besides, we
evaluate our approach on instance segmentation and 2D human pose estimation. The results of 2D
human pose estimation on COCO 2017 (Lin et al., 2014) and MPII (Andriluka et al., 2014) can be
found in the Appendix.

4.1 EXPERIMENTS ON SEMANTIC SEGMENTATION

4.1.1 IMPLEMENTATION DETAILS AND EVALUATION METRICS

During training, we use the poly learning rate scheduler lr = base lr ∗ (1 − iter
total iter )0.9, where

we set base lr to 0.004 for ADE20K and 0.001 for others. SGD optimizer is adopted with weight
decay 0.0001 and momentum 0.9. We also use the synchronized BN following existing methods (Fu
et al., 2019a; Zhang et al., 2018) and train PASCAL-Context, PASCAL-VOC2012, COCO-Stuff,
and ADE20K for 80, 50, 110, and 120 epochs respectively. The batch size for all datasets is set to
16 and input images are randomly cropped into 520×520. We use random flipping and scaling as
the data augmentation to alleviate the problem of over-fitting (Zhang et al., 2018; Zhao et al., 2017).
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Table 2: Ablation study of CGRNet. “CGP”,
“GC” and “NCR” denote Descriptor Graph Pro-
jection, Graph Convolution and Node Calibration
Reprojection respectively. “MS” means Multi-
Scale test.

Baseline CGP GC NCR MS mIoU
3 50.4
3 3 52.0
3 3 3 52.2
3 3 3 52.6
3 3 3 3 52.9
3 3 3 3 3 53.6

Table 3: Ablation study of design choices.
This study demonstrates the impact of node
numbers and multi-stage features. Res#
indicates the stage of backbone.
Res#3 Res#4 Res#5 mIoU

16 8 4 51.8
32 16 8 52.2
64 32 16 52.1
3 3 3 52.2

3 3 51.7
3 51.3

During testing, We employ multi-scale test with input scaling factors [0.75, 1.0, 1.25, 1.5, 1.75,
2.0]. We adopt the mean Intersection-over-Union (mIoU) as the evaluation metric for semantic
segmentation.

4.1.2 COMPARISON WITH STATE-OF-THE-ARTS

PASCAL-Context (Mottaghi et al., 2014) contains 4,998 and 5,105 images for training and vali-
dation, respectively. We report the mIoU on 60 categories (59 categories with the background) for
evaluation, which is the same as previous works (He et al., 2019; Zhang et al., 2018). As shown
in Table 1, Our result of 56.5% outperforms all previous methods based on graph reasoning (Liang
et al., 2018; Wu et al., 2020) and non-local mechanism (Zhang et al., 2019a; Fu et al., 2019a; Yuan
et al., 2019).

PASCAL-VOC2012 (Everingham et al., 2010) has 10,582 images for training, 1,449 images for
validation, and 1,456 images for testing. We report results on 20 foreground object classes and
one background class. We adopt ImageNet (Deng et al., 2009) pre-trained model and finetune our
CGRNet on augmented training set for 80 epochs. Then, the model is finetuned on original trainval
set for another 50 epochs. Finally, we evaluate our results on the official test server http://host.
robots.ox.ac.uk:8080. As can been seen from Table 1, the result of 85.7% outperforms the
start-of-the-art approaches on PASCAL-VOC 2012 test set.

ADE20K (Zhou et al., 2017) is a large scale scene parsing dataset including 25K images annotated
with 150 categories, which are split into 20K training images, 2K validation images, and 3K test
images. In Table 1, our method shows an excellent mIoU of 47.19%, which again is better than the
state-of-the-art methods.

COCO-Stuff (Caesar et al., 2018) is a very challenging dataset which contains 9000 training images
and 1000 test images, annotated with 171 object and stuff categories. Our result of 41.1% also
surpasses all the existing methods, demonstrating the effectiveness of our work.

4.1.3 ABLATION STUDY

In this section, we conduct experiments with different settings to evaluate the performance of our
approach. For the consideration of efficiency, we use ResNet-50 (He et al., 2016) as the backbone
in ablation study. We also give a detailed comparison with other graph reasoning methods in terms
of accuracy and efficiency.

Effectiveness of DGP and NCR: We conduct experiments on several variants of our approach to
evaluate each component. As illustrated in Table 2, we have the following observations: firstly, com-
pared with the baseline, DGP blocks bring a significant improvement of 1.6% (52.0% vs. 50.4%),
which demonstrates that DGP blocks can explore contextual relation between feature and graph ad-
equately. Secondly, there is an additional improvement of 0.7% with NCR blocks, which indicates
it can further improve the capability of assembling global contextual information.

Ablation for Design Choices: Table 3 shows the impact of node numbers and multi-stage features.
The numbers of nodes in the last three stages are set to 32, 16, and 8, which can achieve the best
result of 52.2%. Too many nodes may aggregate features with large differences, resulting in semantic
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Table 4: Comparisons of efficiency and accuracy with other graph reasoning methods. “Params”,
“Mem” and “FPS” represent the Parameters (M), the extra memory (MB) and the inference speed
respectively. We evaluate these blocks with 520 × 520 input size on the same server for a fair
comparison.

Method Params GFLOPs Mem FPS mIoU
Baseline - - - - 50.4
+ GCU (Li & Gupta, 2018) 11.2 93.5 366.7 95.7 51.5
+ GloRe (Chen et al., 2019b) 8.1 68.6 208.3 161.9 51.8
+ CGR 8.5 70.9 218.2 133.8 52.9

Table 5: Results of different graph reasoning methods on COCO 2017 validation set for object
detection (APb) and instance segmentation (APm). All results are based on Mask R-CNN with
ResNet-50 and ResNet-101 as the backbone.

Method (ResNet-50) APb APm Method (ResNet-101) APb APm
Mask RCNN∗ 37.2 34.0 Mask RCNN 39.3 35.8
+ GCU (Li & Gupta, 2018) 37.2 33.9 + GCU (Li & Gupta, 2018) 39.4 35.7
+ GloRe (Chen et al., 2019b) 37.8 34.6 + GloRe (Chen et al., 2019b) 39.8 36.2
+ CGR 38.2 34.8 + CGR 40.3 36.6

inconsistency. Too few nodes may not adequately capture the global contextual information. As
shown in Table 3, it is also crucial to adopt multi-stage features for our method. Note that we do not
fuse the features of Res#2 since its spatial resolution is too large, resulting in substantial memory
costs.

Comparisons with Related Graph Reasoning Methods: As shown in Table 4, we compare with
two graph reasoning methods. Our CGR blocks achieve the best mIoU of 52.9% with relatively less
memory, parameters, and GFLOPs. Compared with GCU and GloRe (Li & Gupta, 2018; Chen et al.,
2019b), we tactfully explore the global contextual information for graph projection and reprojection,
boosting the performance with negiligable additional storage and computational cost.

4.2 EXPERIMENTS ON INSTANCE SEGMENTATION

To further evaluate the generalization ability of our method, we also conduct experiments on in-
stance segmentation using Mask R-CNN (He et al., 2017) as the baseline. We adopt ResNet-50/101
with FPN (He et al., 2016; Lin et al., 2017) as the backbone and add three CGR blocks in the last
three stages. We implement our method based on mmdetection (Chen et al., 2019a) and report the
results in terms of box AP and mask AP in Table 5. The results demonstrate that our method con-
sistently improves the baselines in both metrics. Meanwhile, CGR also consistently outperforms
existing graph reasoning methods like GCU and GloRe. Note that GCU even slightly declines the
performance of baseline under the same training protocol.

5 CONCLUSION

In this paper, we propose a novel graph reasoning method named Contextual Graph Reasoning
(CGR), exploring the long-range dependencies for effective graph representation. The core contri-
butions are Descriptor Graph Projection (DGP) and Node Calibration Reprojection (NCR). DGP
learns a global set of descriptors for projection matrix construction, capturing the contextual infor-
mation for graph nodes. NCR calibrates the features of graph nodes with the self-attention mecha-
nism, further exploiting the benefit of contextual information. We conduct extensive experiments on
semantic segmentation, instance segmentation and 2D human pose estimation. Our method consis-
tently achieves remarkable improvements over the state-of-the-art graph reasoning methods, demon-
strating the effectiveness and generalization ability of our work.
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A APPENDIX

A.1 EXPERIMENTS ON 2D HUMAN POSE ESTIMATION

To evaluate the generalization ability of our method, we conduct detailed experiments on 2D Human
Pose Estimation. We compare our method with two state-of-the-art graph reasoning methods (Li &
Gupta, 2018; Chen et al., 2019b) and all experiments are based on the same baseline (Xiao et al.,
2018). We benchmark all the methods on COCO keypoints detection dataset (Lin et al., 2014) and
MPII Human Pose dataset (Andriluka et al., 2014).

A.1.1 DATASET AND EVALUATION METRIC

The COCO keypoints detection dataset (Lin et al., 2014) contains over 200k images and 250k per-
son instances with manually annotated keypoints. We train the models on COCO train2017 set,
including more than 118k images and 150k personal instances. We evaluate the methods on COCO
val2017 set, which contains around 5k images. The Object Keypoint Similarity (OKS) is used for
evaluation. We use the mean Average Precision (AP) and Average Recall (AR) over 10 OKS thresh-
olds as the main metric. The OKS is calculated as the distance between predicted points and ground
truth points, normalized by the scale of the person.

The MPII Human Pose dataset (Andriluka et al., 2014) consists of images obtained from a variety
of real-world activities with full-body pose annotation. There are around 25K images and 40K
subjects. We train the models on MPII training set, including around 28k subjects. we evaluate
the methods on validation set. The data augmentation and training strategy are the same as COCO
keypoints detection dataset, except that the input image is cropped to 256×256 for fair comparisons
with other graph-based methods. We use PCKh score as the evaluation metric. A joint is correct if
it falls within αl pixels of the ground-truth position, where α is a constant and l is the head size that
corresponds to 60% of the diagonal length of the ground-truth head bounding box. The PCKh@0.5
(α = 0.5) score is reported.
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A.1.2 IMPLEMENTATION DETAILS

We employ ResNet-50/101 as the backbone and add three CGR modules in the last three stages
respectively. The numbers of nodes in three CGR blocks are set to 6, 4, and 2. We crop and resize the
input images to two fixed resolutions, 256×192 for COCO dataset and 256×256 for MPII dataset.
The optimizer, batch size, learning rate scheduler and data augmentations follow the baseline (Xiao
et al., 2018). The backbone network is initialized by weights pre-trained on ImageNet. The initial
learning rate is 0.001, and drops to 0.0001 at the 90-th epoch and 0.00001 at the 120-th epoch. The
training process converges within 140 epochs.

Table 6: Comparisons of different graph reasoning methods on COCO val2017 set for 2D pose
estimation (without flip test).

Method Backbone Input Size AP AR
Simple baseline (Xiao et al., 2018) ResNet-50 256×192 70.4 73.5
+ GloRe (Chen et al., 2019b) ResNet-50 256×192 70.0 73.3
+ GCU (Li & Gupta, 2018) ResNet-50 256×192 72.0 75.3
+ CGR ResNet-50 256×192 72.5 75.7
Simple baseline (Xiao et al., 2018) ResNet-101 256×192 72.0 75.3
+ GloRe (Chen et al., 2019b) ResNet-101 256×192 71.1 74.6
+ GCU (Li & Gupta, 2018) ResNet-101 256×192 72.8 76.0
+ CGR ResNet-101 256×192 73.3 76.3

Table 7: Comparisons of different graph reasoning methods on MPII validation set for 2D pose
estimation (without flip test).

Method Backbone Input Size Mean
Simple baseline (Xiao et al., 2018) ResNet-50 256×256 87.583
+ GloRe (Chen et al., 2019b) ResNet-50 256×256 86.235
+ GCU (Li & Gupta, 2018) ResNet-50 256×256 88.020
+ CGR ResNet-50 256×256 88.322
Simple baseline (Xiao et al., 2018) ResNet-101 256×256 88.374
+ GloRe (Chen et al., 2019b) ResNet-101 256×256 86.656
+ GCU (Li & Gupta, 2018) ResNet-101 256×256 88.660
+ CGR ResNet-101 256×256 88.798

A.1.3 EXPERIMENTAL RESULTS

We compare three graph reasoning methods, namely GCU (Li & Gupta, 2018), GloRe (Chen et al.,
2019b) and our CGR. As shown in Table 6, CGR outperforms GCU by 0.5 AP (72.5 vs. 72.0) and
achieves 2.1 AP improvement over the baseline (72.5 vs. 70.4) with the backbone of ResNet-50 on
COCO. GloRe declines the baseline under the same training protocol while our CGR consistently
boosts the performance. The results on ResNet-101 and MPII show the same tendency, which
demonstrates the effectiveness and generalization ability of our method.

A.2 QUALITATIVE RESULTS
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Figure 3: The visualization of projection matrices and feature maps (w/o. vs w/i. NCR module)
on PASCAL-Context. (a) indicates projection matrices. (b) indicates feature maps without NCR
module. (c) indicates feature maps within NCR module.
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Figure 4: The visualization of projection matrices and feature maps (w/o. vs w/i. NCR module)
on PASCAL-Context. (a) indicates projection matrices. (b) indicates feature maps without NCR
module. (c) indicates feature maps within NCR module.
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Figure 5: The visualization of PASCAL-
Context validation set.

Figure 6: The visualization of COCO-Stuff test
set.

Figure 7: The visualization of PASCAL-VOC
2012 validation set.

Figure 8: The visualization of ADE20K valida-
tion set.
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Figure 9: The visualization of object detection and instance segmentation with ResNet-50/101 as
the backbone.
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Figure 10: The visualization of 2D Human Pose Estimation on COCO 2017 validation set. (a)
denotes “Ground Truth”. (b) denotes “Baseline”. (c) denotes “Baseline + CGR”.

16



Under review as a conference paper at ICLR 2021

Left 
elbow

Left 
wrist

Left 
shoulder

Left 
shoulder

Left 
wrist

Left 
elbow

(a)

(b)

(c)

Figure 11: The visualization of 2D Human Pose Estimation on MPII validation set. (a) denotes
“Ground Truth”. (b) denotes “Baseline”. (c) denotes “Baseline + CGR”.
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