Seeds of Structure: Patch PCA Reveals Universal Compositional Cues in Diffusion Models

Qingsong Wang

Halıcıoğlu Data Science Institute University of California, San Diego La Jolla, CA 92093 qswang92@gmail.com

Mikhail Belkin

Halıcıoğlu Data Science Institute University of California, San Diego La Jolla, CA 92093 mbelkin@ucsd.edu

Zhengchao Wan

Department of Mathematics University of Missouri Columbia, MO 65211 zwan@missouri.edu

Yusu Wang

Halicioğlu Data Science Institute University of California, San Diego La Jolla, CA 92093 yusuwang@ucsd.edu

Abstract

Diffusion models transform random noise into images of remarkable fidelity, yet the structure of this noise-to-image map remains largely unexplored. We investigate this relationship using patch-wise Principal Component Analysis (PCA) and empirically demonstrate that low-frequency components of the initial noise predominantly influence the compositional structure of generated images. Our analyses reveal that noise seeds inherently contain universal compositional cues, evident when identical seeds produce images with similar structural attributes across different datasets and model architectures. Leveraging these insights, we develop and theoretically justify a simple yet effective Patch PCA denoiser that extracts underlying structure from noise using only generic natural image statistics. The robustness of these structural cues is observed to persist across both pixel-space models and latent diffusion models, highlighting their fundamental nature. Finally, we introduce a zero-shot editing method that enables injecting compositional control over generated images, providing an intuitive approach to guided generation without requiring model fine-tuning or additional training.

1 Introduction

Diffusion models [27, 13, 29, 11] have emerged as a powerful class of generative models, achieving remarkable success in image synthesis [26, 9] and more [32, 14]. These models operate by gradually transforming random noise into structured data through an iterative denoising process. Within the image generation domain—our focus in this work—the noise-to-image map exhibits striking consistency across different architectures and training procedures [37], suggesting intrinsic patterns underlying this transformation that transcend specific implementation details. Understanding these patterns, even approximately, has significant practical value. Recent work [23, 19, 39, 36] has shown that choices of initial noise seeds significantly influence the alignment between generated images and text prompts, particularly regarding global structure and composition. However, precisely how specific noise patterns influence particular image characteristics remains an open question with substantial implications for controlled generation and image editing.

In this paper, we investigate the influence of initial noise on generated image structure through a patchwise Principal Component Analysis (PCA) framework [25, 7]. Using this approach, we empirically

demonstrate that the eigenspace identified by patch principal components positively correlates with principal variation directions of the noise-to-image map. We focus on the low-frequency components identified by patch PCA, which in the image patch domain correspond to illumination and major structural lines, contributing to the perceived composition of an image.

Notably, when the low-frequency components of the initial noise are fixed and only high-frequency components are perturbed, the generated images exhibit minimal structural changes. This suggests that low-frequency noise components predominantly determine the compositional structure in diffusion generation. Additionally, our empirical analyses reveal that noise seeds inherently contain *universal compositional cues*, so images generated from identical noise seeds across different datasets exhibit similar compositional attributes, evidenced through visual examples and quantitative metrics. This finding helps explain phenomena such as the observed variability in text-to-image generation when aligning prompts with global structure and composition across different noise seeds; the seeds themselves, while random, carry distinct instantiations of these underlying compositional templates.

Proposed Methods. The robustness of these compositional cues enables us to develop a simple yet effective *Patch PCA denoiser* that extracts underlying structure from noise using only a generic set of natural images. This approach is theoretically justified by Theorem 5.1, where we prove that the Patch PCA denoiser is optimal for the diffusion model loss when the denoiser calculates each pixel's output based solely on local patch—common in convolutional architectures—and the patch distribution is Gaussian, a reasonable assumption for small natural image patches [40]. Despite its simplicity, images generated by our Patch PCA denoiser exhibit structural similarities to those from sophisticated neural networks, though less visually refined.

Structural similarities become increasingly apparent when projecting onto leading PCA subspaces, demonstrating these compositional cues primarily reside in low-frequency components. These findings extend to latent diffusion models like Stable Diffusion [26], where the same structural hierarchy persists despite operating in a compressed latent space. This cross-model consistency reveals noise seeds contain intrinsic compositional cues that transcend specific architectures, representing fundamental properties of the generative process itself.

Leveraging these insights, we develop a zero-shot *Patch PCA based noise editing* method that selectively interpolates noise representations with reference images within specific PCA frequency bands. Our approach enables structural control without model fine-tuning or additional training, providing an efficient method for guided image generation by directly manipulating the compositional blueprint in the noise.

2 Related Work

Noise Seeds and Composition in Diffusion Models. Recent studies show that initial noise seeds significantly influence compositional structure in diffusion-generated images, with certain seeds consistently producing better-aligned results for specific prompts [23, 36]. This has led to optimization methods for finding high-performing seeds [39, 19]. While these works establish the importance of noise seeds, the underlying mechanisms of how seeds encode compositional information remain an open area for exploration. Our work contributes to this understanding through patch PCA analysis, demonstrating that compositional cues predominantly reside in low-frequency noise components, propose a zero-shot editing method that can guide the composition of generated images.

Inductive Bias in Diffusion Models. Recent works on diffusion models have explored various aspects of inductive bias. Studies like [20, 34] observe linearity in well-trained diffusion models and develop closed-form approximations under Gaussian assumptions, while [24, 15] examine these models through local image patches, arguing that convolutional architectures constrain each pixel's output to depend only on its surrounding patch. Our work builds upon these insights but takes a different direction—instead of seeking optimal theoretical surrogates for specific datasets, we aim to identify universal compositional structures that generalize across diverse data distributions. By leveraging the observation that local patches follow Gaussian distributions more accurately than full images [40], we extract fundamental compositional cues shared across different domains without dataset-specific optimization. This approach allows us to analyze and manipulate compositional elements embedded in the noise-to-image map that persist across varied model architectures, enabling practical applications like zero-shot noise editing without requiring dataset-specific tuning or training.

3 Preliminaries

Diffusion Models and Denoisers. Diffusion models generate data by reversing a gradual noising process. When parameterized by noise-to-signal ratio σ as in Song et al. [28], the reverse process follows the ODE:

$$d\mathbf{x}_{\sigma}/d\sigma = (D(\mathbf{x}_{\sigma}, \sigma) - \mathbf{x}_{\sigma})/\sigma \tag{1}$$

where $p_{\sigma} = p * \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ is the data distribution convolved with Gaussian noise and $D(\mathbf{x}_{\sigma}, \sigma)$ is the denoiser. A neural network is typically trained to approximate the denoiser:

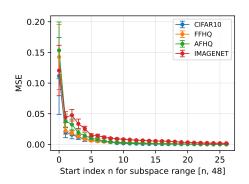
$$\mathbb{E}_{\sigma \in (0,\infty), \mathbf{x}_{\sigma} \sim p_{\sigma}} \|D(\mathbf{x}_{\sigma}, \sigma) - \boldsymbol{x}\|^{2}, \tag{2}$$

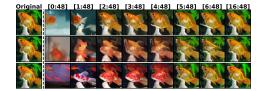
and sampling is performed by integrating Equation (1) starting from a random noise.

PCA and linear optimal denoisers. For a data distribution $p(\mathbf{x})$ in \mathbb{R}^d with mean $\boldsymbol{\mu}$ and bounded covariance $\boldsymbol{\Sigma}$, we can decompose the covariance matrix $\boldsymbol{\Sigma}$ into its eigenvalues and eigenvectors, $\boldsymbol{\Sigma} = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T$, where λ_i are the eigenvalues and \mathbf{u}_i are the corresponding eigenvectors. This is the principal component analysis (PCA) of the data distribution and the eigenvectors are called the principal components. It is shown in [20, Theorem 1] that the optimal linear approximation of the denoiser at noise level σ is given by:

$$D_{\text{PCA}}(\mathbf{x}_{\sigma}, \sigma) = \boldsymbol{\mu} + \sum_{i=1}^{d} \frac{\lambda_{i}}{\lambda_{i} + \sigma^{2}} \langle \mathbf{x}_{\sigma} - \boldsymbol{\mu}, \mathbf{u}_{i} \rangle \mathbf{u}_{i},$$
(3)

which performs scaling along the principal components of the data distribution.





(a) MSE across frequency bands perturbations.

(b) ImageNet (top), AFHQ (bottom)

Figure 1: **Frequency band perturbation analysis.** (a) MSE between original and perturbed-noise generated images across frequency bands. When perturbing including low-frequency bands, the MSE is significantly higher than when only high-frequency bands are perturbed. (b) Visual examples from ImageNet (top) and AFHQ (bottom): original image followed by perturbations with full frequency bands [n,48] where $n=0,1,2,\cdots,6,16$. Three different perturbations are shown for each frequency band.

ODE sampler and the noise-to-image flow map. The ODE sampler [28], popular for its simplicity and effectiveness, is deterministic. For a convergent Ordinary Differential Equation (ODE), the final image is uniquely determined by the initial noise. This relationship defines a mapping, known as a *flow map*, from the noise space to the data manifold. The convergence of the ODEs in diffusion models, and the existence of a flow map, have been established in recent studies [12, 33]. The flow map imposes a structure on the noise space. For example, for a simple dataset of two points $\{-1,1\} \subset \mathbb{R}$, the flow map partitions the noise space \mathbb{R} into two regions, with all noises from the negative axis mapped to -1 and all noises from the positive axis mapped to 1. Hence, the final sampled points are fully determined by the sign of the initial noise. It is of great interest to find a similar structure in the noise space of image diffusion models.

4 Probing the Noise-to-Image Map through Patch PCA filter

In this section, we probe the noise-to-image map in pre-trained diffusion models by analyzing how perturbation in *initial noise* influences the generated images. Our diagnostic tool is Patch PCA, which effectively captures image statistics and has been shown to be valuable for image denoising tasks [2].

Methodology: We first compute a generic patch PCA covariance matrix using 4×4 patches extracted from 10,000 randomly sampled images from the ImageNet dataset and compute the covariance matrix with its eigen-decomposition. In fact, for small patches (size less than 16×16), the covariance matrices computed from differently collected images are almost identical; see Figure 9 in the Appendix for an ablation study. With 3 color channels, each image patch is a $4 \times 4 \times 3$ tensor, and we obtain 48 eigenvalue-eigenvector pairs from the eigen-decomposition. As expected, the eigenvalues follow a characteristic power-law distribution typical of natural images, with the leading eigenvectors representing color/illumination variations, followed by edge detectors and then higher frequency components capturing refined textures (see Figure 10a and Figure 10b in the Appendix). We conduct experiments using pre-trained EDM models [17] on diverse datasets: ImageNet [8] (64×64) , FFHQ, AFHQ, and CIFAR-10 [18]. We fix 128 random noise initializations and generate reference images using the pre-trained models. For each noise initialization, and for each frequency band [n, 48] (where n ranges from 0 to 48), we generate 100 perturbed variants by subdividing the noise tensor into non-overlapping 4×4 patches and resampling the identified frequency bands [n, 48] on each patch; see Algorithm 2 for the details. This ensures independence and preserves the standard Gaussian distribution due to the orthogonality of the PCA basis. We then measure the mean squared error (MSE) between images generated from the perturbed noise and the original reference images.

Results: The analysis in Figure 1a reveals a clear pattern: perturbations in low-frequency components (small n) induce substantial changes in the generated images, while high-frequency perturbations (large n) have minimal impact. Specifically, when n exceeds 20, the MSE remains consistently low (below 0.01, with pixel values in [0,1]), and the generated images in Section 3 are visually indistinguishable from the originals. This finding is indicative that the noise-to-image map in diffusion models preserves a hierarchical structure aligned with the patch PCA decomposition: low-frequency components control fundamental aspects such as illumination and global layout, while high-frequency components primarily contribute to texture and fine details.

Cross-dataset compositional resemblance: We observe that images generated from identical noise seeds across different datasets exhibit similar structural patterns. In Figure 1b, goldfish (ImageNet) and fox (AFHQ) generated from the same seed share similar lighting patterns, with matching bottomleft highlighting and bottom-right edge shapes. This compositional correspondence persists across datasets (see Figure 2a, first three rows). To quantitatively validate this visual similarity, we compute both MSE and structural similarity index measure (SSIM) [35] between pairs of images generated from identical noise seeds across different datasets. SSIM is particularly valuable for this analysis because, unlike MSE which measures pixel-level differences, SSIM captures structural similarities by considering luminance, contrast, and structure; see Appendix A.2 for the detailed definition. This makes SSIM especially suited for detecting compositional resemblances that may not be apparent in pure pixel-wise comparisons. As shown in Table 1, both MSE and SSIM scores show significant closeness for seed-paired images (SSIM: 0.423-0.469; MSE: 0.032-0.041) compared to randomly paired images (SSIM: 0.054-0.065; MSE: 0.128-0.136). This confirms that the generated images share structural properties when derived from the same noise initialization across different datasets, providing strong evidence that the initial noise contains universal compositional cues that transcend dataset boundaries and training domains. We include ablation studies on ODE sampling schedules, network architectures (U-Net versus transformer-based), and flow-matching variants in Appendix A.2, where we consistently observe the same seed-dependent structural pattern.

5 Uncovering Universal Compositional Cues Through Patch PCA Denoiser

Our cross-dataset experiments revealed consistent compositional patterns when using identical noise initializations. This suggests that initial noise may contain universal compositional cues that transcend specific datasets. We now formalize and validate this hypothesis by directly extracting these compositional elements using our patch PCA framework.

Table 1: **Image Similarity Between Networks and Patch PCA.** SSIM and MSE are computed between images generated from identical noise seed and randomly paired noises across different architectures. Same-seed images show significantly higher similarity (higher SSIM and lower MSE scores) compared to random pairs.

	SSIM (higher is better)		MSE (lower is better)		
Network Pair	Same Seed	Random	Same Seed	Random	
ImageNet vs FFHQ	0.423 ± 0.087	0.065 ± 0.040	0.041 ± 0.017	0.136 ± 0.055	
ImageNet vs AFHQ	0.447 ± 0.097	0.062 ± 0.039	0.038 ± 0.018	0.130 ± 0.055	
FFHQ vs AFHQ	0.469 ± 0.074	0.054 ± 0.041	0.032 ± 0.012	0.128 ± 0.046	
Patch PCA vs ImageNet	0.474 ± 0.137	0.031 ± 0.027	0.049 ± 0.025	0.115 ± 0.037	
Patch PCA vs FFHQ	0.473 ± 0.077	0.029 ± 0.033	0.045 ± 0.014	0.114 ± 0.027	
Patch PCA vs AFHQ	0.548 ± 0.084	0.029 ± 0.034	0.036 ± 0.014	0.104 ± 0.029	

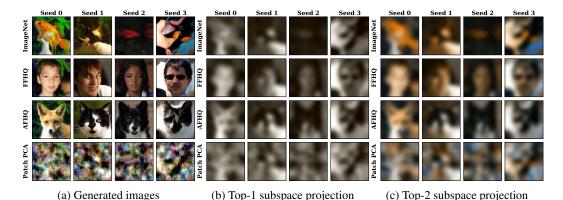


Figure 2: Universal compositional cues across datasets and models. (a) Images from identical seeds on ImageNet, FFHQ, AFHQ, and Patch PCA (bottom). (b) Top-1 projection revealing consistent illumination patterns. (c) Top-2 projection with additional similar color patterns.

Patch PCA Denoiser. We propose a simple yet effective Patch PCA denoiser that operates directly on a noisy image x_{σ} , the output of the diffusion model at time step σ reads

$$D(\mathbf{x}_{\sigma}, \sigma) = \mathcal{U}(D_{\text{PCA}}(\mathcal{P}(\mathbf{x}_{\sigma}), \sigma)). \tag{4}$$

Here \mathcal{P} represents the *patchification operation* that extracts overlapping $p \times p \times c$ where p is the patch size and c is the number of channels, patches with necessary padding from the input image \mathbf{x}_{σ} centered on each pixel. D_{PCA} is the linear PCA denoiser applied to each patch \mathbf{p}_i in $\mathcal{P}(\mathbf{x}_{\sigma})$ via $D_{\text{PCA}}(\mathbf{p}_i,\sigma) := \boldsymbol{\mu} + \sum_{j=1}^{p^2 c} \frac{\lambda_j}{\lambda_j + \sigma^2} \langle \mathbf{p}_i - \boldsymbol{\mu}, \mathbf{u}_j \rangle \mathbf{u}_j$, where $\boldsymbol{\mu}$ is the mean patch and $\{\mathbf{u}_j, \lambda_j\}$ are the eigenvectors and eigenvalues of the patch covariance matrix computed from a generic set of (clean) images and fixed throughout the experiments. \mathcal{U} is the reconstruction operation that uses the center pixel of each patch to reconstruct the image. This linear approximation utilizes the idea that compared with the whole image, the patches are closer to being Gaussian distributed, where the linear denoiser is optimal. The patch PCA denoiser can be efficiently implemented using a convolutional layer with a $p \times p \times c$ kernel. In our experiments, we found the approach robust to different patch sizes ranging from 5 to 31, with samples generated from the same noise seed showing consistent results in terms of various metrics; see Appendix A.3 for detailed ablation studies. We use the Patch PCA denoiser in the DDIM sampling [28] (see Equation (1)) to generate images.

Note that convolutional backbones such as CNNs or U-Nets constrain each output pixel to depend only on a fixed-size local patch. Building on the analytic framework of [15], we show that—under a Gaussian patch prior—the best denoiser within this "patch-limited" class is nothing but exactly the patch PCA denoiser; see Theorem A.2 in the Appendix for a more formal statement and proof.

Theorem 5.1 (Patch PCA denoiser is optimal (Informal)). Assume that the patch distribution follows a Gaussian law with mean μ and covariance Σ , and a candidate denoiser must compute every pixel from its own patch only. Then the minimizer of the standard diffusion (denoising) loss (cf. Equation (2)) over all such candidate denoisers is exactly the patch PCA defined in Equation (4) in most pixels (exluding pixels close to the boundary of an image).

Extracting Universal Compositional Cues. We extract patches from randomly sampled images from the ImageNet and compute the covariance matrix of the patches to construct our Patch PCA denoiser, which in turn is used in DDIM sampling [28] (see Equation (1)) to generate images. The resulting images, shown in the bottom row of Figure 2a, while not as visually refined as neural network outputs, display remarkable compositional similarities when compared with neural network generations from identical noise seeds. The Patch PCA denoised images exhibit fundamental illumination patterns and structural lines that closely match those in their neural network counterparts. This suggests that our simple patch linear approach effectively captures the underlying compositional cues embedded in the noise seeds.

To quantitatively validate that our Patch PCA denoiser captures the same underlying compositional information as sophisticated diffusion models, we perform a systematic comparison of images generated from identical noise initializations. The results, presented in the bottom three rows of Table 1, reveal that Patch PCA denoised images achieve substantially higher SSIM scores with diffusion-generated images when sharing the same noise seed (0.474-0.548) compared to random pairings (0.029-0.031). Notably, these similarity values exceed even those between diffusion models trained on different datasets (0.423-0.469), providing strong statistical evidence that our linear approach successfully extracts universal compositional information encoded in the noise. The MSE also shows significantly lower error between same-seed pairings (0.036-0.049) compared to random pairings (0.104-0.115). Visual inspection in Figure 2a confirms that common illumination gradients, dominant structural lines, and color distribution patterns remain consistent across all images derived from the same seed, regardless of whether they were generated by domain-specific neural networks or our domain-agnostic Patch PCA method. This suggests that our approach effectively extracts the compositional cues that diffusion models inherently follow while neural networks trained on different datasets add domain-specific refinements and details.

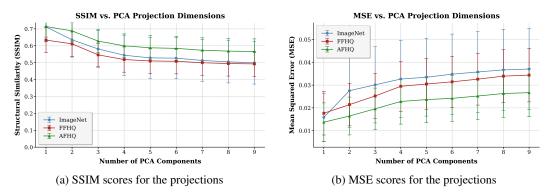


Figure 3: SSIM and MSE scores for the projections of the generated images from the same noise seed across different datasets. The scores improve when the images are projected onto subspaces with leading eigenvalues, indicating that the patch PCA model captures the similar structural elements across datasets that are preserved in low-frequency components.

Amplifying Compositional Cues Through Subspace Projection. To further investigate and visualize the compositional information encoded in the noise, we examine the lower frequency projections of the generated images. For each generated image by neural networks or the Patch PCA denoiser, we first extract patches from the image, project the patches onto the leading eigenvectors of the covariance matrix, and then reconstruct the image from patches by folding back the patches.

The visualizations in Figure 2b reveal that restricting to just the first principal component preserves key illumination patterns and major structural lines while eliminating texture and fine details. The compositional resemblance across images from the same noise seed is amplified in this highly restricted representation. When expanding to include the second principal component (Figure 2c), color variations emerge while maintaining coherence across datasets and the Patch PCA model.

We quantify this phenomenon in Figure 3a and Figure 3b, where both SSIM and MSE metrics show systematic improvement as images are compared in these increasingly restricted representations. This progressive enhancement in similarity confirms that the essential compositional information is concentrated in just the first few PCA components, corresponding to the most basic structural elements of the images. These findings complement our earlier perturbation experiments in Section 4,

providing compelling evidence that diffusion models across different datasets follows fundamental compositional structure in the low-dimensional components of noise identified by the patch PCA.



(a) Generated images

(b) Top-1 subspace projection

(c) Top-5 subspace projection

Figure 4: Visualization of the generated images from Stable Diffusion (top row) and Patch PCA model (bottom row) using uncurated seeds 0-3. The first column shows generated images from the same noise seed across different datasets, while the second and third columns show patch PCA denoised images projected onto the top-1 and top-5 subspaces, respectively. The consistent structural similarities demonstrates the effectiveness of our patch PCA denoiser in latent diffusion setting.

Patch PCA with Latent Diffusion Models We now examine whether our findings extend to latent diffusion models, which operate in a compressed latent space rather than pixel space. We focus on Stable Diffusion (V1.4) [26], adapting our patch PCA framework to its VAE latent space.

Our adaptation involves extracting $p \times p$ patches from encoded ImageNet samples (shape [4,p,p] from latent representations of dimensions [4,64,64]), computing the covariance matrix, and performing eigen-decomposition. When decoded back to pixel space, the leading eigenvectors (Figure 11 in Appendix A.3) reveal a striking phenomenon: they mirror the patterns observed in pixel-space models, with initial components corresponding to color/illumination variations, followed by edge detectors at higher frequencies. This cross-domain consistency suggests the VAE decodes the latent space patch eigenvectors into pixel space patch eigenvectors, which could be helpful for preserving structural hierarchies across representation domains and expanding the applicability of our patch PCA approach to various diffusion architectures. This perspective is further validate by the empirical observation in Table 7 in Appendix A.3 where the encoded pixel-patch and latent patch top-k eigenspaces are closely aligned (mean cosine of principal angles ≈ 0.93 for top 100 subspace).

We apply our Patch PCA denoiser from Equation (4) to Stable Diffusion's latent space and visualize the results in Figure 4 for four uncurated seeds (0-3). The first column shows standard Stable Diffusion generations (with empty prompt) while the second and third columns display patch-based projections onto the top-1 and top-5 subspaces, respectively. Consistent with our pixel-space findings, projections onto the top-1 subspace isolate illumination and major structural lines, while projections onto the top-5 subspace preserve additional color variations and some edge details. The strong visual alignment between generated and patch PCA denoised images confirms that noise seeds encode consistent compositional elements regardless of whether generation occurs in pixel or latent space.

Quantitatively, SSIM scores between Stable Diffusion and patch PCA images are significantly higher for seed-paired (mean SSIM 0.42) comparisons than random pairs (mean SSIM 0.18) in Figure 5a. The SSIM scores increase when projecting onto lower-dimensional spaces, reaching 0.816 for top-1 projection (Figure 5b). Notably, we observe a slight dip at the top-2 projection due to color tone differences between the models, with Stable Diffusion exhibiting a red-brownish tone not present in the patch PCA projections (Figure 13). These findings suggest that similar compositional structures may be encoded in noise seeds across both pixel-space and latent diffusion models, indicating that low-frequency noise components play an important role in determining structural elements in different model architectures.

6 Zero-shot Patch PCA based Noise Editing

Our analysis reveals that low-frequency components of initial noise significantly influence the compositional structure of diffusion-generated images. Building on this insight, we propose a zero-shot editing method that directly manipulates noise through patch PCA frequency band filtering, enabling compositional control **without** requiring model fine-tuning or optimization procedures.

We demonstrate our approach by imposing specific compositional structures from a reference image onto generated outputs. We choose CIFAR-10 for our primary experiments as it provides an unbiased

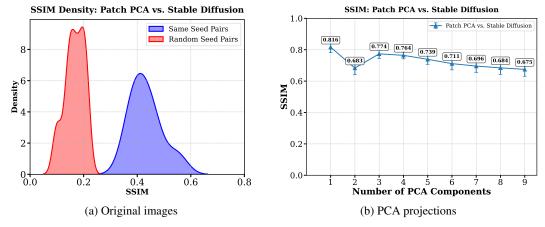


Figure 5: SSIM score distributions comparing seed-paired vs. randomly-paired images. (a) Original images show higher similarity with identical noise seeds. (b) PCA projections show increased similarity when projected onto lower-dimensional spaces.

Algorithm 1 Patch-based PCA Noise Editing with Frequency Band Control

- 1: **Input:** Original noise **z**, reference image \mathbf{x}_r , patch size p, number of channels c, eigenvectors $\{\mathbf{u}_j\}_{j=1}^{c \cdot p^2}$, interpolation factor α , frequency indices $\mathcal{I} \subseteq \{1, 2, \dots, c \cdot p^2\}$
- 2: **Output:** Edited noise \mathbf{z}'
- 3: Extract overlapping $p \times p$ patches from \mathbf{z} and \mathbf{x}_r to obtain $\{\mathbf{p}_i^{\text{noise}}\}$ and $\{\mathbf{p}_i^{\text{ref}}\}$
- 4: for each patch index i in parallel do
- Decompose in PCA basis: $\mathbf{p}_i^{\text{noise}} = \sum_{j=1}^{c \cdot p^2} c_{i,j}^{\text{noise}} \mathbf{u}_j$ and $\mathbf{p}_i^{\text{ref}} = \sum_{j=1}^{c \cdot p^2} c_{i,j}^{\text{ref}} \mathbf{u}_j$ // Split the noise patches $\mathbf{p}_i^{\text{noise}}$ into editing part and orthogonal part 5:
- $\mathbf{p}_i^{\text{edit}} \leftarrow \sum_{j \in \mathcal{I}} c_{i,j}^{\text{noise}} \mathbf{u}_j$ 7:

▶ Part to be edited

 $\mathbf{p}_i^{\text{orthog}} \leftarrow \sum_{j \notin \mathcal{I}} c_{i,j}^{\text{noise}} \mathbf{u}_j$ 8:

▶ Preserved part

- 9: // Store original norm of the editing part
- $\rho_i^{\text{edit}} \leftarrow \|\mathbf{p}_i^{\text{edit}}\|$ 10:
- // Editing part coefficients 11:
- $\mathbf{v}_i^{\mathrm{edit}} \leftarrow \mathbf{0}$ 12:
- 13:
- 14:
- 15:
- $\begin{aligned} \mathbf{v}_i^{\mathrm{cut}} &\leftarrow \mathbf{0} \\ \text{Extract selected coefficients: } \mathbf{c}_i^{\mathrm{noise}} &\leftarrow [c_{i,j}^{\mathrm{noise}}]_{j \in \mathcal{I}} \\ \text{Extract reference coefficients: } \mathbf{c}_i^{\mathrm{ref}} &\leftarrow [c_{i,j}^{\mathrm{ref}}]_{j \in \mathcal{I}} \\ \text{Calculate angle between vectors: } \boldsymbol{\theta} &\leftarrow \cos^{-1}\left(\frac{\mathbf{c}_{i,j}^{\mathrm{noise}} \cdot \mathbf{c}_i^{\mathrm{ref}}}{\|\mathbf{c}_i^{\mathrm{noise}}\|\|\mathbf{c}_i^{\mathrm{ref}}\|}\right) \\ \text{Apply SLERP to entire vector: } \mathbf{v}_i &\leftarrow \frac{\sin((1-\alpha)\theta)}{\sin(\theta)} \mathbf{c}_i^{\mathrm{noise}} + \frac{\sin(\alpha\theta)}{\sin(\theta)} \mathbf{c}_i^{\mathrm{ref}} \\ \text{Reconstruct edited part: } \mathbf{v}_i^{\mathrm{edit}} &\leftarrow \sum_{j \in \mathcal{I}} v_{i,j'} \mathbf{u}_j \text{ where } j' \text{ is the index of } j \text{ in } \mathcal{I} \\ \text{// Normalize edited part to preserve original energy} \\ \mathbf{v}_i^{\mathrm{edit}} &\leftarrow \rho_i^{\mathrm{edit}} \cdot \frac{\mathbf{v}_i^{\mathrm{edit}}}{\|\mathbf{v}_i^{\mathrm{edit}}\|} \\ \text{// Combine edited and orthogonal parts} \end{aligned}$ 16:
- 17:
- 18:
- 19:
- 20: // Combine edited and orthogonal parts
- $\mathbf{p}_i' \leftarrow \mathbf{p}_i^{\text{orthog}} + \mathbf{v}_i^{\text{edit}}$ 21:
- 22: end for
- 23: Reconstruct \mathbf{z}' by using the center pixel of each patch \mathbf{p}'_i to reconstruct the image
- 24: **Return z**'

testing environment where no specific training-guided editing has been performed, allowing us to evaluate the intrinsic capabilities of diffusion models.

Methodology: Our patch-based noise editing approach (Algorithm 1) consists of three steps:

- 1. Identifying specific frequency bands in the patch PCA space that encode compositional information
- 2. Performing spherical interpolation (SLERP) between the noise and reference patches within these bands
- 3. Normalizing to preserve the energy of the original noise

Figure 6: Progression from original image (leftmost, seed 3) to target reference image (rightmost) using zero-shot editing. Middle images are generated with increasing interpolation factors (α from 0.05 to 0.5) using principal components in range [1, 9]. Note the gradual emergence of the circular composition from the target image while preserving the semantic content of the original.

(a) Generations without editing.

(b) Editing in [1, 9] range.

(c) Editing in $[1, 9] \setminus \{2, 5\}$ range.

Figure 7: Zero-shot image editing on Cifar-10. (a) Original images generated from seeds 0-7 without editing. (b) Images generated with noise modified in frequency band [1,9] using $\alpha=0.25$. Note the circular composition but with colors influenced by the reference image. (c) Images generated with noise modified in frequency band $[1,9]\setminus\{2,5\}$ using $\alpha=0.25$. By excluding color-encoding eigenvectors, original colors are preserved while circular composition is more prominent.

We utilize the leading 9 eigenvectors from the patch PCA decomposition, which effectively capture essential compositional information in 5×5 patches. Using a pre-trained EDM model on CIFAR-10, we test our approach with a distinctive red target image (Figure 6, rightmost) as our reference. This reference exhibits both centered and circular compositional properties. We establish random noise initializations (seeds 0-3), with unedited generation results shown in Figure 7a.

Results and Analysis: Figure 7 demonstrates the effectiveness of our approach. When editing low-frequency components (Figure 7b), the circular target structure is clearly imposed while maintaining dataset-specific characteristics. Our analysis revealed that eigenvectors 2 and 5 primarily encode color information rather than compositional structure. When these vectors are excluded from the editing process (Figure 7c), the model preserves the original color tones while still adopting the target composition, highlighting the specificity of our patch principal directions. To quantify compositional alignment, we report the SSIM between edited outputs and reference compositions. To assess color preservation independently, we compute the *Bhattacharyya coefficient* [5] (range 0 to 1, higher means more similar) between RGB histograms of the edited image and the original (no-edit) image. A higher Bhattacharyya coefficient indicates better color similarity. These results are summarized in

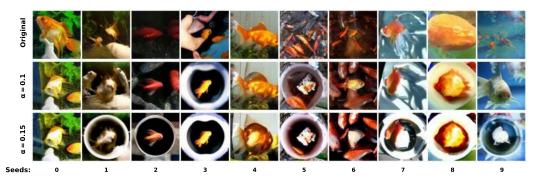


Figure 8: Zero-shot image editing applied to ImageNet goldfish (class 1) using seeds 0-9 with interpolation factors $\alpha=0.1,0.15$ and eigenvectors $[1,9]\setminus\{1,2,5\}$. Original images (top) compared to edited versions (middle and bottom). Edited images increasingly adopt the reference circular composition while maintaining semantic content. Note how some seeds (e.g., seed 6) creatively forms the circular pattern while preserving the goldfish identity across interpolation strengths.

Table 2. Together, these metrics confirm that low-frequency editing improves structural alignment with the reference, and by excluding pure color channels eigenvectors, we better preserve the color while maintaining structural control.

Table 2: CIFAR-10, 256 seeds. Low-frequency editing improves structure (SSIM ↑). Channel-aware bands better preserve color.

Metric	No Edit	Edit [1, 9]	Edit $[1,9] \setminus \{2,5\}$
SSIM vs Ref ↑ Color Hist Corr vs Ref ↓ Color Hist Corr vs No Edit ↑	$\begin{array}{c} 0.0844 \pm 0.0708 \\ 0.0402 \pm 0.0860 \\ \end{array}$	$\begin{array}{c} 0.2521 \pm 0.0665 \\ 0.2515 \pm 0.0827 \\ 0.3809 \pm 0.1137 \end{array}$	0.2887 ± 0.0812 0.1110 ± 0.0987 0.5759 ± 0.1130

We extend our experiments to ImageNet with class conditioning on "goldfish" (class 1) using the same target-shaped reference. Figure 8 presents uncurated results with seeds 0-9. The results show that our noise manipulation technique successfully guides the model to generate images with the desired circular target composition while maintaining class-specific semantic content. Interestingly, the model exhibits creative variations in implementing the centered circular composition, suggesting an inherent flexibility in how diffusion models interpret and apply compositional constraints. More editing results can be found in Appendix A.4 in the Appendix with different reference images, incorporating masks for localized editing, and its editing effect in the latent space of Stable Diffusion.

Our findings demonstrate a diffusion model's ability to adapt to imposed compositional structures cues while adding dataset-specific details. This suggests that the generative capabilities of these models extend beyond simply reproducing training examples to intelligently combining imposed structural constraints with learned semantic features. The effectiveness of our approach across both CIFAR-10 and ImageNet demonstrates the potential for zero-shot image editing through noise manipulation and the benefit of leveraging frequency bands identified by patch PCA decomposition. We include in the Appendix experiments of noise editing in high-frequency band and object-count alignment settings (see Appendix A.4), which further demonstrate the broad effectiveness of our approach.

7 Limitations

While our approach effectively captures compositional cues in diffusion models, some limitations remain. The observed correspondence between pixel-space and latent diffusion model eigenvectors suggests interesting connections that warrant further investigation. A comprehensive evaluation of our training-free zero-shot noise editing in complex multi-object scenes settings is beyond the scope of this work and is left for future exploration.

8 Acknowledgments

The authors thank anonymous reviewers for their constructive feedback. This material is based upon work supported by NSF (National Science Foundation) via grants CCF-2112665, DMS-2502083, and DMS-2502084, by the Office of Naval Research (ONR N000142412631), as well as by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001125CE020. We also acknowledge the Delta HPC cluster at the NCSA (National Center for Supercomputing Applications), University of Illinois, accessed via the NSF ACCESS program (allocation no. TG-CIS220009).

References

- [1] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. *arXiv preprint arXiv:2209.15571*, 2022.
- [2] Monagi H Alkinani and Mahmoud R El-Sakka. Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. *EURASIP Journal on Image and Video Processing*, 2017:1–27, 2017.
- [3] Theodore Wilbur Anderson. An introduction to multivariate statistical analysis, volume 2. Wiley New York, 1958.
- [4] Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are worth words: a vit backbone for score-based diffusion models. In *NeurIPS 2022 Workshop on Score-Based Methods*, 2022.
- [5] Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distribution. *Bulletin of the Calcutta Mathematical Society*, 35:99–110, 1943.
- [6] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 8188–8197, 2020.
- [7] Charles-Alban Deledalle, Joseph Salmon, Arnak S Dalalyan, et al. Image denoising with patch based pca: local versus global. In *BMVC*, volume 81, pages 425–455, 2011.
- [8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
- [9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- [10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
- [11] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Dominik Lorenz Yam Levi, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.
- [12] Yuan Gao, Jian Huang, and Yuling Jiao. Gaussian interpolation flows. *Journal of Machine Learning Research*, 25(253):1–52, 2024.
- [13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- [14] Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al. Sequence-augmented se (3)-flow matching for conditional protein backbone generation. arXiv preprint arXiv:2405.20313, 2024.
- [15] Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models. *arXiv preprint arXiv:2412.20292*, 2024.
- [16] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4401–4410, 2019.
- [17] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in neural information processing systems*, 35: 26565–26577, 2022.

- [18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.
- [19] Shuangqi Li, Hieu Le, Jingyi Xu, and Mathieu Salzmann. Enhancing compositional text-to-image generation with reliable random seeds. *arXiv preprint arXiv:2411.18810*, 2024.
- [20] Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models requires rethinking the hidden gaussian structure. *Advances in neural information processing systems*, 37:57499–57538, 2024.
- [21] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2022.
- [22] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *International conference on learning representations* (*ICLR*), 2023.
- [23] Jiafeng Mao, Xueting Wang, and Kiyoharu Aizawa. The lottery ticket hypothesis in denoising: Towards semantic-driven initialization. In *European Conference on Computer Vision*, pages 93–109. Springer, 2024.
- [24] Matthew Niedoba, Berend Zwartsenberg, Kevin Murphy, and Frank Wood. Towards a mechanistic explanation of diffusion model generalization. arXiv preprint arXiv:2411.19339, 2024.
- [25] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. *The London, Edinburgh, and Dublin philosophical magazine and journal of science*, 2(11):559–572, 1901.
- [26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695, 2022.
- [27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pages 2256–2265. PMLR, 2015.
- [28] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021.
- [29] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019.
- [30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.
- [31] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certification.
- [32] Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang, Xinyue Zhang, Robert Adkins, William Ngan, et al. Audiobox: Unified audio generation with natural language prompts. *arXiv preprint arXiv:2312.15821*, 2023.
- [33] Zhengchao Wan, Qingsong Wang, Gal Mishne, and Yusu Wang. Elucidating flow matching ODE dynamics via data geometry and denoisers. In *Proceedings of the 42nd International Conference on Machine Learning*, pages 62020–62083. PMLR, 2025.
- [34] Binxu Wang and John Vastola. The unreasonable effectiveness of gaussian score approximation for diffusion models and its applications. *Transactions on Machine Learning Research*.

- [35] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4): 600–612, 2004.
- [36] Katherine Xu, Lingzhi Zhang, and Jianbo Shi. Good seed makes a good crop: Discovering secret seeds in text-to-image diffusion models. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 3024–3034. IEEE, 2025.
- [37] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The emergence of reproducibility and consistency in diffusion models. In *Forty-first International Conference on Machine Learning*, 2024.
- [38] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 586–595, 2018.
- [39] Zikai Zhou, Shitong Shao, Lichen Bai, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden noise for diffusion models: A learning framework. *arXiv preprint arXiv:2411.09502*, 2024.
- [40] Daniel Zoran and Yair Weiss. Natural images, gaussian mixtures and dead leaves. *Advances in Neural Information Processing Systems*, 25, 2012.

A Appendix

A.1 Proof of Theorem 5.1

A distinctive feature of natural images is their spatial coherence, where neighboring pixels exhibit strong correlations. Modern neural architectures like CNNs and vision transformers [10] leverage this property by processing images through local patches. We prove that when a denoiser is constrained to operate locally—computing each pixel's output based solely on its surrounding patch—and when patch statistics follow a Gaussian distribution (a reasonable approximation for small natural image patches [40]), the optimal denoiser is precisely the Patch PCA denoiser defined in Equation (4).

Below, we establish a general result about optimal denoisers within the class of admissible local functions (Definition A.1), extending previous work by [15] on "boundary-broken equivariant local" functions to accommodate arbitrary patch shapes (not necessarily square-shape) and possibly different shapes for each pixel.

Definition A.1 (Admissible local Functions). We let $D=\{1,\ldots,d\}^2$ denote the pixel lattice and $c\geq 1$ the number of color channels. Let $\Omega_1,\ldots,\Omega_k\subset\mathbb{Z}^2$ be finite patch shapes, each containing the origin as its *center*.

Each pixel $x \in D$ is assigned exactly one patch shape through a *shape-index map* $S: D \to \{1,\ldots,k\}$. For pixel x, its assigned patch is defined as $\omega_x := \{(x+r) \mid r \in \Omega_{S(x)}\}$, centered at x. Here we assume that the patch assignment satisfies that $\omega_x \subset D$ for all $x \in D$.

A function $f: \mathbb{R}^{d \times d \times c} \to \mathbb{R}^{d \times d \times c}$ is called *admissible local function* if the output f(I) at each pixel x equals the output of a local function $f_{S(x)}$ applied to the surrounding patch $\omega_x(I)$ of the image I at pixel x. That is, f is admissible local if there exists, for each shape index $j=1,\ldots,k$, a measurable map $f_j: \mathbb{R}^{|\Omega_j| \times c} \to \mathbb{R}^c$ such that for every pixel $x \in D$:

$$f(I)(x) = f_{S(x)}(\omega_x(I))$$

where $\omega_x(I)$ is the patch of image I extracted at location x according to shape $\Omega_{S(x)}$.

Theorem A.2. Let $I \in \mathbb{R}^{D \times c}$ be a random image drawn from a distribution p with $\mathbb{E}||I||_2^2 < \infty$. For any $\sigma > 0$, we consider the noisy observation defined below

$$Y = I + \sigma Z, \qquad Z \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I), \quad \sigma > 0;$$

For each patch shape Ω_j , we let r_j denote the law of $\omega_{X_j}(I)$ where X_j is uniformly chosen from $S_j = \{x \in D : S(x) = j\}$. We call r_j the patch distribution of the patch shape j. Then, we have that the unique minimizer of the following loss function

$$\mathrm{argmin}_{f \text{ is admissible local}} \mathbb{E} \big[\| f(Y) - I \|_2^2 \big]$$

can be explicitly determined as follows:

(i) For each shape $j=1,\ldots,k$, we let $Q_j:=\omega_{X_j}(I)+\sigma Z_j$ where Z_j is an independent Gaussian noise with the shape Ω_j^{-1} . Then, we define

$$f_j^{\star}(q) = \mathbb{E}[(\omega_{X_i}(I))_0 \mid Q_j = q], \qquad q \in \mathbb{R}^{|\Omega_j| \times c},$$
 (5)

where $(\omega)_0$ denotes the central pixel of patch ω corresponding to the patch shape Ω_i .

(ii) Then, the optimal denoiser f^* is given by

$$f^{\star}(Y)(x) = f_{S(x)}^{\star}(\omega_x(Y)),$$

where f_j^* is defined in equation (5).

Proof. Throughout the proof we use $\mathbb{E}[\cdot]$ for expectation and $\|\cdot\|_2$ for the Frobenius norm on $\mathbb{R}^{d\times d\times c}$. For a patch ω we write $\omega_0 \in \mathbb{R}^c$ for its *centre pixel* (the entry whose spatial offset is the origin).

For an admissible local function f let

$$R(f) = \mathbb{E}[\|f(Y) - I\|_2^2] = \sum_{x \in D} \mathbb{E}[\|f_{S(x)}(\omega_x(Y)) - I(x)\|^2].$$

¹This means that Z_j follows the standard Gaussian distribution on $\mathbb{R}^{|\Omega_j|}$.

Grouping the sum by shape index gives

$$R(f) = \sum_{j=1}^{k} \sum_{x \in S_j} \mathbb{E}[\|f_j(\omega_x(Y)) - I(x)\|^2], \tag{6}$$

where $S_j = \{x \in D : S(x) = j\}$. Hence each local map f_j influences only the j-th summand and can be optimized independently.

Fix a shape index j and choose a pixel X_j uniformly from X_j . Set

$$P_j = \omega_{X_j}(I), \qquad Q_j = P_j + \sigma Z_j,$$

where Z_i has i.i.d. $\mathcal{N}(0,1)$ entries indexed by Ω_i .

Note that

$$R_{j}(f_{j}) := \sum_{x \in S_{j}} \mathbb{E} \left[\|f_{j}(\omega_{x}(Y)) - I(x)\|^{2} \right] = |S_{j}| \cdot \mathbb{E} \left[\|f_{j}(Q_{j}) - P_{j,0}\|^{2} \right]$$

where $P_{j,0}$ is the center pixel of the patch P_j . Since $|S_j|$ is a constant factor, minimizing R_j is equivalent to minimizing

$$\widetilde{R}_{j}(f_{j}) = \mathbb{E}\big[\|f_{j}(Q_{j}) - P_{j,0}\|^{2}\big],$$
 whose unique minimizer is the posterior mean

$$f_j^{\star}(q) = \mathbb{E}[P_{j,0} \mid Q_j = q], \qquad q \in \mathbb{R}^{|\Omega_j| \times c},$$

which is exactly equation (5). Plugging these local optima into equation (6) gives a global risk $R(f^*) \leq R(f)$ for every admissible local function f; if any f_j differs from f_j^* on a set of positive q-measure, the corresponding \widetilde{R}_j (and hence R) is strictly larger, proving uniqueness of f^* .

We now state the rigorous version of Theorem 5.1 below by assuming that the patch prior is Gaussian. **Corollary A.3** (Closed-form when the patch prior is Gaussian). Keep the notation of the preceding theorem and assume that, for a fixed patch shape j, the patch prior is multivariate normal

$$r_i = \mathcal{N}(\mu_i, \Sigma_i), \qquad \mu_i \in \mathbb{R}^{n_j}, \ \Sigma_i \in \mathbb{R}^{n_j \times n_j} \qquad n_i := |\Omega_i| \cdot c.$$

Then, the optimal local map in Equation (5) is the following affine function

$$f_j^*(q) = \mu_{j,0} + [\Sigma_j (\Sigma_j + \sigma^2 I_{n_j})^{-1} (q - \mu_j)]_0, \qquad q \in \mathbb{R}^{|\Omega_j| \times c},$$
 (8)

where the subscript 0 denotes the central pixel of the patch corresponding to the shape Ω_i .

In particular, we consider the orthogonal decomposition of Σ_i below

$$\Sigma_j = U_j \Lambda_j U_j^{\top}, \qquad U_j \in \mathbb{R}^{n_j \times n_j} \text{ orthogonal}, \ \Lambda_j = \operatorname{diag}(\lambda_{j,1}, \dots, \lambda_{j,n_j}).$$

Denote the column eigenvectors by $u_{j,r}$ and the eigenvalues by $\lambda_{j,r}$, $r=1,\ldots,n_j$. Let $(u_{j,r})_0 \in \mathbb{R}^c$ be the part of $u_{j,r}$ corresponding to the central pixel of the patch.

Then, Equation (8) can be rewritten as follows:

$$f_j^{\star}(q) = \mu_{j,0} + \sum_{r=1}^{n_j} \frac{\lambda_{j,r}}{\lambda_{j,r} + \sigma^2} \langle q - \mu_j, u_{j,r} \rangle (u_{j,r})_0,$$
 (9)

for every patch $q \in \mathbb{R}^{|\Omega_j| \times c}$.

Proof. Write $P_j \sim \mathcal{N}(\mu_j, \Sigma_j)$ and $Q_j = P_j + \sigma Z_j$ with $Z_j \sim \mathcal{N}(0, I_{n_j})$ independent. The pair (P_j, Q_j) is jointly Gaussian with

$$\mathbb{E}[P_j] = \mu_j, \quad \mathbb{E}[Q_j] = \mu_j, \quad \operatorname{Cov}(P_j, Q_j) = \Sigma_j, \quad \operatorname{Cov}(Q_j) = \Sigma_j + \sigma^2 I_{n_j}.$$

For jointly Gaussian vectors, the conditional mean is affine (see for example [3, Theorem 2.5.1]):

$$\mathbb{E}[P_j \mid Q_j = q] = \mu_j + \Sigma_j (\Sigma_j + \sigma^2 I_{n_j})^{-1} (q - \mu_j).$$

Then, restricting everything to the central pixel gives Equation (8).

Remark A.4. Now, assume that each pixel is assigned the same patch shape (e.g., a $(2k+1) \times (2k+1)$ square centered at the pixel), with circular padding applied to handle boundary pixels. In this uniform case, we can set S(x)=1 for all $x\in D$, and with the patch prior assumed to be Gaussian, Equation (9) implies that the denoiser for all pixels coincides exactly with the patch PCA denoiser defined in Equation (4). This observation also provides intuition for neural network denoisers: when trained on approximately Gaussian patch distributions and constrained to operate locally, their behavior is close to this optimal Patch PCA denoiser.

A.2 Supplementary material for Section 4

Supplementary algorithm for noise perturbation We provide the formal algorithm for noise perturbation in Algorithm 2.

Algorithm 2 Patch-PCA Band Resampling for Noise Perturbation

- 1: **Input:** Initial noise $\mathbf{z} \in \mathbb{R}^{64 \times 64 \times 3}$, orthonormal Patch-PCA basis $\{\mathbf{u}_i\}_{i=1}^K$, cutoff index n with $1 \le n \le K$, where $K = 3 \times p^2$
- 2: Output: Modified noise $\tilde{\mathbf{z}}$ with resampled high-frequency components
- 3: Partition **z** into disjoint patches $\{\mathbf{z}_i\}_{i=1}^N$ of size $p \times p$ (we use non-overlapping 4×4 patches in experiments).
- 4: **for** each patch \mathbf{z}_i **do**
- 5: Decompose the patch into the Patch-PCA basis:

$$\mathbf{z}_i = \sum_{j=1}^K a_{i,j} \, \mathbf{u}_j, \quad a_{i,j} = \langle \mathbf{z}_i, \mathbf{u}_j \rangle$$

- 6: **for** j = n **to** K **do**
- 7: Replace coefficient $a_{i,j}$ with a new i.i.d. Gaussian sample:

$$a_{i,j} \leftarrow \epsilon_{i,j}, \quad \epsilon_{i,j} \sim \mathcal{N}(0,1)$$

- 8: end for
- 9: Reconstruct the modified patch:

$$\tilde{\mathbf{z}}_i = \sum_{j=1}^K a_{i,j} \, \mathbf{u}_j$$

- 10: end for
- 11: Reassemble all patches to obtain the modified noise image $\tilde{\mathbf{z}}$
- 12: **Note:** Because $\{\mathbf{u}_i\}$ is orthonormal and \mathbf{z} is i.i.d. Gaussian, each $a_{i,j}$ remains Gaussian; therefore, $\tilde{\mathbf{z}} \sim \mathcal{N}(0, I)$.
- 13: Return \tilde{z}

Supplementary on the covariance matrix from the patches For small-sized patches, the covariance matrix is robust to the collection of the patches. We sample 10,000 patches from ImageNet, FFHQ, and AFHQ datasets and extract patches of different sizes, and compute and compare the covariance matrix from the same-sized patches but from different datasets. The result is shown in Figure 9. The covariance matrix is robust to the dataset used for sampling the patches.

Supplementary similarity index measure (SSIM) The SSIM is an alternative to the MSE for measuring the similarity between two images. It is definded in Wang et al. [35] as follows:

$$SSIM(I,J) = \frac{(2\mu_I \mu_J + C_1)(2\sigma_{IJ} + C_2)}{(\mu_I^2 + \mu_J^2 + C_1)(\sigma_I^2 + \sigma_J^2 + C_2)},$$
(10)

where I and J are the two images, μ_I and μ_J are the mean of the images, σ_I^2 and σ_J^2 are the variance of the images, σ_{IJ} is the covariance between the two images, and C_1 and C_2 are constants to avoid division by zero. The SSIM is a value between 0 and 1, where 1 means that the two images are identical. The SSIM is a better measure for the structure similarity between two images than the MSE, as it takes into account the luminance, contrast, and structure of the images.

Supplementary on similarity measure through LPIPS The LPIPS is a perceptual similarity measure between two images defined in Zhang et al. [38]. We include the LPIPS results for the

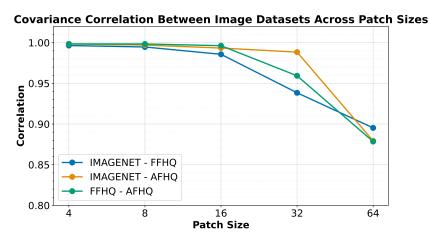


Figure 9: Covariance matrices with different patch sizes constructed from different datasets. For small patch sizes (≤ 16), the covariance matrices almost coincide with each other (more than 0.99 correlation).

pixel-space and latent-space models in Table 3 with the same seed and random pairs for both pixel-space and latent-space models. The LPIPS results show a similar trend as SSIM: images generated from identical seeds are consistently closer than those from random pairs. The effect is strongest for pixel-space models such as ImageNet and FFHQ. Comparing with SSIM, LPIPS shows a smaller gap between the same seed and random pairs in general, possibly because LPIPS takes into account the perceptual similarity, which has more emphasis on high frequency components. This matches our central result: seed-dependent information concentrates in low-frequency components, so low-frequency focused similarity metrics like SSIM show a larger effect than high-frequency focused metrics like LPIPS.

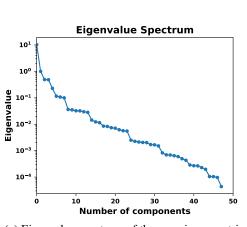
Table 3: LPIPS (\downarrow) comparison between paired (same-seed) and random pairs across pixel-space and latent-space models. Lower values indicate higher perceptual similarity. Results are averaged over 256 seeds.

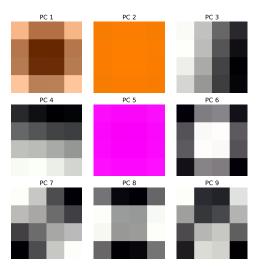
Network Pair	LPIPS (Same Seed)	LPIPS (Random)
Pixel-space models		
ImageNet vs FFHQ	0.454 ± 0.069	0.538 ± 0.064
ImageNet vs AFHQ	0.486 ± 0.099	0.577 ± 0.093
ImageNet vs Patch PCA	0.552 ± 0.101	0.626 ± 0.092
FFHQ vs AFHQ	0.371 ± 0.093	0.449 ± 0.089
FFHQ vs Patch PCA	0.542 ± 0.048	0.584 ± 0.044
AFHQ vs Patch PCA	0.508 ± 0.067	0.560 ± 0.063
Latent-space models		
Stable Diffusion vs Patch PCA	0.895 ± 0.059	0.951 ± 0.048

We include additional evidence on the consistency of the seed-dependent structural pattern across different samplers, architectures, and flow-matching variants.

Deterministic ODE Samplers (EDM, VE, VP) For a fixed pretrained diffusion model and fixed noise seed **z**, we compare three common deterministic samplers (default polynomial scheduling in EDM [17], variance exploding (VE) schedule [28], and velocity preserving (VP) schedule [30]). As shown in Table 4, the generated images are nearly identical across samplers, with high SSIM and low MSE between outputs. This indicates that the noise-to-image mapping is robust to the sampler choice in deterministic settings, and our findings are applicable to all of them.

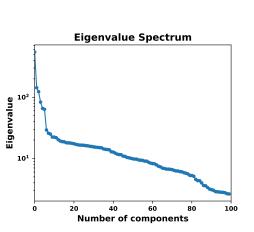
Network Architectures: U-Net vs Transformer (U-ViT) To test whether the phenomenon depends on convolutional priors, we compare a U-Net-based EDM model and a transformer-based U-ViT [4] trained on ImageNet-64 using public pre-trained models. Using the same initial noise, we observe

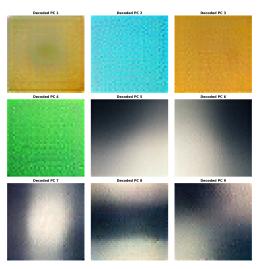




- (a) Eigenvalue spectrum of the covariance matrix of 4x4 patches.
- (b) Eigenvectors of the covariance matrix of patches.

Figure 10: Patch PCA spectrum and eigenvectors. The eigenvalues follow a power law distribution, and the leading eigenvectors contain the illumination/color variations, and edge detectors.





- (a) Power spectrum of latent space eigenvectors showing characteristic power-law decay.
- (b) Decoded top latent eigenvectors from 5×5 patches.

Figure 11: Analysis of latent space PCA: (a) Power spectrum showing characteristic power-law distribution typical of natural image statistics; (b) Visualization of decoded top latent eigenvectors from 5×5 patches, showing progression from illumination/color variations to edge detectors.

Table 4: Deterministic samplers yield nearly identical outputs for the same seed.

Sampler Pair	SSIM ↑	$MSE \downarrow$
EDM vs VE EDM vs VP	0.9902 ± 0.0275 0.9821 ± 0.0386	$2.36 \times 10^{-4} \pm 9.76 \times 10^{-4} 5.90 \times 10^{-4} \pm 1.45 \times 10^{-3}$
VP vs VE	0.9899 ± 0.0153	$2.24 \times 10^{-4} \pm 4.44 \times 10^{-4}$

strong structural alignment between generated images. Similar patterns persist when we compare the U-ViT model with our Patch-PCA denoiser.

Table 5: Structure similarity between U-Net and U-ViT architectures using identical seeds.

Model Pair	SSIM ↑	$MSE\downarrow$
U-ViT vs EDM (paired) U-ViT vs Patch-PCA (paired)	0.8197 ± 0.0794 0.4805 ± 0.1265	$0.0065 \pm 0.0045 \\ 0.0542 \pm 0.0263$

The high structural alignment between U-ViT and EDM suggests that the phenomenon of seed-dependent structural pattern is widely applicable to different architectures.

Flow-Matching variants The flow-matching (FM) model is a framework that extends the diffusion model with ODE sampler [1, 21, 22]. We train a flow-matching model with the OT scheduling function (or rectified flow) on AFHQ dataset and compare it with the pretrained EDM model on AFHQ dataset. The results are shown in Table 6. We observe that the flow-matching model generates images that are structurally aligned with the EDM model when using the same initial noise. This aligns with the finding in Zhang et al. [37] that the same seed consistently generates similar images across different architectures when trained on the same dataset. Our paper additionally shows that the low-frequency components of generated images from the same seed are aligned across different image datasets.

Table 6: Flow-matching (FM) vs EDM on AFHQ: same-seed generations remain structurally aligned.

Model Pair	SSIM Paired ↑	SSIM Random ↑	MSE Paired \downarrow	$MSE\ Random \downarrow$
FM vs EDM FM vs PCA	0.7840 ± 0.1023 0.5116 ± 0.0862	$\begin{array}{c} 0.0581 \pm 0.0454 \\ 0.0315 \pm 0.0367 \end{array}$	$\begin{array}{c} 0.0104 \pm 0.0068 \\ 0.0394 \pm 0.0149 \end{array}$	$\begin{array}{c} 0.1168 \pm 0.0447 \\ 0.1019 \pm 0.0270 \end{array}$

A.3 Supplementary material for Section 5

Patch size ablation We test the effect of different patch sizes on the denoising performance using Equation (4) with different patch sizes. We generate 512 different initial noises and use the different patch sized PCA denoiser as denoiser in the DDIM reverse process Equation (1). We then compare between the generated images from the same initial noise and the different patch sized PCA denoisers in terms of cosine similarity, MSE, and SSIM. The results are shown in Figure 12. We observe that the generated images are visually similar while larger patch sizes produces smoother images as shown in Figure 12a. The cosine similarity, MSE, and SSIM are also similar between the generated images. The quantitative results are shown in Figures 12b to 12d. These results on cosine similarity, MSE, and SSIM show that the PCA denoiser is robust to the patch size used in the denoising.

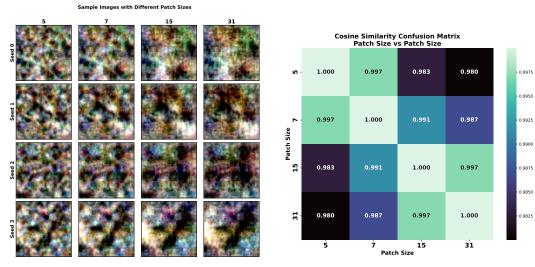
We also include more projections of the generated images from the latent space PCA denoiser and the Stable Diffusion model for comparison. The projections are shown in Figure 14.

Pixel-to-Latent Subspace Alignment Let $V_k = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be the top-k PCA directions of $8p \times 8p$ pixel patches. Let \mathcal{E} be the encoder from Stable Diffusion; define the encoded subspace $E(V_k) = \operatorname{span}\{\mathcal{E}(\mathbf{v}_1), \dots, \mathcal{E}(\mathbf{v}_k)\}$. Let W_k be the top-k PCA directions of $p \times p$ latent patches. We report the *subspace alignment* score $\operatorname{align}(E(V_k), W_k)$ —the mean cosine of principal angles—in Table 7. Pixel-to-latent *subspace alignment* is consistently high (mean cosine ≈ 0.93 –0.95), showing that the encoder's dimensionality reduction preserves the leading patchwise PCA directions that our method utilizes.

A.4 Supplementary material for Section 6

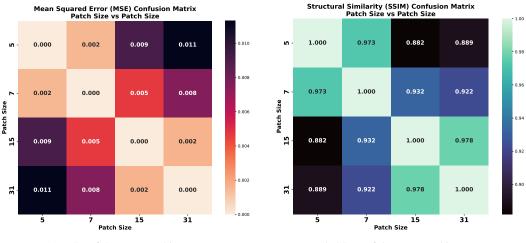
In this section, we provide additional details in Section 6 regarding the zero-shot noise editing precedure.

Localized editing (though mask) We apply the noise editing procedure to a specific region of the image by applying a mask to the noise. That is, we only edit the noise in the region defined by the



(a) Generated images from different patch sizes.

(b) Cosine similarity of the generated images.



(c) MSE of the generated images.

(d) SSIM of the generated images.

Figure 12: Ablation study on the effect of patch size on constructing the PCA denoiser. (a) Generated images from different patch sizes. (b) Cosine similarity of the generated images. (c) MSE of the generated images. (d) SSIM of the generated images. The results show that the PCA denoiser is robust to the patch size used in the denoising. The generated images are similar in terms of cosine similarity, MSE, SSIM and visually.

Table 7: Subspace alignment (mean cosine, \uparrow is better) for p=5. First 10 directions and coarse grid. k 1 2 3 4 5 6 7 8 9 10 Avg

Align \uparrow 0.9984 0.9042 0.9960 0.9969 0.8702 0.9926 0.9369 0.9410 0.9361 0.9380 0.9510 k 10 20 30 40 50 60 70 80 90 100 Avg

Align \uparrow 0.9380 0.8884 0.8739 0.9196 0.9468 0.9057 0.9409 0.9441 0.9530 0.9899 0.9300

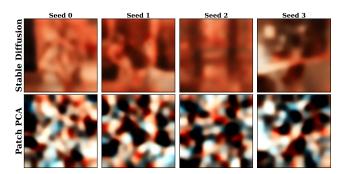


Figure 13: Stable Diffusion generated image vs. Patch PCA denoised image when projected onto the **top-2 subspace**. While structurally similar, the Stable Diffusion image projection shows a strong red-brownish color tone that is absent in the Patch PCA denoised image projection. This discrepancy likely stems from the second leading eigenvector (shown in Figure 11) having a light blue color tone that contrasts with the red-brownish tone.

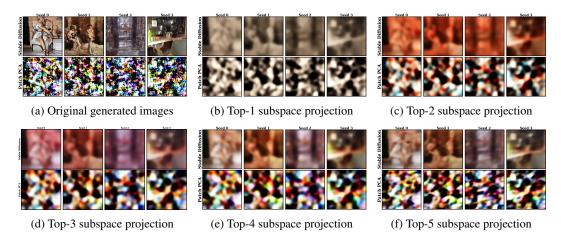
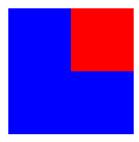


Figure 14: Complete visualization of generated images from Stable Diffusion (top row in each subfigure) and Patch PCA model (bottom row) across different subspace projections. Each column shows the same noise seed (0-3). As more principal components are included in the projections (from top-1 to top-5), more detailed features are captured while maintaining the fundamental compositional structure identified in lower-dimensional projections.

mask. An example of the mask is shown in Figure 15a where the red area is the area to be edited and the blue area is the area to be preserved. We apply the same editing procedure as in the experiment in Figure 7 but only to the area defined by the mask. The results are shown in Figure 16. We observe that the localized editing resulted in a more localized composition constraint. Also, similar to the previous experiment, when we do not include the eigenvectors corresponding to the color variations in our editing procedure, the generated image Figure 16c is more similar to the reference image Figure 16a overall and only the top-right corner composition showing curved shape which aligns with the masked part of the target reference image Figure 15.



(a) Top right corner mask. The red area is edited, the blue area is preserved.

(b) Target reference image with central and surrounding compositional structure.

Figure 15: Reference images used in our editing procedure. Left: The mask defines which areas of the noise to modify. Right: The target reference image whose compositional structure we aim to transfer.

(a) Reference generation without editing.

(b) Editing in range [1,9] with mask applied.

(c) Editing in range $[1, 9] \setminus \{2, 5\}$ with mask.

Figure 16: Editing results on CIFAR-10 with target reference using interpolation factor $\alpha=0.25$ as in the main experiments. The mask is applied to restrict editing to only the top-right corner of the image. The resulting editing is shown in Figure 16b and Figure 16c. The reference generation is shown in Figure 16a. The edited images closely align with the reference image/compositional structure in the top-right corner.

More examples of reference images To demonstrate our editing approach with a more complex compositional structure, we utilize Vincent van Gogh's iconic "Starry Night" painting as a reference image (shown in Figure 17, resized to 32×32). This reference image contains a strong diagonal movement from bottom left to middle right. We still use the same patch size of 4×4 as in the experiment in the main text and we choose the range $[1,9]/\{1,2,5\}$ to edit the noise with interpolation factor α ranging from 0.0 to 1.0 ($\alpha=0.0$ is the original (non-edited) generation). The generated images are shown in Figure 18 with initial noise seeds from 0 to 9. The generated images show a smooth transition from the original image to those with diagonal movement, like the reference Starry Night image. This shows that our editing procedure can be used to transfer the compositional structure of a complex reference image to the generated images.

Figure 17: Reference image used for interpolation in Figure 18.

Examples of editing in latent diffusion model We also apply our noise editing procedure to latent diffusion models. We use patch size 5×5 with the eigenvalue spectrum shown in Figure 11a and eigenvectors visualized in Figure 11b. We use an empty prompt and the simple target-shaped image (right-hand side of Figure 6) as the reference image.

First, we compare the effects of including versus excluding color-focused eigenvectors in our editing procedure. To demonstrate the versatility and control offered by our approach, we explore a full range of interpolation factors α from 0.0 to 1.0 with 0.1 increments. Figure 19 shows this comparison with two frequency ranges: [1,12], which includes the top 4 color-focused eigenvectors (left), and [5,12],

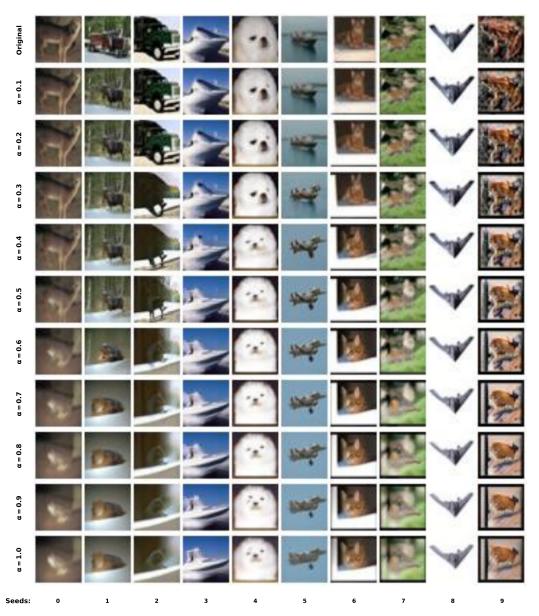


Figure 18: Generated images using the painting "Starry Night" by Vincent van Gogh as the reference image. The interpolation factor α ranges from 0.0 to 1.0 ($\alpha=0.0$ is the original (non-edited) generation). The generated images show a smooth transition from the original image toward variants with diagonal movement, similar to the reference Starry Night image.

(a) Editing with range [5, 12] (excluding color-focused eigenvectors).

(b) Editing with range [1, 12] (including color-focused eigenvectors).

Figure 19: Zero-shot noise editing in latent diffusion models comparing two different frequency ranges with interpolation factor α ranging from 0.0 to 1.0. Left: Using range [1, 12] which includes color-focused eigenvectors, resulting in both structural and color transfer. Right: Using restricted range [5, 12] which excludes color-focused eigenvectors, preserving original colors while adopting the target's compositional structure.

(a) Editing with range [5, 12] (excluding color-focused eigenvectors).

(b) Editing with range [1, 12] (including color-focused eigenvectors).

Figure 20: Fine-grained progression of zero-shot noise editing in latent diffusion model with interpolation factors from $\alpha=0.0$ to $\alpha=0.5$ with 0.05 increments. Left: Using range [1, 12] which includes color-focused eigenvectors, resulting in both structural and color transfer. Right: Using range [5, 12] which excludes color-focused eigenvectors, preserving original colors while still adopting centered and circular compositional structure.

which excludes them (right). When color-focused eigenvectors are included, while the generated images align with the composition of the target-shaped reference image, they also exhibit a strong resemblance to the color of the reference image; see Figure 19b. When these eigenvectors are excluded, the generated images maintain their original colors while still adopting the circular and centered compositional structure of the target; see Figure 19a. This demonstrates that our approach of choosing the frequency range is effective in controlling the compositional structure and color transfer in the generated images.

To further investigate the gradual evolution of compositional structure, Figure 20 shows a more fine-grained progression of editing strength. With increasing α values, we observe the composition of the generated images gradually shifting toward increasingly pronounced central and circular structures, even though the overall image does not change much, especially when the color-focused eigenvectors are excluded (Figure 20a).

Noise editing in high-frequency bands. While our main experiments focus on low-frequency components for composition control, our Patch-PCA based noise editing method naturally extends to high-frequency bands. We test this by using Starry Night as the reference image (Figure 17) and a 5×5 Patch-PCA basis. The reference image contains blue-yellow oil-painting texture and curly stylistic texture. We observe that by editing the high-frequency coefficients, we can achieve a texture transfer effect. This effect can be sensitive to the choice of frequency band to determine what type of texture to transfer. A visual example is shown in Figure 21. When we use the frequency band [19, 75] and with a small interpolation factor of 0.3, we already see the blue-yellow oil-painting texture in the generated images. When we use the frequency band [20, 75], the blue-yellow oil-painting texture is not as easy to generate, and we mostly pick up the curly stylistic texture even with a large interpolation factor of 0.9. In all cases, high-frequency band noise editing leaves object layout largely unchanged while altering texture, complementing the low-frequency compositional control. A more comprehensive study across the frequency bands is left for future work.

No edit

Edit [19:75]

Edit [20:75]

Figure 21: Noise editing in high-frequency bands results using frequency band [19, 75] and [20, 75] with interpolation factor $\alpha = 0.3$ and $\alpha = 0.9$ respectively.

Editing for Object Count (Three-Object Composition). To test whether our noise editing method can affect object count, we use the ImageNet class "granny smith apple" (class 948) and create a reference image containing three circular white blobs on a black background. We design the task for achieving three apples in the generated images. We edit the initial noise in the same way as the ImageNet editing experiment in Figure 8, i.e., using low-frequency Patch-PCA bands $[1, 9] \setminus \{1, 2, 5\}$.

Results. Before editing, most samples contain either only one apple or more than three apples. After editing, 43/64 samples exhibit the intended three apples near the highlighted areas in our reference image. confirming that low-frequency structure can influence object counting (see Figure 23). However, we also observe that the background diversity is almost removed. We leave it as future work to balance the object count and the background diversity.

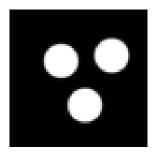


Figure 22: Three-object reference used for count alignment.

Table 8: Distribution of object counts before and after low-frequency editing (64 seeds).

# Apples	0	1	2	3	4+
No Edit Edited	5	30	8	5	16
Eanea	2	ð	11	43	U

(a) No Edit (64 seeds).

(b) Edited (bands $[1, 9] \setminus \{1, 2, 5\}$, $\alpha = 0.22$).

Figure 23: Object-count control via low-frequency editing. Left: unedited generations, most with one apple or more than three apples. Right: edited generations, most with three apples in the area of the of circular white blobs of the reference image.

A.5 Datasets and pre-trained models

The datasets used in our experiments are ImageNet [8], FFHQ [16], AFHQ [6], and CIFAR-10 [18]. The ImageNet dataset contains 1.28 million images with 1,000 classes. The FFHQ dataset contains 70,000 high-quality images of human faces. The AFHQ dataset contains 15,000 high-quality images of animals (cats, dogs, and wild animals). The CIFAR-10 dataset contains 60,000 images in 10 classes, with 6,000 images per class.

The pre-trained models used in our experiments are the diffusion models trained on ImageNet, FFHQ, and AFHQ datasets are available from the official repository of Karras et al. [17]: https://github.com/NVlabs/edm and the transformer-based U-ViT model is available from the official repository of Bao et al. [4]: https://github.com/baofff/U-ViT. We also train flow matching on the AFHQ dataset using the repository of Tong et al. [31]: https://github.com/atong01/conditional-flow-matching.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes],

Justification: We provide theoretical, methodological, and experimental analysis in our paper to support our claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the paper.

- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in the last section of our paper.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proof in the supplemental material for our theoretical results in the main paper.

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.

- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the setup and details of our experiments in the main paper and appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the algorithm in the paper which can be used to reproduce the results.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide the experimental setup and details in the main paper and appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars in our experiments.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The experiments in our paper does not require much compute resources and the provided information is sufficient to reproduce the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms to it. Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our work aim to understand the diffusion model and not directly related to any societal impact.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any data or models.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a LIRI
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does involve LLMs as a core component of the methodology.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.