AceReason-Nemotron: Advancing Math and Code
Reasoning through Reinforcement Learning

Yang Chen * Zhuolin Yang * Zihan Liu Chankyu Lee Peng Xu
Mohammad Shoeybi Bryan Catanzaro Wei Ping
NVIDIA
Abstract

Despite recent progress in large-scale reinforcement learning (RL) for reasoning,
the training recipe for building high-performing reasoning models remains elusive.
Key implementation details of frontier models, such as DeepSeek-R1, including
data curation strategies and RL training recipe, are often omitted. Moreover, recent
research indicates distillation remains more effective than RL for smaller models.
In this work, we demonstrate that large-scale RL can significantly enhance the
reasoning capabilities of strong, small- and mid-sized models, achieving results
that surpass those of state-of-the-art distillation-based models. We systematically
study the RL training process through extensive ablations and propose a simple
yet effective approach: first training on math-only prompts, then on code-only
prompts. Notably, we find that math-only RL not only significantly enhances the
performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2%
on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8%
/ +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-
only RL iterations further improve code benchmark performance with minimal
or no degradation in math results. We develop a robust data curation pipeline to
collect challenging prompts with high-quality, verifiable answers and test cases to
enable verification-based RL across both domains. Finally, we identify key insights,
including curriculum learning with progressively increasing response lengths and
the stabilizing effect of on-policy parameter updates. We find that RL not only
elicits the foundational reasoning capabilities acquired during pretraining and
supervised fine-tuning (e.g., distillation), but also pushes the limits of the model’s
reasoning ability, enabling it to solve problems that were previously unsolvable.’

1 Introduction

Reasoning capabilities are a fundamental component of Al Since the introduction of OpenAl
ol (OpenAl, 2024), building reasoning models using large-scale reinforcement learning (RL) has
attracted significant attention. Remarkable progress has followed the open-sourcing of DeepSeek-
R1 (Guo et al., 2025), empowering the open LLM and research communities to develop state-of-
the-art reasoning models through RL or distillation. However, key technical details necessary for
reproduction, such as data curation strategies and the specific RL training recipe, were omitted from
the original DeepSeek-R1 report (Guo et al., 2025), leaving the community scrambling to replicate
its success.

*Equal contribution. Correspondence to: {yachen, zhuoliny, wping}@nvidia.com
2We release the model, dataset, and a full technical report at: https://huggingface.co/papers/
2505.16400.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://huggingface.co/papers/2505.16400
https://huggingface.co/papers/2505.16400

Subsequent efforts by different teams explored different model sizes (e.g., 1.5B (Luo et al., 2025b),
7B (Wen et al., 2025), 14B (Luo et al., 2025a), and 32B-only (Yu et al., 2025)), different initial
checkpoints (e.g., base models (Yu et al., 2025) and distilled reasoning models (He et al., 2025)),
and different target domains (e.g., math (Luo et al., 2025b), code (Luo et al., 2025a), and physical
Al (Azzolini et al., 2025)). Each study shows a potential path to success in specific settings but lacks
a conclusive or consistent training recipe. Moreover, both DeepSeek-R1 (Guo et al., 2025) and Llama-
Nemotron (Bercovich et al., 2025) report that distillation outperforms RL for small and mid-sized
models, recommending RL only for the largest models, such as the DeepSeek-V3-671B (Liu et al.,
2024a) or Llama-Nemotron-Ultra-253B — a strategy also adopted by the Qwen3 (Qwen, 2025a).

In this work, we demonstrate that large-scale reinforcement learning (RL) can significantly enhance
the reasoning capabilities of strong small- and mid-sized SFT models (DeepSeek-R1-Qwen-Distilled-
7B/14B) - achieving performance competitive with state-of-the-art distillation-based results at 7B,
and surpassing them at 14B (Moshkov et al., 2025; Ahmad et al., 2025).

Specifically, we make the following contributions:

1. We propose conducting math-only and code-only RL separately: the distilled SFT model is
first trained on math-only prompts, followed by training on code-only prompts. This approach
was initially motivated by training efficiency considerations, as the average verification time
for code is significantly longer than that for math. Subsequently, we found two exciting
observations: i) Math-only RL significantly boosts the performance of strong distilled models
not only on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B
models), but also on code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench v5 for the
7B / 14B models); see Table 1 for details. ii) Extended iterations of code-only RL lead to
minimal or no degradation on math reasoning tasks (e.g., +1.0% / -0.8% on AIME 2024 /
2025 for the 7B model); see Table 4 for details. These observations contrast with domain-
specific supervised fine-tuning (SFT), which can lead to catastrophic forgetting and degraded
performance on other domains.

2. We develop and share a systematic data curation recipe to collect high quality math problems
with verifiable answers, as well as coding descriptions with test cases, ensuring that all data
is reliable and testable. We open-source the dataset for the benefit of the community at
https://huggingface.co/datasets/nvidia/AceReason-Math

3. To ensure consistent conclusions, we examine the RL training recipe through detailed ablation
studies and analysis under state-of-the-art settings. Our findings include: i) Curriculum
learning with a progressively increasing maximum response length improves both training
efficiency and final accuracy on reasoning benchmarks. ii) On-policy parameter updates
stabilize the RL process. iii) RL not only elicits the foundational reasoning capabilities
acquired during pretraining and supervised fine-tuning (e.g., distillation), as evidenced by
significant improvements in pass@1, but also expands the model’s capabilities to solve
previously unsolvable problems, as demonstrated by substantial and consistent gains from
pass@64 to even pass@1024.

2 Related Work

Training LLMs to reason has been a long-standing research focus (Wei et al., 2022), especially
in the domains of code (Chen et al., 2021) and math (Cobbe et al., 2021). In recent years, major
development efforts have focused on acquiring reasoning capabilities by training on math and code
data during both the pretraining and supervised fine-tuning (SFT) stages (Shao et al., 2024; Guo et al.,
2024; Grattafiori et al., 2024; Yang et al., 2024b; Liu et al., 2024d). Reinforcement learning (RL)
has previously been explored for math reasoning using reward models tailored to the math and code
domains (Shao et al., 2024; Yang et al., 2024b). However, the gains have been limited, largely due to
the inherent challenges of reward modeling in mathematical and coding domains (Lightman et al.,
2023; Liu et al., 2024d,b).

The release of OpenAl ol (OpenAl, 2024), and especially the open-sourcing of DeepSeek-R1 (Guo
et al., 2025), highlights the effectiveness of large-scale RL through rule-based verification. In the
case of math problems with deterministic answers, models are required to output the final result in a
specific format (e.g., boxed), enabling accurate rule-based verification (e.g., Yang et al., 2024b; Liu

https://huggingface.co/datasets/nvidia/AceReason-Math

et al., 2024d). For code problems, feedback is provided through compilation and execution against
predefined test cases (e.g., Zeng et al., 2025; Luo et al., 2025a).

Due to the absence of key implementation details in frontier models, such as RL training recipes and
data curation strategies, subsequent works have explored and shared data curation methods (Luo et al.,
2025b; He et al., 2025; Luo et al., 2025a), and introduced various techniques to improve and stabilize
the widely adopted GRPO training (Shao et al., 2024). These include progressively increasing the
maximum response length (Luo et al., 2025b,a; He et al., 2025), clip-higher to mitigate entropy
collapse (Yu et al., 2025), and overlong filtering to avoid penalties from truncated generations within
the maximum response length (Yu et al., 2025). Many of these efforts focus exclusively on either
the math domain (Luo et al., 2025b; Yu et al., 2025; Chen et al., 2025; RL Lab, 2025) or the code
domain (Luo et al., 2025a; Zeng et al., 2025), highlighting the difficulty of handling heterogeneous
prompts and inherent complexity of RL training. Furthermore, the range of reported benchmarks
remains limited, typically to AIME 2024 / 2025, and LiveCodeBench (Jain et al., 2024), compared to
broader evaluations in frontier reasoning models (Guo et al., 2025; Qwen, 2025a).

Another line of follow-up work focuses on distilling existing frontier reasoning models, which are
originally trained via RL (Guo et al., 2025; Qwen, 2025b), through strong-to-weak distillation using
rejection sampling (Ahmad et al., 2025; Moshkov et al., 2025; Bercovich et al., 2025), as prior studies
have found that RL yields suboptimal results for smaller models compared to distillation (Guo et al.,
2025; Bercovich et al., 2025). In this work, we initiate RL from strong distilled models, and show that
it can achieve results that are competitive with or surpass existing state-of-the-art distillation-based
approaches on math (Moshkov et al., 2025) and code (Ahmad et al., 2025).

3 Method

3.1 Framework

We adopt the GRPO algorithm (Shao et al., 2024), as used in DeepSeek-R 1, instead of PPO (Schulman
et al., 2017), due to its simplicity and the advantage of not requiring a separate value function model.
For each question-answer pair (g, a), we sample from policy model 7y, to generate a group of G
individual rollouts {o0;}$. ;. We assign a reward score S; = S(0;, a) to each response o;, given the
oracle answer a, using a rule-based reward function S. We employ the token-level policy gradient
loss variant of GRPO, as introduced by Yu et al. (2025),

Jereo(0) = Eg.a)nD, (0,12, ~moyy (-1a)
G ‘01‘ .
[ZZ <m1n (r” VA 4, clip(ri’t(e) -g1 +5)A) - 5Dm<ﬂ9|ﬂref>>],
Yiciloil im =
(D
therein,

T9(0i | ¢, 0i<t) 4 S; — mean({9;}{,)
rit(0) = : : , A = ! for Vi, 2
7t() Treold(oi,t | q70i><t) ! Std({sl}szl) @

where r; +(0) is the token-level importance weight, and the token-level advantage flm within each
response is uniformly assigned with the value of normalized reward score across the group {S;}% ;.

Our experiments strictly adhere to on-policy training by performing a single gradient update after
generating a group of G rollouts. This approach ensures stable RL training and helps prevent
entropy collapse. Consequently, the policy used for data collection matches the current policy, i.e.,
Tog (- | ¢) = mo(- | ¢), and the importance weight r; ,(6) = 1. Additionally, we eliminate the KL
divergence term by setting 5 = 0, thus the GRPO objective became REINFORCE objective (?) with
group-normalized rewards,

G oil

L S ®

11‘Z|'th1

JTarpo(0) = E (g 0)op, {0:}¢ ~mo(-la)

So, the update rule becomes,

G oil

1 ~
ﬁ Z Z Vg log 7"'9(01',15 ‘ q, 0i,<t) : Ai,t .
i=1 191 =1 t=1
4)

We started RL experiments from distilled reasoning models DeepSeek-R1-Qwen-Distilled-
7B/14B (Guo et al., 2025), ensuring that the experiments were conducted under controlled conditions
without introducing variations in distillation data or fine-tuning compute. We use the veRL frame-
work (Sheng et al., 2024), which implements token-level loss for GRPO, and employ the vLLM
inference engine (v0.7.3) (Kwon et al., 2023) for sample generation. Our custom modification
includes adding math and code reward functions (verifiers) to the implementation. All experiments
are conducted using 128 NVIDIA H100 GPUs.

Vo oreo(8) = Big 0, {0 orslin

Reward functions:

* For verification of math problems, we employ a rule-based Python verification function built on top
of sympy, following the approach of AceMath (Liu et al., 2024d). Specifically, it relies on antlr4-
python3-runtime (v4.11.1) and sympy (v1.12). This configuration is crucial for ensuring accurate
symbolic equivalence. We extract the answer from \\boxed{ } appearing after the <\think>
token and assign rewards strictly based on the correctness of this answer (1 for correct, O for
incorrect), without applying any format-based rewards or length penalties. Using a process pool
with 64 workers, the average verification time is approximately 3.9 seconds per 1,024 instances.

* For coding problem verification, we utilize a local sandbox verifier, following the code execu-
tion tools implemented in the LiveCodeBench repository (Jain et al., 2024). Given the model’s
output, we extract the code generated within * * ‘python [code] * * " code block that follows
<\think> token. Binary rewards are then assigned based on code execution outcome on full set
of test cases. A positive reward will be granted if and only if the extracted code successfully passes
all test cases within the specific time limit. Using a process pool with 64 workers, the average
verification time for code is approximately 552.4 seconds per 1,024 instances.

Given the significant difference in verification time between math and code, we propose conducting
math-only and code-only RL separately.

3.2 Math-only RL
3.2.1 Data Curation

We developed a data collection and verification pipeline to generate high-quality mathematical data for
RL training. Our dataset combines DeepScaler (Luo et al., 2025b; Gao et al., 2024; Min et al., 2024)
and NuminaMath (Li et al., 2024), covering algebra, combinatory, number theory, and geometry. We
apply 9-gram filtering to avoid contamination with common math benchmarks and implement filtering
rules to exclude unsuitable data, such as questions involving multiple sub-questions, multiple-choice
or true/false questions, overly long or complex answers, proof-based questions, non-English content,
references to figures, or excessively brief prompts.

Since NuminaMath data originates from online sources processed through OCR and parsing tools,
it contains considerable noise due to incorrect questions or answers. To address this, we use the
DeepSeek-R1 model with up to eight attempts per question, retaining only those that achieve correct
majority-voted solutions via a rule-based verifier. Questions that are consistently unsolvable by
DeepSeek-R1 often exhibit ambiguity or OCR-related errors upon human inspection and are therefore
discarded. We further filter out questions requiring fewer than 2,000 R1 response tokens to answer,
as we consider these questions to be solvable without extensive reasoning, and downsample problems
with responses of 2,000—4,000 tokens to balance the dataset based on response length. Our final,
rigorously verified dataset contains approximately 49,000 high-quality math problems for RL training.

3.2.2 Training Process

RL training can be computationally intensive when involving long CoT reasoning, with around 80%
training time spent on generating model outputs. To address this challenge, our RL pipeline focuses
on enhancing reliability and efficiency through three primary strategies: 1) strict on-policy training to

maintain stable training and prevent entropy collapse, 2) stage-wise length extension from 8K to 32K
tokens, and 3) curriculum training using increasingly difficult prompts at later stages.

* On-policy training to stabilize entropy loss. The entropy of the policy model serves as a
key metric for assessing its ability to explore during RL training. In early experiments, we
found applying multiple (2 or 4) gradient updates after model generation with a group of G
rollouts per prompt led to rapid entropy collapse around 100 steps (see Figure 2c). In contrast,
using exactly one gradient update after model generation, as in original DeepSeek-Math’s GRPO
implementation (Shao et al., 2024), consistently prevented collapse. We therefore adopted this
strict on-policy approach throughout RL training.

* Length extension to accelerate training. Length extension has been shown to be effective for
smaller models (e.g., the 1.5B DeepScaler (Luo et al., 2025b)), but Wen et al. (2025) reported
challenges in scaling to larger models, as training at an 8K response length initially led to degraded
performance. In contrast, we were surprised to observe substantial performance improvements
when extending training from 8K to 16K maximum response length. Based on this, we adopted a
stage-wise length extension strategy (8K — 16K — 24K — 32K) to enable more efficient training,
as directly starting from 16K or 24K resulted in suboptimal results (see Figure 2b).

* Harder problems to push the model. We used curriculum learning by introducing more difficult
prompts during the 24K and 32K stages. As the model mastered easier examples, their advantage
reach 0 in the GRPO objective. We filtered prompts by model pass rate, filtering out those with
pass rate > 6/16, which significantly improves model performance (Table 3).

Math RL improves code reasoning.

In Table 1, we show performing math Table 1: Math-only RL improves code reasoning.
RL not only improves math reason.ing AIME24 _AIME25 _ LCB v5
on AIME24/25 but also boosts Live- Models avg@64 avg@64 avg@8
CodeBench v5 score to 44.4% (6.8% 1) DeepSeek-RI-Distill-Qwen-7B 55.5 39.0 37.6
for 7B and 58.9% (58% T) for 14B, which AceReason-7B (Math-only) 69.0 53.6 44.4 (6.81)
already outperforms the very recent code DeepSeck-R1-Distill-Qwen-14B 69.7 50.2 53.1
RL model DeepCoder—14B (579%) (Luo AceReason-14B (Math-only) 78.6 67.4 58.9 (5.81)

et al., 2025a). Furthermore, we show that

math-only RL improves coding performance across all problem topics—not just math-related coding
tasks (see Figure 9 in section A.8). This cross-domain generalization is a compelling advantage of
reinforcement learning. In contrast, domain-specific supervised fine-tuning (SFT) often results in
poor performance on other domains.

We used a batch size of 128, sampling G = 8 responses per prompt for 8K length training and 16
responses otherwise. We adopted a learning rate of 1 x 106 with AdamW (Kingma, 2014), and set
both the entropy loss coefficient and KL loss coefficient 3 to 0.

3.3 Code-only RL
3.3.1 Data Curation

We curated our code-only RL training dataset from modern competitive programming platforms using
strict selection criteria to ensure high-quality coding problems. The dataset includes both function-
calling and standard input/output (stdin/stdout) formats and covers a wide range of algorithmic topics,
including graph theory, data structures, number theory, greedy algorithms, and more.

To ensure stability for RL training, we filtered out problems incompatible with standard output
comparison (e.g., multi-solution or interactive problems requiring special judges) or those needing
platform-specific templates, thereby minimizing potential false negative reward. Furthermore, we
curated strong testcases covering tricky edge cases or extreme cases under input limitations, ensuring
that incorrect solutions would fail and thereby eliminating potential false positive reward. As
discussed in Appendix A.9, both false positive reward and false negative reward can obfuscate
RL training by introducing noisy reward signals. To gauge difficulty, we evaluated each problem
using DeepSeek-R1-671B with 8 rollouts, assigning a difficulty score from O to 8. Problems where
the model failed all 8 attempts (level 8) were excluded. Finally, we performed careful benchmark
decontamination and problem deduplication across platforms using n-gram context analysis and

original URL matching (see Appendix A.7 for details). After such aggressive filtering process, 8,520
problems remained, forming our final training set.

3.3.2 Training Process

We apply the two-stage code-only RL pipeline designed to accommodate models of varying scales.
The pipeline leverages training sets composed of coding problems within specific difficulty ranges,
along with customized settings for maximum response length and sampling temperature.

* Stage 1 initiates the code RL process, launching after prior math-only RL to ensure training stability.
In Stage 1, training data is constructed by difficulty: problems with difficulty up to level 5 are used
for 7B model, while problems up to level 7 are used for 14B model. We set maximum response
length as 24,000, temperature as 0.6 and number of rollouts as 8 for Stage 1 training.

» Stage 2 employs the full set of training problems with 32,768 maximum response length. In this
stage, we implement an epoch-wise filtering strategy by filtering out relatively easy problems
w.r.t. prior epoch checkpoints and gradually increasing the sampling temperature from 0.6 to 1.0,
number of rollouts from 8 to 16 across epochs. This aims to encourage policy convergence while
encouraging exploration.

We set batch size to 128 and learning rate to 5 x 10~% with AdamW, continuing training in both stages
until policy converges. For reward function, we adopt the strict rule-based reward: positive reward 1
is granted if and only if the generated code successfully passes all test cases for the given problem.
As for efficient evaluation, we deploy a parallelized local verifier to check testcase correctness.

3.4 Summary of Training Curriculum

We use DeepSeek-R1-Distill-Qwen2.5-7B and 14B as our initial SFT models. To integrate math-only
and code-only RL, we first perform math-only RL with stage-wise length extension from 8K to 24K.
Next, we apply code-only RL, extending the length from 24K to 32K. Finally, we conduct math-only
RL at 32K. We find that this training curriculum is slightly more effective and efficient in practice
than first performing math-only RL from 8K to 32K, followed by code-only RL from 24K to 32K.

4 Evaluation

4.1 Experimental Setup

Our experiments start from strong SFT models, DeepSeek-R 1-Distill-Qwen-7B and 14B, which are
based on the Qwen2.5 model family (Yang et al., 2024a) and distilled from DeepSeek-R1 (Guo et al.,
2025). To ensure consistency and reproducibility, we follow the DeepSeek-R1 evaluation protocol,
using a temperature of 0.6, t op—p of 0.95, and a maximum output length of 32,768 tokens.

4.1.1 Math Evaluation

We use a diverse math competition benchmarks, including AIME2024, AIME2025,
MATHS00 (Hendrycks et al., 2021), in addition with HMMT2025 Feb and BRUMO2025 from
MathArena (Balunovi¢ et al., 2025). Due to the high variance in outputs from reasoning models
when using sampling, we report pass@1 performance averaged over k generations (avg@k). For
small-scale benchmarks such as AIME, we use k£ = 64, following DeepSeek-R1. This choice of k is
critical for obtaining a reliable evaluation, as lower values of k lead to a significantly higher standard
error of the mean (e.g., on AIME2024 @16/32/64 : 1.8/1.2/0.7).

To isolate the effects of pre-training, we primarily compare with reasoning models based on ei-
ther Qwen2.5 or Llama-3.1 at similar parameter scales. These include SFT models (distilled
from much larger frontier models) such as Light-R1-7B (Wen et al., 2025), OpenMathReasoning-
7/14/32B (Moshkov et al., 2025), and LLaMA-Nemotron-Nano/Super-8/49B (Bercovich et al., 2025),
as well as RL models like AReal-boba-RL-7B (RL Lab, 2025), Skywork-OR1-Math-7B (He et al.,
2025), and Light-R1-14B (Wen et al., 2025). For context, we also include frontier reasoning models
such as DeepSeek-R1 (Guo et al., 2025), QwQ-32B (Qwen, 2025b), LLaMA-Nemotron-Ultra-
253B (Bercovich et al., 2025), and 03-mini (OpenAl, 2024).

Table 2: Math and Code reasoning evaluation. We report pass@1 averaged over k gener-
ations (avg@k) following the DeepSeek-R1 evaluation framework (template, temperature=0.6,
top_p=0.95, max response length=32,768). By default, we report self-reported numbers from
model developers if they are available. Otherwise, fwe evaluate the model using the same evaluation
setting, or fwe collected from MathArena or LiveCodeBench leaderboard.

AIME MATH HMMT BRUMO | LiveCodeBench Codeforces

Models 2024 2025 500 2025 2025 Vs v6 ELO Percentile CVAIPIUS
avg@64 avg@64 avg@4 avg@64 avg@o64 avg@8 avg@8 pass@1 pass@1 avg@4

QwQ-32B 79.5 65.8* 96.0 47.5% - 63.4 - 1982 97.7 -
DeepSeek-R1-671B 79.8 70.0* 97.3 41.7* 80.8* 65.9 - 2029 98.1 -
Llama-Nemotron-Ultra-253B 80.8 72.5 97.0 - - 66.3 - - - -
03-mini (low) 60.0 48.3% 95.8 28.3% 66.7 60.9* - 1918 97.1 -
03-mini (medium) 79.6 76.7 97.3 53.3F 80.0° 67.4% - 2036 98.1 -
AReal-boba-RL-7B 61.9 48.3 93.8" 29.41 58.9° 343" - - - -
Skywork-OR 1-Math-7B 69.8 523 94.4% 31.4% 60.6 43.6 - - - -
OlympicCoder-7B - - - - - 40.7 37.11 - - 79.81
Light-R1-7B 59.1 443 924" 27.6" 52.8" 4061 364" - - -
Light-R1-14B 74.0 60.2 94.6 37.8" 67.17 5797 515t - - -
DeepCoder-14B (32K-Inference) 71.0° 56.11 - - - 57.9 504" 1922 97.2 85.3"
OpenMath-Nemotron-7B 74.8 61.2 - - - - - - - -
OpenMath-Nemotron-14B 76.3 63.0 - - - - - - - -
OpenMath-Nemotron-32B 76.5 62.5 - - - - - - - -
OpenCodeReasoning-Nemotron-7B - - - - - 51.3 4611 - - 83.41
OpenCodeReasoning-Nemotron-14B - - - - - 59.4 54.17 - - 84.17
Llama-Nemotron-Nano-8B-v1 61.3 47.1 95.4 - - 46.6 46.21 - - 81.2"
Llama-Nemotron-Super-49B-v1 67.5 60.0 96.6 - - 45.5 - - - -
DeepSeek-R1-Distill-Qwen-7B 55.5 39.0° 92.8 26.31 51.2f 37.6 3417 1189 57.4 80.4"
DeepSeek-R1-Distill-Qwen-14B 69.7 50.2f 93.9 31.7% 61.17 53.1 47.91 1481 85.6 83.97
DeepSeek-R 1-Distill-Qwen-32B 72.6 54.9" 94.3 33.34 68.3* 57.2 - 1691 932 -
DeepSeek-R1-Distill-Llama-70B 70.0 55.0% 94.5 33.3F 66.7 57.5 - 1633 91.4 -
AceReason-Nemotron-7B 69.0 53.6 94.1 33.9 62.2 51.8 4.1 1475 84.8 84.6
AceReason-Nemotron-14B 78.6 67.4 95.0 46.4 72.3 61.1 54.9 2024 98.1 85.7

4.1.2 Code Evaluation

For coding tasks, we evaluate our AceReason-Nemotron models on LiveCodeBench (LCB) (Jain
et al., 2024) v5 (20240801 — 20250201) and v6 (20250201 — 20250501) subsets, containing recently
released AtCoder, LeetCode problems. We also report Codeforces ELO and percentile number of
our models based on LiveCodeBench Pro dataset (Zheng et al., 2025), which contains Codeforces
problems from 202407 to 202412. We also include evaluations on EvalPlus (Liu et al., 2024c, 2023).

We compare our model with state-of-the-art open-sourced code-gen LLMs of similar parameter
scales, including OlympicCoder-7B (Face, 2025), Llama-3.1-Nemotron-Nano-8B-v1 (Bercovich
et al., 2025), OpenCodeReasoning-7B/14B (Ahmad et al., 2025), DeepCoder-14B (Luo et al., 2025a).
For further context, we also include strong frontier reasoning models as titled above.

4.2 Main Results
From the evaluation results in Table 2, we summarize the key conclusions as follows:

* RL significantly improves reasoning capabilities. Our AceReason-Nemotron-7B/14B models
show that using RL significantly improves over the initial SFT models (DeepSeek-R1-Distill-
Qwen-7B/14B) on both math and coding tasks. Specifically, for math tasks, our AceReason-
Nemotron-7B achieves remarkable improvements over SFT model by increasing 14.5% accuracy
on AIME 2024, and 14.6% accuracy on AIME 2025. For coding tasks, it achieves 14.2% and 8%
accuracy improvements over DeepSeek-R1-Distill-Qwen-7B on LiveCodeBench v5 and v6, respec-
tively. Meanwhile, AceReason-Nemotron-14B improves from 69.7%/50.2% to 78.6%/67.4%
on AIME24/25, and 53.1%/47.9% to 61.1%/54.9% on LiveCodeBench v5/v6 from initial SFT
model DeepSeek-R1-Distill-Qwen-14B, even surpassing significantly larger SFT models such as
DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Llama-70B. Additional results on 1.5B
and 32B further validate the same improvements as shown in Appendix Table ??.

* AceReason-Nemotron vs. SOTA RL-based reasoning models. While comparing with state-of-
the-art open RL-based reasoning models under the same parameter scale, AceReason-Nemotron
model still remains its superiority. In math reasoning domain, AceReason-Nemotron-7B model
provides competitive results while comparing with strong RL-based models (Skywork-OR1-Math,
Light-R1, etc.), while AceReason-Nemotron-14B provides the best-in-class results. In code

AIME 2024 LiveCodeBench v5

—— AceReason-7B
78 60+
—— AceReason-14B
76
74 ’
7/
72 554
P /
= Deepseek-R1-Distill-14B P
370 2 4 Deepseek-R1-Distill-148
® 68 >
< > 504
3 66 X &
b Stage 2 (16K): acceleration > Math-RL
64 9
Se 3
3 3 as
£ 60 < ,
/
58 ’
56| Deepseek-R1-Distill-78 404 //
54 / —— AceReason-7B
N —— AceReason-7B (w/o Math-RL)
52 Deepseek-R1-Distill-78 —— AceReason-14B
50 L T T y v y v T 35 T y T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 39 78 117 156 195 234 273 312
Training Steps Training Steps

Figure 1: Model accuracy on AIME2024 and LiveCodeBench v5 during RL.

generation domain, AceReason-Nemotron models outperform all open-sourced reasoning models
with similar parameter scale. Its Math-Code ability remains competitive even comparing with
frontier reasoning models, such as QWQ-32B, 03-mini, etc.

* AceReason-Nemotron vs. SOTA models through distillation. AceReason-Nemotron-14B
shows better math and code performance than the latest SOTA specialized distilled model such as
OpenMath-14B/32B by +2.1%/+4.4% on AIME24/25, OpenCodeReasoning-14B by +1.7%/+0.8%
on LiveCodeBench v5/v6, demonstrating RL leads to higher upper-bound of model performance
than distillation. In contrast, at 7B model scale, AceReason-Nemotron-7B performs competi-
tively with OpenCodeReasoning-7B on coding tasks, while OpenMath-7B appears to have bigger
advantage than RL-trained AceReason-Nemotron-7B on math reasoning. In all cases, AceReason-
Nemotron models significantly outperform the general-purpose reasoning model Llama-Nemotron-
8B/49B, which is trained via distillation. This indicates that the effectiveness of distillation versus
RL still depends on model size and task domain, though RL offers the potential for significantly
higher accuracy at the 14B scale and beyond.

4.3 Analysis

Response length grows alongside performance. Figure 1 (left subfigure) and Figure 2a show the
evolution of response length on the training set and corresponding AIME24 accuracy (AIME2S5 in
appendix Figure 6) throughout the RL training of AceReason-Nemotron-7B model. We analyze two
distinct stages in the 8K — 16K length-extension training strategy: 1) Stage 1 (8K) — Transition from
imitation to RL: During this stage, the model learns to compress its reasoning process to adapt to an
8K token limit, causing an initial drop in problem-solving capabilities compared to baseline. However,
after approximately 1K-2K RL steps, the model gradually recovers its performance; 2) Stage 2 (16K)
— Accelerated learning: Upon extending the token limit to 16K, the model immediately exploits the
extra reasoning tokens capacity: within 500 RL steps, its average response length increases from 4K
to around 6.5K tokens. At the same time, AIME24 accuracy improves sharply from 55% to 62%,
after which both response length and accuracy plateau. Extending the maximum response length
further to 24K and 32K demonstrates a similar trend.

Hard prompts drive the largest gains. At the 24K Table 3: Prompt difficulty and its impact on Stage
response length RL stage, we build {Easy, Medium, 3 (24K) training.

Hard }-prompt sets based on difficulty estimated by
7B model’s performance over 16 attempts. Easy Data
prompt set includes prompts except those solved

AIME24 AIME25
avg@64 avg@64

more than 14 times, Medium prompt set excludes Starting Checkpoint - 7B 62.2 502
those solved more than 10, and Hard excludes those Full (no filtering, #49K) 63.3 511
solved more than 6. As shown in Table 3, our abla- Basy (#10K) ol 208
. - A) » oul Medium (#4.6K) 653 51.9
tion confirms that training with Hard prompts yields a Hard (#2.2K) 65.9 52.5

2.6% improvement on the AIME24 benchmark com-
pared to fullset data and outperforms using Easy/Medium prompts, although it only has 2.2K prompts.

o 16k 24k 64 { Length Extension Configs:
—— 8K-16K-24K
—— 16K-24K

— 24K

0.30
12000

L—7
Using hard problems in 24K training
10000 o

8000 1

Entropy Loss

Increase in 16K training -hit awall
~

6000

Response Length (tokens)

AIME2024 Accuracy (avg@64)

Training Method:

Initial decline in 8K traini

2000 4 544 7 = Clip-Higher
= On-policy
T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 06 08 10 12 14 16 0 50 100 150 200 250 300
Training Steps GPU Hours x10* Training Steps
(@ (b) ©

Figure 2: Analysis of RL training: (a) response length during math-RL training, (b) GPU hours for
different length extension configurations, and (c) entropy of output logits using on-policy RL training
versus off-policy training with Clip-Higher trick.

Starting from 8K improves later performance. Although training initially at 8K max response
length offers faster training per step than starting at 16K or 24K, the early decline in AIME24
accuracy raises questions about its necessity for 7B-sized models. Figure 2b presents an ablation
study comparing three strategies: 8K—16K—24K, 16K—24K, and directly at 24K. Each strategy
utilizes identical full data, with accuracy measured on AIME24 alongside GPU hours consumed. The
results indicate that while the 16K—24K strategy initially outperforms the baseline, the 8K— 16K
strategy quickly catches up during the 16K stage and consistently outperforms other strategies
thereafter. Conversely, starting directly at 24K results in minimal performance gains and significantly
longer training times, suggesting limited effectiveness during RL training for 7B model.

Interplay of math-only RL and code-only RL. In Figure 1 (right subfigure), we observe that
initializing code RL training from math-RL checkpoints offers a substantially better starting point
and results in significantly higher final accuracy on LCB. We investigate the effects of sequential
Math RL and Code RL training stages on developing strong reasoning model in both math and code
reasoning domains. Starting from DeepSeek-R1-Distill-Qwen-7B/14B as our initial models, we first
apply Math-RL and then Code-RL, evaluating performance on standard Math (AIME 24/25) and
Code (LCB v5/v6) benchmarks. Surprisingly, as shown in Table 4, initial Math-RL training not
only significantly improves accuracy on math benchmarks, but also improves model performance on
coding. Subsequent Code-RL training further boosts coding scores, with negligible degradation on
math performance. This shows that the proposed sequential training strategy is effective in developing
models with strong reasoning abilities across math and coding domains.

Does RL improve pass@k or pass@1
over the distilled model? Recent stud- 1able 4: Interplay of math-only RL and code-only RL.

ies (Shao et al., 2024; Yue et al., 2025) sug-

AIME LiveCodeBench

1 11v 1 - Model 2024 2025 5 6
gest that RL primarily improves pass@]1 ac odels oaB6s a6t | mpes ave@s
curay over SFT model (e.g., DeepSeek-R1- —

oY . LN ! . DeepSeek-R1-Distill-Qwen-7B 555 390 376 34.1
DIStllled) without SIgmﬁcantly 1mpacting + Math-RL (8K — 24K) 659 (10.41) 525(13.51) | 44.4(6.81) 37.6(3.57)
@k H F 3d trat ++ Code-RL (24K — 32K) 669 (101) SL7(0.8)) | 51.8(747) 44.1(6.57)

pass : OWG.:Ver, lgl.lre cmonstrales DeepSeek-R1-Distill-Qwen-14B 69.7 502 531 479
that RL con51stently improves pass @k +Math-RL (8K — 24K) 76.6(6.91) 63.4(1321) | 586(551) 50.9(3.07)
++ Code-RL (24K — 32K) 757091) 63.9(0.51) | 6L1(257) 549 (4.07)

score (from k£ = 8 to k = 64) for both
7B and 14B models on LiveCodeBench v5 and v6, with an improved pass @k scores maintaining a
10% margin from pass @8 to pass@64. On AIME24/25, we found the 7B and 14B model also show
better pass@k compared to the SFT model across all k. For both AIME and LiveCodeBench, we
generated 128 responses for each question and randomly sampled k to calculate the pass @k result
with an average of 100 runs to reduce variance.

To further validate our conclusion, we extend pass@k evaluation from k= 64 to 1024 on Live-
CodeBench v6, where correct answers are difficult to “guess” through limited sampling. For each
question, we generated 1,024 responses to compute pass@1024. For smaller values of k (k <
1024), we randomly sampled k responses from the 1,024 and calculated pass@k by averaging over
100 runs. In Figure 5, we observe that our AceReason-Nemotron-7B consistently outperforms

AIME2024 AIME2025 LiveCodeBench v5 LiveCodeBench v6

s 16 32 & 5 16 32 &
K: the number of candidates K: the number of candidates K: the number of candidates K: the number of candidates

~@— AceReason-Nemotron-14B @~ DeepSeek-R1-Distill-14B —@— AceReason-Nemotron-7B -l DeepSeek-R1-Distill-7B

Figure 3: The Pass@K of RL (AceReason) and SFT (DeepSeek-R1-Distilled) models on AIME

2024/2025 and LiveCodeBench v5/v6.
leeCodeBench v5 LiveCodeBench v6

100

100]
||| ||| " Deepseek-R1-Distill-7b |||| |||
I”” W After RL Improvements

80 ||| ‘ = After RL Degradations 80 |
> H
3 60 || | '
e
o 40 i
) \ H HH H|

. I, e

|| (™
0 i
Problem Instances Problem Instances
AIME2024 AIME2025
100 _""-'I 100 —I.
80 I !
80

3 o II I n | I
3 i I * iili -_*.
8 w0 L1 .
< Deepseek-R1-Distill-7b 40 II

20 W After RL Improvements 20 l

I After RL Degradations i
0 0
- o

QPN MNQIRGN N NOIONG MR RN TS oMY
=daq - ATRARNA"ERAA N

Proble

Figure 4: Problem-level solving rates comparison between distilled model and after RL training.
Accuracy for each problem is calculated on average of 64 attempts.

the SFT model (DeepSeek-R1-Distill-Qwen-7B) by approximately 10% across all pass@Fk values.
Pass@K=1024 on AIEM25 shows a similar gap in Table 8.

Where does RL improve over the distilled model? Fig-
ure 4 compares the problem-level accuracies of the initial
7B SFT model with AceReason-Nemotron-7B after RL
on LCB v5/v6 and AIME 2024/2025. Results for the 14B
model are shown in Appendix Figure 8. On LCB, we ob-
serve RL unlocks a long tail of hard coding problems that
the distilled model fails to solve in 64 attempts, adding
30 and 23 additional solvable problems to LCB v5 and
v6. It also significantly improves on challenging problems S R I N R
where the SFT model has lower than 20% accuracy. On K: the number of candidates

AIME, for the most challenging problems with zero solve o T s T et
rate, RL enables the model to solve 3 more problems on Figure 5: The Pass@K of RL (AceReason) and
AIME24. Hence, we find RL not only improves the accu- SFT model (DeepSeek-R1-Distilled) on LCB v6.
racy on problems with high solve-rate but also extends the

boundary to solve hard problems that the SFT model was initially unable to solve.

LiveCodeBench v6

5 Conclusion

We demonstrate that large-scale RL can substantially enhance the reasoning capabilities of strong,
small- and mid-sized distilled models. We propose performing RL on math-only prompts first,
followed by code-only prompts. Notably, math-only RL significantly boosts performance not only
on math benchmarks but also on code reasoning tasks. Crucially, subsequent code-only RL further
improves code benchmark performance with minimal to no degradation in math results. To support
this process, we develop a robust data curation pipeline that collects challenging prompts with
high-quality, verifiable answers and test cases, enabling verification-based RL across both domains.

10

References

Ahmad, W. U., Narenthiran, S., Majumdar, S., Ficek, A., Jain, S., Huang, J., Noroozi, V., and Ginsburg, B.
Opencodereasoning: Advancing data distillation for competitive coding. arXiv preprint arXiv:2504.01943,
2025.

Azzolini, A., Brandon, H., Chattopadhyay, P., Chen, H., Chu, J., Cui, Y., Diamond, J., Ding, Y., Ferroni, F.,
Govindaraju, R., et al. Cosmos-reasonl: From physical common sense to embodied reasoning. arXiv preprint
arXiv:2503.15558, 2025.

Balunovi¢, M., Dekoninck, J., Petrov, 1., Jovanovié, N., and Vechev, M. Matharena: Evaluating llms on
uncontaminated math competitions, February 2025. URL https://matharena.ai/.

Bercovich, A., Levy, L., Golan, 1., Dabbah, M., El-Yaniv, R., Puny, O., Galil, I., Moshe, Z., Ronen, T., Nabwani,
N., et al. Llama-Nemotron: Efficient Reasoning Models. arXiv preprint arXiv:2505.00949, 2025.

Chen, H., Zheng, K., Zhang, Q., Cui, G., Cui, Y., Ye, H,, Lin, T.-Y., Liu, M.-Y., Zhu, J., and Wang, H. Bridging
supervised learning and reinforcement learning in math reasoning. arXiv preprint, 2025.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Face, H. Open rl: A fully open reproduction of deepseek-r1, January 2025. URL https://github.com/
huggingface/open-rl.

Gao, B., Song, F.,, Yang, Z., Cai, Z., Miao, Y., Dong, Q., Li, L., Ma, C., Chen, L., Xu, R., et al. Omni-math: A
universal olympiad level mathematic benchmark for large language models. arXiv preprint arXiv:2410.07985,
2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten,
A., Vaughan, A., et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al. Deepseek-
coder: When the large language model meets programming—the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P, Bi, X,, et al. Deepseek-R1:
Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948,
2025.

He, J., Liu, J., Liu, C. Y., Yan, R., Wang, C., Cheng, P., Zhang, X., Zhang, F., Xu, J., Shen, W,, Li, S., Zeng, L.,
Wei, T., Cheng, C., An, B., Liu, Y., and Zhou, Y. Skywork open reasoner series, 2025. Notion Blog.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. NeurIPS, 2021.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T., Wang, S., Solar-Lezama, A., Sen, K., and Stoica, 1.
Livecodebench: Holistic and contamination free evaluation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Kingma, D. P. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving with pagedattention. In Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Principles, 2023.

Li, J.,, Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R., Huang, S. C., Rasul, K., Yu, L., Jiang,
A., Shen, Z., Qin, Z., Dong, B., Zhou, L., Fleureau, Y., Lample, G., and Polu, S. Numina-
math. [https://huggingface.co/AI-MO/NuminaMath-CoT] (https://github.com/
project-numina/aimo-progress—-prize/blob/main/report/numina_dataset.pdf),

2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Twelfth International Conference on Learning Representations,
2023.

11

https://matharena.ai/
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Lin, B. Y., Bras, R. L., Richardson, K., Sabharwal, A., Poovendran, R., Clark, P., and Choi, Y. Zebralogic: On
the scaling limits of 1lms for logical reasoning. arXiv preprint arXiv:2502.01100, 2025.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B, Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-V3
technical report. arXiv preprint arXiv:2412.19437, 2024a.

Liu, C. Y, Zeng, L., Liu, J., Yan, R, He, J., Wang, C., Yan, S., Liu, Y., and Zhou, Y. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint arXiv:2410.18451, 2024b.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code generated by chatGPT really correct? rigorous
evaluation of large language models for code generation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=1qvx610Cu7.

Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., and Zhang, L. Evaluating language models for efficient code
generation. In First Conference on Language Modeling, 2024c. URL https://openreview.net/
forum?id=IBCBMeAhmC.

Liu, Z., Chen, Y., Shoeybi, M., Catanzaro, B., and Ping, W. AceMath: Advancing frontier math reasoning with
post-training and reward modeling. arXiv preprint arXiv:2412.15084, 2024d.

Luo, M., Tan, S., Huang, R., Shi, X., Xin, R., Cai, C., Patel, A., Ariyak, A., Wu, Q., Zhang, C., Li, L. E., Popa,
R. A., and Stoica, I. Deepcoder: A fully open-source 14b coder at 03-mini level, 2025a. Notion Blog.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y., Roongta, M., Cai, C., Luo, J., Li, L. E., Popa, R. A., and Stoica,
1. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL, 2025b. Notion Blog.

Min, Y., Chen, Z., Jiang, J., Chen, J., Deng, J., Hu, Y., Tang, Y., Wang, J., Cheng, X., Song, H., Zhao, W. X,
Liu, Z., Wang, Z., and Wen, J.-R. Imitate, explore, and self-improve: A reproduction report on slow-thinking
reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Moshkov, 1., Hanley, D., Sorokin, I., Toshniwal, S., Henkel, C., Schifferer, B., Du, W., and Gitman, I. Aimo-2
winning solution: Building state-of-the-art mathematical reasoning models with openmathreasoning dataset.
arXiv preprint arXiv:2504.16891, 2025.

OpenAl. Learning to reason with LLMs, 2024.
Qwen, T. Qwen3, April 2025a. URL https://gwenlm.github.io/blog/qwen3/.

Qwen, T. Qwg-32b: Embracing the power of reinforcement learning, March 2025b. URL https://qwenlm.
github.io/blog/qwg-32b/.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y., Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First Conference on Language Modeling, 2024.

RL Lab, A. R. Areal: Antreasoning rl. https://github.com/inclusionAI/AReal, 2025.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y., Wu, Y., et al. DeepseckMath:
Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300,
2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang, R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A
flexible and efficient rlhf framework. arXiv preprint arXiv: 2409.19256, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:
24824-24837, 2022.

Wen, L., Cai, Y., Xiao, F,, He, X., An, Q., Duan, Z., Du, Y., Liu, J., Tang, L., Lv, X., et al. Light-R1: Curriculum
SFT, DPO and RL for Long COT from Scratch and Beyond. arXiv preprint arXiv:2503.10460, 2025.

Xie, C., Huang, Y., Zhang, C., Yu, D., Chen, X,, Lin, B. Y., Li, B., Ghazi, B., and Kumar, R. On memorization
of large language models in logical reasoning. arXiv preprint arXiv:2410.23123, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115, 2024a.

12

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://github.com/inclusionAI/AReaL

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C,, Liu, D., Tu, J., Zhou, J., Lin, J., et al. Qwen2.5-Math
technical report: Toward mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122,
2024b.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan, T., Liu, G., Liu, L., Liu, X., et al. DAPO: An
open-source LLM reinforcement learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Song, S., and Huang, G. Does reinforcement learning really
incentivize reasoning capacity in 1lms beyond the base model? arXiv preprint arXiv:2504.13837, 2025.

Zeng, H., Jiang, D., Wang, H., Nie, P., Chen, X., and Chen, W. Acecoder: Acing coder rl via automated test-case
synthesis. arXiv preprint arXiv:2502.01718, 2025.

Zheng, Z., Cheng, Z., Shen, Z., Zhou, S., Liu, K., Wei, S., He, H., Li, D., Hao, H., Yao, J., Sheng, P., Wang, Z.,
Chai, W., Henderson, P., Korolova, A., Viswanath, P., Xie, S., and Shang, J. Livecodebench pro: How olympiad
medalists view llms in competitive programming?, 2025. URL https://livecodebenchpro.com/.
Available at LiveCodeBench Pro website.

13

https://livecodebenchpro.com/

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: we have comprehensive experimental results in Section 4.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section A.1 in appendix include a limitation section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details of the data collection for training and evaluations,
which can be found in section 4.1 and appendix A.7. We open-source model weights
and data for reproducing our results at https://huggingface.co/collections/
nvidia/acereason-682f4e1261dc22£697£d1485.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485
https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we open-source model weights, training data and use open-source code.
Training data are public available data with open access.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: the experiment settings are presented in section 3 for training data and training
method, and evaluation set up are detailed in 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we report results using an average of k generations with k up to 64 for datasets
such as AIME. We additionally report boxplot to show the improvements of the model over
the baseline in appendeix Figure 7.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 3 and Figure 2b provides the compute resources used.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the code of ethics and conform with it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section A.1 discuss the broader impact of this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Dataset are sourced from open-source dataset and the model is trained for math
and code reasoning instead of other capabilities which might involve high risk misuse issue.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Appendix A.3 and A.7 describe the assets used in this paper with license.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: we will open-source model weights. Dataset we use are open-sourced with
public access.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Does not use crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: no crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This is original research work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Technical Appendices and Supplementary Material

A.1 Broader Impact and Limitations

This work primarily focuses on enhancing the reasoning capabilities of language models in mathe-
matics and coding tasks. As such, it poses minimal negative societal impact in terms of privacy risks
or bias concerns. Our study targets medium-scale models (7B/14B) due to the cost of RL training
and extensive ablations; we additionally report 1.5B and 32B results in the appendix (Table 9),
but do not evaluate models below 1B or above 100B parameters. We intentionally initialize from
DeepSeek-R 1-distilled checkpoints to isolate the effect of the SFT—RL stage; applying RL directly
to base pre-trained models (e.g., R1-Zero—style) is a distinct setting and out of scope in this study.
We focus on verifiable domains (math and coding) to enable rigorous evaluation; assessing transfer to
open-ended tasks is left for future work. Finally, our conclusions are primarily empirical rather than
theoretical.

A.2 Funding Transparency Statement

1. Funding (financial activities supporting the submitted work): Funding in direct support of this
work is from company NVIDIA;

2. Competing Interests (financial activities outside the submitted work): No additional revenues
related to this work.

A.3 Dataset

Table 5: Evaluation Dataset

Dataset # License Link
MATHS500 (Lightman et al., 2023) 500 MIT HuggingFaceH4/MATH-500
AIME2024 30 cc-by-nc-sa-4.0 github.com/QwenLM/Qwen2.5-Math
AIME2025 30 cc-by-nc-sa-4.0 MathArena/aime_2025
HMMT2025 Feb 30 cc-by-nc-sa-4.0 MathArena/hmmt_feb_2025
BRUMO2025 30 cc-by-nc-sa-4.0 MathArena/brumo_2025
LiveCodeBench v5 (Jain et al., 2024) 279 MIT livecodebench/code_generation_lite
LiveCodeBench v6 (Jain et al., 2024) 175 MIT livecodebench/code_generation_lite

Table 6: Training Dataset

Dataset License Link
NuminaMath (Li et al., 2024) Apache-2.0 AI-MO/NuminaMath-1.5
DeepScaler (Luo et al., 2025b) MIT agentica-org/DeepScaleR-Preview-Dataset
AtCoder Problems (before 20240731) cc-by-4.0 https://atcoder. jp/
Aizu Problems cc-by-4.0 https://onlinejudge.u-aizu.ac.jp/
LeetCode Problems cc-by-4.0 https://leetcode.com/

A.4 Additional Experiments on General Reasoning

In addition to the math and code evaluation, we evaluate the models on STEM and logical reasoning
benchmarks such as GPQA (Rein et al., 2024), Knight&Knave (Xie et al., 2024), and Zebra-Logic (Lin
et al., 2025). In Table 7, we show that after RL, AceReason-Nemotron model improves on all datasets,
especially on Knight&Knave with a large margin, achieving 96.1% with the 14B model. This shows
the RL reasoning capability learned during math and code training generalizes to other domains.

A.5 Additional Experiments on 1.5B and 32B models

In Table 9, we run the same AceReason-Nemtron RL recipe on a smaller and larger distilled
checkpoint (DeepSeek-R1-Distilled-Qwen1.5/32B). We show that our training recipe generalizes to
1.5B model and 32B model, achieving significant improvements on both math and code benchmarks.
Due to computational constraints, we only conduct Math-only RL for the 32B model. However, we
found the coding accuracy on LCB v5 significantly improves to 63.4 without any code RL training,
even surpassing Skywork-OR1-32B (63), which has done code RL.

21

HuggingFaceH4/MATH-500
github.com/QwenLM/Qwen2.5-Math
MathArena/aime_2025
MathArena/hmmt_feb_2025
MathArena/brumo_2025
livecodebench/code_generation_lite
livecodebench/code_generation_lite
AI-MO/NuminaMath-1.5
agentica-org/DeepScaleR-Preview-Dataset
https://atcoder.jp/
https://onlinejudge.u-aizu.ac.jp/
https://leetcode.com/

Table 7: Benchmark accuracy (%) on GPQA, Knight & Knave, and Zebra-Logic.

Model GPQA Knight & Knave Zebra-Logic
DeepSeek-R1-Distill-7B 49.1 35.2 24.5
AceReason-Nemotron-7B 51.1 56.4 39.6
DeepSeek-R1-Distill-14B 59.1 83.8 60.1
AceReason-Nemotron-14B 61.2 96.1 72.7

Table 8: AIME 2025 pass @k (%).

Model 8 16 32 64 128 256 512 1024
DeepSeek-R1-Distilled-Qwen-7B 62.2 66.8 71.3 765 812 862 903 926
AceReason-Nemotron-7B 734 760 783 854 89.0 93.0 948 96.1

A.6 Additional Math-RL Analysis

In Figure 6, we show the accuracy on AIME2025 during math RL training. We found the stage 2
(16K) training leads to a large performance improvement within 300 steps. In Figure 7, we plot
boxplots of AIME2024 and AIME2025 accuracy for the 7B and 14B AceReason model comparing
to DeepSeek-R1-Distill-Qwen. We can observe the accuracy of AceReason over 64 generations
at 25% and 75% percentile and median, significantly improve over the distilled model. Finally, in
Figure 8, we inspect the problem-level solve rate for AceReason-14B on AIME2024 and AIME2025.
On AIME24 and AIME25, the AceReason model solves one additional problem. We also observe
large gains on problems with higher initial accuracy, showing the benefits of RL training.

AIME 2025

691 — AceReason-7B

671 —— AceReason-14B
65
63
61
< 59
©
© 57
> 55
> 531
1%}
© 51 1 peepseek-R1-Distill-148|

Stage 2 (16K): acceleration
/
O 49
47 A

454

434

414

39 Deepseek-R1-Distill-7B

37+ T v y v v v T
0 500 1000 1500 2000 2500 3000 3500

Training Steps

Figure 6: Model accuracy on AIME2025.

A.7 Code-RL Dataset Curation Details

We collect our Code-RL training data from various modern competitive programming platforms,
such as AtCoder, LeetCode, Aizu, etc., with public strong test cases, while most open-sourced coding
datasets (e.g., TACO, APPs) suffer from noisy problem statements, self-contamination, and weak
LLM synthetic test cases that are unreliable for RL training. To ensure data quality, we performed
very strict filtering rules, by filtering out 1) Multi-solution or interactive problems that requires
special judge or other external tools; 2) Problems where images within the statement obscure a clear
understanding; 3) Problems containing incorrect test cases or those lacking golden solutions; 4)
Problems with weak test cases that allow incorrect solutions to pass all tests. Furthermore, to prevent
self-contamination within our collected problem set, we conduct strict problem statement and source

22

Table 9: Additional results of 1.5B and 32B model on AIME24, AIME25, and LiveCodeBench v5.

Model AIME24 AIME25 LiveCodeBench v5
DeepSeek-R1-Distilled-Qwen-1.5B 28.9 22.7 16.9
AceReason-Nemotron-1.5B 47.7 18.81) 35.5 (12.81) 27.2 (10.31)
DeepSeek-R1-Distilled-Qwen-32B 72.6 54.9 57.2
AceReason-Nemotron-32B (math-only RL) ~ 79.0 (6.41) 70.6 (15.71) 63.4 (6.21)

801 I AceReason-7B

=
o
o

[DeepSeek-R1-Distill-7B

o ~
o o
o]
o ~
o o
oo

Accuracy
Accuracy

v
o
v
o

N
o
N
o

g Il AceReason-14B
30 301 I DeepSeek-R1-Distill-14B
AIME 2024 AIME 2025 AIME 2024 AIME 2025
Dataset Dataset
(2) 7B (b) 14B

Figure 7: Boxplot of AceReason vs Deepseek-R1-Distill on AIME24/25 over 64 generations.

URL matching. To avoid any potential contamination of our test set, we exclude all problems released
after 20240801, and apply n-gram matching (with n = 14) to our testing set problem statement.

To prepare for subsequent curriculum training for Code-RL, we estimate the relative difficulty of
the collected problems. We deploy the local DeepSeek-R1-671B model, allow it to generate 8
attempts on each problem, and assign a corresponding difficulty score ranging from 0 to 8. Problems
that the DeepSeek-R1-671B model failed to solve in all 8 attempts are excluded from the training
set. Following this aggressive filtering process, 8,520 problems remain, forming our final Code-RL
training set.

A.8 Topic-wise Accuracy Analysis on LiveCodeBench v5

Given the observation that both Math-RL and Code-RL enhance code generation ability on coding
benchmarks, we are interested to see in detail how these two RL stages improve accuracy on topic-
specific coding problems. Specifically, this ablation aims to identify which problem topics benefit the
most from Math-RL and the subsequent Code-RL. Motivated by this, we conducted ablation studies
on LiveCodeBench v5 dataset, which consists of coding problems from AtCoder and LeetCode
platforms. While LeetCode problems come with human-annotated topic tags (e.g., Greedy, Math,
DES), there is no tag on Atcoder problems. To address this, we first extract a set of problem tags from
LeetCode. Then, for each AtCoder problem, we query the 04-mini-high model to infer candidate
tags given the problem statement and the set of topics. Furthermore, we group all LiveCodeBench v5
problems by their assigned topics and evaluate model performance (avg@8 accuracy) for each topic

group.

We compare the performance of our initial SFT models, DeepSeek-R 1-Distill-Qwen-7B/14B, against
corresponding AceReason-Nemotron-7B/14B after applying Math-RL stage only and final models
that incorporate both Math-RL and Code-RL. As shown in Figure 9, we plot the accuracy for each
topic before and after Math-RL and Code-RL. The figure shows that applying math-only RL enhances
model performance across all coding problem topics, with especially strong gains in algorithmic
and math-related areas such as Math, Counting, and Combinatorics—domains that rely heavily on
mathematical concepts and general reasoning abilities. Furthermore, for topics like Simulation, String,
and Graph, which rely more heavily on coding implementation and data structure skills, Code-RL
leads to significant further improvement.

23

AIME2024 AIME2025

100

60

40

Accuracy

_"'"'-III [11 -
0 !Il II'I 8
| |

Deepseek-R1-Distill-14b
20 Wmm After RL Improvements
B After RL Degradations [}

100

o

6

o

4

L .

Accuracy
o

g - Ii

I iy
— 0
)

A®ONINMOONO
AdNHAN

Prefix Sum

Hash Table

Sorting

Number Theory
Binary Search
Counting

Simulation

Math

Enumeration

Greedy
Combinatorics

String

Heap (Priority Queue)
Dynamic Programming
Graph

“problem ID 5
Figure 8: Comparison of problem-solving rates after RL

~ Aot omsN ARMTOONODIND NN
~ NNS @ ~ - A AN NNAN

=

raining.

Topic-wise accuracy on LiveCodeBench v5 Topic-wise accuracy on LiveCodeBench v5

Prefix Sum |
Binary Search
Depth-First Search
Number Theory

Matrix

Graph

Math

Sorting

Greedy

Hash Table

Heap (Priority Queue)
String

Counting
Combinatorics
Dynamic Programming

Deepseek-R1-Distill-7b
W After Math-RL improvements
W After Code-RL improvements

Deepseek-R1-Distill-14b
W After Math-RL improvements
I ™= After Code-RL improvements

T % 2o E Y 7 o % o0 0 EY E) 70 S
Accuracy Accuracy

Figure 9: RL improvement on topic-level for coding problems.

A.9 False Positives and Negatives in Code-RL Training

To highlight the importance of eliminating false positive reward (incorrect code passing all tests
within time constraints) and false negative reward (incorrect test cases that fail correct code) in RL
Training, we conduct two ablation experiments, showing that both types of errors can be harmful
to RL training, resulting in early convergence on sub-optimal policies, or even complete training

collapse.

LiveCodeBench v5

52+

504

484

46

44 4

42 -

Accuracy (avg@8)

40 1

384/

—— AceReason-7B
—— AceReason-7B (+ False Positives)
—— AceReason-7B (+ False Negatives)

36

T T T T T T T T
0 39 78 117 156 195 234 273 312
Training Steps

Figure 10: The impact of false positive and false negative rewards in Code RL Training

To simulate the impact of false negative rewards, we introduce a subset of problems into the training
data where either the correctness of test cases could not be verified, or the official "golden" solution
failed to pass all provided tests. From Figure 10 we can see that, the RL model tends to converge to
a sub-optimal point, with no further improvement on the evaluation set. We hypothesize that such

24

false negative reward causes the model to discard correct algorithms for certain training problems.
Consequently, when encountering testing problems that share similar underlying concepts and
require these discarded algorithms, the model remains unable to identify the correct solution, thereby
degrading its performance.

To simulate RL training with false positive rewards, we blend problems with weak test cases that allow
incorrect solutions to pass into our training set. As a notable example, we examined DeepCoder’s
RL training set. Despite their claims of providing strong test case selection criteria, we find that
their tests still cannot cover all tricky edge cases - there exists incorrect solutions that can pass all
their selected test cases but will subsequently fail on official test cases. After incorporating unfiltered
Code-RL training data from these sources into our problem set, we observed a sudden drop on testing
set accuracy midway through the training process, as shown in Figure 10. We suspect that this
performance degradation occurs because the model learns to solve some training problems without
considering all corner cases or by generating brute-force solutions with incorrect time complexity.
This wrongly learned policy is then penalized while evaluating against strong test cases in the testing
set.

A.10 Instruction for evaluation

Math

Please reason step by step, and put your final answer within \\boxed{{}}.

No Starter Code (Python)

Write Python code to solve the problem. Please place the solution code in
the following format:

‘Y 'python

Your solution code here

AU

Has Starter Code

Solve the problem starting with the provided function header.

Function header:

AN

<starter_code>

Please place the solution code in the following format:
‘Y 'python

Your solution code here

AN

A.11 Example of AceReason-14B response to simple query

User: hi

Model:

<think>

Alright, the user wrote "hi" in the middle of the message.

Probably just saying hello.

I should respond in a friendly and welcoming way.

Maybe ask how I can assist them today.

Keep it open-ended to encourage them to share what they need help with.

</think>
Hello! How can I assist you today?

25

User: How many strawberries do I need to collect 9 r’s?

Model:

<think>

First, I need to understand what the user is asking. They want to know
how many strawberries are needed to collect 9 r’s.

I interpret r’s as the letter ’'r’. Each strawberry is associated with a
certain number of 'r’s.

Looking at the word strawberry, I count the number of ’'r’s it contains.
There are three 'r’s in strawberry.

If one strawberry provides three ’'r’s, then to get a total of nine ’'r’s,
I divide the total needed by the number each strawberry provides.

So, nine divided by three equals three.
Therefore, the user needs to collect three strawberries to have nine ’'r’s
</think>

To determine how many strawberries you need to collect xx9 "r’sx*x, let’s
break it down step by step.

Step 1: Understand the Context
- It seems you’re referring to the letter »+«"r"xx within the word xx
strawberry. **

Step 2: Count the r’s in strawberry
— Let’s look at the word *xxstrawberryxx:
— xxs t rawberry*rx
— xxI*%, **T*x*x, **xr++ (there are **3 r’sxx)

Step 3: Calculate the Number of Strawberries Needed
— Each xxstrawberry** contains #*%3 r’s.x*x*
— To collect xx9 r’s+*x%, you would need:

\ [
\text {Number of strawberries} = \frac{\text{Total r’s needed}}{\text{r’
s per strawberry}} = \frac{9}{3} = 3
\]
Final Answer
\ [
\boxed {3}
\]

26

	Introduction
	Related Work
	Method
	Framework
	Math-only RL
	Data Curation
	Training Process

	Code-only RL
	Data Curation
	Training Process

	Summary of Training Curriculum

	Evaluation
	Experimental Setup
	Math Evaluation
	Code Evaluation

	Main Results
	Analysis

	Conclusion
	Technical Appendices and Supplementary Material
	Broader Impact and Limitations
	Funding Transparency Statement
	Dataset
	Additional Experiments on General Reasoning
	Additional Experiments on 1.5B and 32B models
	Additional Math-RL Analysis
	Code-RL Dataset Curation Details
	Topic-wise Accuracy Analysis on LiveCodeBench v5
	False Positives and Negatives in Code-RL Training
	Instruction for evaluation
	Example of AceReason-14B response to simple query

