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Abstract

Recent progress in generative AI, primarily through diffu-001
sion models, presents significant challenges for real-world002
deepfake detection. The increased realism in image de-003
tails, diverse content, and widespread accessibility to the004
general public complicates the identification of these so-005
phisticated deepfakes. Acknowledging the urgency to ad-006
dress the vulnerability of current deepfake detectors to this007
evolving threat, our paper introduces two extensive deep-008
fake datasets generated by state-of-the-art diffusion mod-009
els as other datasets are less diverse and low in quality.010
Our extensive experiments also showed that our dataset011
is more challenging compared to the other face deepfake012
datasets. Our strategic dataset creation not only challenge013
the deepfake detectors but also sets a new benchmark for014
more evaluation. Our comprehensive evaluation reveals the015
struggle of existing detection methods, often optimized for016
specific image domains and manipulations, to effectively017
adapt to the intricate nature of diffusion deepfakes, lim-018
iting their practical utility. To address this critical issue,019
we investigate the impact of enhancing training data diver-020
sity on representative detection methods. This involves ex-021
panding the diversity of both manipulation techniques and022
image domains. Our findings underscore that increasing023
training data diversity results in improved generalizability.024
Moreover, we propose a novel momentum difficulty boosting025
strategy to tackle the additional challenge posed by train-026
ing data heterogeneity. This strategy dynamically assigns027
appropriate sample weights based on learning difficulty, en-028
hancing the model’s adaptability to both easy and challeng-029
ing samples. Extensive experiments on both existing and030
newly proposed benchmarks demonstrate that our model031
optimization approach surpasses prior alternatives signif-032
icantly. Code and data will be available.033

1. Introduction034

As more aspects of human life move into the digital realm,035
advancements in deepfake technology, particularly in gen-036
erative AI like diffusion models [54], have produced highly037

realistic images, especially faces, which are almost indis- 038
tinguishable to untrained human eyes. The misuse of deep- 039
fake technology poses increasing risks, including misinfor- 040
mation, political manipulation, privacy breaches, fraud, and 041
cyber threats [28]. 042

Diffusion-based deepfakes differ significantly from ear- 043
lier techniques in three main aspects. Firstly, they exhibit 044
high-quality by generating face images with realistic de- 045
tails, eliminating defects like edge or smear effects, and 046
correcting abnormal biometric features such as asymmetric 047
eyes/ears. Secondly, diffusion models showcase diversity 048
in their outputs, creating face images across various con- 049
texts and domains due to extensive training on large datasets 050
like LAION-5B, containing billions of real-world photos 051
from diverse online sources [41]. Lastly, the accessibility 052
of diffusion-based deepfakes extends to users with varying 053
skill levels, transforming the creation process from a highly 054
skilled task to an easy procedure. Even amateurs can pro- 055
duce convincing forgeries by generative models e.g., Sta- 056
blility Diffusion [3] and MidJourney [2]. 057

The rapid progress in deepfake creation technologies, fu- 058
eled by diffusion models, has outpaced deepfake detection 059
research in adapting to emerging challenges. Firstly, the 060
lack of dedicated deepfake datasets for state-of-the-art dif- 061
fusion models is evident. Widely used datasets like FF++ 062
[39] and CelebDF [26] were assembled years ago using 063
outdated facial manipulation techniques. The absence of a 064
standardized diffusion-based benchmark impedes compre- 065
hensive assessment of deepfake detection models. 066

Secondly, existing research on deepfake detection often 067
neglects the crucial issue of generalization. Many stud- 068
ies operate in controlled environments, training models on 069
specific domains and manipulations and subsequently test- 070
ing them on images from the same source. However, this 071
approach falters when confronted with diffusion-generated 072
deepfake images that span diverse domains and contents. 073
Recent studies [10, 53] highlight the struggle of deepfake 074
detectors to generalize to unseen manipulations or unfamil- 075
iar domains. Attempts to tackle this challenge, such as do- 076
main adaptation or transfer learning [6], have yielded sub- 077
optimal performance. 078
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(f) Deepfakeface(a) DiffusionDB - Face

(d) CelebDF (v2)

(e) FaceForensics++

(c) UADFV

(b) JourneyDB - Face

Figure 1. Our proposed diffusion deepfake datasets (a-b) are featured with more realistic and faithful facial details and diverse background
contents compared to the previous (c-f).

To address the identified problems, this paper presents079
two new deepfake detection benchmarks that utilize ad-080
vanced diffusion models, namely DiffusionDB-Face and081
JourneyDB-Face. These benchmarks encompass a wide082
range of content, incorporating diverse elements like head083
poses, facial attributes, photo styles, and realistic appear-084
ances. We expect these datasets to stimulate advancements085
in the identification of deepfakes generated through diffu-086
sion techniques. Our thorough assessment of these bench-087
marks indicates that the majority of current deepfake de-088
tectors, trained in constrained conditions, struggle to adapt089
to the evolving array of visual content generation methods,090
exemplified by diffusion models.091

To enhance generalized deepfake detection, we advocate092
expanding the training data in terms of both scale and diver-093
sity. This approach is inspired by [32, 35] that underscores094
the effectiveness of employing simple objective functions095
on extensive and diverse image datasets to achieve robust096
visual representations. In our initial pursuit of generalized097
deepfake detection, we suggest training a detector on an in-098
clusive dataset covering a broad spectrum of deepfake gen-099
eration techniques and image domains.100

Acknowledging the varying complexities associated101
with different types of deepfakes, ranging from basic102
graphics-based face swaps to more intricate samples gen-103
erated by diffusion models, we propose a novel momentum104
difficulty boosting strategy. This involves dynamically as-105
signing different weights to samples based on their diffi-106
culties, thereby facilitating the model’s adaptability to both107
straightforward and challenging deepfake samples.108

This work contributes: (1) Novel benchmarks: We in-109
troduce two large-scale benchmarks, namely DiffusionDB-110
Face and JourneyDB-Face, for deepfake detection. These111
benchmarks, designed to align with the rapid progress in112
generative AI models, offer a substantially increased num-113
ber of high-quality face images with more diversity of im-114
ages along with additional text description metadata. This115
surpasses the capabilities of previous benchmarks, creat-116

ing notable challenges for existing detection models. Ta- 117
ble 2 summarises the comparison between the conventional 118
datasets and our proposed dataset. (2) Generalizability 119
assessment: We extensively evaluate the generalizability 120
of existing deepfake detection models on our new bench- 121
marks. Operating under a challenging cross-domain sce- 122
nario, our analysis uncovers the undesirable sensitivity of 123
current models to domain shifts. This sensitivity often leads 124
to a significant decline in performance. (3) A novel generic 125
training strategy for generation heterogeneity: We show 126
that our momentum difficulty boosting on datasets featuring 127
diverse sources of deepfake generation methods markedly 128
improves deepfake detection performance. 129

2. Related Work 130

DeepFake Creation and Benchmarks The rise of deep- 131
fake technology poses a significant security threat, with the 132
potential for misuse in spreading misinformation and en- 133
gaging in malicious activities. In response, researchers are 134
actively enhancing deepfake detection models to counter 135
this threat. To evaluate these models, various datasets with 136
diverse deepfake and authentic data from multiple sources 137
have been established. 138

Earlier prominent deepfake datasets, such as FaceForen- 139
sics++ [39], UADFV [55] and CelebDF [26], have been in- 140
strumental in this endeavor. The FaceForensics++ is created 141
through four facial manipulation methods: FaceSwap [22], 142
Face2Face [45], Deepfake [22] and NeuralTexture [46]. It 143
also provides three compression levels to evaluate detec- 144
tors under varying compression scenarios. UADFV creates 145
fake face images by splicing face region synthesized using 146
deep neural network into the original image. Nevertheless, 147
these datasets exhibit low visual quality, markedly differing 148
from Deepfake videos disseminated on the internet. Conse- 149
quently, the CelebDF dataset focuses on achieving superior 150
visual quality through an AutoEncoder-based deepfake syn- 151
thesis method, including 590 real videos and 5639 synthetic 152
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Figure 2. Collection process for the proposed DiffusionDB-Face and JourneyDB-Face datasets. Green border : Images that were kept for
the following round; Red Border : Images that were deleted after filtering.

celebrity videos.153

With the advancement of generative models, there has154
been a proliferation of highly realistic Deepfake videos pro-155
duced by a multitude of GAN variants [14, 34]. However,156
GAN-based deepfake methods still face limitations, notably157
the absence of realistic backgrounds in the generated im-158
ages [8, 29, 51].159

Diffusion models [38] have gained widespread attention160
due to their ability to generate visually plausible content.161
Ricker et al. [37] demonstrated through extensive evalua-162
tion experiments that identifying images generated by dif-163
fusion models is a more challenging task than recognizing164
GAN-generated images. In contrast to GANs, deepfake165
images generated by diffusion models do not exhibit no-166
ticeable grid-like artifacts in the frequency domain. Song167
et al. [44] utilized diffusion models to create a synthetic168
celebrity face dataset, Deepfakeface. They similarly in-169
troduced two new tasks to enhance the assessment of de-170
tection methods performance. In parallel, we propose two171
deepfake datasets based on diffusion models: DiffusionDB172
and JourneyDB. Compared to Deepfakeface, our bench-173
marks cover a wider range of content and importantly ex-174
hibit more significant challenges to existing deepfake de-175
tectors (see Tables 4 and 6 in supplementary material). Ta-176
ble 2 summarises three conventional and three diffusion177
generated benchmark datasets (including our dataset). The178
table shows that our dataset is bigger than other datasets179
with more diversity per images and also contains metadata.180
Supplementary material has more samples from the dataset181
proving the diversity in our dataset which other dataset182
lacks. By incorporating cutting-edge diffusion models, the183
deepfake images in these datasets feature diverse elements184
like head poses, facial features, and image styles while ex-185

hibiting a realistic appearance. We expect these datasets to 186
drive progress in detecting deepfake generated by diffusion 187
models. 188

DeepFake Detection relies on analyzing different fea- 189
ture signals to ascertain the authenticity of an image. Earlier 190
efforts focused on analyzing physiological signals for deep- 191
fake detection. Li et al. [25] identified the absence of eye 192
blinking as a telltale sign for detecting deepfake videos and 193
showed that distinguishing open and closed eye states could 194
help. Additional efforts have explored features such as head 195
poses [55], speaking-action patterns [4], and the combina- 196
tions of various physiological signals [9]. 197

Furthermore, many methods involving the search for po- 198
tential synthetic artifacts and analysis of local features have 199
been proposed. FWA [24] detects deepfakes by simulating 200
facewarping artifacts. Face X-ray [23] predicts the pres- 201
ence of blending boundaries. Zhu et al. [57] introduced 202
3D decomposition into deepfake detection, amplifying sub- 203
tle local artifacts through facial detail construction and de- 204
tection. Recent research like DIRE [48] use image recon- 205
struction error as a differentiating factor between real and 206
fake images for detection. Frequency domain cues are also 207
crucial for distinguishing deepfakes. Luo et al. [27] high- 208
lighted that CNN-based detectors tend to overfit to color 209
textures in cross-database scenarios, suggesting the use of 210
high-frequency noise for face forgery detection. 211

Data-driven approaches aim to directly learn how to 212
differentiate real images from deepfakes through various 213
strategies, exhibiting better generalization [16, 19, 30, 43, 214
47]. Capsule [30] pioneers the use of capsule networks 215
in the deepfake detection task. Wang et al. [47] empha- 216
sized the importance of careful pre- and post-processing and 217
data augmentation to enhance the generalization. Recently, 218
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Guo et al. [19] proposed a hierarchical fine-grained formu-219
lation to address the diversity of images generated by var-220
ious forgery methods. By encouraging the model to learn221
integrated features and inherent hierarchical properties of222
different forgery attributes, this approach improves deep-223
fake detection representation.224

In this work, we emphasize the importance of using het-225
erogeneous training images for extended model generaliza-226
tion. Further, a novel model-agnostic momentum difficulty227
boosting strategy is introduced for more effective training228
by dynamically tuning the weights of individual samples229
during optimization.230

3. Diffusion DeepFake Benchmarks231

AI-generated content (AIGC) platforms like DALL-E, Sta-232
bility AI, and Midjourney empower global users to craft de-233
tailed, high-quality images from text prompts. Several gen-234
eral large-scale prompt-to-image datasets, e.g. the Midjour-235
neyDB [33] and DiffusionDB [49], have thus been collected236
by crawling from public sources (e.g. Stable Diffusion and237
Midjourney Discord servers). Our approach to constructing238
diffusion-based deepfake datasets involves iterative textual239
and visual filtering of these general prompt-image datasets.240
This curation process aims to refine prompts/images pro-241
gressively, ensuring they exclusively feature high-quality242
human face images.243

3.1. DiffusionDB-Face Construction244

We initiated our dataset curation with the DiffusionDB(2M)245
dataset [49], comprising 2 million images generated by Sta-246
ble Diffusion, each associated with prompts. To curate a247
deepfake dataset which only contains high-quality face im-248
ages, we design an iterative approach with four steps of fil-249
tering following a coarse-to-fine progression:250

(1) Prompt Filtering by LLM:251
The goal of this step is to quickly reduce the candidate252

prompt pool such that only prompts related to human faces253
are retrieved. Inspired by the outstanding zero-shot capa-254
bility of large-language models (LLM), we defined a zero-255
shot classification task to classify the associated prompt of256
each image into two predefined categories (“human face”,257
“not human face”) with the HuggingFace Transformer tool-258
box [50]. We used a pre-trained language model (BERT-259
base [13] with 12 transformer blocks, 12 attention heads,260
110M parameters) to classify each prompt in the original261
DiffusionDB to obtain a prediction score for the pre-defined262
class of “human face” (see Figure 4). We set a threshold263
value of 0.5 and discarded all the prompts whose predic-264
tion were smaller than the thershold. With this approach we265
successfully removed 95 + % of the original prompts not266
semantically related to human faces.267

(2) Detection based auto filtering: With 84,830268
prompts remaining after the first step, we employed the269

Figure 3. Input metadata along with the corresponding images.

Figure 4. Example of prompt filtering by language model. Note,
only text is the input to BERT [13], whilst the associated image is
shown for illustration only.

state-of-the-art RetinaFace detector [12] on all associated 270
images to selectively retain those featuring human faces. In 271
this phase, we utilized the RetinaFace model with its de- 272
fault configuration, setting the confidence threshold at 0.5. 273
Images where the confidence score meets or exceeds this 274
threshold are retained for subsequent filtering stages. Uti- 275
lizing RetinaFace, we successfully extracted most images 276
containing faces (see Figure 5b). 277

(a) Examples of word filtering for
removing anime style images.

(b) Examples of detection
based auto filtering using
RetinaFace. According to
BERT many prompts are
highly related to human faces
but their associated images do
not contain realistic human
faces

Figure 5. Illustrations of prompt filtering.

Having obtained 39,887 human face images, a quick 278
manual inspection revealed various unrealistic images with 279
distinct artistic styles (e.g., black-and-white / anime / car- 280
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toon / sketch-style faces).281
(3) Edge/color based style filtering: We adopted two282

additional steps to further refine our data. (I) We mea-283
sure the color variance of the original image to identify284
whether the input image has a too narrow color spectrum;285
(II) We apply a Canny edge detector to measure the num-286
ber of edges on the images to identify images with specific287
drawing styles and animations. Empirically we set the edge288
threshold at 100 and the color threshold at 200 to determine289
whether an image is with unrealistic style, and excluded290
images if their edges exceeded the edge threshold or color291
variance falls below the color threshold. This step helped to292
reduce about 50% images from the last round.293

(4) Manual filtering: In the final step, we conducted a294
manual annotation process, resulting in a curated dataset of295
18,371 high quality realistic human faces, which we refer296
as DiffusionDB-Face.297

3.2. JourneyDB-Face Construction298

To retrieve face images from JourneyDB [33] suitable for299
deepfake detection, we followed the same procedure as in300
Sec 3.1, with three minor adjustments. (1) To ensure we301
have enough test images in our deepfake detection bench-302
mark, we ignored the original train / validation / test split303
provided by JourneyDB.304

(2) Since the metadata of JourneyDB also include style305
prompts (see Figure 3), we thus replaced the edge/color-306
based style filtering step as in DiffusionDB to an exclusive307
word filtering on the style prompts to remove images with308
unrealistic styles such as “Anime Style”, e.g. see Figure 5a.309

(3) The test partition of the JourneyDB dataset does not310
come with any metadata, so we direcly applied RetinaFace311
detector followed by a manual filtering process.312

3.3. Data Preprocessing313

The basic statistics of DiffusionDB-Face and Journey-Face314
are shown in Figure 7. We used the Deepface [42] frame-315
work to analyze the gender distribution statistics within our316
dataset. After the acquisition of the datasets, a comprehen-317
sive preprocessing pipeline was executed to optimize the318
data for utilization in deep learning architectures and to fa-319
cilitate ease of analytical operations. Specifically, we per-320
formed a re-examination of each image for facial detection321
by MTCNN [56]. Some images were further discarded at322
this stage due to face detection failures or only containing323
too small faces without enough visual details for the deep-324
fake detection task.325

After face detection, the images were uniformly cropped326
to a resolution of 256 × 256 pixels, establishing a standard327
input size.328

Finally, the preprocessed dataset with standardized face329
detection crops has 24,794 and 87,833 deepfake images for330
propsoed DiffusionDB-Face (DFDB-Face) and JourneyDB-331

Face (JDB-Face) benchmark respectively. Subsequently, 332
these images were categorized into train / test / val subsets 333
with a 90 : 5 : 5 ratio respectively as shown in Table 3. 334

Additionally, to evaluate the full classification perfor- 335
mance, we have sourced 94,120 authentic face images from 336
the Flickr-Faces-HQ (FFHQ) dataset [21] so that we can 337
measure both the sensitivity and specificity of the deepfake 338
detection methods.

Figure 6. Visualization before and after preprocessing the images.
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Figure 7. Basic statistics of our datasets.

4. Momentum Difficulty Boosting 340

The conventional deepfake detection training and evalua- 341
tion protocol tends to overlook the critical issue of gen- 342
eralization, often yielding inflated detection performance. 343
Specifically, a detector may exhibit impressive results when 344
trained and tested on deepfakes generated from the same 345
source, within a limited range of manipulations and image 346
domains. However, as observed in [11, 53] and corrobo- 347
rated by our subsequent evaluations, these detectors experi- 348
ence a substantial performance drop when applied to deep- 349
fakes from different sources/domains. This challenge is par- 350
ticularly pronounced, as demonstrated in Sec 5.1, when de- 351
tectors are applied to the diverse diffusion-generated deep- 352
fakes. To address this limitation, we advocate for a new set- 353
ting, where the performance of a detector should be bench- 354
marked against multi-source training and test datasets, pro- 355
viding a more comprehensive understanding of its general- 356
izability across various domains. 357

We begin with a set of K diverse deep- 358
fake datasets {D1,D2, · · · ,DK}. Each dataset 359
Dk = {(xk

i , y
k
i )}

Nk
i=1, k ∈ [K], comprises Nk images 360

sourced from specific domains and deepfake manipu- 361
lation methods. For instance, one dataset may include 362
Instagram-style selfies with deepfakes generated using 363
diffusion models. We further denote fθ the target deepfake 364
detection model parameterized by θ, ŷki = fθ(x

k
i ) the 365

model prediction, and ℓ(yki , fθ(x
k
i )) a general loss function 366

in the context of deepfake detection, e.g. a standard binary 367
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Table 1. Number of images after each round of processing: DiffusionDB and JourneyDB

Dataset INPUT Round 1 Round 2 Round 3 Round 4 Preprocessed (Final)
DiffusionDB-Face 2,000,000 84,830 39,887 18,845 15,198 24,794
JourneyDB-Face 4,932,309 238,869 225,759 78,904 61,984 87,833

Table 2. Dataset summary. Top: Conventional datasets; Bottom: Diffusion datasets; V: Video datasets. MF/S : Multiple faces per sample ;
Generation: Generation methods.

Source No. Fake No. Real Generation Metadata MF/S

FF++ [39] (V) 4,000 977 F2F [45],DF [22],FS [22],NT [46]
UADFV [55] (V) 49 49 FS [22], DF [22]
CelebDFv2 [26] (V) 5,639 590 Autoencoder [26]

DeepFakeFace [44] 3×30,000 30,000 SD [3], IP [3], IF [1]
JDB-Face (ours) 87,833 94,120 Midjourney [2]
DFDB-Face (ours) 24,794 94,120 SD [3]

Figure 8. (a) Momentum-based knowledge distillation [7]; (b) Our
MDS: only use the ‘teacher’ network to weight samples by their
difficulties.

cross-entropy loss or more advanced loss designs as in368
[31, 52].369

Conventional Setting Existing methods [18, 19, 37] of-370
ten train deepfake detection models individually on each371
Dk, and evaluate each trained model using the correspond-372
ing test set D̄k, where images are sampled from the same373
source. Formally, they attempt to optimize the objective:374

min
θk

Exk
i ∈Dk

[
ℓ(yki , fθk(x

k
i )
]
+ λR(θk), (1)375

where the first and second term correspond to the empirical376
loss on Dk and the regularization term, respectively. How-377
ever, this approach makes the unrealistic assumption that378
the image domains and manipulation methods are known379
during deployment, suffering from significant performance380
drop when facing domain and forgery type shifts.381

Proposed Setting Instead of employing domain and382
manipulation-specific models, our objective is to train a sin-383
gle model fθ agnostic to data source k. We combine im-384
ages from {Dk}Kk=1 into a heterogeneous dataset denoted as385

DH = {(xi, yi, ki)}
∑

k |Dk|
i=1 . As shown in our later experi-386

ments in Sec 5.1, directly training on such a mixed dataset387
did not translate to good cross-dataset performance, due to388
additional challenges imposed by diverse training samples389
with various level of difficulty.390

Momentum Difficulty Boosting We thus propose to 391
employ a boosting function to ease the training with data 392
heterogeneity. This function regulates the importance of 393
examples, assigning more weights to the difficult ones. 394
Specifically, gi = g(xi, yi, θ) quantifies the instantaneous 395
instance difficulty of sample xi, considering the under- 396
optimized model parameters θ. Our revised optimization 397
objective thus becomes 398

min
θ

Exi∈DH
[gi × ℓ(yi, fθ(xi)] + λR(θ). (2) 399

We proposed a simple yet effective strategy, momen- 400
tum difficulty boosting (MDB), to calculate the sample- 401
wise difficulty scores. Specifically, we maintain a momen- 402
tum moving-average of the detector, θ̄, and use it to calcu- 403
late sample difficulties on-the-fly by measuring the cross- 404
entropy between the momentum network’s prediction and 405
the data samples’ ground truths. Formally, we define the 406
sample-wise difficulty score as 407

g(xi, yi, θ) = CE(yi, fθ̄(xi)), (3) 408

where θ̄ slowly tracks the detector’s parameter θ by the mo- 409
mentum updating rule: θ̄ = mθ̄ + (1−m)θ. 410

The momentum update’s benefit lies in mitigating the 411
substantial variance in predicted sample difficulty scores, 412
thereby enhancing training stability. Our approach shares 413
conceptual similarities with knowledge distillation [5, 7, 414
20], with the difference that instead of directly distilling 415
knowledge from a teacher network θ̄, we leverage it as a 416
guiding function to adjust the training data distribution by 417
assigning different weight to each sample based on their dif- 418
ficulty levels. During training, the sample weights gi are de- 419
cided by θ̄ based on in Eq. (3), where both the weights and θ̄ 420
are updated dynamically at each mini-batch (see Figure 8). 421
To prevent domination of certain samples with exception- 422
ally high difficulty scores, we re-scale the sample weights 423
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Table 3. Data split per dataset.

Dataset Train Test Validation
Real Fake Real Fake Real Fake

CelebDF V2 [26] 35,469 160,595 1,971 8,922 1,971 8,922
FF ++ [39] 17,847 102,755 990 5,711 993 5,711
UADFV [55] 1,393 1,371 77 78 76 77

Deepfakeface [44] 27,000 81,00 1,500 4,500 1,500 4,500
JDB-Face (ours) 82,440 78,757 4,581 4,375 4,580 4,376
DFDB-Face (ours) 82,440 22,331 4,581 1,241 4,580 1,241

in each mini-batch to fall within the range [1, C], where C424
denotes the capped maximum sample weight.425

5. Experiments426

5.1. Evaluation of off-the-shelf models427

We first produce a comprehensive evaluation of a range428
of existing pre-trained deepfake detectors on the gener-429
alization capability to understand how their performance430
degrade when tested on deepfake images from different431
sources/domains than training, especially on the newly col-432
lected diffusion-based deepfakes from our DiffusionDB-433
Face and JourneyDB-Face datasets.434
Datasets We consider three conventional datasets and three435
diffusion-based datasets in our evaluation also summarized436
in Table 2. (1) FaceForensics++ (FF++) [39] consists437
of 1,000 video clips designed for digital forensics. It438
encompasses four facial modification techniques, includ-439
ing Face2Face [45], Deepfakes[22], FaceSwap[22], and440
NeuralTextures[46]. This dataset contains 977 YouTube441
videos, each featuring front-facing, easily trackable faces.442
(2) CelebDFv2 [26], includes genuine YouTube videos and443
synthesized deepfake videos. In its first version, there are444
408 genuine videos and 795 deepfake videos, covering di-445
verse characteristics like ethnicity, age, and gender. The446
second version extends the dataset with 590 genuine videos447
and 5,639 deepfake videos obtained from online sources,448
further increasing data diversity. (3) UADFV [25] includes449
49 genuine videos collected from the internet and then ma-450
nipulated by [22] to generate deepfakes. (4) Deepfake-451
face [44] includes 90,000 fake images from three different452
generation methods i.e. StableDiffusionv1.5 [3], Inpaint-453
ing [3] and InsightFace [1], along with 30,000 real images.454
(5-6) Our DiffusionDB-Face and JourneyDB-Face include455
various diffusion-based deepfakes generated by two art gen-456
erative AI providers, Stability AI and MidJourney. The457
dataset collection process are detailed in Sec 3.1 and 3.2.458
(7) Fake-CelebA [48] was formed using four diffusion gen-459
eration methods (a) SD-v2 [38] (42,000 images), (b) IF [40]460
(1,000 images), (c) DALLE-2 [36] (500 images), (d) Mid-461
journey [2] (100 images), along with 42,000 real images.462
Train/test/validaiton split of the datasets is summarised in463

Table 3. 464

Competitors We consider seven pre-trained deepfake de- 465
tection models. Specifically, (1) HiFi Net [19] is a fine- 466
grained deepfake detector based on multi-branch feature 467
extraction and hierarchical forgery predictions, trained on 468
a customised dataset with a taxonomy of image forgery 469
types ranging from CNN-based manipulations to image 470
editing. (2) SBIs [43] is trained on FF++ with a novel 471
image blending method reproducing common forgery arti- 472
facts, e.g., blending boundaries and statistical inconsisten- 473
cies. (3) CADDM [15] is trained on FF++ with a constraint 474
to mitigate the effect of identity leakage whilst perform- 475
ing deepfake detection. We used its EfficientNet-b4 vari- 476
ant in our evaluation. (4) CNNDet [47] trains a ResNet50 477
model on a customized dataset of deepfakes solely gener- 478
ated by ProGAN [17]. (5) DSP-FWA [24] is a deepfake 479
detector specifically aiming to detect the warping artifacts 480
of the deepfake creation process, trained with real images 481
collected from Internet and a customized algorithm to gen- 482
erate negative data with warping effects. We used its SPP- 483
Net varriant in our evaluation. (6) Capsule [30] is a Cap- 484
sule network-based deepfake detector trained with the FF++ 485
dataset. (7) DIRE [48] is a diffusion model generated deep- 486
fake detection method where a novel image representation 487
is introduced to measure the error between input images. 488

Setting We followed the evaluation protocol proposed in 489
[53]. For FF++ dataset, we have considered it as a unified 490
dataset rather than separating it into four different parts with 491
seperate manipulations. All the images from each dataset 492
were preprocessed and cropped into a size of 256 × 256. 493
The video datasets were sampled into frames, i.e. we 494
took 32 frames per video after detecting the frames that in- 495
cluded faces. Specifically, 19,830/114,213 (real/fake) video 496
frames are sampled for FF++, 1,548/1524 for UADFV and 497
39,411/178,439 for CelebDFv2. All the listed deepfake 498
detectors were evaluated with their officially released pre- 499
trained weights and directly applied to the test splits of each 500
dataset without further finetuning. We adopt three metrics 501
for evaluation, including AUC (area under the ROC curve), 502
EER (equal error rate), and ACC (accuracy). 503

Results As shown in Table 4, we have made the following 504
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Table 4. Evaluation performance of off-the-shelf DeepFake detectors on conventional deepfake datasets (FF++, CelebDFv2, UADFV) and
diffusion deepfake datasets (Deepfakeface, DFDB-Face, JDB-Face, Fake CelebA). Highest accuracy in bold.

(a) Conventional deepfake datasets (FF++, CelebDFv2, UADFV)

Model FF++ CelebDFv2 UADFV
Metric AUC EER ACC AUC EER ACC AUC EER ACC

HiFi Net 0.60 0.41 0.58 0.60 0.41 0.58 0.60 0.45 0.54
SBIs 0.58 0.43 0.56 0.51 0.72 0.67 0.51 0.74 0.50
CADDM 0.50 0.48 0.52 0.50 0.50 0.50 0.56 0.46 0.53
CNNDet 0.76 0.29 0.71 0.54 0.46 0.53 0.53 0.41 0.58
DSP-FWA 0.54 0.61 0.33 0.66 0.40 0.51 0.48 0.51 0.48
Capsule 0.80 0.26 0.73 0.61 0.43 0.56 0.79 0.29 0.71
DIRE 0.11 0.91 0.22 0.14 0.90 0.21 0.22 0.85 0.27

(b) Diffusion deepfake datasets (Deepfakeface, DFDB-Face, JDB-Face, Fake CelebA)

Model FF++ CelebDFv2 UADFV Fake CelebA
Metric AUC EER ACC AUC EER ACC AUC EER ACC AUC EER ACC

HiFi Net 0.57 0.45 0.45 0.52 0.66 0.51 0.45 0.68 0.40 0.51 0.55 0.49
SBIs 0.51 0.61 0.50 0.25 0.89 0.30 0.41 0.82 0.49 0.57 0.45 0.54
CADDM 0.51 0.49 0.50 0.48 0.70 0.47 0.52 0.73 0.52 0.51 0.68 0.48
CNNDet 0.61 0.41 0.58 0.53 0.49 0.52 0.44 0.75 0.45 0.40 0.62 0.58
DSP-FWA 0.50 0.88 0.40 0.52 0.51 0.54 0.52 0.47 0.53 0.38 0.57 0.42
Capsule 0.49 0.49 0.50 0.48 0.57 0.46 0.45 0.56 0.46 0.49 0.68 0.50
DIRE 0.38 0.76 0.55 0.62 0.45 0.71 0.42 0.54 0.51 0.68 0.34 0.72

observations:505

(1) All pre-trained detectors exhibit pronounced gen-506
eralization issues when tested on deepfakes originating507
from different sources or domains. For instance, the Cap-508
sule model [30], trained on the FF++ dataset, achieved509
a high AUC of 0.80 on the same dataset. However, its510
AUC dropped to 0.61 on CelebDFv2 generated by a dif-511
ferent deepfake method. On the three diffusion-based512
deepfake datasets, its performance further degraded, with513
AUC decreasing to 0.49, 0.48, and 0.45 for Deepfakeface,514
DiffusionDB-Face, and JourneyDB-Face, respectively. On515
the other hand DIRE [48] has performed comparatively bet-516
ter with Fake CelebA but still not upto the mark due to the517
absence of the same domain’s dataset in the training. This518
observation strongly highlights the generalization issue of519
existing deepfake detectors, impeding their practical utility520
in real-world scenarios where deepfakes can emerge from521
diverse sources and domains.522

(2) Among all datasets, the diffusion-based ones have523
proven to be the most challenging for existing deepfake524
detectors. This is evident in the substantial performance525
gap between the three conventional datasets and the diffu-526
sion ones. Notably, on the proposed DiffusionDB-Face and527
JourneyDB-Face, all examined detectors (except DIRE) ob-528
tain AUC values below 0.55, indicating even worse perfor-529
mance than random guessing. However, even with DIRE530
detector, we JDB-Face performed worst among all diffusion531
datasets with 51% accuracy. This suggests that highly real-532
istic facial images generated by the latest diffusion models533

can easily confuse pretrained deepfake detectors, leading 534
them to be frequently misclassified as real faces and thus 535
remaining undetected. 536

More evaluations under varying strategies are given in 537
Supplementary material. 538

6. Conclusion 539

Diffusion models presents substantial challenges for real- 540
world deepfake detection. This work addresses this urgency 541
by introducing extensive diffusion deepfake datasets and 542
highlighting the limitations of existing detection methods. 543
Our dataset is not only challenging to detect but is highly 544
diverse compared to the present face deepfake datasets. We 545
emphasize the crucial role of enhancing training data di- 546
versity on generalizability. Our proposed momentum dif- 547
ficulty boosting strategy, effectively tackles the challenge 548
posed by training data heterogeneity. Extensive experi- 549
ments show that our approach achieves state-of-the-art per- 550
formance, surpassing prior alternatives significantly. It has 551
shown high testing accuracy on the totally unknown dataset 552
proving its generalizing ability. This work not only identi- 553
fies the challenges of diffusion models in deepfake detec- 554
tion but also provides practical solutions, paving the way 555
for more robust and adaptable countermeasures against the 556
evolving threat of latest deepfakes. 557

8



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References558

[1] Insightface. https://github.com/deepinsight/559
insightface. 6, 7560

[2] Midjourney discord server. https://discord.com/561
invite/midjourney. 1, 6, 7562

[3] Stability ai. https://stability.ai/. 1, 6, 7563
[4] Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He,564

Koki Nagano, and Hao Li. Protecting world leaders against565
deep fakes. In CVPRW, page 38, 2019. 3566

[5] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D.567
Lawrence, and Zhenwen Dai. Variational information dis-568
tillation for knowledge transfer. In CVPR, 2019. 6569

[6] Shivangi Aneja and Matthias Nießner. Generalized zero and570
few-shot transfer for facial forgery detection. arXiv preprint571
arXiv:2006.11863, 2020. 1572

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,573
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