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Abstract
Contrast Consistent Search (Burns et al., 2022) is
a method for eliciting latent knowledge without
supervision. In this paper, we explore a few di-
rections for improving CCS. We use conjunctive
logic to make CCS fully unsupervised. We in-
vestigate which factors contribute to CCS’s poor
performance on autoregressive models. Replicat-
ing (Belrose & Mallen, 2023), we improve CCS’s
performance on autoregressive models and study
the effect of multi-shot context. And we better
characterize where CCS techniques add value by
adding early exit baselines to the original CCS
experiments, replicating (Halawi et al., 2023).2

1. Related Work
We want to find what the model thinks is the truth - that, is,
its latent knowledge. To do so, we build upon work done by
(Burns et al., 2022), who propose a method called Contrast
Consistent Search (CCS) for eliciting the latent knowledge
in language models by constructing a set of positive and
negative prompts and training a probe to separate them.

However, using CCS for classification tasks requires giving
the model an extra bit of information because while CCS
can divide prompts into two clusters, it does not actually
distinguish which prompt cluster is true and which cluster is
false. We try not to rely on this extra information by using
logical conjunction in section 2.1.

Concerningly, CCS fails in all autoregressive models. As
an attempt to explain and fix the failure with autoregressive
models like GPT-J, a very recent and as of yet unpublished
work from Eleuther AI (Belrose & Mallen, 2023) suggests
an improved loss function (VINC) to find a vector in the
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embedding space to separate contrastive prompts. We study
factors that may contribute to the failure, explore methods
based on VINC, and investigate the effects of truthful and
corrupted context examples. 2.2.

As pointed out in a critiquing blog post (Roger, 2023), Burns
et al. do not include random probe baselines for their CCS
accuracy results. Roger provides evidence that CCS per-
forms only marginally better than random linear probes on
most of the datasets, and we corroborate this in section 2.3.
Another helpful observation provided by Roger is that CCS
probes trained on hidden states earlier in the GPT-J model
are less sensitive to the format of the input prompt. To build
upon this last observation, we reference research by (Ha-
lawi et al., 2023). Halawi et al. find that studying the early
phases of computation in autoregressive transformer models
like GPT-J could be a promising strategy for preventing the
models from giving misleading (false) outputs. The study
finds that ablating later layers in GPT-J reduces its tendency
to follow false context in its prompt. It identifies certain at-
tention heads that are responsible for paying attention to and
replicating false context. Ablating these improves the ac-
curacy of the model, even with misleading prompts. These
insights justify the increased accuracy scores we observe
from early exits in the earlier layers of GPT-J. 2.3

2. Our Contribution
We improve and explore CCS in three ways. This is an
exploratory paper, and we hope that the results presented
here contribute to an ongoing research process about how
to best identify the development of models’ “true beliefs”.

• We make CCS fully unsupervised using conjunctions.
• We investigate factors that may contribute to CCS’s

poor performance with autoregressive models, use in-
sights from (Belrose & Mallen, 2023) to improve the
performance on an autoregressive model, and study the
effect of multi-shot context on the results.

• We use insights from (Halawi et al., 2023) to provide
a stronger zero-shot baseline for CCS results at every
layer of the GPT-J model. This allows us to better
qualify where CCS approaches offer marginal benefits
over early exiting methods.

We perform all experiments with the GPT-J model (Wang &
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Komatsuzaki, 2021).

2.1. Use logical conjunctions to find the “truth”
direction of the classifier

CCS splits the data into two clusters; however, it doesn’t
indicate which cluster is true and which is false. Burns et
al. noted that there might be a way to distinguish between
these two without using labels (Burns et al., 2022): by
using natural language to form “and” and “or” statements; if
[statement 1] and [statement 2] are in different clusters, and
“[statement 1] & [statement 2]” falls into the same cluster
as [statement 1], then [statement 1] must be in the “False”
cluster (since “True & False” = “False”).

The positive version of our prompts is formatted as in figure
2. The negative version of all prompts follows the same pat-
tern, except we plug in the negative version of the sentiment
label at the end of each prompt.

Doing PCA, we find that the hidden activations form 3 dif-
ferent clusters (Figure 1). Our decision of whether to flip
the CCS predictions comes from the percent of “and” state-
ments predicted to be True vs the percent of “or” statements
predicted to be True; the former should be much smaller
than the latter. If the former is greater than the latter, then
we flip our predictions. This results in 70% accuracy on
the amazon polarity dataset, without ever having used the
labels to make our decision! As the upper-bound baseline,
Logistic Regression achieves a score of 85%.

2.2. Towards better eliciting latent knowledge on
autoregressive models

CCS’s poor performance on autoregressive models was
pointed out in (Burns et al., 2022). This is worrying, since
models like GPT-X have gained wide usage these days yet
their latent knowledge is still unknown.

First, we look at several reasons that might cause the failure,
including the sentence length and lack of context. Next, we
seek other methods to find a proper direction vector in the
embedding space of our contrast pairs and compare them
with the CCS vector. We also test the robustness of new
methods under corrupted contexts.

2.2.1. POSSIBLE EFFECTS LEADING TO CCS FAILURE
WITH AUTOREGRESSIVE MODELS

We thought of two reasons that might result in CCS’s failure
with autoregressive models: 1) the length of the statement
is too long; 2) it lacks a certain context. Some preliminary
results show that these two are not the critical reasons.

Sentence Length We pick out two datasets,
amazon polarity and sst2. The average token
length of the former dataset is about ten times the latter.

For analysis, we randomly pick out 500 examples from
each dataset, fit the CCS vector on 250 train examples, and
get the accuracy on 250 test examples. Although reducing
sentence length was helpful for the ground truth classifier
obtained by linear regression (LR), the CCS performance
degraded (Figure 3).

In-context Learning It’s widely known that truthful
multi-shot prompts can improve the model’s performance.
Since a longer sentence length does not significantly influ-
ence the results, we wonder whether adding ground truth
context examples might help shape the embedding space
and improve CCS vector performance. To test that, for each
statement, we randomly pick c = 10 context sentences us-
ing the same format as the query statement. For example, we
stick to one format "Review:<>; Sentiment:<>"
and use the ground-truth answer for the context. However,
the CCS vector performance degraded when we added more
context sentences (Figure 4).

To better understand the difference embedding X = X+ −
X− ∈ RN×d, we project each feature onto a 2D plane via
PCA. It seems that by adding more context sentences, it is
harder to separate features (Figure 5, Figure 6).

2.2.2. OTHER DIRECTIONS IN THE EMBEDDING SPACE
THAT CAN HELP SEPARATE CONTRASTIVE PAIRS

After several failed trials in improving the performance of
CCS vector with autoregressive models, we turn to another
idea: if we assume that the embeddings of contrast pairs
contain critical information about truth, we should try other
ways to analyze this embedding space.

For a dataset of contrast pairs {x+
i , x

−
i }Ni=1, we get the em-

bedding {h(x+
i ), h(x

−
i )}Ni=1 by passing them through the

GPT-J model. We get the difference embedding X ∈ RN×D

by h(x+) − h(x−). D = 4096 is the embedding dimen-
sion of GPT-J. We formalize the problem as unsupervis-
edly finding a direction in the embedding space of con-
trast pairs. The score of each sample is the dot product
between this direction vector w and the difference embed-
ding h(x+

t )− h(x−
t ) ∈ RD. Classify xt by its score.

While we were working on this project, we noticed another
ongoing project (Belrose & Mallen, 2023). One of their
main ideas is paraphrase invariance. The understanding
of truthfulness should stay consistent across various types
of prompts of the same content. They hypothesize that
explicitly regularizing a classifier’s predictions to be in-
variant across data augmentation can improve performance.
Throughout the text, we stay consistent with the original au-
thors (Belrose & Mallen, 2023) and call this method VINC.

Contrast Negative Covariance A common idea is to find
the top principal component (TPC) of the covariance matrix
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of the difference embedding matrix X as the direction.

w∗ = argmaxw:||w||=1w
T Cov(X,X)w

We could rewrite this as:

fcovariance(w) = wT Cov(X,X)w (1)

= wT Cov(X+ −X−, X+ −X−)w (2)

= wT [Cov(X+, X+) (3)

+ Cov(X−, X−) (4)

− 2Cov(X+, X−)]w (5)

Intuitively, it can be understood as finding a direction along
which X+ and X− are negatively correlated. Then, we
compare the result between the direction given by CCS
and the first principal component of the difference matrix
X . However, this direction is almost as bad as the CCS
direction (Figure 7).

Paraphrase Invariance According to (Belrose & Mallen,
2023), each statement xi is augmented with k different
kinds of prompts. Then, for each sample xi, we can get
embedding matrices X+

i , X−
i ∈ Rk×D. The key idea is

that the variance of projections onto the ideal direction
among k prompts should be low. Consider N statements,
we have:

finvariance(w) =
1

N

N∑
i=1

−wT [V ar(X+
i ) + V ar(X−

i )]w

(6)

= wT [− 1

N

N∑
i=1

V ar(X+
i ) (7)

− 1

N

N∑
i=1

V ar(X−
i )]w (8)

Together with the above terms, we find the direction w∗

by finding the top principal component of the inner com-
bined matrix. By forcing a direction to be invariant across
paraphrase prompts, we obtain a significant improvement
(Figure 7).

w∗ =w:||w||=1 αfcovariance(w) + βfinvariance(w) (9)

Ablation Study To validate that the number of prompt
variants matters and see how many variants are necessary,
we run the same algorithm with different numbers of prompt
variants k. The performance degrades when k ≤ 3. Also,
notice that when k = 1, this method is equivalent to the
TPC method, and it is aligned with the previous fact that
TPC is worse than CCS (Figure 8).

2.2.3. ROBUSTNESS OF TRUTH DISCOVERY UNDER
CORRUPTED CONTEXTS

Previously, we discuss whether truthful multi-shot contexts
can help find a better CCS vector, and it turns out that
the performance degrades. Now, since we have seen how
VINC can find a perfect vector in the embedding space, we
are curious whether VINC will be affected by corrupted
multi-shot contexts. This is meaningful since when people
are prompting with some wrong contexts, we still hope to
see that the model contains the truthful information about
the last query statement.

Specifically, we wonder:

1. whether adding contexts could help VINC vector in
gaining better accuracy;

2. whether VINC is robust under different levels of con-
text corruption.

As for 1), we compare the accuracy between without con-
text and with different numbers of context examples and it
turns out that the performance consistently increases when
more examples are added (Figure 9). As for 2), we use the
number of context examples c = 10 and corrupt them with
probability p. By corruption, we specifically mean that we
flip the answer. In dataset amazon polarity, this would
mean to fill in the answer block with positive when the
correct answer is negative and vice versa. The perfor-
mance of VINC vector is really robust against all levels of
corruption (Figure 10).

2.3. Another Baseline: Extension using LogitLens

The CCS paper by Burns et al. compares the accuracy
of the CCS method on GPT-J’s last layer to the zero-shot
performance of GPT-J on the test set. However, Burns et al.
do not investigate how the accuracy of zero-shot prediction
based on the logit scores from intermediate model layers (an
approached dubbed “early exiting” by the “Overthinking the
Truth” paper) compares with the accuracy of CCS probes
trained on those intermediate layers (Burns et al., 2022). The
“Overthinking the Truth” paper gives as reason to believe
that early exiting may give more competitive results to CCS
on intermediate layers (Halawi et al., 2023).

2.3.1. METHODS FOR PERFORMING EARLY EXITING
ANALYSIS

In order to extract the model’s intermediate beliefs about
the answer to the prompt, we use the LogitLens approach
first introduced by (nostalgebraist, 2020) and further applied
(Halawi et al., 2023).

First, we extract the hidden states from each intermediate
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layer, resulting in a tensor of shape (N,D,L). We use N =
250 examples, D = 4096 as GPT-J’s embedding dimension,
and L = 29 as the number of layers in GPT-J. Following
previous section, we also study the multi-shot setting, where
c = 0, 1, 5, 10. The intermediate logit predictions at layer l
for test sample i can be extracted using equation 10.

Logitsli = [logitl0, ..., logitl|V |] = WU ·LayerNormL(hiddenl
i)

(10)

Here, WU is GPT-J’s unembedding matrix (which is in
fact the same as GPT-J’s embedding matrix) and is of size
|V | ×D where |V | is the length of GPT-J’s vocabulary. L
stands in for the total number of layers in the model, and
importantly we pass the hidden state for every layer through
GPT-J’s final LayerNorm layer before multiplying by the
unembedding matrix.

Once we have the logits for a given layer, we can find the
difference between the ”positive” logit and the ”negative”
logit for sample i at layer l as follows:

logit diffli = Logitsli[“positive”]− Logitsli[“negative”]
(11)

We visualize the average logit differences across all layers
of GPT-J in figure 2 with the zero-context prompt (the logit
difference for each layer has been averaged over the 250
samples from our amazon polarity test set). Interestingly, as
the context length increases, the difference between positive
and negative logits markedly increases as a peak between
layers 0 and 10 of the model.

Next, we’d like to turn these logit scores and logit differ-
ences into intermediate predictions from the model. We
explore four approaches for doing this. First, we attempt an
unnormalized approach: for each sample, if the logit differ-
ence is positive we predict that the review is positive, and if
the logit difference is negative, we predict that the review
is negative. Often, however, for a given layer, the model
outputs either ”positive” or ”negative” for all samples, re-
vealing a strong bias. We attempt to normalize against this
bias using two strategies.

We call the first normalization strategy the Mean Difference
normalization strategy. We output “positive” for a sample
if the logit difference for that sample is greater than the
median logit difference across all the samples for that layer.
This works even if all logit differences are negative.

We call the second normalization strategy the Median Pos-
val strategy. Under this normalization scheme, we output
”positive” for a sample if the logit score for the ”positive”
token is greater than the median ”positive” token logit score
across all samples. This ensures the model outputs 50%
positive predictions and 50% negative predictions for the

test set. We note this is effectively the same normalization
strategy used by Steinhardt et al. in ”Overthinking the Truth”
(Halawi et al., 2023).

2.3.2. EFFECTS OF DIFFERENT NORMALIZATION
SCHEMES ON EARLY EXITING

The Median Difference and Median Posval normalization
strategies for GPT-J early-exit predictions yield largely sim-
ilar accuracy results, but both provide more nuanced insight
into the accuracy changes between predictions from dif-
ferent layers of the model. Based on this set of empirical
results, the choice of Median Difference normalization ver-
sus Median Posval normalization shouldn’t matter. Please
see 1 for empirical evidence.

Encouragingly, the normalized early-exit accuracies for
helpful prompts agree with results from (Halawi et al., 2023).
A subtle but clear pattern emerges in which layers 5-13 of
GPT-J produce predictions with the highest accuracy scores,
which barely beat the random baseline and sometimes beat
CCS. Across 16 other datasets, (Halawi et al., 2023) noticed
this same localized pattern in GPT-J. We’re happy to provide
another data set and corroborating evidence.

2.3.3. DISCUSSION

The impacts of these results are somewhat limited, because
CCS is demonstratedly bad for autoregressive models like
GPT-J. Additionally, we arbitrarily chose the dataset ama-
zon polarity, and to make any strong conclusions we would
need to ideally replicate these results across many datasets
with many autoregressive models. However, these results
do perhaps offer a qualification to the benefits of the CCS
method: when applied to GPT-J, it mainly provides marginal
value in the later layers, when the model supposedly begins
paying more attention to misleading prompts (as demon-
strated by (Halawi et al., 2023)).

2.3.4. FUTURE RESEARCH DIRECTIONS

In the future, it would be ideal to compare the robustness
of early exit prediction accuracies on increasingly corrupt
prompts with the robustness of CCS accuracies on increas-
ingly corrupt prompts. We didn’t immediately pursue this
because CCS already performs quite poorly on helpful
prompts (barely above the random baseline in most in-
stances). However, upon further reflection, we may still
pick up on some robustness signal if we do proceed with
these tests. Furthermore, it would be interesting to extend
these analyses to a wider range of model sizes to see if the
patterns between layers 5 and layers 13 of GPT-J extend
to larger models as well. Finally, it could be helpful to in-
vestigate if any insights from the refined TunedLens paper
(Belrose et al., 2023) might be applicable to our usecase as
a substitute for the original LogitLens approach.
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A. Appendix

Table 1. Early Exit Accuracies for Prompts with Different Helpful Context Lengths

figureEarly Exit Accuracy on Zero Context Helpful
Prompts

figureEarly Exit Accuracy on One Sentence Context
Helpful Prompts

figureEarly Exit Accuracy on Five Sentence Context
Helpful Prompts

figureEarly Exit Accuracy on Ten Sentence Context
Helpful Prompts
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Table 2. Average Logit Differences for Prompts with Different Helpful Context Lengths

figureAvg Logit Diffs on Zero Context Helpful Prompts figureAvg Logit Diffs on One Sentence Context Helpful
Prompts

figureAvg Logit Diffs on Five Sentence Context Helpful
Prompts

figureAvg Logit Diffs on Ten Sentence Context Helpful
Prompts
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Figure 1. In this PCA plot, the green points are the ground-truth positives, the red points are the ground-truth negative and the blue line in
the Logistic Regression decision boundary.
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Figure 2. Examples of the positive form of normal, AND, and OR prompts.
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Figure 3. Compare the CCS and ground truth performance across layers between shorter dataset sst2 and longer dataset
amazon polarity.
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Figure 4. Compare the CCS performance across layers with different numbers of context examples. Adding context examples reduce the
accuracy.
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Figure 5. With 10 context sentences
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Figure 6. Projecting the contrast embeddings onto the 2D plane expanded by the top two principal components. Red dots refer to label=0
and green dots refer to label=1.
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Figure 7. Compare the performance of three ways of finding directions in the embedding space across layers, CCS, TPC, and VINC.
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Figure 8. Ablation on paraphrase invariance in VINC. When the number of prompt variants k reduces to ≤ 3, performance drops. When
k = 1, VINC degrades to TPC.
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Figure 9. Compare the performance of VINC under different numbers of truthful context examples c = 0, 1, 10. The performance is
consistently improved when more context examples are added.
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Figure 10. Corrupt c = 10 context examples with different corruption probability p = 0.0, 0.1, 0.5, 0.8, 0.9. No corruption case only
slightly outperforms the corruption cases.

Figure 11. Prompts used for early exiting analyses.
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