
Solving Min-Max Optimization with Hidden
Structure via Gradient Descent Ascent

Lampros Flokas∗
Department of Computer Science

Columbia University
New York, NY 10025

lamflokas@cs.columbia.edu

Emmanouil V. Vlatakis-Gkaragkounis∗
Department of Computer Science

Columbia University
New York, NY 10025

emvlatakis@cs.columbia.edu

Georgios Piliouras
Singapore University of Technology & Design

georgios.piliouras@sutd.edu.sg

Abstract

Many recent AI architectures are inspired by zero-sum games, however, the behav-
ior of their dynamics is still not well understood. Inspired by this, we study standard
gradient descent ascent (GDA) dynamics in a specific class of non-convex non-
concave zero-sum games, that we call hidden zero-sum games. In this class, players
control the inputs of smooth but possibly non-linear functions whose outputs are
being applied as inputs to a convex-concave game. Unlike general zero-sum games,
these games have a well-defined notion of solution; outcomes that implement the
von-Neumann equilibrium of the “hidden" convex-concave game. We provide
conditions under which vanilla GDA provably converges not merely to local Nash,
but the actual von-Neumann solution. If the hidden game lacks strict convexity
properties, GDA may fail to converge to any equilibrium, however, by applying
standard regularization techniques we can prove convergence to a von-Neumann so-
lution of a slightly perturbed zero-sum game. Our convergence results are non-local
despite working in the setting of non-convex non-concave games. Critically, under
proper assumptions we combine the Center-Stable Manifold Theorem along with
novel type of initialization dependent Lyapunov functions to prove that almost all
initial conditions converge to the solution. Finally, we discuss diverse applications
of our framework ranging from generative adversarial networks to evolutionary
biology.

1 Introduction

Traditionally, our understanding of convex-concave games revolves around von Neumann’s celebrated
minimax theorem, which implies the existence of saddle point solutions with a uniquely defined value.
These solutions are called von Nemann solutions and guarantee to each agent their corresponding
value regardless of opponent play. Although many learning algorithms are known to be able to
compute such saddle points [13], recently there has there has been a fervor of activity in proving
stronger results such as faster regret minimization rates or analysis of the day-to-day behavior [46,
17, 7, 1, 66, 19, 2, 45, 5, 25, 70, 29, 6, 48, 30, 56].

This interest has been largely triggered by the impressive successes of AI architectures inspired by
min-max games such as Generative Adversarial Networks (GANS) [26], adversarial training [40]
and reinforcement learning self-play in games [63]. Critically, however, all these applications are
based upon non-convex non-concave games, our understanding of which is still nascent. Nevertheless,
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some important early work in the area has focused on identifying new solution concepts that are
widely applicable in general min-max games, such as (local/differential) Nash equilibrium [3, 41],
local minmax [18], local minimax [31], (local/differential) Stackleberg equilibrium [24], local robust
point [69]. The plethora of solutions concepts is perhaps suggestive that “solving" general min-max
games unequivocally may be too ambitious a task. Attraction to spurious fixed points [18], cycles [65],
robustly chaotic behavior [15, 16] and computational hardness issues [20] all suggest that general
min-max games might inherently involve messy, unpredictable and complex behavior.

Are there rich classes of non-convex non-concave games with an effectively unique game theoretic
solution that is selected by standard optimization dynamics (e.g. gradient descent)?

Our class of games. We will define a general class of min-max optimization problems, where each
agent selects its own vectors of parameters which are then processed separately by smooth functions.
Each agent receives their respective payoff after entering the outputs of the processed decision vectors
as inputs to a standard convex-concave game. Formally, there exist functions F : RN → X ⊂ Rn
and G : RM → Y ⊂ Rm and a continuous convex-concave function L : X × Y → R, such that the
min-max game is

min
θθθ∈RN

max
φφφ∈RM

L(F(θθθ),G(φφφ)). (Hidden Convex-Concave (HCC))

We call this class of min-max problems Hidden Convex-Concave Games. It generalizes the recently
defined hidden bilinear games of [65].

Our solution concept. Out of all the local Nash equilibria of HCC games, there exists a special
subclass, the vectors (θθθ∗,φφφ∗) that implement the von Neumann solution of the convex-concave
game. This solution has a strong and intuitive game theoretic justification. Indeed, it is stable even if
the agents could perform arbitrary deviations directly on the output spaces X,Y . These parameter
combinations (θθθ∗,φφφ∗) “solve" the “hidden” convex-concave L and thus we call them von Neumann
solutions. Naturally, HCCs will typically have numerous local saddle/Nash equilibria/fixed points
that do not satisfy this property. Instead, they correspond to stationary points of the F,G where their
output is stuck, e.g., due to an unfortunate initialization. At these points the agents may be receiving
payoffs which can be arbitrarily smaller/larger than the game theoretic value of game L. Fortunately,
we show that Gradient Descent Ascent (GDA) strongly favors von Neumann solutions over generic
fixed points.

Our results. In this work, we study the behavior of continuous GDA dynamics for the class of HCC
games where each coordinate of F,G is controlled by disjoint sets of variables. In a nutshell, we
show that GDA trajectories stabilize around or converge to the corresponding von Neumann solutions
of the hidden game. Despite restricting our attention to a subset of HCC games, our analysis has to
overcome unique hurdles not shared by standard convex concave games.

Challenges of HCC games. In convex-concave games, deriving the stability of the von Neumann
solutions relies on the Euclidean distance from the equilibrium being a Lyapunov function. In contrast,
in HCC games where optimization happens in the parameter space of θθθ,φφφ, the non-linear nature of
F,G distorts the convex-concave landscape in the output space. Thus, the Euclidean distance will
not be in general a Lyapunov function. Moreover, the existence of any Lyapunov function for the
trajectories in the output space of F,G does not translate to a well-defined function in the parameter
space (unless F,G are trivial, invertible maps). Worse yet, even if L has a unique solution in the
output space, this solution could be implemented by multiple equilibria in the parameter space and
thus each of them can not be individually globally attracting. Clearly any transfer of stability or
convergence properties from the output to the parameter space needs to be initialization dependent.
It is worth mentioning that similar challenges like transfering results from the output to the input
space was also faced in the simpler class of hidden bilinear games. However, [65] to sidestep this
issue assume the restricitve requirement of F,G to be invertible operators. Our results go beyond this
simplified case requiring new proof techniques. Specifically, we show how to combine the powerful
technologies of the the Center-Stable Manifold Theorem, typically used to argue convergence to
equilibria in non-convex optimization settings [34, 52, 54, 53, 35], along with a novel Lyapunov
function argument to prove that almost all initial conditions converge to the our game theoretic
solution.

Lyapunov Stability. Our first step is to construct an initialization-dependent Lyapunov function that
accounts for the curvature induced by the operators F and G (Lemma 2). Leveraging a potentially
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infinite number of initialization-dependent Lyapunov functions in Theorem 5 we prove that under
mild assumptions the outputs of F,G stabilize around the von Neumann solution of L.

Convergence. Mirroring convex concave games, we require strict convexity or concavity of L to
provide convergence guarantees to von Neumann solutions (Theorem 6). Barring initializations where
von Neumann solutions are not reachable due to the limitations imposed by F and G, the set of von
Neumann solutions are globally asymptotically stable (Corollary 1). Even in non-strict HCC games,
we can add regularization terms to make L strictly convex concave. Small amounts of regularization
allows for convergence without significantly perturbing the von Neumann solution (Theorem 7) while
increasing regularization enables exponentially faster convergence rates (Theorem 8). Similar to the
aforementioned theoretical work, our model of HCC games provides a formal and theoretical tractable
testbed for evaluating the performance of different training methods in GAN inspired architectures. As
a concrete example, [36] recently proved the success of WGAN training for learning the parameters
of non-linearly transformed Gaussian distributions, where for simplicity they replaced the typical
Lipschitz constraint of the discriminator function with a quadratic regularizer. Interestingly, we can
elucidate on why regularized learning is actually necessary by establishing a formal connection to
HCC games. On top of other such ML applications, our game theoretic framework can furthermore
capture and generalize evolutionary game theoretic models. [57] analyze a model of evolutionary
competition between two species (host-parasite). The outcome of this competition depends on their
respective phenotypes (informally their properties, e.g., agility, camouflage, etc.). These phenotypes
are encoded via functions that map input vectors (here genotype/DNA sequences) to phenotypes.
While [57] proved that learning in these games does not converge to equilibria and typically cycles
for almost all initial conditions, we can explicitly construct initial conditions that do not satisfy our
definition of safety and end up converging to artificial fixed points. Safety conditions aside, we show
that a slight variation of the evolutionary/learning algorithm suffices to resolve the cycling issues and
for the dynamics to equilibrate to the von Neumann solution. Hence, we provide the first instance of
team zero-sum games [62], a notoriously hard generalization of zero-sum games with a large duality
gap, that is solvable by decentralized dynamics.

Organization. In Section 2 we provide some preliminary notation, the definition of our model and
some useful technical lemmas. Section 3 is devoted to the presentation of our the main results.
Section 4 discusses applications of our framework to specific GAN formulations. Section 5 concludes
our work with a discussion of future directions and challenges. We defer the full proofs of our results
as well as further discussion on applications to the Appendix.

2 Preliminaries

2.1 Notation

Vectors are denoted in boldface x,y unless otherwise indicated are considered as column vectors.
We use ‖·‖ to denote the `2−norm. For a function f : Rd → R we use ∇f to denote its gradient.
For functions of two vector arguments, f(x,y) : Rd1 × Rd2 → R , we use ∇xf,∇yf to denote its
partial gradient. For the time derivative we will use the dot accent abbreviation, i.e., ẋ = d

dt [x(t)]. A
function f will belong to Cr if it is r times continuously differentiable. Additionally, f ◦ g = f(g(·))
denotes the composition of f, g. Finally, the term “sigmoid” function refers to σ : R→ R such that
σ(x) = (1 + e−x)−1.

2.2 Hidden Convex Concave Games

θ11 θ12 · · · θ1n1
θθθ1

f1(θθθ1)

...

θN1 θN2 · · · θNnN
θθθN

fN (θθθN )

F(θθθ) L(F(θθθ),G(φφφ))

φ11 φ12 · · · φ1n1
φφφ1

g1(φφφ1)

...

φM1 φM2 · · · φMnM
φφφM

gM (φφφM )

G(φφφ)

θ̇i = −∇θiL(F(θθθ),G(φφφ)) φ̇j = ∇φjL(F(θθθ),G(φφφ))Figure:Hidden Seperable Zero-Sum Game
Model & Optimization Dynamics
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We will begin our discussion by defining the notion of convex concave functions as well as strictly
convex concave functions. Note that our definition of strictly convex concave functions is a superset
of strictly convex strictly concave functions that are usually studied in the literature.
Definition 1. L : Rn × Rm → R is convex concave if for every y ∈ Rn L(·,y) is convex and for
every x ∈ Rm L(x, ·) is concave. Function L will be called strictly convex concave if it is convex
concave and for every x×y ∈ Rn×Rm either L(·,y) is strictly convex or L(x, ·) is strictly concave.

At the center of our definition of HCC games is a convex concave utility function L. Additionally,
each player of the game is equipped with a set of operator functions. The minimization player is
equipped with n functions fi : Rni → R while the maximization player is equipped with m functions
gj : Rmj → R. We will assume in the rest of our discussion that fi, gj , L are all C2 functions. The
inputs θθθi ∈ Rni and φφφj ∈ Rmj are grouped in two vectors

θθθ =
[
θθθ1 · · · θθθn

]>
F(θθθ) =

[
f1(θθθ1) · · · fn(θθθn)

]>
φφφ =

[
φφφ1 · · · φφφm

]>
G(φφφ) =

[
g1(φφφ1) · · · gm(φφφm)

]>
We are ready to define the hidden convex concave game

(θθθ∗,φφφ∗) = arg min
θθθ∈RN

arg max
φφφ∈RM

L(F(θθθ),G(φφφ)).

where N =
∑n
i=1 ni and M =

∑m
j=1mj . Given a convex concave function L, all stationary points

of L are (global) Nash equilibria of the min-max game. We will call the set of all equilibria of L,
von Neumann solutions of L and denote them by Solution(L). Unfortunately, Solution(L) can be
empty for games defined over the entire Rn × Rm. For games defined over convex compact sets, the
existence of at least one solution is guaranteed by von Neumann’s minimax theorem. Our definition
of HCC games can capture games on restricted domains by choosing appropriately bounded functions
fi and gj . In the following sections, we will just assume that Solution(L) is not empty. We note that
our results hold for both bounded and unbounded fi and gj . We are now ready to write down the
equations of the GDA dynamics for a HCC game:

θ̇θθi = −∇θθθiL(F(θθθ),G(φφφ)) =−∇θθθifi(θθθi)
∂L

∂fi
(F(θθθ),G(φφφ))

φ̇φφj = ∇φφφj
L(F(θθθ),G(φφφ)) =∇φφφj

gj(φφφj)
∂L

∂gj
(F(θθθ),G(φφφ))

(1)

2.3 Reparametrization

The following lemma is useful in studying the dynamics of hidden games.
Lemma 1. Let k : Rd → R be a C2 function. Let h : R→ R be a C1 function and x(t) denote the
unique solution of the dynamical system Σ1. Then the unique solution for dynamical system Σ2 is
z(t) = x(

∫ t
0
h(s)ds){

ẋ = ∇k(x)
x(0) = xinit

}
: Σ1

{
ż = h(t)∇k(z)

z(0) = xinit

}
: Σ2 (2)

θi

Equilibrium-value f∗i

fi(θi)

(a)

(b) (c) (d)

(e)

(f) (g)
-3 -2 -1 0 1.5 4

Figure 1: Neither Gradient Descent nor Ascent
can traverse stationary points. An immediate con-
sequence of Lemma 1 is that if we initialize in
the above example θi(0) at (a), fi(θi(t)) can not
escape the purple section. This extends to cases
where θθθi is vector of variables.

By choosing h(t) = −∂L(F(t),G(t))/∂fi and
h(t) = ∂L(F(t),G(t))/∂gj respectively, we can
connect the dynamics of each θθθi and φφφj under
Equation (1) to gradient ascent on fi and gj . Ap-
plying Lemma 1, we get that trajectories of θθθi and
φφφj under Equation (1) are restricted to be subsets
of the corresponding gradient ascent trajectories
with the same initializations. For example, in Fig-
ure 1 θi(t) can not escape the purple section if it
is initialized at (a) neither the orange section if
it is initialiazed at (f). This limits the attainable
values that fi(t) and gj(t) can take for a specific
initialization. Let us thus define the following:
Definition 2. For each initialization x(0) of Σ1,
Imk(x(0)) is the image of k ◦ x : R→ R.
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Applying Definition 2 in the above example, Imfi(θi(0)) = (fi(−2), fi(−1)) if θi is initialized at (c).
Additionally, observe that in each colored section fi(θi(t)) uniquely identifies θi(t). Generally, even
in the case that θθθi are vectors, Lemma 1 implies that for a given θθθi(0), fi(θθθi(t)) uniquely identifies
θθθi(t). As a result we get that a new dynamical system involving only fi and gj
Theorem 1. For each initialization (θθθ(0),φφφ(0)) of Equation (1), there are C1 functions
Xθθθi(0) , Xφφφj(0) such that θθθi(t) = Xθθθi(0)(fi(t)) and φφφj(t) = Xφφφj(0)(gj(t)). If (θθθ(t),φφφ(t)) sat-
isfy Equation (1) then fi(t) = fi(θθθi(t)) and gj(t) = gj(φφφj(t)) satisfy

ḟi = −‖∇θθθifi(Xθθθi(0)(fi))‖
2 ∂L

∂fi
(F,G)

ġj = ‖∇φφφj
gj(Xφφφj(0)(gj))‖

2 ∂L

∂gj
(F,G)

(3)

By determining the ranges of fi and gj , an initialization clearly dictates if a von Neumann solution is
attainable. In Figure 1 for example, any point of the pink, orange or blue colored section like (e), (f)
or (g) can not converge to a von Neumann solution with fi(θi) = f∗i . The notion of safety captures
which initializations can converge to a given element of Solution(L).

Definition 3. . We will call the initialization (θθθ(0),φφφ(0)) safe for a (p,q) ∈ Solution(L) ifφφφi(0) and
θθθj(0) are not stationary points of fi and gj respectively and pi ∈ Imfi(θθθi(0)) and qj ∈ Imgj (φφφj(0)).

Leveraging the Center-Stable Manifold Theorem [55], the following observation shows that under
mild assumptions almost all initializations are safe:

Theorem 2. If fi and gj have isolated stationary points, only strict saddle points, com-
pact sublevel-sets, both equilibria pi ∈ (max LocalMin(fi),min LocalMax(fi)) and qj ∈
(max LocalMin(gj),min LocalMax(gj)), then almost all initializations are safe for a (p,q) ∈
Solution(L).

Finally, in the following sections we use some fundamental notions of stability. We call an equilibrium
x∗ of an autonomous dynamical system ẋ = D(x(t)) stable if for every neighborhood U of x∗ there
is a neighborhood V of x∗ such that if x(0) ∈ V then x(t) ∈ U for all t ≥ 0. We call a set S
asymptotically stable if there exists a neighborhoodR such that for any initialization x(0) ∈ R, x(t)
approaches S as t→ +∞. IfR is the whole space the set globally asymptotically stable.

3 Learning in Hidden Convex Concave Games

3.1 General Case

Our main results are based on designing a Lyapunov function for the dynamics of Equation (3):

Lemma 2. If L is convex concave and (φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L), then the
following quantity is non-increasing under the dynamics of Equation (3):

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz (4)

F(θ)

G
(φ

)

(p,q)

Figure 2: Level sets of Lyapunov function of Equa-
tion (4) for both F and G being one dimensional
sigmoid functions.

Observe that our Lyapunov function here is not the
distance to (p,q) as in a classical convex concave
game. The gradient terms account for the non con-
stant multiplicative terms in Equation (3). Indeed
if the game was not hidden and fi and gj were
the identity functions then H would coincide with
the Euclidean distance to (p,q). Our first theorem
employs the above Lyapunov function to show that
(p,q) is stable for Equation (3).

Theorem 3. If L is convex concave and
(φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L),
then (p,q) is stable for Equation (3).
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Clearly, for the special case of globally invertible
functions F,G we could come up with an equivalent Lyapunov function in the θθθ,φφφ-space. In this
case it is straightforward to transfer the stability results from the induced dynamical system of F,G
(Equation (3)) to the initial dynamical system of θθθ,φφφ (Equation (1)). For example we can prove the
following result:
Theorem 4. If fi and gj are sigmoid functions and L is convex concave and there is a (φφφ(0), θθθ(0))
that is safe for (p,q) ∈ Solution(L), then (F−1(p),G−1(q)) is stable for Equation (1).

In the general case though, stability may not be guaranteed in the parameter space of Equation (1).
We will instead prove a weaker notion of stability, which we call hidden stability. Hidden stability
captures that if (F(θθθ(0)),G(φφφ(0))) is close to a von Neumann solution, then (F(θθθ(t)),G(φφφ(t)))
will remain close to that solution. Even though hidden stability is weaker, it is essentially what we
are interested in, as the output space determines the utility that each player gets. Here we provide
sufficient conditions for hidden stability.
Theorem 5 (Hidden Stability). Let (p,q) ∈ Solution(L). Let Rfi and Rgj be the set of regular
values1 of fi and gj respectively. Assume that there is a ξ > 0 such that [pi − ξ, pi + ξ] ⊆ Rfi and
[qj − ξ, qj + ξ] ⊆ Rgj . Define

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2.
If fi and gj are proper functions2, then for every ε > 0, there is an δ > 0 such that

r(0) < δ =⇒ ∀t ≥ 0 : r(t) < ε.

Unfortunately hidden stability still does not imply convergence to von Neumann solutions. [65]
studied hidden bilinear games and proved that Ḣ = 0 for this special class of HCC games. Hence, a
trajectory is restricted to be a subset of a level set of H which is bounded away from the equilibrium
as shown in Figure 2. To sidestep this, we will require in the next subsection the hidden game to be
strictly convex concave.

3.2 Hidden strictly convex concave games

In this subsection we focus on the case where L is a strictly convex concave function. Based on
Definition 1, a strictly convex concave game is not necessarily strictly convex strictly concave and
thus it may have a continum of von Neumann solutions. Despite this, LaSalle’s invariance principle,
combined with the strict convexity concavity, allows us to prove that if (θθθ(0),φφφ(0)) is safe for
Z ⊆ Solution(L) then Z is locally asymptotically stable for Equation (3).
Lemma 3. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Then Z is locally asymptotically stable for Equation (3).

The above lemma however does not suffice to prove that for an arbitrary initialization (θθθ(0),φφφ(0)),
(F(t),G(t)) approaches Z as t→ +∞. In other words, a-priori it is unclear if (F(θθθ(0)),G(φφφ(0)))
is necessarily inside the region of attraction (ROA) of Z. To get a refined estimate of the ROA of Z,
we analyze the behavior of H as fi and gj approach the boundaries of Imfi(θθθi(0)) and Imgj (φφφj(0))
and more precisely we show that the level sets of H are bounded. Once again the corresponding
analysis is trivial for convex concave games, since the level sets are spheres around the equilibria.
Theorem 6. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Under the dynamics of Equation (1) (F(θθθ(t)),G(θθθ(t))) converges
to a point in Z as t→∞.

The theorem above guarantees convergence to a von Neumann solution for all initializations that
are safe for at least one element of Solution(L). However, this is not the same as global asymptotic
stability. To get even stronger guarantees, we can assume that all initializations are safe. In this case
it is straightforward to get a global asymptotic stability result:
Corollary 1. Let L be strictly convex concave and assume that all intitializations are safe for at least
one element of Solution(L). The following set is globally asymptotically stable for continuous GDA
dynamics.

{(θθθ∗,φφφ∗) ∈ Rn × Rm : (F (θθθ∗), G(φφφ∗)) ∈ Solution(L)}
1A value a ∈ Im f is called a regular value of f if ∀q ∈ dom f : f(q) = a, it holds∇f(q) 6= 0.
2A function is proper if inverse images of compact subsets are compact.

6



Notice that the above approach on global asymptotic convergence using Lyapunov arguments can
be extended to other popular alternative gradient-based heuristics like variations of Hamiltonian
Gradient Descent. For concision, we defer the exact statements, proofs in the supplement.

3.3 Convergence via regularization

Regularization is a key technique that works both in the practice of GANs [47, 33] and in the theory of
convex concave games [56, 59, 60]. Our settings of hidden convex concave games allows for provable
guarantees for regularization in a wide class of settings, bringing closer practical and theoretical
guarantees. Let us have a utility L(x,y) that is convex concave but not strictly. Here we will propose
a modified utility L′ that is strictly convex strictly concave. Specifically we will choose

L′(x,y) = L(x,y) +
λ

2
‖x‖2 − λ

2
‖y‖2

The choice of the parameter λ captures the trade-off between convergence to the original equilibrium
of L and convergence speed. On the one hand, invoking the implicit function theorem, we get that for
small λ the equilibria of L are not significantly perturbed.
Theorem 7. If L is a convex concave function with invertible Hessians at all its equilibria, then for
each ε > 0 there is a λ > 0 such that L′ has equilibria that are ε-close to the ones of L.

Note that invertibility of the Hessian means that L must have a unique equilibrium. On the other hand
increasing λ increases the rate of convergence of safe initializations to the perturbed equilibrium.
Theorem 8. Let (θθθ(0),φφφ(0)) be a safe initialization for the unique equilibrium of L′ (p,q). If

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2

then there are initialization dependent constants c0, c1 > 0 such that r(t) ≤ c0 exp(−λc1t).

4 Applications

In this section, we discuss how HCC framework can be used to give new insights in a variety of
application areas including min-max training for GANs and Evolutionary Game Theory. We also
describe applications of regularization to normal form zero sum games in Appendix D.3.

0 50 100 150 200 250 300

time

0

1

2

3

4

5

6

7

r(t) = ‖(F(t)− p)‖2 + ‖(G(t)− q)‖2 + |λ− λ∗|2

0 50 100 150 200 250 300

time

0

1

2

3

4

5

H(t)

Figure 3: Both the `2 distance from the equilibrium and H(t) converge to zero but only the latter
does so monotonically For pdata we choose a fully mixed distribution of dimension d = 4. Given
the sigmoid activations all the initializations are safe. We defer the detailed proof of convergence in
Appendix D.2.

Hidden strictly convex-concave games. We will start our discussion with the fundamental gener-
ative architecture of [26]’s GAN. In the vanilla GAN architecture, as it is commonly referred, our
goal is to find a generator distribution pG that is close to an input data distribution pdata. To find such
a generator function, we can use a discriminator D that “criticizes” the deviations of the generator
from the input data distribution. For the case of a discrete pdata over a set N , the minimax problem of
[26] is the following:

min
pG(x)≥0,∑

x∈N pG(x)=1

max
D∈(0,1)|N|

V (G,D)

where V (G,D) =
∑
x∈N pdata(x) log(D(x)) +

∑
x∈N pG(x) log(1 −D(x)). The problem above

can be formulated as a constrained strictly convex-concave hidden game. On the one hand, for a fixed
discriminator D∗, the V (G,D∗) is linear over the pG(x). On the other hand, for a fixed generator G∗,
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V (G∗, D) is strongly-concave. We can implement the inequality constraints on both the generator
probabilities and discriminator using sigmoid activations. For the equality constraint

∑
x∈N pG(x) =

1 we can introduce a Langrange multiplier. Having effectively removed the constraints, we can see in
Figure 3, the dynamics of Equation (1) converge to the unique equilibrium of the game, an outcome
consistent with our results in Corollary 1. While the Euclidean distance to the equilibrium is not
monotonically decreasing, H(t) is.

Hidden convex-concave games & Regularizaiton. An even more interesting case is Wassertein
GANs–WGANs [4]. One of the contributions of [36] is to show that WGANs trained with Stochastic
GDA can learn the parameters of Gaussian distributions whose samples are transformed by non-linear
activation functions. It is worth mentioning that the original WGAN formulation has a Lipschitz
constraint in the discriminator function. For simplicity, [36] replaced this constraint with a quadratic
regularizer. The min-max problem for the case of one-dimensional Gaussian N (0, α2

∗) and linear
discriminator Dv(x) = v>x with x2 activation is:

min
α∈R

max
v∈R

VWGAN(Gα, Dv) = EX∼pdata [D(X)]− EX∼pG [D(X)]− v2/2

= Ex∼N (0,α2
∗)

2 [vx]− Ex∼N (0,α2)2 [vx]− v2/2

= (α2
∗ − α2)v − v2/2

Observe that VWGAN is not convex-concave but it can posed as a hidden strictly convex-concave game
with G(α) = (α2

∗−α2) and F(v) = v. When computing expectations analytically without sampling,
Theorem 6 guarantees convergence. In contrast, without the regularizer VWGAN can be modeled as a
hidden bilinear game and thus GDA dynamics cycle. Empirically, these results are robust to discrete
and stochastic updates using sampling as shown in Figure 4. Therefore regularization in the work of
[36] was a vital ingredient in their proof strategy and not just an implementation detail.
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Figure 4: On the left, we show the trajectories of regularized GDA for α2
∗ = 1 as well as the level

sets of Equation (4). All trajectories (green curves-initialized at the red points) converge to one
of the two equilibria (0, 1) and (0,−1) whereas without regularization, GDA would cycle on the
level sets. In the right figure, we replace the exact expectations in VWGAN with approximations via
sampling and continuous time updates on α and v with discrete ones. For small learning rates and
large sample sizes, unregularized GDA continues to cycle. In contrast, the regularization approach of
[36] converges to the (0, 1) equilibrium.
The two applications of HCC games in GANs are not isolated findings but instances of a broader
pattern that connects HCC games and standard GAN formulations. As noted by [27], if updates
in GAN applications were directly performed in the “functional space”, i.e. the generator and
discriminator outputs, then standard arguments from convex concave optimization would imply
convergence to global Nash equilibria. Indeed, standard GAN formulations like the vanilla GAN
[26], f-GAN [50] and WGAN [4] can all be thought of as convex concave games in the space of
generator and discriminator outputs. Given that the connections between convex concave games and
standard GAN objectives in the output space is missing from recent literature, in Appendix D.1 we
show how one can apply Von Neumann’s minimax theorem to derive the optimal generators and
discriminators even in the non-realizable case. In practice, the updates happen in the parameter space
and thus convexity arguments no longer apply. Our study of HCC games is a stepping stone towards
bridging the gap in convergence guarantees between the case of direct updates in the output space
and the parameter space.
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Figure 5: The above figures describes the evolution of the expected phenotype for two species A,B.
The left one corresponds to a safe initialization leading to periodic trajectories. The middle one
corresponds to an unsafe initialization where θ1(0) = θ2(0). The dynamics converge albeit to a
spurious equilibrium, that is different from the hidden game equilibrium (dash lines). Finally, the
right one corresponds to a safe initialization of the regularized game, which converges to a slightly
perturbed equilibrium (Theorem 7).

Evolutionary Game Theory & Biology. The study of learning dynamics in games has always been
strongly and inherently connected with mathematical models of biology and evolution. Typically, this
line of research is studied under the name of Evolutionary Game Theory [28, 67]. Zero-sum games
and variants thereof are of particular interest for this line of work as they encode settings of direct
competition between species (e.g., prey-predator or host-parasite/virus). Even in the simplest such
setting of matrix zero-sum games, used to capture competition between asexually reproducing species,
it is well known that the emerging dynamics can be non-equilibrating and even chaotic [61, 58].

Studying the effects of evolutionary competition between sexually evolving species results in sig-
nificantly more intricate models, as it does not suffice to merely keep track of the fractions of the
different types of individuals that self-replicate. Instead it is necessary to keep a much more detailed
accounting of the evolution of the frequencies of different genes that get reshuffled and recombined
to create new individuals, whilst giving evolutionary preference to the most fit individuals given the
current environment. Recent work on intersection of learning theory and game theory has provided
concrete such game theoretic models [37, 14, 44, 42]. Due to the intricate nature of their dynamics,
deciding even the simplest questions in regards to them (e.g. does genetic diversity survive or not?)
is typically computationally hard [43].

A notable exception, where the dynamics of sexual evolution and, in fact, sexual competition have
been relatively thoroughly understood, is the work of [57], on two species (host-parasite) antagonism.
The outcome of this competition depends on their respective phenotypes (informally their properties,
e.g., large wings versus small wings.) of the two species. The crucial assumption that makes this
model theoretically tractable is that the phenotype for each species is a Boolean attribute (this
assumption is also used [38]). Despite these simplifications, the dynamics are still not equilibrating
and are, in fact, cyclic for almost all initial conditions. Two natural questions emerge: 1) Is the almost
everywhere condition necessary? I.e. Do there exist initial conditions which are not cyclic? 2) More
importantly, can a slightly perturbed dynamic stabilize these systems and converge to a meaningful
equilibrium? Next, we will see how our framework addresses both of these questions.

To understand the connection these we will examine the model of [57] in more detail. Concretely,
the phenotype of species A,B can be described as a Boolean function over the species genome
which is encoded by a binary string (this acts as a simplified version of a DNA string). While the
phenotype plays the dominant role for the survival of the species, sexual reproduction modifies only
the genotype of an organism. As a result the species are actually involved in a hidden zero-sum game.
More formally, each species is game-theoritically represented as a team of agents where each agent
controls one bit of the genotype:

GA = (gA1 , · · · , gAn ),GB = (gB1 , · · · , gBm)

uA = L[PhenotypeA(GA),PhenotypeB(GB)]

uB = −uA

Where gAi , g
B
j ∈ {0, 1}, PhenotypeA,PhenotypeB is a Boolean function (e.g., AND,XOR) and

L is a 2× 2 matrix encoding a zero-sum game (e.g., Matching Pennies). Naturally, one can allow
agents to use randomized/mixed strategies in which case the expected utilities of all agents/genes
are defined using the standard multi-linear extension of utilities. Thus, these models of evolutionary
sexual competition share the same basic structure as hidden linear-linear games, which explains their
recurrent, non-equilibrating nature [65].

9



In Figure 5, each gene/agent gAi tunes one real variable θi such that Pr[gAi = 1] = σ(θi) and
gene/agent gBj tunes one real variable φj correspondingly. Choosing as Boolean phenotype to
be the XOR of two genes, almost all initializations are safe for any bilinear game with a mixed
equilibrium. Actually, only the case θ1(0) = θ2(0) or φ1(0) = φ2(0) can be problematic, since for
XOR the expected phenotype is bounded in [0, 0.5] and a mixed equilibrium out of this range would
be infeasible. Finally, leveraging Theorem 7, we can design a regularized version of the game such
that the dynamics converge arbitrarily close to the true von Neumann solution of these games, which
is encoded by the min-max strategies of the hidden bi-linear zero-sum game.

5 Discussion & Future Work

While this work is a promising first step towards understanding GAN training, significant challenges
remain. Neural network architectures do not use disjoint set of parameters for each of the outputs.
Additionally, the hidden competition of GANs can take place in an output space of probability
distributions and classifiers whose vector space dimension is typically infinite. On the bright side, we
establish point-wise (day to day) convergence results which are, to the best of our knowledge, the first
result of their kind for a wide class of non-convex non-concave games that do not necessarily satisfy
the Polyak-Łojasiewicz conditions studied in [68]. Such conditions imply that the notions of saddle
points, global min-max and stationary points coincide. Instead our work showcases how to make
progress without leveraging such strong assumptions in zero-sum games. Beyond ML applications,
we believe that our framework could provide even further insights for evolutionary game theory,
mathematical biology as well as team-zero-sum games. For example an interesting hybrid class of
games could be network generalizations of team-zero-sums games, e.g. by combining [12] and [57].
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