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Abstract

Cascading bandits is a natural and popular model that frames the task of learning to
rank from Bernoulli click feedback in a bandit setting. For the case of unstructured
rewards, we prove matching upper and lower bounds for the problem-independent
(i.e., gap-free) regret, both of which strictly improve the best known. A key
observation is that the hard instances of this problem are those with small mean
rewards, i.e., the small click-through rates that are most relevant in practice. Based
on this, and the fact that small mean implies small variance for Bernoullis, our
key technical result shows that variance-aware confidence sets derived from the
Bernstein and Chernoff bounds lead to optimal algorithms (up to log terms),
whereas Hoeffding-based algorithms suffer order-wise suboptimal regret. This
sharply contrasts with the standard (non-cascading) bandit setting, where the
variance-aware algorithms only improve constants. In light of this and as an
additional contribution, we propose a variance-aware algorithm for the structured
case of linear rewards and show its regret strictly improves the state-of-the-art.

1 Introduction

The cascading click model describes users interacting with ranked lists, such as search results or
online advertisements [Craswell et al., 2008]. In this model, there is a set of items [L] = {1, . . . , L}.
The user is given a list of K items A = (a1, . . . ,aK), sequentially examines the list, and clicks on
the first attractive item (if any). If a click occurs, the user leaves without examining the subsequent
items. It is assumed that the e-th item has an attraction probability w̄(e) (which we also call the mean
reward), and that the random (Bernoulli) clicks are conditionally independent given A.

Cascading bandits, introduced concurrently by Kveton et al. [2015a] and Combes et al. [2015], are a
sequential learning version of the model where the mean rewards {w̄(e)}L

e=1 are initially unknown.
At each round t 2 [n], the learner chooses an action, which is a list of items At = (at1, . . . ,a

t

K
). As

in the basic click model, the user scans the list and clicks on the first attractive item (if any). Thus,
if the Ct-th item is clicked, the learner knows that the user was not attracted to {a

t

k
}
Ct�1
k=1 but was

attracted to a
t

Ct
. However, the learner receives no feedback on the items {at

k
}
K

k=Ct+1 that the user
did not examine before leaving. The objective for the learner is to choose the sequence {At}

n

t=1 to
maximize the expected number of clicks, or equivalently, minimize the regret defined in (1).

This work provides problem-independent (i.e., gap-free) regret bounds for cascading bandits that
strictly improve the state-of-the-art. In the case of unstructured rewards, our results provide the first
minimax-optimal regret bounds (up to log terms). Our key insight is that, compared to the standard
bandit problem, the reward variance plays an outsized role in the gap-free analysis. In particular, we
show that for cascading bandits, the worst-case problem instances are those with low mean rewards –
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Table 1: Problem-independent upper bounds and minimax lower bounds for cascading bandits with L

total items, K recommended items, horizon n, and feature dimension d. The tabular columns assume
unstructured mean reward. The linear column assumes reward is linear in unit-norm features and
does not suppress any L dependencies in the Õ(·) notation. See Appendix A for other related work.

Tabular case Linear case
Paper Upper bound Lower bound Upper bound
Zong et al. [2016] none none Õ(

p

nd2K2)
Wang and Chen [2017] Õ(

p
nLK) none⇤ none

Lattimore et al. [2018] Õ(
p

nLK3) none⇤ none
Li and Zhang [2018] none none Õ(

p

nd2K)§

Zhong et al. [2021] Õ(
p
nLK) ⌦(

p
nL/K)† Õ(

p
nd2K3 min{d, logL})

Kveton et al. [2022] Õ(
p
nLK)‡ none none

Ours Õ(
p
nL) (Thm 2) ⌦(

p
nL)† (Thm 1) Õ(

p
nd(d+K))§ (Thm 4)

⇤These papers contain minimax lower bounds but for click models that are distinct from cascading bandits.
†These bounds assume L is large compared to K and n is large compared to L and K.
‡This bound holds for a Bayesian notion of regret and includes a dependence on the prior not shown above.
§These bounds assume n is large compared to d and K to suppress some additive o(

p
n) terms.

namely, w̄(e)  1/K, where the variance w̄(e)(1 � w̄(e)) is also small. We emphasize that these
worst-case instances are not pathological; rather, they model the low click-through rates that prevail
in practice [Richardson et al., 2007]. Further, we argue that adapting to low variance is crucial to
cope with the worst-case instances. Put differently, algorithms should be variance-aware, i.e., more
exploitative when the variance is small. We provide the intuition behind this key insight in Section
1.2 and show how to formalize it with a proof sketch in Section 5.

More specifically, our first goal is to establish upper bounds on the problem-independent regret (i.e.,
the maximum over w̄) for cascading bandit algorithms, as well as minimax lower bounds (i.e., the
infimum over algorithms of their problem-independent regret). As shown in Table 1, the tightest
existing such bounds are Õ(

p
nLK) and ⌦(

p
nL/K), respectively. What is surprising is that, not

only is there a gap between the bounds, but they increase and decrease in K, respectively. In other
words, the following fundamental question is unresolved: as K grows, does the problem become
harder (as suggested by the upper bound) or easier (as suggested by the lower bound)?

As discussed by Zhong et al. [2021], this question lacks an obvious answer. On the one hand, larger
K means that the learner needs to identify more good items, which hints at a harder problem. On
the other hand, the learner receives more feedback as K grows, which intuitively makes the problem
easier. As we show later, variance-aware algorithms are the key to resolving this tradeoff.

In addition to this basic version of the model – hereafter, the tabular case, where no structure is
assumed for the mean rewards – we are also interested in the linear case, where w̄(e) = h�(e), ✓i for
some known feature map � : [L] ! Rd and unknown parameter vector ✓ 2 Rd. A second goal of
this work is to apply our insights from the tabular case to the linear one, in hopes of improving the
best known upper bound Õ(

p

nd2K) (see Table 1).

1.1 Main contributions

Tabular case. First, we show no algorithm can achieve o(
p
nL) regret uniformly across w̄, assuming

L is large compared to K and n is large compared to L (see Theorem 1). Next, we consider three
algorithms: CascadeKL-UCB, CascadeUCB-V, and CascadeUCB1 (the first and third are due to
Kveton et al. [2015a]; CascadeUCB-V is new). All three rank the L items using upper confidence
bounds (UCBs) and choose At as the K highest ranked items. They differ in the choice of UCB.
As the names suggest, CascadeKL-UCB and CascadeUCB-V use KL-UCB [Garivier and Cappé, 2011,
Maillard et al., 2011, Cappé et al., 2013] and UCB-V [Audibert et al., 2009], respectively. Both are
variance-aware, in the sense that their respective UCBs are derived from the Chernoff and Bernstein
inequalities. We show that both algorithms have near-optimal regret Õ(

p
nL) for any w̄ (see Theorem

2). In contrast, CascadeUCB1 relies on the Hoeffing-style UCB1 [Auer et al., 2002], and we show that
it suffers suboptimal regret ⌦(

p
nLK) on some w̄ (see Theorem 3).
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In summary, we prove (i) the minimax regret is ⇥̃(
p
nL) for cascading bandits, (ii) the variance-aware

algorithms CascadeKL-UCB and CascadeUCB-V are minimax-optimal up to log terms, and (iii) the
variance-unaware algorithm CascadeUCB1 is decidely suboptimal. Moreover, note from Table 1 that
we strictly improve both the upper and lower bounds for this problem.

Discussion. There are two surprising aspects to these results. First, the minimax bound ⇥̃(
p
nL)

shows that (in a worst-case sense) the number of recommended items K plays no role.1 In other
words, the aforementioned tradeoff (identifying more good items but receiving more feedback) is
perfectly balanced when the correct algorithm (e.g., CascadeKL-UCB) is employed.

The second (and arguably more surprising) aspect is that CacadeKL-UCB and CascadeUCB-V are
optimal but CascadeUCB1 is not. This stands in contrast to the standard L-armed bandit problem,
where the analogous algorithms KL-UCB, UCB-V, and UCB1 all achieve the minimax regret ⇥̃(

p
nL),

and the main advantage of the former two is only to improve the constants in the gap-dependent
bounds. We discuss the intuition behind this contrast in Section 1.2.

Linear case. Motivated by these findings, we also propose a variance-aware algorithm for the linear
case called CascadeWOFUL.2 CascadeWOFUL proceeds in two steps. First, we use the Hoeffding-
style UCBs of Abbasi-Yadkori et al. [2011] to upper bound the mean rewards w̄(e), and thus the
Bernoulli variances w̄(e)(1� w̄(e)), with high probability. Second, we use these Hoeffding UCBs
as proxies for the true variances in the WOFUL algorithm of Zhou et al. [2021], which computes a
variance-weighted estimate of ✓ that enjoys Bernstein-style concentration. In Theorem 4, we show
the regret of CascadeWOFUL is Õ(

p
nd(d+K)) for large n, which improves existing bounds by a

factor of at least
p
min{d,K} (see Table 1).

1.2 Why do variance-aware algorithms succeed but variance-unaware algorithms fail?

To answer this question, we focus on the tabular case and contrast the standard L-armed bandit setting
with the cascading one. We first recall how the Õ(

p
nL) bound for L-armed bandits is derived. For

simplicity, we restrict to instances with w̄(1) = p and w̄(2) = · · · = w̄(L) = p � � for some
p 2 (0, 1) and � 2 (0, p). In this case, UCB1 plays each of the L� 1 suboptimal items 1/�2 times,
up to constants and log factors [Auer et al., 2002]. Each such play costs regret �, for a total regret
that scales as L/�. Alternatively, regret can simply be bounded by �n, since the n plays incur at
most � regret each. Combining the bounds gives min{L/�,�n}. The worst case occurs when the
two bounds are equal, i.e., when � =

p
L/n, which implies

p
nL regret.

In contrast, UCB-V plays each suboptimal item �
2
/�2 times (in an order sense), where �

2
 p is

the variance of the Bernoulli(p��) reward [Audibert et al., 2009]. Therefore, the argument of the
previous paragraph shows that regret grows as min{Lp/�,�n}. Here the worst case occurs when p

is non-vanishing and � =
p
L/n, which gives the same regret scaling as UCB1. A similar argument

holds for KL-UCB, because the number of plays grows as 1/d(p��, p) [Cappé et al., 2013] and one
can show d(p��, p) = ⌦(�2

/p) (see Claim 1 in Appendix G).

The analysis is more complicated for cascading bandits, because regret is nonlinear in the mean
rewards and the amount of feedback is random. To oversimplify things, we draw an analogy with
the above and assume w̄(1) = · · · = w̄(K) = p and w̄(K + 1) = · · · = w̄(L) = p � �. In this
case, CascadeUCB1 similarly plays the L�K suboptimal items 1/�2 times each, which costs L/�
regret when L� K. However, we can no longer bound regret by �n, because the total number of
plays depends on the random number of items the user examines at each round, which is roughly
min{1/p,K} (the mean of Geometric(p) random variable, truncated to the maximum K). Thus,
the �n bound inflates to �nmin{1/p,K}, which gives min{L/�,�nmin{1/p,K}} regret. For
p  1/K and � =

p
L/(nK), this yields the best known bound

p
nLK. We emphasize that, unlike

the previous paragraph, the worst case here occurs when p (i.e., the click-through rate) is small.

On the other hand, the analogous bound for CascadeUCB-V and CascadeKL-UCB scales as
min{Lp/�,�nmin{1/p,K}}. Crucially, the factor of p in the first term – which arises due to the
variance-aware nature of the algorithms – offsets the factor 1/p in the second term. Thus, in the hard

1The Õ(·) notation hides logK terms, but they can be bounded by logL while retaining Õ(
p
nL) regret.

2
WOFUL stands for weighted optimism in the face of uncertainty for linear bandits.
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case p  1/K, the bound becomes min{L/(�K),�nK}. Here the worst case is � =
p
L/(nK2),

which yields the minimax regret
p
nL that we establish in Theorems 1 and 2.

2 Preliminaries

In this section, we precisely formulate our problem. A cascading bandit instance is defined by the
triple (L,K, w̄), where L 2 N is the total number of items, K 2 [L] = {1, . . . , L} is the number
of items the learner displays to the user at each round, and w̄ 2 [0, 1]L is the vector of attraction
probabilities. We define a sequential game as follows. At each round t 2 [n], the learner chooses an
action At = (at1, . . . ,a

t

K
), where a

t

k
2 [L] and a

t

k
6= a

t

k0 when k 6= k
0 (i.e., At is an ordered list

of K distinct items). The user sequentially examines this list, clicks on the first item that attracts
them, and stops examining items after clicking. Mathematically, we denote the first attractive item by
Ct = inf{k 2 [K] : wt(atk) = 1}, where wt(e) ⇠ Bernoulli(w̄(e)) for each e 2 [L]. If no item is
clicked, i.e., if wt(atk) = 0 for all k, we set Ct =1. Note the learner only observes the realizations
corresponding to the items that the user examined, i.e., {wt(atk) : k 2 [min{Ct,K}]}.

We denote by Ht = [t�1
s=1{As} [ {ws(ask) : k 2 [min{Cs,K}]} the history of actions and

observations before time t.3 We let Pt(·) = P(·|Ht [ {At}) and Et[·] = E[·|Ht [ {At}] denote
conditional probability and expectation given the history and current action. In the cascading bandit
model, it is assumed that the feedback {wt(atk)}

K

k=1 (i.e., the presence or absence of clicks) is
conditionally independent given Ht and At. Therefore, the conditional click probability is

Pt(Ct <1) = 1� Pt(Ct =1) = 1� Pt(\
K

k=1{wt(a
t

k
) = 0}) = 1�

KY

k=1

(1� w̄(at
k
)).

Mappings from Ht to At are called policies. Let ⇧ be the set of all policies. Given an instance
w̄ 2 [0, 1]L, a policy ⇡ 2 ⇧, and a horizon n 2 N, the expected number of clicks is

E⇡,w̄

"
nX

t=1

(Ct <1)

#
= E⇡,w̄

"
nX

t=1

Pt(Ct <1)

#
= E⇡,w̄

"
nX

t=1

 
1�

KY

k=1

(1� w̄(at
k
))

!#
,

where is the indicator function. Let A⇤ = (a⇤1, . . . , a
⇤
K
) be any action A = (a1, . . . , aK) that

maximizes the click probability 1�
Q

K

k=1(1� w̄(ak)). Our goal is to minimize regret, which is the
expected difference in the number of clicks between ⇡ and the policy that always plays A⇤, i.e.,

R⇡,w̄(n) = E⇡,w̄

"
nX

t=1

 
KY

k=1

(1� w̄(at
k
))�

KY

k=1

(1� w̄(a⇤
k
))

!#
. (1)

3 Results for the tabular case

We can now state our tabular results (the proofs are discussed in Section 5). First, we have a minimax
lower bound showing no algorithm can achieve o(

p
nL) uniformly over the mean rewards w̄.

Theorem 1. Suppose N , L/K 2 {4, 5, . . .} and n � L. Then for any policy ⇡ 2 ⇧, there exists a
mean reward vector w̄ 2 [0, 1]L such that R⇡,w̄(n) = ⌦(

p
nL).

Remark 1. The proof of Theorem 1 is essentially a reduction to Lattimore et al. [2018]’s lower
bound for the so-called document-based click model. Their proof and ours both use the assumption
L/K 2 N to simplify the analysis, which involves partitioning the L items into K subsets of size
L/K each. When L/K /2 N, one of the subsets will have fewer items, which makes the analysis more
cumbersome; however, this does not fundamentally alter either result.
Remark 2. The theorem also requires L � 4K, which is not very restrictive since L� K in typical
applications. However, this assumption does eliminate an interesting analytical regime, namely,
when K ! L. We conjecture the minimax lower bound is ⌦(

p
n(L�K)) in this case, since any

algorithm obtains zero regret when K = L and there are no suboptimal items.

3Our notation mostly follows Kveton et al. [2015a], but we clarify that their definition of Ht includes At.
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We next consider the algorithms CascadeKL-UCB and CascadeUCB1 from Kveton et al. [2015a],
along with a new one called CascadeUCB-V. All follow a similar template, which is given in
Algorithm 1. This is a natural generalization of upper confidence bound (UCB) algorithms from the
standard L-armed bandit setting. At each round t 2 [n], it computes UCBs Ut(e) in a manner to be
specified shortly, then chooses At as the K items with the highest UCBs (in order of UCB). After
observing the click feedback Ct, the algorithm increments the number of observations Tt(e) and
updates the empirical mean ŵTt(e)(e) for each item e that the user examined.

Algorithm 1: General UCB algorithm for tabular cascading bandits
Initialize number of observations Tt(e) = 0 and empirical mean ŵ0(e) = 0 for each e 2 [L]
for t = 1, . . . , n do

Compute Ut(e) for each e 2 [L] (by (2), (3), and (4) for CascadeKL-UCB, CascadeUCB-V,
and CascadeUCB1, respectively)

for k = 1, . . . ,K do
Let at

k
= argmax

e2[L]\{at

i
}k�1
i=1

Ut(e) be the item with the k-th highest UCB
Play At = (at1, . . . ,a

t

K
) and observe Ct = inf{k 2 [K] : wt(atk) = 1} (where inf ; =1)

Let Tt(e) = Tt�1(e) for each e 2 [L]
for k = 1, . . . ,min{Ct,K} do

e a
t

k
, Tt(e) Tt(e)+ 1, ŵTt(e)(e) (Tt�1(e)ŵTt�1(e)(e)+ (Ct = k))/Tt(e)

For CascadeKL-UCB, the UCBs Ut(e) are computed as follows:

Ut(e) = max{u 2 [0, 1] : d(ŵTt�1(e)(e), u)  log(f(t))/Tt�1(e)}, (2)

where f(t) = t(log t)3 and d(p, q) = p log(p/q)+(1�p) log((1�p)/(1�q)) is the relative entropy
between Bernoullis with means p, q 2 [0, 1]. The set in (2) is a confidence interval for w̄(e), which is
derived from the Chernoff bound. For CascadeUCB-V, the UCBs are instead given by

Ut(e) = ŵTt�1(e)(e) +
q

4v̂Tt�1(e)(e) log(t)/Tt�1(e) + 6 log(t)/Tt�1(e), (3)

where v̂s(e) = ŵs(e)(1� ŵs(e)) is the empirical variance from s observations of item e. This UCB
is derived from the coarser – but crucially, still variance-aware – Bernstein inequality. Finally, for
CascadeUCB1, the UCBs are derived from the Hoeffing bound and computed as follows:

Ut(e) = ŵTt�1(e)(e) + ct,Tt�1(e), where ct,s =
p
1.5 log(t)/s. (4)

We can now show the variance-aware UCBs are nearly optimal, while CascadeUCB1 is suboptimal.
Theorem 2. Suppose ⇡ is CascadeKL-UCB or CascadeUCB-V, i.e., the policy from Algorithm 1 with
the UCBs given by (2) or (3). Then R⇡,w̄(n) = Õ(

p
nL) for any w̄ 2 [0, 1]L.

Remark 3. The reader may wonder why we proposed CascadeUCB-V, since the CascadeKL-UCB
bound is enough to establish the minimax regret. The main reason is to demonstrate that variance-
awareness alone (no additional information encoded by KL-UCB) is enough to achieve the optimal
regret, which helps motivate our linear algorithm. Furthermore, we show empirically in Section 6
that, while CascadeUCB-V is inferior to CascadeKL-UCB in terms of regret, its closed form nature
leads to quicker computation, while still improving the regret of CascadeUCB1.
Theorem 3. Suppose n � max{LK, 49K4

}, L � 800K, and ⇡ is CascadeUCB1, i.e., the policy
from Algorithm 1 with the UCBs given by (4). Then R⇡,w̄(n) = ⌦(

p
nLK) for some w̄ 2 [0, 1]L.

Remark 4. The assumed bounds on n and L simplify the calculations and can be improved (see
Remark 9 in Appendix J). The main point of Theorem 3 is to show that, unlike the variance-aware
algorithms, CascadeUCB1 cannot satisfy the conclusion of Theorem 2 for all choices of n and L.

4 Results for the linear case

In light of the previous section, we seek a variance-aware algorithm for the linear case. Our method
is based on the WOFUL algorithm of Zhou et al. [2021], which was designed for the standard linear
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bandit setting (the case K = 1). In this section, we review WOFUL, discuss how to overcome its
limitations in the cascading setting, explain our CascadeWOFUL algorithm, and bound its regret.

Existing algorithm. In Section 4.3 of their work, Zhou et al. [2021] consider the following problem.
As above, there is a set of items [L], a known feature map � : [L]! Rd, and an unknown parameter
vector ✓ 2 Rd. Successive plays of e 2 [L] give i.i.d. rewards with mean w̄(e) = h�(e), ✓i and
variance upper bounded by �

2
e
. Thus, at each round t 2 [n], the learner chooses at 2 [L] and receives

a random reward rt = h�(at), ✓i + ⌘t, where E[⌘t|at] = 0 and E[⌘2
t
|a

t]  �
2
at . For this setting,

the authors proposed the WOFUL algorithm, which is based on the (unweighted) OFUL algorithm
[Abbasi-Yadkori et al., 2011]. At each round t 2 [n], WOFUL chooses the item

a
t = argmax

e2[L]

⇣
h�(e), ✓̂ti+ ↵k�(e)k⇤�1

t

⌘
, (5)

where ↵ > 0 is an exploration parameter, kxkB =
p

xTBx is the norm induced by a positive definite
matrix B, and ✓̂t is the regularized and variance-weighted least-squares estimate given by

✓̂t = ⇤
�1
t

t�1X

s=1

�(as)rs/�
2
as , where ⇤t = I +

t�1X

s=1

�(as)�(as)T/�2
as . (6)

To gain some intuition, we assume momentarily that d = L and �(e) is the e-th standard basis vector,
i.e., the vector with 1 in the e-th coordinate and 0 elsewhere. In this case, one can easily calculate

h�(e), ✓̂ti =

P
s2[t�1]:as=e

rs/�
2
e

1 +Tt�1(e)/�2
e

, k�(e)k⇤�1
t

=

s
1

1 +Tt�1(e)/�2
e

.

Therefore, for large Tt�1(e) (large enough that 1 +Tt�1(e)/�2
e
⇡ Tt�1(e)/�2

e
), we have

h�(e), ✓̂ti+ ↵k�(e)k⇤�1
t

⇡

P
s2[t�1]:as=e

rs

Tt�1(e)
+ ↵

s
�2
e

Tt�1(e)
.

Similar to UCB-V (3), the right side of this equation is the empirical mean plus an exploration bonus
that grows with the variance upper bound �

2
e

and decays in Tt�1(e). Hence, the term inside the
argmax in (5) can be interpreted as a Bernstein-style UCB. The analysis of this UCB relies on a
novel concentration inequality for vector-valued martingales [Zhou et al., 2021, Theorem 2], which is
a Bernstein analogue of the Hoeffding-style bound due to Abbasi-Yadkori et al. [2011].

Limitations. The fact that WOFUL (roughly) generalizes UCB-V is promising. However, computing (6)
requires knowledge of the variance upper bounds �2

e
, and nontrivial bounds on the variance are rarely

available in practice. We sidestep this issue with three simple observations: (i) cascading bandits
only involve Bernoulli rewards, (ii) for Bernoulli rewards, variances are upper bounded by means,
and (iii) these means can be learned efficiently since they are linearly-parameterized. This suggests
the following algorithm: first, compute Hoeffding-style UCBs; second, treat these UCBs as upper
bounds for the true means, and thus the true variances, in WOFUL.

Proposed algorithm. Algorithm 2 formalizes this approach. It contains three steps. First, step 1
defines Hoeffding-style UCBs Ut,H as in Abbasi-Yadkori et al. [2011]. Next, step 2 uses Ut,H as an
upper bound for the variance and computes the Bernstein-style UCBs Ut,B as in WOFUL. Finally, step
3 chooses At as the K items with the highest Ut,B , analogous to Algorithm 1.

Two technical clarifications are in order. First, observe that in step 1, we clip the variance bound Ut,H

below by 1/K. We do so to ensure that ⇤t,B (which inverts Ut,H ) remains bounded. Additionally,
we note the choice 1/K is precisely motivated by Section 1.2, which shows this is a critical threshold
for the small click-through rate. Second, ⇤t,B uses the regularizer KI . This is to ensure that the
regularizer is large enough compared to the summands �(as

k
)�(as

k
)T/Us,H(as

k
), which scale as K

in the worst case where the variance upper bound Us,H(as
k
) is clipped to 1/K.

Remark 5. Zong et al. [2016] proposed a WOFUL-style cascading algorithm called CascadeLinUCB

(see Appendix C), but they set the variance upper bound to fixed �
2
> 0. In fact, they remark “ideally,

�
2 should be the variance of the observation noises,” which CascadeWOFUL essentially learns.

Remark 6. Appendix B contains an improved version of CascadeWOFUL. It is more efficient (for
example, the inverses are iteratively updated via Sherman-Morrison), satisfies the same theoretical
guarantee as Algorithm 2, and includes some tweaks that improve performance in practice. The
tradeoff is that Algorithm 2 is simpler to explain, which is why we prefer it for the main text.
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Algorithm 2: CascadeWOFUL for linear cascading bandits
Input: exploration parameters {↵t,H ,↵t,B}

n

t=1
for t = 1, . . . , n do

Step 1: Define the (clipped) Hoeffding-style UCBs

Ut,H(·) = max
n
h�(·), ✓̂t,Hi+ ↵t,Hk�(·)k⇤�1

t,H

, 1/K
o
, where

✓̂t,H = ⇤
�1
t,H

t�1X

s=1

min{Cs,K}X

k=1

�(as
k
)ws(a

s

k
), ⇤t,H = I +

t�1X

s=1

min{Cs,K}X

k=1

�(as
k
)�(as

k
)T

Step 2: Define the Bernstein-style UCBs

Ut,B(·) = h�(·), ✓̂t,Bi+ ↵t,Bk�(·)k⇤�1
t,B

, where

✓̂t,B = ⇤
�1
t,B

t�1X

s=1

min{Cs,K}X

k=1

�(as
k
)ws(ask)

Us,H(as
k
)

, ⇤t,B = KI +
t�1X

s=1

min{Cs,K}X

k=1

�(as
k
)�(as

k
)T

Us,H(as
k
)

Step 3: Let at
k
= argmax

e2[L]\{at

i
}k�1
i=1

Ut,B(e) be the item with the k-th highest UCB,
play At = (at1, . . . ,a

t

K
), observe Ct = inf{k 2 [K] : wt(atk) = 1} (as in Algorithm 1)

Regret bound. We can now state our main result for the linear case. Here Bd(M) = {x 2 Rd :
kxk2 M} denotes the Euclidean ball of radius M > 0 in Rd.4

Theorem 4. Suppose w̄ 2 [0, 1]L, � : [L]! Bd(1), and ✓ 2 Bd(1) satisfy w̄(e) = h�(e), ✓i for all
e 2 [L]. Let ⇡ be the policy of Algorithm 2 with inputs ↵t,H =

p
d log(1 + tK/d) + 2 log(n) + 1

and ↵t,B = 8
p

d log(1 + tK/d) log(n3K) + 4
p
K log(n3

K) +
p
K. Then

R⇡,w̄(n) = Õ

⇣
min

np
nd(d+K) + n

1
6 d

7
6 (d+K)

1
2K

1
3 ,
p
nmax{d,K}min{d,K}

1/3
o⌘

.

Note this bound is completely independent of the number of items L. For large n (typically the case
of interest), it becomes Õ(

p
nd(d+K)), which improves the best known bound of Õ(

p

nd2K) [Li
and Zhang, 2018]. The theorem also establishes Õ(

p
nmax{d,K}min{d,K}

1/3) regret uniformly
in n (i.e., without additive o(

p
n) terms which may dominate for small n), which improves the best

known uniform-n bound of Õ(
p
ndK) [Zong et al., 2016]. See Table 1 for more details.

5 Overview of the analysis

We next discuss the key ideas behind our proofs. The details are deferred to Appendices E-J.

Theorem 2 proof. For simplicity, we assume the arms are ordered by their means, i.e., w̄(1) � · · · �

w̄(L). Under this assumption, the optimal action is [K]. We call those items optimal and [L] \ [K]
suboptimal. We let Et be the “bad event” that the empirical and true means differ substantially at
time t, Ēt its complement, Ge,e⇤,t the event that suboptimal e > K was chosen in favor of optimal
e
⇤
 K and subsequently examined by the user, and �e,e⇤ = w̄(e⇤)� w̄(e) the reward gap. Then

as in Appendix A.1 of Kveton et al. [2015a], we “linearize” regret as follows:

R⇡,w̄(n)  E

2

4
X

tn

X

e>K

X

e⇤K

�e,e⇤ (Ēt, Ge,e⇤,t)

3

5+
X

tn

P(Et). (7)

The second term is small due to concentration. For the first term, define � = w̄(K)
p
L/n and

assume n � L (so � ⌧ w̄(K)).5 For each e > K, let K�(e) = {e
⇤
 K : �e,e⇤  �} be the

4Our results hold with minor modification if � : [L] ! Bd(M1) and ✓ 2 Bd(M2) for general M1,M2 > 0.
However, as in prior work, the modified algorithm needs to know an upper bound on M2.

5The full proof addresses the cases n 6� L and w̄(K) = 0 (here we implicitly assume the latter to invert �).
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optimal items with small gap relative to e and K̄�(e) = [K] \ K�(e) the other optimal items. Then
X

e⇤K

�e,e⇤ (Ēt, Ge,e⇤,t)  �
X

e⇤2K�(e)

(Ge,e⇤,t) +
X

e⇤2K̄�(e)

�e,e⇤ (Ēt, Ge,e⇤,t).

Therefore, we can upper bound the first term in (7) by

�
X

tn

E

2

4
X

e>K

X

e⇤2K�(e)

(Ge,e⇤,t)

3

5+ E

2

4
X

tn

X

e>K

X

e⇤2K̄�(e)

�e,e⇤ (Ēt, Ge,e⇤,t)

3

5 . (8)

For the first term in (8), the inner double summation is the number of e > K that were chosen in
favor of e⇤ 2 K�(e), and subsequently examined by the user, at round t. Denote this number by Ot.
Recall w̄(e⇤) � w̄(K) (by the assumed ordering) and �⌧ w̄(K), so for e⇤ 2 K�(e), we have

w̄(e) = w̄(e⇤)��e,e⇤ � w̄(e⇤)�� � w̄(K)�� ' w̄(K).

Hence, Ot is bounded by the number of items e with w̄(e) ⇡ w̄(K) that the user examined. Since
the user stops examining at the first attractive item, this number is dominated by a Geometric(w̄(K))
random variable. Therefore, the first term in (8) is Õ(�n/w̄(K)) = Õ(

p
nL).

The second term in (8) accounts for choosing e instead of e⇤ when �e,e⇤ � � and the empirical
means are concentrated. Building upon the intuition of Section 1.2, we exploit the variance-awareness
of KL-UCB and UCB-V (and use w̄(e)  w̄(K) by the assumed ordering) to bound this term by
Õ(Lw̄(e)(1� w̄(e))/�)  Õ(Lw̄(K)/�). Thus, by choice of �, this term is Õ(

p
nL) as well.

Theorem 4 proof. We decompose regret similar to (7) and (8), though with different choices of
Et and �.6 To bound P(Et), we use the aforementioned result of Abbasi-Yadkori et al. [2011] to
show that the Hoeffding UCBs Ut,H upper bound the variances with high probability, then prove a
guarantee for the least-squares estimate ✓̂t,B using the Bernstein-style bound from Zhou et al. [2021].
We bound the first term in (8) using the exact same logic as the tabular case. The second term has
a more complicated analysis, but (as in the tabular case) it amounts to bounding the number of
times that items �-far from optimal are chosen when ✓̂t,B is well-concentrated. For this, we adapt
techniques from the standard linear bandit setting (the case K = 1) to general K 2 [L].

Theorem 1 proof. We let H0
t
= [t�1

s=1{As,ws(as1), . . . ,ws(asK)} be the entire history before time
t, which includes unobserved rewards ws(ask), k > Cs. We also let ⇧0 be the policies that map H

0
t

to At. Note Ht ⇢ H
0
t
, so ⇧ ⇢ ⇧0. For any ⇡ 2 ⇧0 and w̄ 2 [0, 1]L, we define

R
0
⇡,w̄

(n) = E⇡,w̄

"
nX

t=1

KX

k=1

(w̄(a⇤
k
)� w̄(at

k
))

#
, (9)

where a
⇤
k
= argmax

e2[L]\{a⇤
i
}k�1
i=1

w̄(e). Then a lower bound linearization analogous to (7) shows
that for any p 2 [0, 1] and w̄ 2 [0, p]L, R⇡,w̄(n) � (1� p)K�1

R
0
⇡,w̄

(n), which implies

inf
⇡2⇧

sup
w̄2[0,1]L

R⇡,w̄(n) � inf
⇡2⇧0

sup
w̄2[0,p]L

R⇡,w̄(n) � (1� p)K�1 inf
⇡2⇧0

sup
w̄2[0,p]L

R
0
⇡,w̄

(n). (10)

If we choose p = 1, the inf sup at right is the minimax regret for the document-based model that
was analyzed by Lattimore et al. [2018] (see Remark 1), but this makes (10) vacuous. On the other
hand, by choosing p = O(1/K) (again, the small click-through rate of Section 1.2), so that the term
(1� p)K�1 in (10) is ⌦(1), we can modify their analysis to prove Theorem 1.

Theorem 3 proof. We linearize the regret similar to the proof of Theorem 1, then define a problem
instance reminiscent of Section 1.2 and (roughly) follow the intuition for UCB1 therein.

6 Experiments

Before closing, we conduct experiments on both synthetic and real data. Some details regarding
experimental setup are deferred to Appendix C. Code is available in the supplementary material.
6In fact, the proofs of Theorems 2 and 4 both rely on a more general gap-free regret decomposition for cascading
bandits (Lemma 1 in Appendix F), which to our knowledge is novel and may be of independent interest.
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Figure 1: Results for synthetic data (tabular on top, linear on bottom, L = 100 in both)

Figure 2: Results for MovieLens data [Harper and Konstan, 2015]

Synthetic data. We let L = 100 and K 2 {2i}8
i=2. For each K, we sample w̄(e) uniformly

in [ 2
3K ,

1
K
] for e  K and in [0, 1

3K ] for e > K. Note this yields a positive gap with the small
click-through rate of Section 1.2. The top left plot in Figure 1 shows the regret at n = 105 for the
tabular albums of Section 3 (the shaded regions are the standard deviations across five trials). As
predicted by Theorems 2 and 3, the CascadeUCB1 curve grows with K, while the variance-aware
curves do not. The top middle plot shows the time spent computing UCBs for the same experiment,
which confirms the behavior mentioned in Remark 3. For the linear case, we vary d 2 {2i}8

i=2,
generate the same w̄, then compute unit-norm vectors ✓ and �(e) satisfying w̄(e) = h�(e), ✓i (see
Appendix C). We compare CascadeWOFUL to CascadeLinUCB [Zong et al., 2016], which Li and
Zhang [2018] showed has the best existing regret guarantee. As suggested by Theorem 4, the left and
middle plots on the bottom of Figure 1 show that our algorithm’s regret has superior dependence on
K and d. The rightmost plots show that regret is sublinear in n for the median values K = d = 10.

Real data. We replicate the first experiment from Zong et al. [2016] on the MovieLens-1M dataset
(grouplens.org/datasets/movielens/1m/), which contains user ratings for L ⇡ 4000 movies.
In brief, the setup is as follows. First, we use their default choices d = 20 and K = 4. Next, we divide
the ratings into train and test sets based on the user who provided the rating. From the training data
and a rank-d SVD approximation, we learn a feature mapping � from movies to the probability that a
uniformly random training user rated the movie more than three stars. Finally, we run the algorithms
as above, except at round t 2 [n], we sample a uniformly random user Jt from the test set and define
wt(atk) = W (Jt,a

t

k
), where W (j, a) = (user j rated movie a more than 3 stars). In other words,

instead of the independent Bernoulli clicks of Section 2, we observe the actual feedback of user Jt.
We point the reader to Section 4 of Zong et al. [2016] and Appendix C for further details. The left plot
of Figure 2 shows that CascadeWOFUL outperforms CascadeLinUCB across n, eventually incurring
less than 66% of the regret. In addition to this setup from Zong et al. [2016], we reran the experiment
while restricting the set of items to movies of a particular genre, for each of 18 genres in the dataset.
This is intended to model platforms like Netflix that recommend movies in various categories. The
right plot shows that CascadeWOFUL is superior for all genres; for some genres (e.g., fantasy) its
regret is about half of CascadeLinUCB’s. Moreover, our experiments indicate that CascadeWOFUL
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improves CascadeLinUCB more dramatically for genres with smaller click-through rates (see Figure
3 and surrounding discussion in Appendix C), which reinforces a key message of this paper.

7 Conclusion

In this work, we proved matching upper and lower bounds for the problem-independent regret of
tabular cascading bandits and an upper bound for the linear case, all of which improve the best known.
Our results suggest some interesting future directions, such as proving minimax lower bounds for the
linear case and revisiting Thompson sampling for cascading bandits [Zhong et al., 2021] in light of
our variance-aware insight; see Appendix D for details. Finally, we note the paper is theoretical and
has no immediate societal impact. Nevertheless, we urge caution for the negative impacts that could
arise in practice. For example, our MovieLens experiments involved training on a subset of users,
which could cause poor recommendations for demographics underrepresented in the training set.
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lower bounds (Theorems 1 and 3) require some additional assumptions. These are
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to
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mental results (either in the supplemental material or as a URL)? [Yes] Complete code
to recreate all plots is available in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The experimental setup is discussed in detail in Appendix C, and
other training details can be found in the code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots include error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The experiments were run
over several hours on a laptop, so no significant resources were used. Nevertheless,
Appendix C mentions the approximate runtime needed to recreate the figures.
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