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Abstract

The advent of abundant image data has catalyzed
the advancement of visual control in reinforcement
learning (RL) systems, leveraging multiple view-
points to capture the same physical states, which
could enhance control performance theoretically.
However, integrating multi-view data into represen-
tation learning remains challenging. In this paper,
we introduce SMuCo, an innovative multi-view
reinforcement learning algorithm that constructs
robust latent representations by optimizing multi-
view sequential total correlation. This technique
effectively captures task-relevant information and
temporal dynamics while filtering out irrelevant
data. Our method supports an unlimited number
of views and demonstrates superior performance
over leading model-free and model-based RL al-
gorithms. Empirical results from the DeepMind
Control Suite and the Sapien Basic Manipulation
Task confirm SMuCo’s enhanced efficacy, signifi-
cantly improving task performance across diverse
scenarios and views.

1 INTRODUCTION

The challenge of visual control or learning from pixels
entails addressing a reinforcement learning (RL) problem
where states are represented in the form of images. Exten-
sive investigations into this problem have been conducted in
prior studies, as noted in works such as [Kirk et al., 2021],
showcasing commendable performance on continuous con-
trol tasks by directly utilizing images as input. Despite these
achievements, the performance in visual control problems
lags behind that of works employing physical states as input
for direct control, as demonstrated in [Yarats et al., 2019].
This disparity primarily arises from the challenge of ef-
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fectively extracting all task-relevant information while fil-
tering out task-irrelevant details during the representation
learning process, as highlighted in [Zhang et al., 2021, Fan
and Li, 2022]. Notably, with the increasing availability of
multi-view data in various application scenarios, additional
perspectives now contribute to distinguishing task-relevant
information from task-irrelevant information, independent
of specific actions. In the context of the robot arm catching
problem, obtaining images from both upper and horizon-
tal viewpoints offers valuable insights. By conducting a
comparative analysis of images from these two perspec-
tives, relevant information about the running robot arm can
be extracted, effectively isolating it from background el-
ements that are irrelevant to the control task, as empha-
sized in [Xiang et al., 2020]. This highlights the pressing
need to develop a mechanism that enhances visual control
performance through skilled representation learning from
multi-view data.

An additional coveted attribute for the learned representation
in the visual control task of reinforcement learning is its
ability to encompass the predictability of future states based
on potential actions. At the same time, it should discard
task-irrelevant visual details, thereby capturing the temporal
structure of task-relevant dynamics, as discussed in [Fan and
Li, 2022]. This learned representation not only enhances the
robustness of the acquired policy in unfamiliar environments
but also addresses challenges stemming from the complexity
of high dimensionality and the causal confusion effect, as
outlined in [de Haan et al., 2019], which arises from task-
irrelevant information.

This study focuses on representation learning for visual
control tasks utilizing input images from multiple views, in-
troducing a novel reinforcement learning algorithm named
SMuCo. Under the multi-view setting [Federici et al., 2020,
Li et al., 2016, Fischer, 2020], where shared information
among multi-view observations is considered task-relevant
and unshared information is considered task-irrelevant, our
proposed method adeptly learns task-relevant temporal dy-
namics while discarding extraneous information for visual
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Figure 1: RL with Sequential Multi-view Total Correlation (SMuCo) framework takes multi-view observations over T time
steps as input to learn complete representations for downstream RL tasks. The dimension of each observation o⃗i (i = 1, 2, 3)
equals to the number of views V . The SMuCo objective is derived as a lower bound of sequential total correlation between
multi-view observation sequences and representations sequences.

control tasks. In our framework, depicted in Figure 1, di-
verse observation viewpoints are encoded into a unified rep-
resentation through deep neural networks, with this learned
representation serving as the state for training the policy
through reinforcement learning. To train the encoder, we
formulate the SMuCo objective, akin to sequential total cor-
relation for sequences of multi-view observations. This ob-
jective guides the learning process, emphasizing the preser-
vation of task-relevant temporal dynamics and the elimina-
tion of task-irrelevant information.

Our contributions of this work are summarized as follows:

• We propose SMuCo, a novel reinforcement learning
framework for representation learning from multiple
views in visual control problems based on multi-view
total correlation.

• We derive the SMuCo objective that represents the
multi-view total correlation between sequential obser-
vations and representations in SMuCo to learn repre-
sentations that can well capture task-relevant temporal
dynamics while discarding task-irrelevant information.

• We empirically validate that SMuCo can learn a suffi-
cient and concise representation from multiple views of
images by demonstrating that SMuCo achieves higher
scores than both model-free and model-based state-of-
the-art (SOTA) RL algorithms on a number of multi-
view image-based control tasks.

2 RELATED WORK

Visual Control in Reinforcement Learning. Various ef-
forts have been undertaken to develop robust representations
for visual control tasks in reinforcement learning. Some
approaches address the visual control problem through con-
trastive viewpoints, as seen in CURL, which utilizes con-
trastive learning to enhance agent robustness and generaliza-
tion [Laskin et al., 2020b]. Contrastive Predictive Coding

(CPC) proposes learning representations by predicting the
future latent space [van den Oord et al., 2018]. Additionally,
there are works grounded in the theory of bisimulation, such
as DBC [Zhang et al., 2021], a bisimulation-based reinforce-
ment learning algorithm aiming to extract state information
to eliminate redundancy in natural video input. PSE (Policy
Similarity Embedding) [Agarwal et al., 2021] and DBC-IR-
ID [Kemertas and Aumentado-Armstrong, 2021] represent
improved versions of DBC, with DBC-IR-ID incorporating
constraints in the representation space, intrinsic rewards,
and inverse dynamics. Furthermore, some works design re-
inforcement learning algorithms using information-theoretic
auxiliary tasks. Among these, DRIBO [Fan and Li, 2022]
establishes an RL framework akin to CURL, leveraging the
multi-view information bottleneck method [Federici et al.,
2020]. PI-SAC [Lee et al., 2020b] utilizes a conditional
entropy bottleneck (CEB) to predict future observations
and rewards. However, most of these existing methods are
not applicable to the multi-view setting. Notably, DRIBO
can only handle situations with two views due to the pair-
wise formulation of the objective. Random PadResize and
CycAug [Ma et al., 2023] are recently proposed data aug-
mentation techniques to enhance the sample efficiency of
visual reinforcement learning algorithms. In order to miti-
gate visual deadly triad, A-LIX [Cetin et al., 2022] provides
adaptive regularization to the encoder’s gradients to avoid
self-overfitting. In environments characterized by partial
observability, it is rational to employ multiple policies to
handle diverse visual observations, as explored in [Shang
and Ryoo, 2023]. However, in multi-view settings, increas-
ing the number of policies with the growing number of
views becomes impractical. Therefore, in the context of
multi-view scenarios, the potential lies in mapping these
observations into a comprehensive and condensed represen-
tation, initiating the learning process from the induced latent
space. The challenges associated with learning from visual
observations are further compounded by the instability of
the Q function in off-policy RL algorithms, as discussed in



[Hansen et al., 2021]. This instability is primarily attributed
to redundant information present in raw sensor observations.
Nevertheless, the transformation of these raw observations
into sufficient and compact representations through multi-
view total correlation, as introduced in [Federici et al., 2020],
can mitigate this issue. The significance of diverse visual
perspectives on the learning and generalization performance
in the context of visual control is underscored in [Hsu et al.,
2022], emphasizing the non-negligible impact that differ-
ent viewpoints can have on the overall effectiveness of the
learning process.

Multi-view Representation Learning. Research in multi-
view representation learning has delved into extracting ro-
bust and concise representations from multi-view data, offer-
ing various network architectures to transform such data into
representations with desirable properties. The Memory Fu-
sion Network (MFN) [Zadeh et al., 2018] constructs sequen-
tial multi-view representations, incorporating accountability
for interactions within a neural architecture. The Multi-view
Laplacian Network [Huang et al., 2021] is designed to learn
spectral representations with consensus from multi-view
data. CPM-Nets [Zhang et al., 2019] aim to learn a compre-
hensive representation of multi-view data, accommodating
potential partialities. Furthermore, appropriate loss func-
tions are crucial for training deep networks to instill ideal
properties like sample efficiency and robustness into rep-
resentations. S2R [Yang et al., 2022] is a multi-view rein-
forcement learning algorithm that extends the two-view con-
ditional entropy bottleneck method to a multi-view setting,
facilitating the learning of sample-efficient representations.
DRIBO [Fan and Li, 2022] utilizes the mutual predictability
of multi-view (pairwise) observations to acquire a robust rep-
resentation devoid of task-irrelevant information. However,
these methods cannot be directly applied to visual control
problems due to the absence of considerations for temporal
predictability. Fuse2Control (F2C) [Hwang et al., 2023] is
an information-theoretic Multi-View Reinforcement Learn-
ing framework that learns a latent state space model. It is
good at handling missing view problem. However, the tem-
poral length F2C considers is limited, which could hinder
the learning process of sequential decision making task.

Total Correlation. Total correlation, a fundamental method
derived from information theory, plays a pivotal role beyond
representation learning within the realm of AI, which has
been applied across a diverse spectrum of tasks ([Chen et al.,
2018, Locatello et al., 2019, Kim and Mnih, 2018]). The
Total Correlation method is designed to capture shared in-
formation among data with minimal sufficiency, focusing
on the independence among random variables [Watanabe,
1960]. In the context of independent component analysis
(ICA), [Cardoso, 2003] introduces a comprehensive frame-
work that establishes connections between mutual informa-
tion, entropy, and non-Gaussianity, all without relying on
decorrelation constraints. This framework contributes sig-

nificantly to understanding the underlying structures within
complex datasets by leveraging the inherent dependencies
among variables. For the domain of structure discovery,
[Ver Steeg and Galstyan, 2014] proposes a novel method-
ology centered around learning a hierarchical structure of
progressively abstract representations of intricate data sets.
This approach is underpinned by optimizing an information-
theoretic objective, ensuring that the learned representations
capture meaningful and salient features of the data while
facilitating interpretability and scalability. The Total Cor-
relation Explanation (CorEx) principle has been leveraged
in unsupervised learning to enhance interpretability. Total
correlation, as discussed in [Gao et al., 2019b], plays a role
in characterizing disentanglement and dependence within
representations. MVTC [Hwang et al., 2021] introduces
an information-theoretic approach to transform multi-view
data into complete and minimally sufficient representations.
These works collectively highlight the versatility and power
of total correlation as a foundational concept in information
theory, showcasing its applicability across a wide range of
AI applications.

3 SMUCO

In this section, we give the definitions and approximate
formulation of sequential total correlation in SMuCo that
can capture the task-relevant information and temporal dy-
namics while discarding task-irrelevant information in the
learned representations for visual control tasks, as well as
the visual control RL algorithm based on SMuCo.

3.1 MULTI-VIEW TOTAL CORRELATION

Total correlation, also referred to as multivariate mutual
information, has been shown to be able to characterize in-
formativeness and disentanglement from observations [Gao
et al., 2019a]. Optimizing total correlation can guide the
stochastic search process for a set of latent factors that ex-
plain best the correlations in the original data [Steeg and
Galstyan, 2014]. Under the multi-view setting, the total cor-
relation between multi-view observations and representation
is defined as:

TC(O⃗;Z) = TC(O⃗)− TC(O⃗ | Z) (1)

which can be rewritten into:

TC(O⃗;Z) =

V∑
v=1

I(Ov;Z)− I(O⃗;Z) (2)

where I denotes mutual information, and V is the number
of viewpoints for observations. Maximizing the expected
total correlation between multi-view observation and rep-
resentation can not only enforce informativeness but also
guarantee sufficiency of the representation [Hwang et al.,
2021].



𝑂

𝑍

𝑇𝐶

𝑀𝐼

𝑂ଵ

𝑂ଶ

𝑍

𝑂ଵ

𝑂ଶ

𝑍

Figure 2: Illustration of total correlation on two views.

In unsupervised representation learning, total correlation
has been used to obtain complete and minimal sufficient
representations from multiple views [Hwang et al., 2021].
Figure 2 provides an illustration of the intuition behind
such a mechanism with a simple example of two views.
In Figure 2, the green circles denote the entropy of the
observationsO and the red ellipses denote the entropy of the
representation Z. According to the assumptions of the multi-
view setting, these two views have overlapping information,
whose entropy is denoted as the white area. According to
Equation 2, the value of TC is equal to the shaded area in
the figure, which is equal to the entropy of Z in the left part.
From left to right, the total correlation has increased, and
the representation is encouraged to incorporate more shared
information between the two views thus can extract more
task-relevant information under the multi-view setting.

3.2 SEQUENTIAL MULTI-VIEW TOTAL
CORRELATION

Temporal structure is important in sequential decision mak-
ing problems and representations incorporating temporal
dynamics have better predictability of future states. To
accurately identify temporal dynamics and remove task-
irrelevant information from learned representations for vi-
sual control tasks, the encoder should be able to correlate
sequential observations and representations in the temporal
structure [Fan and Li, 2022].

Empirically, the success of related works such as DRIBO
[Fan and Li, 2022] and PI-SAC [Lee et al., 2020b] have
demonstrated the advantage of considering this temporal
structure. For visual control problems with multi-view data,
we extend the formulation of total correlation to sequences
of multi-view observations conditioned on the action se-
quences of the MDPs, motivated by the success of PI-SAC
[Lee et al., 2020b]. PI-SAC is a model-free reinforcement
learning algorithm that learns compressive representations
of predictive information to improve sample efficiency. It
can capture the temporal dynamics of the environment into
the learned representation by substituting random variables
in CEB [Fischer, 2020]

with a combination of sequences of previous and future
observations, actions, and rewards. Specifically, CEB aims
to optimize the following objective:

CEB ≡ min
Z
βI(X;Z | Y )− I(Y ;Z) (3)

According to [Lee et al., 2020b], it follows that

CEB ≤ Ex,y,z∼p(x,y)e(z|x)β log
e(z | x)
b(z | y) − I(Y ;Z) (4)

where e(z | x) is the true encoder distribution representa-
tion z comes from and b(z|y) is the variational backwards
encoder distribution that approximates the unknown true
distribution p(z | y). The minimization of CEB can be ap-
proximated by minimization of this upper bound. In PI-SAC,
the loss function after substitution of CEB has the following
form:

L = E log
e (z0 | o−T+1:0, a0:T−1)

b (z0 | s1:T , r1:T )

+ log
b (z0 | o1:T , r1:T )

1
K

∑K
k=1 b

(
z0 | ok1:T , rk1:T

) (5)

where expectation is taken over (o−T+1:T , a0:T−1, r1:T ∼
D, z0 ∼ e (z0 | ·)).
Adopting this idea of PI-SAC, we show our extension of
multi-view total correlation to sequential multi-view total
correlation (SMTC) as follows. The SMTC of a sequence
of observations and representations is defined as:
SMTC(O⃗1:T ;Z1:T | A1:T ) =

V∑
v=1

I(Ov1:T ;Z1:T | A1:T )− I(O⃗1:T ;Z1:T | A1:T ) (6)

where O⃗1:T denotes the sequence of the observation view
vectors, each with V views, A denotes actions, Z denotes
the representation, and T denotes the sequence length. Ac-
cording to [Lee et al., 2020b, Mazoure et al., 2020], the en-
coder predicts future states more accurately under the condi-
tion of multiple future actions. Maximizing the above SMTC
is equivalent to maximizing

∑V
v=1 I(O

v
1:T ;Z1:T | A1:T )

and minimizing I(O⃗1:T ;Z1:T | A1:T ). The former term
makes the obtained representation complete as it encour-
ages Z to be informative, while the latter term guarantees
the conciseness of the resulted representation. Therefore,
the maximization of SMTC enforces the representation to
capture minimally sufficient correlations among different
views over the sequences. Unfortunately, the calculation
of both of these terms requires the calculation of mutual
information among random vectors, which is notoriously
difficult to compute [Belghazi et al., 2018, Fan and Li, 2022].
Therefore, we instead try to find an appropriate surrogate
for this SMTC objective.

Let O1:T be observation sequence and Z1:T be representa-
tion sequence, whose joint distribution is p(O1:T , Z1:T ) =∏T
t=1 p(Ot, Zt | Ot−1, Zt−1, At−1) where A1:T is action

sequence and p(O1, Z1 | O0, Z0, A0) = p(O1, Z1). Let



O⃗1:T be multi-view observation sequence with dim O⃗ = V
and temporal length T . We derive a tractable lower bound
of sequential multi-view total correlation as follows:

Theorem 3.1. The sequential total correlation between
sequences of multi-view observation and representation on
condition of action sequence has the following lower bound:

SMTC(O⃗1:T ;Z1:T | A1:T ) ≥
V∑
v=1

T∑
t=1

[H(Ovt | Zt−1, At−1)

+Ep(zt,ovt |zt−1,at−1) ln q
v
ψ(o

v
t | zt, zt−1, at−1)

]
−

T∑
t=1

T∑
s=1

Ep(o⃗s) [DKL(p(zt | os, ι) ∥ rϕ(zt | ι))] (7)

where H is the entropy function, ι = (o⃗1:s−1, z1:t−1, a1:T ),
prior distribution rϕ(zt) ≈ p(zt) is an approximate
distribution for ϕ, and posterior distribution qψ(o

v
t |

zt, zt−1, at−1) ≈ p(ovt | zt, zt−1, at−1) is an approximate
distribution for ψ.

Using this result, we construct the loss function for repre-
sentation learning based on Equation 7 in SMuCo, which is
detailed in Section 3.3. Proof of Theorem 3.1 is elaborated
in the appendix.

3.3 VISUAL CONTROL WITH SMUCO

In the following, we show how the visual control task is
resolved with our proposed SMuCo objective for represen-
tation learning. As shown in Figure 1, we use the SMuCo
objective derived based on SMTC to learn the encoder, and
the observations are encoded as states for the reinforcement
learning part to learn the control policy. The details of the
encoder are explained in the following part.

Encoder. According to Equation 7, terms on the right-hand
side can be treated as three parts of the loss function of the
encoder as follows:

L = LREC + LLL + LTC (8)

where the reconstruction entropy term LREC, the expected
logarithmic likelihood term LLL and the temporal con-
trastive term LTC are defined as follows:

LREC = −
V∑
v=1

T∑
t=1

H(Ovt | Zt−1, At−1), (9)

LLL = −
V∑
v=1

T∑
t=1

Ep1 ln qvψ(ovt | zt, zt−1, at−1), (10)

LTC =

T∑
t=1

T∑
s=1

Ep2 [DKL(p(zt | os, ι) ∥ rϕ(zt | ι))],

(11)

where p1 := p(zt, o
v
t | zt−1, at−1) and p2 := p(o⃗s).

For the benefits of the multi-view correlation, the complete-
ness of multi-view representation is defined as the recon-
struction ability of representation into each individual view
[Hwang et al., 2021]. By minimizing the reconstruction
entropy term LREC, we try to obtain the representation Z
which is a maximal compression of observation O, thus try-
ing to eliminate irrelevant information from visual control
tasks in the learned representation Z. Minimizing the ex-
pected log likelihood term LLL conforms to the principle of
maximizing log likelihood in statistical inference methods,
trying to preserve the temporal dynamics of the sequence.
LTC is a regularization term for this surrogate loss function,
preventing approximate prior distribution r from divergence
with true posterior distribution p.

Joint Modeling. We use Product of Expert (PoE) [Hin-
ton, 2002] and Inverse Variance Weighted (IVW) [Cochran,
1954] for the joint modeling of multiple views. For each
view, we assign a separate encoder and decoder network.
After feeding multi-view observations into the encoder, a
joint representation is obtained by aggregating V separate
representations into a single one, as illustrated in Figure 3.
Reparamterization method [Kingma and Welling, 2014] is
utilized to guarantee the feasibility of backpropogation over
parameters of latent distributions.

Summing up, the training procedure of the encoder as well
as the reinforcement learning policy is elaborated in Al-
gorithm 1. We design our algorithm using a co-training
paradigm, as updates of each component among encoder,
actor, and critic require values passed through other compo-
nents.
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Figure 3: SMuCo encoder architecture. At each time step
i = 1, 2, 3, the encoder takes one column of multi-view ob-
servations, i.e. o⃗i, as input to generate a joint representation
z.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To assess the efficacy of our proposed method, we integrate
SMuCo with SAC to tackle visual control tasks sourced
from the DeepMind Control (DMC) Suite [Tassa et al.,
2018] and Sapien [Xiang et al., 2020]. The experiments in



Algorithm 1 SMuCo Training Procedure
Input: environment E, encoder p parameters (ϕ, ψ), policy
π parameters θ, Q function parameters η1, η2, replay buffer
D

1: Reset environment E with multi-view observation o⃗0.
2: Initialize representation z0 ∼ pϕ(· | o⃗0).
3: Initialize replay buffer D.
4: Initialize target parameters: ηtrgt,i ← ηi where i = 1, 2.

5: while not convergence do
6: Get action at ∼ πθ(· | zt).
7: Get reward rt = R(o⃗t, at).
8: Get next observation o⃗t+1 ∼ P(· | o⃗t, at).
9: Get representation zt+1 ∼ pϕ(· | o⃗t+1).

10: Push tuple (o⃗t, zt, at, rt, o⃗t+1, zt+1) into replay
buffer D.

11: for update steps do
12: Update encoder p by gradient descent using

∇ϕ,ψ
(
LREC + LLL + LTC

)
by sampling replay

buffer D.
13: Update Q network by gradient descent using

LQηi
= EB⊂D[Qηi(zt, at)− y(rt, zt+1)]

2

where (zt, at, rt, zt+1) ∈ B and i = 1, 2.
14: Update policy network π by gradient descent using

Lπθ
= EB⊂D log πθ(a

′
t | zt)− min

i=1,2
Qηi(zt, a

′
t)

where a′t ∼ πθ(· | zt), zt ∈ B.
15: Update target network by polyak averaging:

ϕtarg ,i ← ρϕtarg ,i + (1− ρ)ϕi.
16: end for
17: end while

this section are conducted on three servers, each equipped
with 24 CPU cores, 110GB of memory, and NVIDIA Tesla
A100 GPUs. The Sapien task involves multiple views ob-
tained from cameras at various angles. In DMC tasks, where
multi-view observations are not inherently available, we
adopt random crop as the view generation method based
on its reported advantages over other data augmentation
methods, as highlighted in RAD [Laskin et al., 2020a]. Re-
sults are averaged across 5 random seeds, with each agent
undergoing training for up to 500,000 steps. The network ar-
chitectures and other hyperparameters are provided in detail
in the appendix.

4.2 BASELINES

The following SOTA model-based and model-free meth-
ods are compared with our proposed methods: Dreamerv2
[Hafner et al., 2021], RAD [Laskin et al., 2020a], PI-SAC
[Lee et al., 2020b], DrQ [Yarats et al., 2021], SLAC [Lee
et al., 2020a], and DRIBO [Fan and Li, 2022].

DreamerV2 sets itself apart by integrating a world model
to understand agent behaviors, explicitly preserving latent
dynamics. In contrast, other techniques like RAD and DrQ
do not explicitly model dynamics. Both RAD and DrQ in-
put transformed observations, raw pixels from interactions
with the environment, into downstream reinforcement learn-
ing (RL) tasks. On the contrary, SMuCo considers the joint
representation from encoding multi-view observations as
the state, emphasizing task-relevant information for down-
stream RL tasks. In the case of RAD and DrQ, a notable
distinction lies in observational transformation. RAD em-
ploys data augmentation techniques such as color jittering
and random cropping, while DrQ samples transformation op-
erators from an invariant state transformation set, referring
to this approach as a data regularized method. Furthermore,
PI-SAC achieves representation learning by maximizing a
Conditional Entropy Bottleneck (CEB)-related surrogate
as an auxiliary task for training the encoder. In contrast,
DRIBO aims to maximize the mutual information between
two marginal representations and the divergence of likeli-
hood probability. These differences underscore the varied
approaches and methodologies each method employs in the
field of representation learning for RL.

While the training objective (Equation 8) of the encoder in
SMuCo necessitates V views over T time steps, unlike other
baselines with no such requirement, it doesn’t introduce
unfairness in performance evaluation. It’s important to note
that during the evaluation stage, the encoder parameters
are frozen, and episodes are generated step by step in both
SMuCo and other baselines. Although it may appear that
SMuCo leverages information over a broader time window,
the decision to utilize historical information is inherent to the
design of the training objective. The availability of historical
information is equal for both SMuCo and other baselines.
However, SMuCo gives it more thoughtful consideration,
leading to superior performance. In conclusion, as long as
episodes are unrolled one step at a time during the evaluation
stage, the comparison remains unbiased.

4.3 EVALUATION ON CONTROL TASKS

We evaluate SMuCo on tasks from DMC Suite [Tassa et al.,
2018] and Sapien environment [Xiang et al., 2020] with
other baselines mentioned above.

The experimental results of our proposed method compared
with the baseline methods are shown in Figure 4, from
which we can see that SMuCo achieves better performance
than previous works including DrQ, RAD, Dreamerv2 and
DRIBO, and comparable performance with PI-SAC and
SLAC. In the cheetah run task, SMuCo converges faster than
other baselines and achieves better performance than base-
lines except DreamerV2. Similarly, in the walker walk task,
SMuCo converges faster than other baselines and achieves
better performance than baselines except DRIBO. However,
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Figure 4: Evaluation on DMC tasks and basic manipulation task in Sapien. Row 1 shows results trained on DMC tasks:
(Cheetah, run), (Walker, walk), (Ball in cup, catch), (Finger, spin), (Acrobat, swingup), (Humanoid, run), (Hopper, hop),
(Fish, swim). Row 2 shows results trained on basic manipulation with different view settings: uh - upward and horizontal, ud
- upward and diagonal, hd - horizontal and diagnoal, uhd - upward, horizontal and diagonal.

both DreamerV2 and PI-SAC achieve better performance
and sample efficiency than SMuCo in the ball-in-cup catch
task, even though SMuCo performs better than RAD, SLAC
and DRIBO in convergence rate. In the finger spin task,
SMuCo excels than other baselines in sample efficiency, ex-
cept that SMuCo and DRIBO achieve almost the same score
at the end of the evaluation. In the acrobat swingup task,
SMuCo achieves almost equivalent performance as PI-SAC
and SLAC. Although the final score of DRIBO is decent, its
volatility makes it uncomparable with SMuCo, PI-SAC and
SLAC. In the humanoid run task, SMuCo outperforms all
the other baselines at the beginning of a relatively early time
step. In the hopper hop task, only DRIBO has the almost
comparable performance with SMuCo, with significantly
larger variance than SMuCo. In the fish swim task, SMuCo’s
final score ranks third among other baselines. However,
DRIBO with first rank has not reached a stable state and
SLAC outperforms SMuCo only at the end of training stage,

indicating that DRIBO and SLAC have non-dominant advan-
tage over SMuCo. In the basic manipulation task with both
upward-horizontal views and horizontal-diagonal views set-
tings, SMuCo outperforms other baselines. However, in the
upward and diagonal views setting, RAD and SLAC have
better final scores than SMuCo. This implies that the choice
of different perspective could incur impact on the perfor-
mance of training efficiency, which is partially consistent
with conclusions in [Hsu et al., 2022].

In the basic manipulation task with upward-horizontal-
diagonal views setting, SMuCo achieves best score over
other baselines and itself across other two views settings.

The results listed in Figure 4 shows that our proposed
method can have significant performance improvement in
scenarios with the real multi-view data in application.



4.4 ABLATION STUDY

In the ablation study, we aim to investigate the setting of
several components that can affect the overall performance
of SMuCo, including (a) loss function form; (b) sequence
length T ; (c) number of views V ; (d) data augmentation
methods; (e) size of views. We conduct these experiments
under the same visual control task: walker walk using algo-
rithm SMuCo.

Loss Function. The different contributions of the three com-
ponents of the objective function: reconstruction entropy
term LREC, expected log likelihood term LLL and temporal
contrastive term LTC are reported in this part. The evalua-
tion results with different combination of the three terms are
demonstrated in Figure 5(a).

We observe that (1) none of reconstruction entropy term
LREC, expected log likelihood term LLL and temporal con-
trastive term LTC can achieve success in the task of walker
walk. Intuitively, if the loss function only contains recon-
struction entropy term LREC, relevant information for con-
trol task cannot be preserved in the representation Z due to
the embedding collapse phenomenon. If the loss function
is in the form of either expected log likelihood term LLL or
temporal contrastive term LTC, the representation Z would
contain too much task-irrelevant information, which exacer-
bates the learning process of the control task. (2) However,
when combining reconstruction entropy term LREC and ex-
pected log likelihood term LLL, the final performance is
better than that of each term, because reconstruction entropy
termLREC encourages the representation to be concise while
expected log likelihood term LLL guarantees the sufficiency
of the representation. (3) In contrast, the other two combi-
nations: reconstruction entropy term LREC plus temporal
contrastive term LTC and expected log likelihood term LLL
plus temporal contrastive term LTC, do not have a noticeable
improvement in final performance compared to single-term
cases.

It suggests that temporal contrastive term LTC can guarantee
the robustness of the representation as the final performance
of SMuCo is slightly better than the case of reconstruction
entropy termLREC plus expected log likelihood termLLL. In
conclusion, reconstruction entropy term LREC and expected
log likelihood term LLL are essential terms for obtaining
performant representation while temporal contrastive term
LTC is a regularization term that can make the representation
more robust.

Sequence Length T . To investigate the effect of different
sequence lengths on the performance of the agent, we con-
duct experiments with different sequence lengths T , and
the results are shown in Figure 5(b). We observe that as
the sequence length T increases, the performance of the
agent also increases slightly. It means that SMuCo can learn
better representations with the help of incorporating longer

temporal dynamics. However, as T increases from 15 to 20,
the performance has not improved significantly compared
to the improvement on smaller T values, indicating that the
marginal improvement brought about by adding more time
steps to calculate total correlation will gradually disappear
as T increases. Intuitively, if we set T to be a too large
integer, observations from time steps with large time gap
would be independent with each other, in which case the
sequential total correlation can be separated into the sum of
sequential total correlations on shorter sequences of observa-
tions, which makes it merely no benefit in learning temporal
dynamics when adding extra time steps of observations in
this case.

Number of Views V . To investigate whether providing
more views V can improve task performance, we conduct
experiments with different number of views V and depict
the results in Figure 5(c). It is shown that as the number
of views V increases, the performance of agents increases
slightly, weaker than the effect of sequence length T . We
deduce that the SMuCo objective captures larger cross-view
correlation during the optimization of the observation en-
coder, improving the robustness of the learned representa-
tion. However, too many views can only bring in too much
redundant information and deteriorate the learning process.
Therefore, it is beneficial to use multi-view data but not
necessary to collect too many views in order to achieve a
satisfactory performance in practice, considering the extra
efforts demanded in data collection and computation for
extra views.

Data Augmentation Methods We investigate the effects
of using different data-augmentation methods to gener-
ate views. Figure 6(d) depicts the evaluation results under
task: Walker, walk using different view-generation methods:
Grayscale, Random Crop, Rotate and Color Jitter. The result
suggests that Random Crop is more beneficial for improv-
ing performance of SMuCo, which is consistent with the
conclusion from [Laskin et al., 2020a]. Intuitively, since
SMuCo needs to optimize over discrepancy between dif-
ferent views, Gradyscale, Rotate and Color Jitter does not
increase discrepancy among different views.

Size of Views. The size of view is correlated to the degree
of partial information in each view. We conduct experiments
using different size of views [32, 64, 128, 256] as illustrated
in Figure 6(e). The result implies that as the size of raw
observation increases, the performance of SMuCo increases
correspondingly with decreasing acceleration. This obser-
vation is coherent with the fact that the mutual information
among different views is a submodular function [Krause
et al., 2008, Nemhauser et al., 1978].
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Figure 5: Comparison among different settings.
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Figure 6: Evaluation results using different (left) data augmentation methods and (right) view sizes.

4.5 SPATIAL ATTENTION OF LEARNED
REPRESENTATIONS

To show the representation learned by our proposed method,
we build spatial attention maps of representations from ob-
servations [Zagoruyko and Komodakis, 2017], as illustrated
in Figure 7. The SMuCo captures clear task-relevant infor-
mation in the cheetah run and walker walk tasks (upper row
in Figure 7) than the ball-in-cup catch and finger spin tasks
(lower row in Figure 7). More specifically, the edges of
the controlled agent can be clearly identified in the learned
representation of cheetah run and walker walk, which also
validates the good performance of SMuCo on these two
tasks. Moreover, the learned representation in the finger
spin task not only captures the current state of the agent,
but also captures the possible future states as the movement
would change the area around the agent in the view, which
shows that SMuCo can capture the temporal dynamics in
the learned representation.

5 CONCLUSION

In this work, we introduce a novel reinforcement learning al-
gorithm named SMuCo specifically designed for visual con-
trol problems. SMuCo aims to learn a comprehensive and
succinct representation of multi-view observations. By cap-
turing shared information across views and exploiting tem-
poral correlation, our approach maximizes sequential total

Cheetah, run Walker, walk

Ball in cup, catch Finger, spin

Figure 7: Spatial attention maps of representations from
observations in four DMC tasks.

correlation between sequences of multi-view observations
and their corresponding representations. To integrate tem-
poral dynamics, we extend multi-view total correlation into
sequential multi-view total correlation, conditioning on se-
quences of actions, and utilize it as the training objective for
the encoder. In empirical evaluations, our proposed method
demonstrates consistently superior performance compared
to state-of-the-art baselines, including both model-free and
model-based reinforcement learning methods.

Limitations: There are a few limitations for the SMuCo
method. One crucial aspect revolves around the scalabil-
ity concerns inherent in handling multiple views simultane-
ously. As outlined in [Hwang et al., 2021], the complexity of
correlations across multiple views can significantly impact



the scalability of the method. This complexity not only poses
challenges but can also exacerbate the difficulty of effec-
tively learning and representing task-relevant information.
These scalability limitations are particularly exacerbated
when dealing with highly complex and scalable multi-view
scenarios, such as those encountered in real-world appli-
cations. Consequently, while SMuCo may excel in certain
contexts, its effectiveness and performance may be hindered
in scenarios that demand handling many views and intricate
correlations among them.

Future Work: As part of future work, SMuCo can be en-
hanced to handle challenges posed by unaligned multi-view
observations and extend its capabilities to accommodate
multi-modal observations, including not only image data
but also text and audio data. This expansion will contribute
to the algorithm’s versatility across diverse input modalities
in various applications. Furthermore, we could also try to ad-
dress scenarios with limited multi-view data. One potential
solution to this problem is to explore multi-view representa-
tion learning methodologies that can effectively handle such
limitations. A promising avenue for this exploration is the
CPM-Nets proposed by [Zhang et al., 2019]. CPM-Nets are
designed to handle the absence or missingness of multi-view
data, showcasing their effectiveness in dealing with data lim-
itations. Therefore, our future work could focus on adapting
and extending the principles of CPM-Nets to the domain
of reinforcement learning, particularly in situations where
there is a scarcity of multi-view information. By leverag-
ing the benefits and methodologies of CPM-Nets, we could
potentially develop novel approaches that are robust and
efficient in learning policies despite limited multi-view data
availability. This direction is promising for advancing rein-
forcement learning algorithms and addressing challenges
posed by data constraints in multi-view environments.
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SMuCo: Reinforcement Learning for Visual Control via Sequential Multi-view
Total Correlation

(Supplementary Material)

A APPENDIX

A.1 DETAILS ABOUT SMUCO SURROGATE OBJECTIVE

In this subsection, we elaborate on the details of derivation of the lower bound of sequential multi-view total correlation.
Using this lower bound as a surrogate objective, we propose a reinforcement learning framework for visual control problems
by learning a complete and concise representation from multi-view observations. We aim to maximize sequential multi-view
total correlation between multi-view observation sequence and representation sequence under the condition of action
sequence. First of all, we give a formal definition of sequential total multi-view correlation.

Definition A.1. Given the sequence of multiview observations, representations, and actions O⃗1:T , Z1:T , A1:T , define the
sequential multiview total correlation as follows:

SMTC(O⃗1:T ;Z1:T | A1:T ) =

V∑
v=1

I(Ov1:T ;Z1:T | A1:T )− I(O⃗1:T ;Z1:T | A1:T ) (12)

where T is temporal length and V is number of views.

With the definition of sequential multi-view total correlation, we have the following lemmas and theorem to derive a tractable
lower bound of mutual information between sequences of observation and representation on condition of action sequence.
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Figure 8: Graphical Model of Random Variables where o denotes observation, z denotes representation and a denotes action.

Lemma A.1. Let O1:T and Z1:T be random variables with joint distribution

p(O1:T , Z1:T ) =

T∏
t=1

p(Ot, Zt | Ot−1, Zt−1, At−1)

where A1:T be random variables of action sequence and p(O1, Z1 | O0, Z0, A0) = p(O1, Z1). Then it follows that

I(O1:T ;Z1:T | A1:T ) ≥
T∑
t=1

I(Ot;Zt | Zt−1, At−1) (13)

where T is temporal length.



Proof. According to information theory, we have

I(X;Y ) = H(X)−H(X | Y ),

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi | Xi−1, · · · , X1),

I(X;Y | Z) = EZDKL(P(X,Y )|Z ∥ PX|Z ⊗ PY |Z)

Let τ = (o1:t−1, z1:t−1, a1:T ), according to the definition of conditional mutual information, we have

I(Ot;Zt | O1:t−1, Z1:t−1, A1:T ) =

∫
τ

∫
ot

∫
zt

p(ot, zt | τ) log
p(ot, zt | τ)

p(ot | τ) · p(zt | τ)
dztdotdτ (14)

With the Markovian property, i.e. hidden state or representation zt at time step t is determined only by previous hidden state
or representation zt−1 and action a at time step t− 1, it follows p(ot, zt | τ) = p(ot, zt | zt−1, at−1). Applying this result
to Equation 14 we obtain the following result.

I(Ot;Zt | O1:t−1, Z1:t−1, A1:T ) =

∫
τ

∫
ot

∫
zt

p(ot, zt | zt−1, at−1) log
p(ot, zt | zt−1, at−1)

p(ot | zt−1, at−1) · p(zt | zt−1, at−1)

dztdotdτ = I(Ot;Zt | Zt−1, At−1) (15)

Finally, we derive a lower bound of mutual information between subsequences of observations and representations as

I(O1:T ;Z1:T | A1:T ) = H(Z1:T | A1:T )−H(Z1:T | O1:T , A1:T ) (16)

=

t∑
t=1

H(Zt | Z1:t−1, A1:T )−H(Zt | Z1:t−1, O1:T , A1:T ) (17)

=

T∑
t=1

I(O1:T ;Zt | Z1:t−1, A1:T ) (18)

=

T∑
t=1

H(O1:T | Z1:t−1, A1:T )−H(O1:T | Zt, Z1:t−1, A1:T ) (19)

=

T∑
t=1

T∑
s=1

H(Os | O1:s−1, Z1:t−1, A1:T )−H(Os | O1:s−1, Zt, Z1:t−1, A1:T ) (20)

=

T∑
t=1

T∑
s=1

I(Os;Zt | O1:s−1, Z1:t−1, A1:T ) (21)

≥
T∑
t=1

I(Ot;Zt | O1:t−1, Z1:t−1, A1:T ) (22)

=

T∑
t=1

I(Ot;Zt | Zt−1, At−1) (23)

Hence, we have that

I(O1:T ;Z1:T | A1:T ) ≥
T∑
t=1

I(Ot;Zt | Zt−1, At−1) (24)

where T is temporal length.

Lemma A.2. Let O⃗1:T be multi-view observation sequence with dim O⃗ = V and temporal length T , it follows that

I(O⃗1:T ;Z1:T | A1:T ) ≤
T∑
t=1

T∑
s=1

Ep(o⃗s)

[
DKL(p(zt | ι) ∥ rϕ(zt | ι))

]
(25)

where ι = (o⃗1:s−1, z1:t−1, a1:T ) and prior distribution rϕ(zt) ≈ p(zt) is an approximate distribution with ϕ.



Proof. It is easy to verify that
I(O⃗;Z) ≤ Ep(o⃗)[DKL(p(z | o⃗) ∥ rϕ(z))] (26)

since

I(O⃗;Z) = Ep(o⃗,z)
[
log

p(z | o⃗)
p(z)

· rϕ(z)
rϕ(z)

]
= Ep(o⃗)DKL(p(z | o⃗) ∥ rϕ(z))−DKL(p(z) ∥ rϕ(z))

≤ Ep(o⃗)[DKL(p(z | o⃗) ∥ rϕ(z))] (27)

Using this technique , we could derive a upper bound of I(O⃗1:T ;Z1:T | A1:T ) as follows:

I(O⃗1:T ;Z1:T | A1:T ) =

T∑
t=1

T∑
s=1

I(O⃗s;Zt | O⃗1:s−1, Z1:t−1, A1:T ) ≤
T∑
t=1

T∑
s=1

Ep(o⃗s)[DKL(q̃ ∥ r̃)] (28)

where

q̃ = p(zt | o⃗1:s, z1:t−1, a1:T ) (29)
r̃ϕ = rϕ(zt | o⃗1:s−1, z1:t−1, a1:T ). (30)

Hence, we derive an upper bound of mutual information between sequence of multi-view observations and representations
on condition of action sequence.

Lemma A.3. For any view v and time step t, we have

H(Ovt | Zt, Zt−1, At−1) ≤ 0 (31)

where Ovt is observation of view v at time step t, Zt and Zt−1 are representation at time steps t and t− 1, At−1 is action at
time step t− 1.

Proof. According to the definition of entropy, we have

H(Ovt | Zt, Zt−1, At−1) = −
∫
ovt

∫
zt

∫
zt−1

∫
at−1

f(ovt , zt, zt−1, at−1) log g(o
v
t | zt, zt−1, at−1)do

v
t dztdzt−1dat−1

(32)
where f is joint probability density function and g is conditional probability density function.

If there does not exist independent noise in observation with respect to representation, according to the formulation of
episode rollout of Markov Decision Process, we assert that at time step t representation Z and multi-view observation Ovt are
mutually determined. Since observation ovt is fully determined by representation zt, it follows that f(ovt , zt, zt−1, at−1) =
f(zt, zt−1, at−1). Using this result, we could reduce the integral into

H(Ovt | Zt, Zt−1, At−1) = −
∫
zt

∫
zt−1

∫
at−1

f(zt, zt−1, at−1)

[∫
ovt

log g(ovt | zt, zt−1, at−1)do
v
t

]
dztdzt−1dat−1 = 0 (33)

where the second equality holds since there exists only one observation instance ovt in observation space which corresponds
to the representation condition zt. Otherwise, the probability density function g is zero.

If there exists independent noise in observation with respect to representation, it follows that

H(Ovt | Zt, Zt−1, At−1) = −
∫
zt

∫
zt−1

∫
at−1

f(zt, zt−1, at−1)

[∫
ovt

log g(ovt | zt, zt−1, at−1)do
v
t

]
dztdzt−1dat−1

= −C
∫
zt

∫
zt−1

∫
at−1

f2(zt, zt−1, at−1)dztdzt−1dat−1 ≤ 0 (34)



where C is a positive constant.

Specifically, given some view index v and time step t, it follows from Bayesian Theorem that

Pr(Ovt | Zt) =
Pr(Zt | Ovt ) · Pr(Ovt )∫
O′ Pr(Zt | O′)dO′ . (35)

According to the encode mapping, we know that Z ∼ N (µ,Σ) where µ is mean vector and Σ is covariance matrix. The
mean and covariance matrix are determined by multi-view observations, i.e. N (µ,Σ) = h(O⃗) for some encoding mapping
h. Note that an encoding mapping is mapping from observational space into representation space. In multi-view scenario,
the observational space consists of multi-view observations instead of single-view observation.

According to graphical model illustrated in Figure 8 and Equation 35, it holds that

Pr(Ovt | Zt, Zt−1, At−1) = Pr(Zt, Zt−1, At−1) · Pr(Ovt | Zt) · Pr(Ovt | Zt−1, At−1) (36)

=
Pr(Zt | Ovt ) · Pr(Ovt )∫
O′ Pr(Zt | O′)dO′ · Pr(O

v
t | Zt−1, At−1) · Pr(Zt, Zt−1, At−1) (37)

=
Pr(Zt | Ovt ) · Pr(Ovt )

Pr(Zt)
· Pr(Ovt | Zt−1, At−1) · Pr(Zt, Zt−1, At−1). (38)

With this result, we could derive∫
ovt

log g(ovt | zt, zt−1, at−1)do
v
t = f(zt, zt−1, at−1) ·

∫
ovt

log

(
p1(zt | ovt ) · p2(ovt )

p3(zt)
· p4(ovt | zt−1, at−1)

)
dovt

= (T1 + T2 − T3 + T4) · f(zt, zt−1, at−1) (39)

where

T1 :=

∫
ovt

log p1(zt | ovt )dovt , (40)

T2 :=

∫
ovt

log p2(o
v
t )do

v
t , (41)

T3 :=

∫
ovt

log p3(zt)do
v
t = log p3(zt), (42)

T4 :=

∫
ovt

log p4(o
v
t | zt−1, at−1)do

v
t . (43)

According to the definition of encoder architecture which includes a IVW structure, p1 is multi-dimensional Gaussian
distribution. If we assume that observation distribution, representation distribution and transition probability distribution are
all Gaussian distribution which is consistent with model-based methods for previous works Hafner et al. [2021], Zhang et al.
[2021]. Since T1 + T2 − T3 = 0 and T4 ≥ 0 due to the property of transition probability, it follows that the aforementioned
positive value C does exist.

Theorem A.1. The sequential multi-view total correlation between sequences of multi-view observation and representation
on condition of action sequence has the following lower bound:

SMTC(O⃗1:T ;Z1:T | A1:T ) ≥
V∑
v=1

T∑
t=1

[
H(Ovt | Zt−1, At−1) + Ep(zt,ovt |zt−1,at−1) ln q

v
ψ(o

v
t | zt, zt−1, at−1)

]

−
T∑
t=1

T∑
s=1

Ep(o⃗s)
[
DKL(p(zt | os, ι) ∥ rϕ(zt | ι))

]
(44)

where posterior distribution qψ(ovt | zt, zt−1, at−1) ≈ p(ovt | zt, zt−1, at−1) is an approximate distribution with ψ, ι and
rϕ are defined in Lemma A.2.



Proof. Applying Equation 13 in Lemma A.1, we could derive

SMTC(O⃗1:T ;Z1:T | A1:T ) =

V∑
v=1

I(Ov1:T ;Z1:T | A1:T )− I(O⃗1:T ;Z1:T | A1:T ) (45)

≥
V∑
v=1

T∑
t=1

I(Ovt ;Zt | Zt−1, At−1)− I(O⃗1:T ;Z1:T | A1:T ) (46)

Then by applying inequality 25 in Lemma A.2, we have

−I(O⃗1:T ;Z1:T | A1:T ) ≥ −
T∑
t=1

T∑
s=1

Ep(o⃗s)[DKL(p(zt | ι) ∥ rϕ(zt | ι))] (47)

where ι = (o⃗1:s−1, z1:t−1, a1:T ).

We split the first summand I(Ovt ;Zt | Zt−1, At−1) into subtraction of two entropy terms and derive a lower bound using
Lemma A.3 as follows.

I(Ovt ;Zt | Zt−1, At−1) = H(Ovt | Zt−1, At−1)−H(Ovt | Zt, Zt−1, At−1) ≥ H(Ovt | Zt−1, At−1) (48)

According to Appendix A.1 Equation (11) and (12) in Hwang et al. [2021], we could further lower the double sum of
expected value of KL divergence between true prior distribution p and approximate prior distribution rϕ.

−
T∑
t=1

T∑
s=1

Ep(o⃗s)[DKL(p(zt | ι) ∥ rϕ(zt | ι))] ≥
V∑
v=1

T∑
t=1

Ep(zt,ovt |zt−1,at−1) ln q
v
ψ(o

v
t | zt, zt−1, at−1)]

−
T∑
t=1

T∑
s=1

Ep(o⃗s)[DKL(p(zt | ι) ∥ rϕ(zt | ι))] (49)

Summing up inequalities 48 and 49, we could have a tractable lower bound of sequential multi-view total correlation
between sequences of multi-view observations and representations on condition of action sequence as follows.

SMTC(O⃗1:T ;Z1:T | A1:T ) ≥
V∑
v=1

T∑
t=1

[
H(Ovt | Zt−1, At−1) + Ep(zt,ovt |zt−1,at−1) ln q

v
ψ(o

v
t | zt, zt−1, at−1)

]
−

T∑
t=1

T∑
s=1

Ep(o⃗s)
[
DKL(p(zt | os, ι)||rϕ(zt | ι))

]
(50)

where T is temporal length and V is number of views.

A.2 NETWORK ARCHITECTURES AND HYPERPARAMETERS

The hyperparameters is set empirically based on previous works, some of which are listed in Table 1. In particular, it
is sufficient to confine V and T as small integers. Since V and T are small integers, the lower bound derived above is
computationally efficient to approximate the sequential multi-view total correlation even though the form has double sum
operator. In the following, we elaborate the designs of network architecture for encoder, decoder, actor and critic.

Encoder Networks The encoder architecture consists of three convolutional layers with 3× 3 kernels, 32 channels, stride 2
and padding 1, just like the auto-encoder architecture. ReLU is applied after each convolution layer as activation function.
After flattening the output of the last convolutional layer, this output is fed into a fully-connected layer, generating a 2048-
dimensional feature vector. This feature vector is passed to another two fully-connected layer, bringing about 64-dimensional
mean and 64-dimensional variance separately.



Parameter Value

learning rate 0.001
optimizer Adam
number of views V 10
temporal length T 10
batch size 256
representation dimension 64
discount factor γ 0.99
number of random seeds 5

Table 1: Hyperparameters for SMuCo framework

Decoder Networks The decoder architecture starts with a fully-connected layer, transforming 64-dimensional representation
Z into 2048-dimensional feature vector. Then it consists of three transposed convolutional layers with 3× 3 kernels, 32
channels, stride 2 and padding 1.

Actor and Critic Networks We follow the common implementation of SAC Haarnoja et al. [2018]. The actor and critic
networks are implemented by MLPs with 256-dimensional hidden layers. However, the actor network has two different
output layers, including mean output layer and variance output layer while the critic network has only one output layer with
1-dimension.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Scores at 500k Steps DrQ RAD DreamerV2 PI-SAC SLAC DRIBO SMuCo

Cheetah, run 797± 116 880± 104 841± 57 802± 119 881± 116 864± 52 1019± 107
Walker, walk 930± 46 858± 82 966± 117 959± 103 930± 107 881± 90 1036± 30
Ball in cup, catch 958± 102 −9± 80 955± 82 963± 75 983± 98 1006± 39 853± 115
Finger, spin 738± 79 880± 32 366± 105 787± 112 947± 58 960± 53 969± 52
Acrobot, swingup 228± 50 163± 34 209± 106 246± 85 256± 45 242± 67 247± 51
Humanoid, run 470± 60 375± 117 436± 104 482± 37 453± 117 497± 40 507± 105
Hopper, hop 454± 89 357± 44 347± 52 431± 67 453± 41 488± 38 484± 33
Fish, swim 729± 90 546± 114 697± 109 694± 102 750± 101 787± 38 748± 114
Basic Manipulation (uh) 130± 30 310± 34 108± 39 168± 45 246± 34 84± 42 377± 45
Basic Manipulation (ud) 59± 34 366± 32 41± 38 198± 38 242± 42 93± 43 221± 41
Basic Manipulation (hd) 68± 45 105± 31 78± 33 173± 32 177± 33 70± 48 358± 42
Basic Manipulation (uhd) 86± 47 368± 36 62± 40 47± 33 136± 30 101± 38 446± 34

Scores at 100k Steps DrQ RAD DreamerV2 PI-SAC SLAC DRIBO SMuCo

Cheetah, run 723± 102 577± 109 532± 77 683± 100 632± 49 496± 119 940± 76
Walker, walk 725± 83 651± 100 923± 98 826± 70 452± 97 532± 81 976± 109
Ball in cup, catch 959± 65 543± 35 988± 48 963± 113 612± 114 547± 77 813± 68
Finger, spin 744± 36 679± 87 479± 30 761± 49 715± 114 262± 34 932± 78
Acrobot, swingup 216± 61 139± 53 187± 111 227± 78 158± 33 112± 52 230± 103
Humanoid, run 435± 77 318± 114 399± 60 435± 109 266± 32 248± 93 479± 47
Hopper, hop 403± 84 327± 101 333± 86 394± 75 274± 82 223± 61 456± 91
Fish, swim 671± 58 444± 104 634± 98 651± 118 470± 108 376± 101 708± 33
Basic Manipulation (uh) 103± 46 147± 38 54± 46 117± 40 187± 42 56± 32 234± 31
Basic Manipulation (ud) 47± 47 174± 30 20± 41 137± 37 184± 48 62± 30 137± 31
Basic Manipulation (hd) 54± 33 50± 41 39± 40 119± 32 134± 44 47± 35 222± 47
Basic Manipulation (uhd) 68± 44 175± 32 31± 45 32± 37 104± 43 67± 37 277± 46

Table 2: Evaluation scores at 100k/500k steps.

Evaluation Scores at different Stages. We also summarize the evaluation scores of SMuCo and other baselines at 100k and
500k steps in Table 2. In scores at 500k steps, SMuCo achieves the best performance among baselines in 7 tasks over 12
tasks. In scores at 100k steps, SMuCo achieves the best performance among baselines in 10 tasks over 12 tasks. This implies
that SMuCo has significant advantage in sample efficiency over other baselines, even though its non-dominant performance



in scores at 500k steps.

Predictability. We provide predictions of future observations using the deconvolutional decoder in Figure 9, showing that
our method can really have good predictive ability for future states.

Figure 9: Prediction of future states (observations) from two representations of observations in task: Walker, walk.

A.4 REASONS FOR POOR PERFORMANCE ON BALL CATCH

We posit that one of the possible reasons why SMuCo performs worse than other baselines in “Ball in cup, catch" is that too
little difference exists among multiview observations under this scenario. Nevertheless, even though SMuCo may not be
optimal for this single task, this does not impair the advantages over other baselines. Likewise, DRIBO Fan and Li [2022]
does not outperform other baselines in finger spin. We would like to emphasize that SMuCo is not designed to outperform all
existing model-free RL methods, but rather to introduce a novel approach to image representation learning and demonstrate
its effectiveness in a set of benchmark tasks.

A.5 SUMMARY OF VISUAL CONTROL METHODS

Method Model-free Representation Information theoretic

SMuCo ✓ ✓ ✓
DreamerV2 Hafner et al. [2021] ✗ ✗ ✗

RAD Laskin et al. [2020a] ✓ ✗ ✗
DrQ Yarats et al. [2021] ✓ ✗ ✗

PI-SAC Lee et al. [2020b] ✓ ✓ ✓
SLAC Lee et al. [2020a] ✓ ✓ ✗

DRIBO Fan and Li [2022] ✓ ✓ ✓

Table 3: Comparison among SMuCo and other baselines.


	Introduction
	Related Work
	 SMuCo 
	Multi-view Total Correlation
	Sequential Multi-view Total Correlation
	Visual Control with SMuCo

	Experiments
	Experimental Setup
	Baselines
	Evaluation on Control Tasks
	Ablation Study
	Spatial Attention of Learned Representations

	Conclusion
	Appendix
	Details about SMuCo Surrogate Objective
	Network Architectures and Hyperparameters
	Additional Experimental Results
	Reasons for Poor Performance on Ball Catch
	Summary of Visual Control Methods


