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ABSTRACT

Generative models are becoming a promising tool in AI alongside discriminative
learning. Several models have been proposed to learn in an unsupervised fash-
ion the corresponding generative factors, namely the latent variables critical for
capturing the full spectrum of data variability. Diffusion Models (DMs), Gen-
erative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are
of particular interest due to their impressive ability to generate highly realistic
data. Through a systematic empirical study, this paper delves into the intricate
challenge of how DMs, GANs and VAEs internalize and replicate rare genera-
tive factors. Our findings reveal a pronounced tendency towards memorization of
these factors. We study the reasons for this memorization and demonstrate that
strategies such as spectral decoupling can mitigate this issue to a certain extent1.

1 INTRODUCTION

In recent years, the machine learning field has witnessed a significant increase in the popularity and
advancement of generative models (Scao et al., 2022; OpenAI, 2022; Taylor et al., 2022; Zhang
et al., 2022b; Iyer et al., 2022; Touvron et al., 2023). These models have significantly advanced
approaches to e.g. image generation and natural language processing, demonstrating the ability to
create outputs that closely resemble real-world data (e.g. Karras et al. (2020); Zhang et al. (2022a)).
The ongoing development and increasing adoption of these technologies, particularly large language
models, have garnered substantial attention from academia and industry, while also becoming a topic
of public interest (De Angelis et al., 2023; Mohamadi et al., 2023).

At the heart of these generative models lies the concept of generative factors (also known as factors
of variation, or latent variables), which fundamentally affect the characteristics of the generated
outputs (Liu et al., 2023; Bengio et al., 2013; Higgins et al., 2018; Träuble et al., 2021). These factors
encompass many elements, from simple attributes such as colour or size in images to more complex
features like sentence structure or thematic elements in text. Understanding and manipulating these
generative factors is a key to harnessing the full potential of generative models (Fard et al., 2023;
Yang et al., 2021; Shao et al., 2017).

Despite extensive research surrounding generative models (Bond-Taylor et al., 2022), one aspect
remains notably under-explored: their ability to learn and replicate rare generative factors. Rare
generative factors (RGFs) are latent variables which are highly skewed in their frequency of appear-
ance in the real world (and hence in datasets) but play a critical role in the underlying data generating
process. RGFs appear across a wide array of applications, including medical imaging (Liu et al.,
2022), natural language generation (Mercatali & Freitas, 2021), and others.

A motivating example Consider a dataset composed of electrocardiogram (ECG) recordings with
the RGF being the presence of the Brugada Syndrome, a rare disorder that can lead to sudden car-
diac arrest. This syndrome is more prevalent in people in their 30s or 40s (Speranzon et al., 2024)
but can also occur in childhood (Peltenburg et al., 2022). A dataset collected of patients having the
disease is hence more likely to have individuals aged 30 to 50 with the disease. Generative models
could generate new data to enrich dataset diversity, enhancing AI-based diagnostic tools or facili-
tating the early detection of this syndrome across a wider patient population, ultimately leading to
timely interventions and more precise medical prognoses. This goal requires that generative models

1The code will be made available upon acceptance.
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not only replicating the distinct ECG patterns associated with the syndrome within the subset of
recordings where it is predominantly found, but also introducing these patterns into ECG recordings
across other ages not commonly associated with the syndrome.

Focusing on Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and Dif-
fusion Models (DMs), in this paper we take a step forward by exploring their ability to capture these
rare generative factors. We introduce a framework specifically designed to examine the effect of rar-
ity in generative factors on the learning process of generative models. Focusing on simple canonical
models (i.e. the original (plain) GAN architecture (Goodfellow et al., 2014), the standard VAE, a
simple Denoising Diffusion Probabilistic Models (Ho et al., 2020)) allows us to distill insights with-
out the confounding effects of additional complexities introduced in variant models, maintaining
focus on core learning dynamics across all three model types.

By taking rarity to the extreme, considering datasets where the skew in the distribution of generative
factors is pronounced, we pose a fundamental question: When faced with a dataset that is heavily
skewed in terms of the coverage of the generative factors, will a generative model successfully
learn rare generative factors? Addressing this question is crucial to understanding the limits of
current generative models and developing new methodologies that can better capture and represent
the diversity of generative factors, especially those that are rare. This exploration not only aims
to enhance the fidelity and diversity of model-generated outputs but also seeks to contribute to the
broader discourse on model robustness and fairness when dealing with skewed data distributions.

We show that plain GAN, VAE, and DM generally struggle to learn RGFs, tending instead to mem-
orize them. This memorization is distinct from the memorization of individual training examples,
as highlighted by recent studies. For instance, de Wynter et al. (2023) demonstrated how large
language models exhibit example memorization, while Carlini et al. (2023) found that diffusion
models tend to reproduce training examples during test time. Maini et al. (2023) showed that ex-
ample memorization can be distributed across various neurons and layers, and Akbar et al. (2023)
demonstrated memorization in diffusion models for synthetic brain tumour images. However, to the
best of our knowledge, the memorization of generative factors remains significantly under-explored
in the literature of generative models (Jegorova et al., 2023).

Generative models can replicate the data distribution they are trained on but this is not what we aim
for. We focus on a crucial aspect of unsupervised feature extraction: the ability to disentangle and
generalize RGF. We deliberately create skewed datasets where specific generative factors are present
only in one class, not to test if models can mimic this distribution, but to examine if they can abstract
these factors. Hence we focus not on how well models reproduce training data statistics, but on their
capacity to learn generalizable latent representations from biased inputs. The tendency of models
to memorize rare factor-class associations, rather than extending them to other classes, reveals a
limitation in their ability to discover the underlying data generating process (Liu et al., 2022). This
memorization of generative factors, highlights a significant challenge in unsupervised representation
learning. It underscores the difficulty these models face in separating class-specific features from
generalizable attributes when presented with skewed data. Our work provides valuable insights into
the limitations of current generative models in learning robust, transferable representations from
imbalanced datasets, opening new avenues for improving their generalization capabilities.

To summarise, we make three main contributions:

• A framework designed to systematically study the learning of RGFs in generative models.

• Through an extensive empirical study, we evaluate the capability of GANs, VAEs and DMs
to learn and replicate RGFs, providing valuable insights into the dynamics of generative
learning in the presence of data rarity.

• We identify and discuss the limitations in the context of RGF learning, explore the under-
lying reasons for these limitations, and evaluate a potential mitigation strategy specifically
for GANs.
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2 PRELIMINARIES

Consider a dataset {(xi, fi, yi)}ni=1, where xi ∈ X is a data instance, fi ∈ {0, 1} is a binary2

generative factor and yi ∈ {1, ..., C} is a class label. For example, xi is an image of a digit, fi
indicates the color (green for 0, red for 1), and yi is the value of the digit.

Central to our work are the generative factors, informally defined as:

Definition 1 (Generative Factors, informal) The generative factors are the underlying latent vari-
ables that fully characterise the variation of the data in the domain X .

Our work focuses on the case of rare generative factors, formally defined as follows:

Definition 2 (Rare Generative Factor, RGF) For c ∈ {1, ..., C}, let Sc,0 = {i|yi = c and fi = 0}
and Sc,1 = {i|yi = c and fi = 1}. A generative factor f is rare if there exists a class k ∈ {1, ..., C}
such that |Sk,0| ≪ |Sk,1| and for all c ̸= k, |Sc,0| ≫ |Sc,1|.

Intuitively, a dataset with a RGF is skewed. In this paper, we take the skewness to the extreme3 and
consider the case where |Sk,0| = 0 for a particular class k and |Sc,1| = 0 for all other classes c ̸= k.

Note that we only use the data instances xi for the training of generative models. Generative factors
fi and class labels yi serve exclusively to evaluate (after training) the model’s ability to learn the
generative factors. This setting reflects real-world scenarios where explicit labels or factors might
not be readily available, challenging the model to capture the generative factors accurately.

2.1 EXAMPLES

We now briefly discuss motivating real-world examples of rare generative factors. For each
example, we provide a detailed description of the role of xi, fi and yi.

Example 1: Medical Imaging for Brain Health Across Different Ages

• xi - MRI scan of the brain.
• fi - A binary generative factor indicating the age group of the patient, either young (under

60) or old (60+).
• yi - The health condition identified by the scan, such as normal aging, mild cognitive im-

pairment, or Alzheimer’s disease.

In this example, the distribution of age is skewed because Alzheimer’s disease mostly affects older
people. Consequently, learning to understand the concept of age in relation to Alzheimer’s and
generating MRI images that accurately depict Alzheimer’s in younger individuals, which is still
possible with early-onset Alzheimer’s (Mendez, 2019), poses a significant challenge. This difficulty
arises from the rarity of early-onset Alzheimer’s cases in younger populations, making it difficult
for models to capture and replicate this condition accurately in generated images.

Example 2: Text Style in Literary Genres

• xi - A passage of text.
• fi - A binary generative factor indicating the text style, e.g. whether the text includes

archaic English words or not (a modern style).
• yi - The literary genre of the text, such as modern fiction, contemporary poetry, or historical

fiction.

In this example, text style might be a rare generative factor, since archaic English is uncommon in
modern fiction and contemporary poetry but frequently found in historical fiction. The challenge
for generative models is to learn the concept of text style from such skewed data.

Example 3: Car Images in Urban and Rural Environments

• xi - Image of a car.
2Our work can be extended to non-binary generative factors.
3We relax it in Appendix E.
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Figure 1: Framework for assessing the learnability of rare generative factors.

• fi - The environment in which the car is captured, urban or rural.
• yi - The brand of the car.

In this example, the rarity of the generative factor arises because luxury car brands, such as BMW,
are frequently observed in urban landscapes but are considerably less common in rural environ-
ments. This discrepancy presents a challenge in learning the generative factor of the environment
effectively.

3 FRAMEWORK FOR ASSESSING THE LEARNABILITY OF RGFS

We now present our framework for studying the learnability of RGFs, illustrated in Figure 1.

Setup: We start our investigation with a dataset Du = {(x(u)
i , f

(u)
i , y

(u)
i )} characterized by a uni-

form distribution of the generative factor; that is, within each class, the number of samples with
fi = 1 equals those with fi = 0. This balanced dataset serves as a baseline for understanding how
generative models perform under standard conditions, where no generative factor is particularly rare.

To understand the impact of an RGF, we construct a new dataset, Dr = {(x(r)
i , f

(r)
i , y

(r)
i )}, derived

from the original data instances in Du. In this tailored dataset, we introduce a deliberate skew:
for some selected class k, all examples have fi = 1, which signifies the presence of the RGF. In
contrast, for all other classes c ̸= k, all examples have fi = 0, indicating the absence of this factor.
These two datasets (Du and Dr) allow us to closely examine how the presence of a rare generative
factor influences the learning and generative capabilities of generative models.

To this end, we train two separate generative models (of the same type) for {x(u)
i } and {x(r)

i },
respectively. From each trained model, we then generate M samples for evaluation. To evaluate
these generated samples, we employ two oracle classifiers. These classifiers are trained on the
balanced dataset Du, serving two functions:

1. Label Classifier: This classifier is trained using data pairs {(x(u)
i , y

(u)
i )}, which consist

of the data instances and their corresponding class labels. Its role is to categorize the
generated samples into the correct classes, assessing the model’s ability to maintain class-
specific characteristics in the generated data.

2. Generative Factor Classifier: This binary classifier, trained on {(x(u)
i , f

(u)
i )} pairs, fo-

cuses on identifying the presence or absence of the generative factor within each sample.

We ensure that both classifiers achieve high accuracy (on a separate test set).

Next, we use the classifiers to determine both the class label and the binary generative factor for each
of the M samples produced by the respective generative model, and then calculate the distribution
of the generative factor for each class c. We denote by P

(u)
c the proportion of instances with f = 1

within class c, generated by the generative model trained on the uniformly distributed dataset Du.

4
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Similarly, P (r)
c represents the proportion of instances with f = 1 from class c, generated by the

generative model that is trained on the skewed dataset Dr.

Our hypothesis We hypothesize that for each class c, the proportion of generated instances by both
trained models will be comparable. This hypothesis is grounded in the notion that effective learning
by generative models should allow them to extract the generative factors, regardless of their rarity
in the training data, with a high degree of fidelity. Essentially, this suggests that the models’ ability
to discern and generate generative factors is not significantly hindered by the skewed distribution of
these factors in the training dataset.

Assessing the learning of RGF We perform a statistical test of the hypothesis to compare the
proportions P (u)

c and P
(r)
c . We employ a one-sample z-test, which allows us to determine whether

the observed differences in proportions between the two groups are statistically significant. We
denote by zc the z-score4 corresponding to class c,

zc = (P (r)
c −P (u)

c )/

√
P

(u)
c (1−P

(u)
c )

M . (1)

To evaluate the capability of generative models to learn RGFs, we calculate the p-value associated
with each computed z-score zc for class c. When p-value > 0.05, we uphold the null hypothesis,
which implies that the model has effectively learned the generative factor. This outcome suggests
that there is no significant difference between the expected and observed frequencies of the RGF
among the generated instances, indicating successful learning by the generative model.

Conversely, a p-value less than 0.05 leads to the rejection of the null hypothesis. Specifically, for
the class k where the rare generative factor has been introduced, and where zk > 0, this outcome
signifies that the generative model has not learned but rather memorized the generative factor for this
class. Similarly, if we observe a p-value below 0.05 for a class c ̸= k accompanied by zc < 0, this
also indicates memorization of the generative factor by the generative model for classes other than
k. It is noteworthy to mention that deviations from these specified conditions are rare in practice,
underscoring the models’ tendency to either learn or memorize generative factors. The subsequent
section details the datasets and the specific generative factors employed in our study.

4 DATASET AND GENERATIVE FACTORS

In this work we primarily utilized the Colored-MNIST dataset (Arjovsky et al., 2020) and the
Morpho-MNIST dataset (Castro et al., 2019), both are stylish versions of the classical greyscale
handwritten digits classification MNIST dataset (LeCun et al., 1998). The Colored-MNIST dataset
enhances the original digit images by incorporating a color scheme of green and red. The Morpho-
MNIST dataset modifies the digits with morphological modifications, such as variations in thickness,
swelling, and the introduction of fractures. To extend our analysis beyond handwritten digits, we
also employed a subset of the Comprehensive Cars (CompCars) Surveillance dataset (Yang et al.,
2015). From this dataset, we selected images of two car makes (Volkswagen and Toyota) in two
colours (black and white), allowing us to explore our hypotheses in a different domain. Table B.2 in
Appendix B details the sample distribution of our CompCars subset.

We designed our VAE, GAN and DM to work with RGB (3 channels) images. Consequently, to
accommodate the greyscale images from the Morpho-MNIST dataset, we transformed them into
colour images. This is achieved by randomly assigning either a red or a green colour to each image,
ensuring an equal probability distribution between the two colours for the images with morphologi-
cal modifications.

As detailed in Section 3, for each generative factor under consideration we created two datasets:

1. A balanced dataset Du, where the generative factor is uniformly distributed across all
classes. For MNIST-based experiments, this dataset comprises 60000 images with an equal
representation of each digit. In the case of the CompCars subset, we utilized 1448 images,
ensuring an even distribution between Volkswagen and Toyota cars.

2. A dataset Dr with rare generative factor. For MNIST-derived datasets, we introduce the
rare generative factor to a single digit class. We specifically chose digits “1” and “2” as

4The z notation should not be confused with a latent space.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

representative cases, conducting separate experiments where the rare factor is exclusively
associated with each of these digits. This approach allows us to examine how the shape of
the digit might influence the model’s ability to learn or memorize the rare factor. For the
CompCars subset, we assign the rare generative factor to car make.

We trained VAE, GAN and DM separately on each dataset. The full training details and model
architectures are described in Appendix A.

After training the models for each generative factor, we generated M = 1000 synthetic images. The
oracle classifiers are used to detect the class (digit for MNIST, car make for CompCars) and the
presence of the generative factor in the synthetic images.

4.1 GENERATIVE FACTORS

Variations in colour and morphology are naturally used in our work as generating factors, as they are
important in determining the visual appearance of the digits. Specifically, we defined the following
5 generative factors for digits: Colour, Fracture, Thinning, Thickening, and Swelling. Note that
only one generative factor is introduced at a time. Figure D.2 (see Appendix D) demonstrates the
case of rare generative factors where digit “1” is selected as the class in which the generative factor
is introduced (for example, for the Thickening factor all images of digit “1” are thick while other
digits retain a standard thickness). For the colour factor, the presence of green is designated as the
rare generative factor. For CompCars, colour is the generative factor, where all Volkswagen cars are
white and Toyota cars are black.

For digits, the generative factors are introduced in the images using the Morpho-MNIST python
library.5 For Thinning and Thickening the value of the amount parameters is 0.7 and 1, respectively.
For Swelling the value of the strength parameter is 3 and the radius is 7. For Fracture the value of
num frac is 3. For cars, the generative factor is introduced by selecting the corresponding subset of
the CompCars dataset.

4.2 ORACLE CLASSIFIERS

As mentioned in Section 3, we rely on oracle classifiers to categorize images generated by VAEs,
GANs and DMs. We employed Convolutional Neural Networks (CNN) as our oracle classifiers.
The details of the architectures appear in Appendix A. For each generative factor we trained two
oracle classifiers on the balanced dataset. For the MNIST-derived datasets, we trained one classifier
for digit classification and another for factor classification, resulting in a total of 10 classifiers. Some
images from the dataset used to train the digit classifier (10-class problem) and colour classifier (2-
class problem) appear in Figure B.1 (see Appendix B). For cars, we trained one classifier for car
make classification and another for colour classification, using the data shown in Table B.2.

The MNIST oracle classifiers are trained using SGD for 8 epochs employing the cross entropy loss,
batch size of 64, learning rate of 0.01, and momentum of 0.5. For car make classification, we used
100 epochs. To evaluate the performance of these classifiers, we used a test-set of 20000 samples
for digits and 185 samples for cars. The classification accuracies, as detailed in Table B.1, show
that all classifiers achieved a test-set accuracy exceeding 92%, underscoring their high efficacy in
accurately identifying both digits, car make and generative factors.

5 RESULTS AND DISCUSSION

Utilizing the framework of Section 3 and the datasets (Section 4), we now present our findings. Due
to space constraints, we have placed the majority of tables and figures in the Appendix.

Initially, we used the balanced datasets Du for each RGF, trained the models, and then generated
M = 1000 synthetic images. As expected, P (u)

c approximates 0.5 in the majority of cases, indicat-
ing a balanced representation of the generative factors within the synthetic images (for details see
Tables C.3 and C.4 in Appendix C).

5https://github.com/dccastro/Morpho-MNIST
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Figure 2: Some generated images by a Diffusion model trained on CompCars and Colored-MNIST
skewed datasets.

Table 1: z-scores for all models (VAE, GAN without SD, GAN with SD, DM) where all images of
digit “1” have RGF. Bold: similar proportions (p > 0.05), indicating RGF learning.

Digit Colour Fracture Swell Thick Thin
VAE/GAN/GAN-SD/DM VAE/GAN/GAN-SD/DM VAE/GAN/GAN-SD/DM VAE/GAN/GAN-SD/DM VAE/GAN/GAN-SD/DM

0 - / - / - / - -1.80 / 0.01 / 1.36 / -28.56 -5.28 / -4.77 / 0.89 / -6.51 -4.66 / -9.09 / - / -9.28 -3.70 / -8.65 / 0.82 / -40.68
1 -6.14 / 17.05 / -5.49 / 14.77 3.92 / -0.97 / 1.44 / 32.75 -0.94 / 4.23 / -5.68 / 9.57 2.39 / 2.96 / -4.97 / 26.33 7.15 / 22.90 / 0.16 / 14.54
2 - / -40.92 / -2.34 / - -1.71 / -15.49 / -2.34 / -4.42 -8.48 / -4.87 / -0.29 / -9.43 -7.11 / -4.36 / -7.89 / -12.10 -2.36 / -5.82 / -7.17 / -16.81
3 -24.94 / -37.48 / -82.23 / - -2.30 / -10.30 / -5.54 / -14.90 -2.19 / -5.89 / -11.27 / -6.85 -12.21 / -8.36 / -4.25 / -14.93 -3.62 / -19.58 / -7.74 / -50.81
4 - / - / - / - 0.03 / -15.20 / -5.08 / -37.92 -7.23 / -14.59 / -9.91 / -7.60 -5.97 / -56.40 / -16.55 / -8.45 -1.23 / -8.71 / -4.45 / -15.66
5 - / - / - / - 0.59 / -4.26 / -2.48 / -11.92 -3.55 / -9.86 / -16.00 / -9.21 -22.98 / -19.24 / -15.89 / -20.45 -3.60 / -12.31 / -4.39 / -12.13
6 - / -34.87 / -4.93 / - -1.65 / -34.87 / -4.93 / -16.97 -3.07 / -13.66 / -8.55 / -5.63 -12.03 / -42.80 / -14.31 / -14.76 -5.57 / -11.97 / -11.03 / -66.40
7 - / -40.20 / -7.77 / - -0.79 / -16.46 / -7.77 / -14.11 -10.78 / -7.93 / -9.53 / -13.31 -2.38 / -8.80 / -6.09 / -22.88 -0.78 / -7.90 / 0.47 / -7.90
8 -10.29 / -65.37 / -2.97 / - -2.25 / -0.87 / -2.97 / -14.22 -5.66 / -8.03 / -0.64 / -7.26 -1.34 / -14.22 / -3.38 / -23.75 -5.59 / -11.85 / -11.35 / -13.32
9 - / -11.09 / -6.50 / - -5.48 / -11.09 / -6.50 / -14.44 -8.57 / -12.33 / -3.48 / -7.04 -1.62 / -23.56 / -11.47 / -15.23 -1.25 / -11.60 / -7.83 / -6.49
Total -75.30 / -39.18 / -44.87 / -42.67 -2.21 / -21.28 / -9.57 / -18.87 -14.60 / -21.13 / -15.49 / -17.49 -14.01 / -33.41 / -24.97 / -20.64 -7.86 / -21.09 / -13.27 / -35.08

Subsequently, for each RGF, we trained the models using the skewed dataset Dr and determined the
proportions P (r)

c for each digit (for MNIST dataset) and car (for CompCars dataset). We then used
Eq. (1) to calculate the z-scores and report the results in Tables 1, 2 and 3.

5.1 MEMORIZATION OF RGF

Comparing the proportions P
(u)
c and P

(r)
c via the z-scores in Tables 1, 2 and 3 underscores the

propensity of generative models to memorize RGFs. For instance, GAN exhibits a notable bias
towards associating the green colour with digits “1” and “2”, in contrast to the red colour, which
is more frequently linked with the remaining digits. Specifically, when the green color is assigned
to digit “1”, an overwhelming 87% of generated images display this characteristic, a stark contrast
to the 35% for the balanced data. Conversely, the presence of green in images of other digits is
minimal, hovering around 1%, indicating a clear memorization of the green color for digit “1”
without extending this rare factor to other digits. A similar trend is evident when the colour factor
is applied to digit “2” (see Appendix D for detailed results).

The large z-scores highlight the significant differences in proportions between P
(u)
c and P

(r)
c , con-

firming the memorization effect. This memorization phenomenon is not limited to colour in digit
datasets. It extends, yet to varying degrees, across other generative factors we studied. In the case of
car images, we observe a similar trend where the models tend to strongly associate colour with a car
make. The observed pattern suggests a broader trend: GANs and DMs exhibit a stronger tendency
towards memorization of RGFs compared to VAEs, both in digit recognition and car classification
tasks. Visual inspection suggests that DM provides the highest image quality, as shown in Figure 2,
but at the cost of increased memorization (the images generated using VAE and GAN are shown
in Appendix D). This different behaviour across model types and datasets highlights the nuanced
ways in which various generative architectures approach the challenge of learning from skewed data
distributions.

5.2 HOW RGF MEMORIZATION ORIGINATES IN GANS?

We are interested in understanding how memorization of RGFs happens. We picked GANs for
two main reasons: first, because they exhibited a stronger tendency to memorize RGFs in our ex-
periments compared to VAEs, and second, because their architecture includes a discriminator that
allows us to explore the role of adversarial training in potentially encouraging this memorization

7
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Table 2: z-scores for all models (VAE, GAN without SD, GAN with SD, DM) where all images of
digit “2” have RGF. Bold: similar proportions (p > 0.05), indicating RGF learning.

Digit Colour Fracture Swell Thick Thin
VAE / GAN / GAN-SD / DM VAE / GAN / GAN-SD / DM VAE / GAN / GAN-SD / DM VAE / GAN / GAN-SD / DM VAE / GAN / GAN-SD / DM

0 -20.84 / - / -78.05 / - -1.16 / 0.59 / 2.73 / -22.58 -1.63 / -4.54 / 3.36 / -24.44 -9.86 / -8.20 / -4.92 / -21.55 -4.11 / -10.53 / 1.74 / -42.08
1 -23.41 / -12.64 / -22.99 / -89.1 -0.38 / -42.82 / -38.40 / -26.36 -8.76 / -11.04 / -14.67 / -14.38 -7.24 / -28.73 / -45.43 / -15.81 -6.84 / -14.10 / -5.68 / -20.25
2 17.24 / 13.64 / 3.12 / 42.09 1.88 / 0.42 / -2.38 / 1.83 3.27 / -0.40 / -1.17 / 8.23 6.16 / 9.99 / 0.06 / 11.74 5.04 / 7.25 / -3.14 / 15.93
3 -26.85 / -25.03 / -30.88 / - -4.10 / -0.65 / -2.84 / -6.92 -4.10 / -4.31 / -11.34 / -6.57 -13.58 / -15.00 / -10.94 / -36.83 -2.26 / -32.70 / -11.01 / -18.24
4 -43.88 / - / - / - -0.27 / -29.01 / -6.32 / -9.89 -6.16 / -2.21 / -10.69 / -7.06 -5.12 / - / -62.51 / -8.78 -3.65 / -12.04 / -12.73 / -10.14
5 - / - / - / - -4.36 / -0.07 / -4.39 / -3.67 -2.00 / -4.89 / -11.96 / -21.07 -22.69 / -43.46 / -22.24 / - -2.87 / -16.09 / -9.24 / -12.53
6 - / -49.63 / -16.42 / - -0.76 / -19.33 / -16.32 / -10.92 -2.17 / -6.03 / -5.50 / -7.05 -9.70 / -27.05 / -21.60 / -11.03 -5.34 / -17.38 / -6.17 / -30.48
7 -17.70 / -35.28 / - / -70.75 -2.25 / -16.87 / -7.84 / -7.93 -17.03 / -4.31 / -5.56 / -10.39 -7.93 / -12.31 / -22.25 / -13.44 -1.28 / -17.33 / 0.17 / -20.8
8 -55.44 / -45.78 / -8.21 / -69.9 -0.30 / -2.86 / -2.12 / -7.11 -7.87 / -8.50 / -4.17 / -7.7 -1.91 / -1.93 / -9.05 / -22.24 -5.03 / -17.35 / -6.72 / -18.66
9 - / - / - / - -3.49 / -23.71 / -11.12 / -9.14 -7.85 / -7.26 / -10.43 / -8.23 -2.80 / -32.17 / -29.76 / -10.42 -4.98 / -14.81 / -5.90 / -10.6
Total -39.94 / -37.66 / -42.60 / -47.28 -4.27 / -21.74 / -19.12 / -20.83 -14.81 / -15.71 / -19.33 / -20.83 -17.05 / -34.28 / -43.87 / -23.01 -9.95 / -35.36 / -15.23 / -32.41

Table 3: CompCars, z-scores for all models (VAE, GAN without SD, GAN with SD, DM), with
colour RGF: white Volkswagen, black Toyota. Bold: similar proportions (p > 0.05), indicating
RGF learning.

Make VAE GAN GAN-SD Diffusion Models
Black White z Black White z Black White z Black White z

Volkswagen 161 397 13.11 153 425 12.28 132 350 10.64 153 204 9.98
Toyota 336 106 -11.33 334 88 -8.16 454 64 -17.05 605 38 -19.45
Total 497 503 2.09 487 513 4.62 586 414 -1.67 758 242 -2.07

behaviour. Indeed, we analysed the discriminator loss during GAN training with respect to the “real
label” using a separate balanced validation set of 2000 images of digits and 185 images of cars.

To do this, we computed the loss only for images where RGFs are applied (“1” and “2” for MNIST
and Volkswagen for CompCars). We differentiate between images featuring RGFs and those with-
out.

Figure 3 illustrates the discriminator loss for the colour factor in MNIST data, with RGF present
in digit “1” (Appendix D presents results for other RGFs and digits). In this plot, solid lines depict
the loss associated with images containing RGFs (i.e. green images), while dashed lines indicate
the loss for images lacking RGFs (i.e. red images). A green horizontal dashed line represents the
threshold loss at the discriminator’s decision boundary between identifying images as real or fake,
corresponding to a loss of log(2) when the discriminator output logit is 0.

Figure 3: Discriminator loss with re-
spect to the ”real label”, where the
colour RGF is introduced in digit “1”.

When training the GAN with the balanced dataset Du,
there appears to be no significant discrepancy between
the loss for images with RGF and those without, sug-
gesting that the discriminator does not differentiate based
on the presence of RGF. In other words, the discrimina-
tor is invariant to RGF. However, training on the skewed
dataset Dr, we observe a gap between the losses for im-
ages with and without RGF. This indicates that despite
all images being “real”, the discriminator classifies im-
ages with and without RGFs differently, losing its invari-
ance to RGFs. This differentiation likely stems from the
spurious correlation between the digit and the RGF, rem-
iniscent of the “gradient starvation” phenomenon identi-
fied by Pezeshki et al. (2021) in the context of discrimi-
native learning. This phenomenon, where the model ex-
cessively focuses on dominant features at the expense of
others, may explain the discriminator’s skewed learning,
underlining the complexity of addressing memorization
of RGFs in GANs.

5.3 MITIGATING MEMORIZATION IN GANS BY SPECTRAL DECOUPLING

Our next focus is to evaluate if the Spectral Decoupling (SD) technique, previously proposed by
Pezeshki et al. (2021) to address the issue of gradient starvation, can also help in reducing the
memorization of RGFs by GANs.
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Table 4: RGF learning (L) vs. memorization (M) summary. Notation: VAE/GAN/GAN-SD/DM. A
total of 43 cases were learned out of 440.

digit RGF in digit 1 RGF in digit 2
colour frac swell thick thin colour frac swell thick thin

0 M/M/M/M L/L/L/M M/M/L/M M/M/M/M M/M/L/M M/M/M/M L/L/M/M L/M/M/M M/M/M/M M/M/L/M
1 M/M/M/M M/L/L/M L/M/M/M M/M/M/M M/M/L/M M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M
2 M/M/M/M L/M/M/M M/M/L/M M/M/M/M M/M/M/M M/M/M/M L/L/M/L M/L/L/M M/M/L/M M/M/M/M
3 M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/L/M/M M/M/M/M M/M/M/M M/M/M/M
4 M/M/M/M L/M/M/M M/M/M/M M/M/M/M L/M/M/M M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M
5 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/L/M/M M/M/M/M M/M/M/M M/M/M/M
6 M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M
7 M/M/M/M L/M/M/M M/M/M/M M/M/M/M L/M/L/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/L/M
8 M/M/M/M M/L/M/M M/M/L/M L/M/M/M M/M/M/M M/M/M/M L/M/M/M M/M/M/M M/L/M/M L/M/M/M
9 M/M/M/M M/M/M/M M/M/M/M L/M/M/M L/M/M/M M/M/M/M M/M/M/M M/M/M/M L/M/M/M M/M/M/M
all M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M M/M/M/M
Count 0/0/0/0 6/3/2/0 1/0/3/0 2/0/0/0 3/0/3/0 0/0/0/0 6/4/0/1 1/1/1/0 1/1/1/0 1/0/2/0

In the context of discriminative learning, SD augments the loss function with a regularization term
λ
2 ∥ŷ∥

2, where λ is a regularization strength hyperparameter, and ŷ is the logits vector output by the
model for a given input batch. This regularizer aims to restrain the magnitudes of logits, thereby
preventing any single (and potentially spurious) feature from overpowering the model’s output.

We incorporated this regularization method into the GAN training process for the initial 80 epochs
by adding the SD regularizer to the discriminator’s loss computation for real image batches, with
λ = 0.8 (Appendix D presents results for different λ values). After 80 epochs we removed the
regularizer for further training until 200 epochs, allowing the GAN image quality to improve.

The effect of SD is evident in Figure 3 , where the discriminator loss dynamics (illustrated by
solid and dashed black lines) converge more closely during the SD application phase (up to epoch
80), suggesting increased discriminator invariance to RGF and thus mitigating the memorization
problem. In addition, Tables 1 and 2 demonstrate that applying SD generally results in smaller
z-scores, suggesting reduced memorization.

Finally, in Table 4 we used the p-values corresponding to the z-scores in Tables 1 and 2 (for MNIST
data) to deduce whether the RGF is learned (L) or memorized (M). Note that all DM values are
M, indicating a strong tendency of diffusion models to memorize RGFs. We observe that SD helps
in mitigating memorization to some extent for GAN. For CompCars data, GAN with SD achieved
learning in one case only (Table 3). We report results using two additional random seeds in Appendix
F, further validating these findings.

6 CONCLUSION

We are interested in examining how generative models like VAEs, GANs and DMs learn rare gener-
ative factors (without explicit supervision). Through a systematic empirical study involving several
generative factors and two datasets, we showed that generative models exhibit a propensity towards
memorizing rare generative factors. We demonstrated that regularization techniques such as spectral
decoupling can mitigate this memorization tendency to a certain degree.

There are several intriguing directions for future research. Firstly, applying our framework to other
types of generative models, such as normalizing flows, to assess their efficacy in learning rare gen-
erative factors. Secondly, a deeper exploration into the learnability of rare generative factors across
a broader array of (real-world) datasets would significantly enhance our understanding of how these
models perform in diverse scenarios. Lastly, exploring the integration of novel regularization tech-
niques or architectural modifications could offer further insights into mitigating memorization and
improving the learnability of rare generative factors.
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