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Abstract
Building a graph learning application requires performing a series of data pro-
cessing steps, such as extracting data from tabular sources into a graph, cleaning
the graph, extracting node/edge features, moving the data into a graph learning
library to generate embeddings, and possibly saving these embeddings in a soft-
ware for further processing. Many of these steps can be performed in an efficient
way by database management systems (DBMSs), which come with high-level
data models and query languages, and functionalities to export datasets into other
formats. However, no current DBMS is tailored for graph learning pipelines. We
present Kùzu, an open-sourced graph DBMS that aims to fill this gap. Kùzu is
an embeddable system that runs as part of users’ applications, implements the
property graph data model and the openCypher query language, and a graph-
optimized storage structures and join algorithms. Kùzu can ingest data from
several tabular raw file formats and export data to popular graph learning libraries.
We present Kùzu’s design goals, architecture, our ongoing work, and demonstrate
how it can be used to train large GNN models that do not fit into main memory.
Kùzu is available under a permissive license1.

1 Introduction and Motivation

Graphs are one of the most natural and widely adopted data models to model application data that is
naturally in the form of a network of entities and their connections. Such applications are ubiquitous in
social networks, financial networks, biological networks, amongst many other application domains [1].
Recent developments have shown the effectiveness of graph learning [2], which are techniques to
encode the nodes of a graph in low-dimensional embeddings, on many tasks [3, 4]. With the
development of several popular graph learning libraries, such as Pytorch Geometric [5] (PyG), Deep
Graph Library [6], and Graph Nets [7], as well as extensions of some graph analytics libraries, such
as NetworkX [8], these techniques are gaining wider adoption.

Developing graph learning models requires moving the raw files that contain an application’s records
into a graph learning library. In practice there is often a set of data preparation steps that need to be
performed before data can be used by the graph learning library. In many cases, application data
is stored in some tabular format, possibly extracted from a relational database management system
(DBMS). Further, data often needs a set of data preparation operations as shown in Figure 1a. These
include: (i) cleaning, such as filtering certain node and edge records; (ii) transformations, such as

1Link to source code: https://github.com/kuzudb/kuzu

Chen et al., Kùzu: Graph Learning Applications Need a Modern Graph Database Management System. Proceed-
ings of the Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30,
2023.
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(a) Overview of graph learning applications. (b) Kùzu in the graph learning ecosystem.

Figure 1: Graph learning/data science overview and the gap Kùzu aims to fill.

providing default values on node/edge properties; (iii) data integration, to enrich data with other
datasets; (iv) node/edge feature extraction; and (v) querying graph structures for data verification.

To perform such data preparation tasks, graph data scientists often write their own scripts that use
a mix of general data wrangling libraries, such as Pandas [9] or NumPy [10], and graph analytics
libraries such as NetworkX [8]. This approach has several shortcomings. First, these libraries do
not benefit from advanced data processing optimizations that DBMSs have pioneered over decades,
such as vectorized execution or intra-query parallelism. Second, these are in memory software
whose scalabilities are limited to datasets that fit in memory. Third, using multiple of these libraries
require performing expensive data movement and indexing steps. Instead, we argue that graph data
scientists can gain significant productivity by using a graph DBMS (GDBMS). GDBMSs implement
high-level query languages that can easily express common data preparation steps and are disk-based
systems that manage datasets larger than memory. However, existing GDBMSs, such as Neo4j [11],
Memgraph [12], and Amazon Neptune [13, 14], have several shortcomings that make them unsuitable
to develop graph learning pipelines. For example, they are not libraries and require setting up tedious
server and client processes. Further they have known performance problems [1, 15] as they do
not implement some of the modern techniques, such as vectorized query execution or columnar
storage [16], that have become common wisdom in the last decade in the DBMS community.

This extended abstract presents Kùzu as a new valuable resource for the graph learning community.
Kùzu is designed specifically for modern graph learning/data science applications. Figure 1b shows
the high-level position of Kùzu in the graph learning/data science ecosystem. Kùzu is an embeddable
system that runs as part of user programs. So it does not require setting any server and client processes
and users import it simply as a library. Kùzu manages data on disk, so can scale to very large graphs
and is architected based on state-of-the-art principles of managing graph-structured databases. Kùzu
can easily ingest raw files from popular formats and export data to popular graph learning/data science
librariess. Kùzu is being developed as an open-sourced system under the permissive MIT license.

2 Kùzu’s Design Goals and Features
We are designing Kùzu with two high-level goals: (i) very easy to use by modern graph learning/data
science applications, which require moving data from raw files into a graph learning or data science
library; and (ii) highly scalable and performant system that integrates the state-of-the-art knowledge
in the field of graph data management. We first review the system’s usability features and then the
more technical performance and scalability features.

2.1 Usability Features

Data Model and Query Language: Kùzu adopts the property graph data model [17], in which
application records are modeled as a set of labeled nodes and edges with key-value properties on
these nodes and edges. The system implements the openCypher query language [18], which is the
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open source version of the Cypher query language of the popular Neo4j GDBMS [11]. openCypher
is a SQL-like query language that has several elegant graph-specific syntax, such as the path syntax
for performing joins. As an example, the MATCH (a:User)-[e:Follows]->(b:User) statement
joins User records with the neighbors they “follow” in a social network application.

Programming Language Bindings: Kùzu is an embeddable library and at the time of writing has
Python, C/C++, Node.js, Rust, and Java APIs. Data scientists using any of these languages can install
and import Kùzu as a library and start creating and querying databases.

Supported Raw Input Files: Currently the system can ingest data from CSV, Apache Parquet [19],
Apache Arrow [20], and npy formats [21].

Integrations With Graph Learning and Data Science Libraries: Currently the system allows
converting databases or query results into PyG and NetworkX. Integrations to Deep Graph Library [6],
Graph Nets [7], and iGraph [22] are currently being implemented. We also have integrations
with LlamaIndex [23] and LangChain [24], which are frameworks to build large language model
applications. For LlamaIndex, users can store results of knowledge graphs extracted from LlamaIndex
directly in Kùzu. We also have an integration with LangChain to provide a natural language interface
over Kùzu. Although these are not necessarily graph learning libraries, these integrations could make
Kùzu a foundation for AI researchers who are studying topics related to integrating knowledge graphs
and graph learning with large language models.

Other Features: Kùzu supports all standard primitive and complex data types commonly available
in many DBMSs, such as integers, floats, booleans, strings, dates, timestamps, lists, maps, and structs.
The system supports a “fixed-list” data type, which is an optimized way for storing vectors of floats.
Fixed-list type is designed specifically to store embeddings. The system implements ACID-compliant
transactions, so updates are atomic and provide all-or-nothing behavior.

For reference, Listing 1 in Appendix A gives an example Python program that reads raw files into
Kùzu, performs several data preparation operations on it, and moves the data into PyG.

2.2 Performance and Scalability Features

We provide a very brief coverage of the system’s storage structures and query processor and refer
readers to our other resources [25] for details and coverage of other components, such as its buffer
manager, query optimizer, and transaction manager.

Storage Structures and Indices: Kùzu is a columnar system similar to modern read-optimized
DBMSs [26, 27]. Node properties are stored in vanilla column files. Edges are double indexed and
stored in columnar sparse row-based adjacency list indices, which are the core join indices in the
system to join node records. Edge properties are similarly stored in separate CSR-based structures.
Each node relation has by default a hash index to be able to look up nodes on their primary keys.

Query Processor: Kùzu has a vectorized query processor, i.e., scans produce vectors of tuples (of
size 2048) and each operator in the system processes vectors of data. Vectorized query execution is
the state-of-the-art query processor architecture for implementing query/read-optimized DBMSs. In
addition, the system has a factorized query processor. Factorization [28] is a state-of-the-art query
processing technique for compressing intermediate results during query processing when joins of
records are many-to-many, which is the typical scenario when finding paths in graph-structured
datasets. Finally, the processor implements in-query parallelism through a state-of-the-art technique
called morsel-driven parallelism in DBMSs [29].

A Note on Performance: Our resources also provide extensive experiments demonstrating that Kùzu
is competitive with or outperforms two state-of-the-art RDBMSs DuckDB [26] and Umbra [30] and
the Neo4j system. These experiments use a suite of microbenchmark queries and the popular LDBC
social network benchmark for graph databases that tests performance on multi-hop “traversal” queries.
For example, the comparison of Kùzu with the most competitive baseline system Umbra on the 7
LDBC interactive short read queries were as follows. On 5 of the queries Kùzu outperformed Umbra
with 1.3x, 8.8x, 11.3x, 12.6x, and 35.2x runtime improvement factors, while on two queries Umbra
was slightly more performant with factors of 1.1x and 1.2x. Factorization plays a particular role
for the good performance of Kùzu on these queries. We refer readers to more detailed performance
numbers in reference [25].
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Figure 2: Steps of a single mini-batch training when using Kùzu as a PyG Remote Backend.

3 Example Graph Learning-Specific Feature: PyG Remote Backend

The disk-based storage of Kùzu and its design as an embeddable library allows it to offer more
advanced features for graph data scientists than those mentioned in previous sections. As an example,
we next describe a feature that enables Kùzu to be used as a PyG Remote Backend, which are plug-in
replacements for PyG’s in-memory graph and feature stores [31] that can be used seamlessly with the
rest of the PyG interfaces. This allows users to train large-scale graphs that are stored in Kùzu (so in
its disk-based storage) and cannot fit into the in-memory default storage of PyG.

Using Kùzu as a PyG Remote Backend consists of two simple steps: (i) loading a graph into Kùzu
and obtaining, through 1 function call, the Kùzu feature_store and graph_store objects that
implement PyG’s Remote Backend interfaces; and (ii) changing 1 line of code in the PyG model code
to pass the Kùzu feature_store and graph_store objects into the PyG’s neighborhood sampler.
Figure 2 shows the overall computational and data movement steps when using Kùzu as a PyG remote
backend during a single mini-batch of training of a GNN model. PyG’s neighborhood sampler calls
functions on Kùzu’s graph and feature stores to fetch a mini-batch, which use the GDBMX library
to fetch a mini-batch from disk. In the last step, a mini-batch is scanned from disk, moved to CPU
and then to GPU for training by PyG. Note that Kùzu’s design as an embeddable library gives it
an important performance advantage for implementing tight integration with external libraries. For
example, because Kùzu runs as part of the application code and not as a separate server process,
moving data from Kùzu feature and graph stores to PyG can be done with zero-copy data movement.
This is not possible in server-client architectures.

Reference [32] presents an experiment demonstrating the memory usage vs per-batch training tradeoff
of using Kùzu to train a PyG Remote Backend. Briefly, the experiment uses the ogbn-papers100M
dataset from the Open Graph Benchmark [33] to train a 3-layer GNN. The experiment shows an
overhead of 1.35x when using as much memory as PyG (110G), which is the controlled setting where
Kùzu does not do any I/O since all data fits in memory. The performance overhead increases to 4.23x
when using about half the memory (60GB) of PyG, which is when data is primarily scanned from
disk but when PyG would fail with an out of memory error.

4 Conclusions and Future Work
We believe developers of graph learning applications can benefit from using a modern performance and
scability-focused GDBMS. GDBMSs offer high-level graph-specific query languages that simplify
data preparation steps that developers routinely perform in practice as well as state-of-the art data
processing optimizations. To this end, we are actively developing Kùzu as the GDBMS of graph
learning and data science. One of our major ongoing work is to natively support Resource Description
Framework (RDF) graphs [34, 35] . RDF is an alternative and popular graph data model that
is specifically suitable for modeling highly heterogeneous datasets, such as large encyclopedic
knowledge graphs, are encoded as (subject, predicate, object) triples. We are extending our data
model to natively ingest RDF triples so they can be queried natively in Kùzu. As an open-source
software released under a permissive license, we hope Kùzu can be a valuable resource for researchers
and developers working on graph learning.
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A Appendix: Example Graph Learning Program Using Kùzu
We present a simple example that shows how one could use Kùzu to develop a graph learning-based
pipeline. Consider a data imputation application, where we have a dataset of papers and citations
between papers where the category property of some papers are missing (i.e., NULL). We assume
that the datasets are stored in a paper.csv and cites.csv files. The goal is to replace the NULL values
with predicted category values using a graph convolutional network (GCN) to do the predictions.
The final output of the program is a new CSV file called “complete_paper.csv” that contains the
category of each paper, so without any NULL values.

Original Data Files:

• paper.csv: for each paper contains an id, title_bools, and category values. title_bools
is a 1433-size boolean array that describes the words included in each paper’s title. If a paper p’s
title contains word i, p.title_bools[i] is “true”. Otherwise it is false. This follows the format of the
dataset in the popular Cora datasets in Pytorch Geometric’s benchmark datasets [5]. category
is a numeric value between 0-6 to indicating the category of each paper, e.g., “Reinforcement
Learning”, in numeric form. Some of the paper records in paper.csv have empty category values.

• cites.csv: a simple edge file storing the ids of each citation between papers in (to, from) format.

Description of the Data Imputation Pipeline: We will take the following 6 high-level steps:

1. Preliminary Database Setup: Connect to Kùzu, prepare the schema of the graph database and
load paper.csv and cites.csv into Kùzu.

2. Data Cleaning for Preparing the Training Dataset: We need to train the GCN using the subgraph
of the original dataset that does not contain any paper nodes with NULL category values. We
perform a simple cleaning step to extract that “non-NULL” subgraph from Kùzu as training
dataset. In this step, we use Kùzu’s get_as_torch_geometric() function that converts query
results into PyG data objects.

3. GCN Training: This is the longest piece of code in the example and consists only of standard
PyG GCN code to define and train a GCN model using the training dataset we obtain in Step 2.

4. Obtain Predictions Using Trained GCN Model: Next, we extract the entire graph, so including
also the paper nodes with NULL categories, from Kùzu and predicting all of the category
values of all nodes. We can also select only the paper nodes with NULL categories and their
neighborhoods but predicting all nodes is simpler code to write in PyG.

5. Set Missing Category Values: For each paper a whose category is NULL, we set a’s category
to the prediction we obtained from Step 4.
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6. Final Output: We export all paper nodes from Kùzu to “complete_paper.csv” file.

The program, written in Python, is shown below. We assume the user has executed “pip install kuzu”
before running the below program to easily install Kùzu.

1 import kuzu
2

3 # Step 1.1: Obtain a connection to the database. "./ cora" is the
4 # directory where Kuzu will store the database files.
5 conn = kuzu.Connection(kuzu.Database("./cora"))
6 # Step 1.2: Define the nodes , edges and the properties on nodes/edges
7 conn.execute("CREATE NODE TABLE paper(id INT64 , title_bools BOOLEAN[],
8 category INT64 , PRIMARY KEY (id))")
9 conn.execute("CREATE REL TABLE cites(FROM paper TO paper)")

10 # Step 1.3: Load paper nodes and cites edges from CSV files
11 conn.execute("COPY paper FROM ./ paper.csv")
12 conn.execute("COPY cites FROM ./ cites.csv")
13 # Step 2: Data Cleaning Step: Extract the entire graph from Kuzu
14 # but exclude nodes whose category is missing , i.e., is NULL.
15 # get_as_torch_geometric () converts query results into PyG Data
16 # objects
17 train_data = conn.execute(
18 "MATCH (a:paper) -[r:cites]->(b:paper)
19 WHERE a.category IS NOT NULL and b.category IS NOT NULL
20 RETURN *").get_as_torch_geometric ()
21 # Set the x (node feature matrix) and y (node -level ground truth
22 # labels) of the training data. title_bools is converted to float as
23 # the GCN model requires node features to be floating point numbers.
24 train_data.x = train_data.title_bools.float()
25 train_data.y = train_data.category
26

27 # Step 3: Define and train a GCN model. Note this is standard PyG code
28 # that is independent of Kuzu and is presented for
29 # completeness. We will put ...’s in parts to simplify presentation
30 # Step 3.1: Prepare test/train split as 60-40 split
31 total_count = len(train_data.title_bools)
32 train_ids , test_ids = torch.utils.data.random_split(
33 range(total_count), (0.6 * total_count , 0.4 * total_count),
34 generator=torch.Generator ().manual_seed (42)
35 )
36 # Step 3.2: Add masks to identify train and test nodes (Omitted)
37 # Step 3.3: Define the GCN Model
38 from torch_geometric.nn import GCNConv
39 model = GCN(input_channels=train_data.x.shape[1], hidden_channels =32,
40 output_channels=train_data.category.max().item() + 1)
41 ...
42

43 # Step 3.4: Define the train/predict/test functions (code related to
44 # the optimizer to use is omitted)
45 def train(data):
46 model.train()
47 ...
48 return loss
49 def predict(data):
50 model.eval()
51 ...
52 return pred
53 def test(data):
54 predictions = predict(data)
55 ...
56 return test_accuracy
57 # Step 3.5: Perform the actual GCN model training for 100 epochs
58 for epoch in range(1, 101):
59 loss = train(train_data)
60 test_acc = test(train_data)
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61

62 # Step 4: Obtain and store the predicted category of each node
63 pred_data = conn.execute("MATCH (a:paper)-[r:cites]->(b:paper)
64 RETURN *").get_as_torch_geometric ()
65 pred_data.x = pred_data.title_bools.float()
66 pred_all = predict(pred_data).tolist ()
67 # Step 5: For each node a with a NULL category , set a’s category value
68 # to a’s predicted category. Kuzu’s get_as_df () function returns
69 # query results as a Pandas data frame
70 null_paper_ids = conn.execute("MATCH (a:paper)
71 WHERE a.category IS NULL
72 RETURN a.id").get_as_df ()
73 for paper_id in null_paper_ids:
74 conn.execute("MATCH (a:paper)
75 WHERE a.id = $pid
76 SET a.category = $pred",
77 [("pid", paper_id), ("pred", pred_all[paper_id ])])
78 # Step 6: Finally output all paper nodes as complete_paper.csv
79 conn.execute("COPY (MATCH (a:paper) RETURN *) TO complete_paper.csv")

Listing 1: Using GDBMX in a simple graph learning pipeline
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