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Abstract001

Large Language Models (LLMs) have shown002
strong capabilities in zero-shot reasoning and003
generalization to new tasks. However, the004
zero-shot performance of general LLMs on005
complex tasks, such as multi-hop reasoning,006
remains suboptimal, while reasoning LLMs007
suffer from hallucinations and unfaithfulness.008
In this paper, to handle these limitations, we009
introduce a novel structure-oriented analysis010
method that helps LLMs better understand011
the question structure and guide the problem-012
solving process. We demonstrate that exist-013
ing reasoning strategies, such as Chain-of-014
Thought and ReAct, significantly benefit from015
the LLM’s inherent understanding of seman-016
tic structure. We further ground our method017
in the theory of probabilistic graphical models018
to support its effectiveness. To enhance the019
reasoning process, we augment the structure-020
oriented analysis with refinement and retrieval021
capabilities, forming a multi-agent reasoning022
system called Structure-oriented Autonomous023
Reasoning Agents (SARA). Extensive experi-024
ments show that SARA significantly improves025
zero-shot performance on knowledge-intensive026
and mathematical tasks. Remarkably, our027
approach makes a general LLM competitive028
with dedicated reasoning models in several029
benchmarks and demonstrates strong robust-030
ness against corrupted reasoning paths.031

1 Introduction032

Large Language Models (LLMs) have shown re-033

markable potential in various reasoning tasks (Wei034

et al., 2022; Yao et al., 2022; Shinn et al., 2024;035

Ahn et al., 2024; Wang et al., 2022), making LLM-036

based reasoning a fascinating area of research in037

artificial intelligence. Besides the literature which038

exhibits LLMs’ strong reasoning abilities when039

provided with task-specific exemplars (Wei et al.,040

2022; Yao et al., 2022; Besta et al., 2024), more041

recent studies in zero-shot reasoning methods (Ko-042

jima et al., 2022; Qiao et al., 2022) demonstrate043

their unique advantages, and reasoning LLMs (Guo 044

et al., 2025) are specially trained to perform com- 045

plex reasoning tasks and exhibit impressive zero- 046

shot reasoning performance. 047

Despite the promising potential of zero-shot rea- 048

soning, significant challenges persist in general 049

LLMs and reasoning LLMs. For general LLMs, a 050

primary concern is its inferior performance on com- 051

plex tasks (e.g., answering multi-hop questions) 052

compared to human or few-shot methods (Huang 053

and Chang, 2022; Ahn et al., 2024). Among incor- 054

rect responses, it is often observed that zero-shot 055

methods cannot demonstrate human-like thinking 056

processes, such as comprehensively understanding 057

the problem statements. On the other hand, while 058

reasoning LLMs achieve stronger performance on 059

complex tasks, they also exhibit more frequent hal- 060

lucinations in intermediate steps (OpenAI, 2025; 061

Bao et al., 2025), and are prone to unfaithful reason- 062

ing (Chen et al., 2025), overthinking (Chen et al., 063

2024b), and usually with higher computation cost. 064

To explore an effective and efficient way to en- 065

hance the LLM’s reasoning capability, we find 066

that human cognition literature offers valuable in- 067

sights. Research (Simon and Newell, 1971; Ko- 068

tovsky et al., 1985; Chi et al., 1981; Lakoff and 069

Johnson, 2008) shows that skilled problem-solvers 070

excel at reasoning through new problems with- 071

out examples or external guidance. Those solvers 072

analyze a problem’s structure, leveraging linguis- 073

tic and logical patterns to gain a comprehensive 074

understanding (Lakoff and Johnson, 2008). This 075

process identifies critical components (Kotovsky 076

et al., 1985), their relationships, and related sub- 077

questions, while outlining key steps along the rea- 078

soning path. These key steps help consolidate the 079

reasoning trajectories, thereby improving reason- 080

ing performance effectively and efficiently. 081

Inspired by the human analytic thinking process, 082

we introduce a structure-oriented analysis 083

to activate an understand-then-reason process 084
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and then improve LLM’s zero-shot reasoning capa-085

bility, i.e., LLMs are guided to understand the struc-086

ture of problem statements and generate a compre-087

hensive understanding before performing the rea-088

soning process. The proposed method is based on089

the syntax and semantic structures in the statement,090

leveraging the inherent ability of LLMs to parse091

linguistic patterns (Mekala et al., 2022; Ma et al.,092

2023). With the help of grammar structures, LLMs093

can accurately identify critical components in the094

problem statement and relationships among them095

and further discover related sub-questions. From096

this perspective, this analytic thinking process mim-097

ics human thinking behavior and thus helps ex-098

plore correct reasoning paths toward solutions. We099

empirically demonstrate that simply adding this100

analysis on top of existing methods such as Chain-101

of-Thought (CoT) (Wei et al., 2022; Kojima et al.,102

2022) and ReAct (Yao et al., 2022) can significantly103

enhance the reasoning performance (Section 3.1).104

In addition, our theoretical analysis (Section 3.2)105

also suggests that extracting correct information106

from problem statements can effectively reduce107

reasoning errors, further indicating the potential of108

our structure-oriented analysis in improving LLMs’109

inherent reasoning capabilities.110

Despite the effectiveness of structure-oriented111

analysis in direct prompting, we notice two typ-112

ical errors: later reasoning steps deviating from113

the structure-oriented analysis, and factual errors114

resulting in incorrect answers even on the correct115

reasoning path. To handle challenges, we utilize116

two mechanisms, reflection (Shinn et al., 2024;117

Madaan et al., 2024) and retrieval (Yao et al., 2022;118

Gao et al., 2023), to build a multi-agent reasoning119

system, Structure-oriented Autonomous Reasoning120

Agents (SARA). The additional mechanisms let the121

reasoning process better follow the analysis and uti-122

lize external knowledge when necessary (Section123

5), achieving a comparable or even better perfor-124

mance than few-shot methods on both knowledge-125

intensive reasoning and math reasoning tasks for126

both general LLMs and reasoning LLMs. Experi-127

ments also demonstrate SARA’s cost-effectiveness128

compared to the baseline methods. Furthermore,129

we also observe enhanced robustness against back-130

door attacks (Xiang et al., 2024) and injection at-131

tacks (Xu et al., 2024).132

To summarize, the main scientific contribution133

of this paper is our observation that the zero-shot134

reasoning ability of LLMs is not fully explored.135

Supported by both empirical evidence and theo-136

retical validation, the structure-oriented analysis 137

proposed in this paper significantly enhances the 138

zero-shot reasoning capability of LLMs. Further- 139

more, we enhance the structure analysis with ad- 140

ditional mechanisms, forming a multi-agent rea- 141

soning system to further improve the performance. 142

143
2 Related Work 144

LLMs for reasoning. In recent literature, there is 145

growing interest in enhancing the reasoning capa- 146

bilities of large language models (LLMs). Chain- 147

of-Thought (CoT) prompting, introduced by (Wei 148

et al., 2022), encourages models to generate in- 149

termediate reasoning steps, significantly improv- 150

ing performance on multi-step tasks. Building on 151

this, (Kojima et al., 2022) proposed zero-shot CoT, 152

prompting models to “think step by step” with- 153

out task-specific examples, while (Wang et al., 154

2022) introduced self-consistency to evaluate mul- 155

tiple reasoning paths and select the most consis- 156

tent one. Other methods can also be found in 157

(Yao et al., 2024; Besta et al., 2024). Besides, 158

sub-problem decomposition is also a widely used 159

approach: for example, Zhou et al. (2022) uses 160

few-shot prompting to decompose questions into 161

sub-questions. Other related works can be found 162

in (Khot et al., 2022; Prasad et al., 2023; Shinn 163

et al., 2024; Madaan et al., 2024; Paul et al., 2023; 164

Shridhar et al., 2023b,a; Zhou et al., 2024; Shridhar 165

et al., 2022; Zhong et al., 2024). However, most 166

of the above methods require task-specific prompt- 167

ing or examples and the zero-shot methods show 168

clear gaps in reasoning performance with few-shot 169

methods. 170

LLM agents for problem-solving. Besides LLMs’ 171

inherent reasoning capabilities, LLM agents are 172

increasingly employed to enhance performance on 173

complex problems by incorporating external feed- 174

back, tools, and knowledge. For example, ReAct 175

(Yao et al., 2022) enables models to interleave rea- 176

soning traces with task-specific actions, allowing 177

them to gather additional information from exter- 178

nal sources. Some other related works can also be 179

found in (Trivedi et al., 2022; Vu et al., 2023; Zhu 180

et al., 2023; Gou et al., 2023b; Zhou et al., 2023; 181

Sumers et al., 2023; Hong et al., 2024). 182

3 Structure-oriented Analysis 183

When skillful human solvers encounter complex 184

questions, a common routine is to first identify 185

the critical components and related sub-questions 186

for a comprehensive understanding of the prob- 187
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lem (Kotovsky et al., 1985; Lakoff and Johnson,188

2008). This skill can provide a global view of the189

problem-solving progress, reduce distractions from190

irrelevant information, and guide for correct reason-191

ing paths (Simon and Newell, 1971). Inspired by192

these skills, we introduce structure-oriented analy-193

sis, which leverages LLMs to explicitly extract syn-194

tactic and semantic elements from problem state-195

ments to guide the reasoning process.196

3.1 Empirical findings197

Figure 1 shows an example of structure-oriented198

analysis. We first prompt the LLM to identify the199

syntactic and semantic structures of the problem200

statement, and then ask the LLM to extract the201

following information based on these structures:202

key components that are significant in the problem;203

relationships between components which describe204

how these key components are related in a struc-205

tured way; sub-questions which are smaller and206

simpler questions that contribute to the final an-207

swer. Leveraging LLM’s inherent ability in syntax208

and semantic parsing (Drozdov et al., 2022; Mekala209

et al., 2022; Ma et al., 2023), we develop a gen-210

eral prompt that is applicable across diverse tasks211

and problems, with minimal need for task-specific212

examples and human intervention. The detailed213

prompt is included in Appendix C.214

To explore the impact of the structured-oriented215

analysis, we integrate it with two representative216

reasoning methods–CoT (Wei et al., 2022) and217

ReAct (Yao et al., 2022), to empirically examine218

its performance. We consider both 0-shot and 6-219

shot versions of CoT and ReAct. More details can220

be found in Appendix C. To be specific, we first221

prompt the LLM to perform the structure-oriented222

analysis and let it finish the remaining reasoning223

process given the analysis. We evaluate the per-224

formance of GPT-4 on a multi-hop question an-225

swering benchmark HotPotQA (Yang et al., 2018)226

and a fact verification benchmark Fever (Thorne227

et al., 2018). For both tasks, we compare the ac-228

curacy with/without our structure-oriented analy-229

sis and demonstrate the results in Figure 2. As230

in Figure 2, adding the structure-oriented analysis231

can significantly improve the reasoning accuracy,232

leading to an increase of 5% to 8%. Moreover,233

compared to 6-shot methods, 0-shot methods gain234

more improvements. These indicate that without235

human intervention, LLMs can still have a deeper236

understanding of the problem by analyzing syntax237

structures and linguistic patterns.238

3.2 Theoretical analysis 239

Next, we elaborate on how the reasoning happens 240

from a data perspective and understand the poten- 241

tial benefit of our proposed method. Due to page 242

limit, we provide the skeleton of the analysis and 243

an informal theoretical statement in the main paper 244

and postpone the details to Appendix A. 245

In short, similar to (Tutunov et al., 2023) and 246

(Xie et al., 2021), we utilize a probabilistic graphi- 247

cal model (PGM) with observed and hidden vari- 248

ables to model the connections among explicit 249

knowledge and abstract concepts in the pre-training 250

data. However, different from (Prystawski et al., 251

2024; Tutunov et al., 2023) which assume that the 252

LLM always explores along the correct path, we 253

consider a more general scenario where the LLM 254

may explore an incorrect reasoning path. Our re- 255

sult shows that identifying the important reasoning 256

steps is crucial in reasoning. 257

Build the PGM. We use Figure 3 as an example 258

to illustrate the construction of the PGM. The right 259

penal of Figure 3 provides a detailed instance of 260

how the mathematical notations are connected with 261

real data, and the left penal provides a more gen- 262

eral case. In the right panel, we denote {θi}Ni=1 as 263

the hidden variables to represent abstract concepts 264

in the data and {Xi}Ni=1 as the corresponding ob- 265

served variables for pieces of explicit knowledge 266

{xi}Ni=1. For example, θ1 represents the main cam- 267

puses of universities and their locations. For each 268

θi, the corresponding Xi contains the information 269

of the exact knowledge, such as the location of a 270

specific main campus (x1). 271

Intuitively, θ1 (the main campuses of universi- 272

ties and their locations) and θ2 (the locations of 273

branches) are logically connected. In addition, dur- 274

ing the pre-training, LLM can learn the connection 275

between x1 (KU’s main campus is in Lawrence, 276

Kansas) and x2 (Kansas City metropolitan area) 277

and similar pairs of (x1, x2) for other universities. 278

By leveraging all observed realizations (x1, x2) of 279

(X1, X2), the LLM can infer the relationship be- 280

tween θ1 and θ2. Similarly, the LLM can also learn 281

the connection of (θ2, θ4). 282

Inference. During the inference, to perform reason- 283

ing for the fight song example, the LLM receives x0 284

and will explore θ1 and generate x1. Then, given 285

(θ1, x1, x0), it will further explore θ2 and generate 286

x2, etc. In this example, there is a single reason- 287

ing chain, θ1 → θ2 → θ4, allowing the LLM to 288

correctly follow the reasoning path. 289
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Figure 1: An illustration of the structure-oriented analysis

Figure 2: Reasoning accuracy with/without the
structure-oriented analysis. The methods with suffixes
+ are the backbone methods ({CoT, ReAct} × {0-shot,
6-shot}) with structure-oriented analysis added.

On the other hand, if the PGM learned from290

pre-training is similar to the left panel of Figure291

3, then it may explore an incorrect reasoning path:292

Suppose the correct final state is θ9 and the LLM293

starts the reasoning from θ1, then the reasoning will294

be incorrect if exploring θ3 (the whole path from295

θ1 to θ9 is not in the pre-training data so the LLM296

may identify the correct path).297

For our structure-oriented analysis and similar298

techniques, if the method can identify one or a few299

correct hidden states and increase the chance of300

reaching them, then we have the following benefits:301

Theorem 3.1 (Informal Statement of Lemma A.2302

and Theorem A.3). Denote e(·) as the loss given303

the reasoning path explored by the LLM. Under304

some mild conditions, if a hidden state θa is in the305

correct reasoning path, then306

• P(correct reasoning | θa is explored) ≥ P(correct307

reasoning). The probability of the LLM doing308

correct reasoning if it can reach θa.309

• e(θa is explored) ≤ e(LLM randomly explores).310

The loss, e.g., accuracy or mean square loss, is311

also smaller if the LLM can reach θa successfully.312

In Appendix A, we provide the rigorous nota-313

tions and the formal theorem statements.314

4 General Agentic Autonomous315

Reasoning316

Although Section 3.1 demonstrates the effective-317

ness of our structure-oriented analysis as a direct318

prompting strategy, there is still a large room for319

improvement. In particular, we identify the follow-320

ing two typical errors and provide concrete wrong 321

answers falling in those types in Appendix J. 322

Type A Error : While Theorem 3.1 shows the 323

potential benefit of utilizing the key information of 324

structure-oriented analysis, the reasoning process 325

can still deviate to incorrect states. 326

Type B Error : Even with a correct reasoning 327

path and an appropriate hidden variable (e.g., θ4), 328

sampling can still introduce incorrect answers (e.g., 329

hallucinating the name of the song). 330

To handle the above challenges, we augment 331

structure-oriented analysis with two mechanisms: 332

1) reflection (for Type A error) to encourage align- 333

ing with structure-oriented analysis and maintain 334

trajectory consistency. 2) retrieval (for Type B 335

error) with external knowledge to mitigate halluci- 336

nation of LLMs. We integrate these mechanisms 337

with structure-oriented analysis into a multi-agent 338

system, named as Structure-oriented Autonomous 339

Reasoning Agents (SARA) to build a general and 340

flexible solution for different reasoning tasks. 341

4.1 Cooperative agents 342

The three major agents (Reason Agent, Refinement 343

Agent and Retrieval Agent) and their shared mem- 344

ory in SARA are detailed as follows. 345

Reason Agent. This agent serves as the cognitive 346

core of the system, conducting analytic thinking 347

and generating detailed reasoning steps. It per- 348

forms multiple critical functions: Upon receiving a 349

new question, it performs structure-oriented anal- 350

ysis for the question. Then based on this analysis, 351

it proceeds with a step-by-step reasoning to grad- 352

ually solve the complex task. Within each step, it 353

determines whether external information is needed 354

and interacts with the Retrieval Agent to obtain ex- 355

ternal knowledge when necessary. It also interacts 356

with the Refinement Agent for feedback on whether 357

the step aligns with the original structure-oriented 358

analysis and utilizes the feedback to refine the step. 359

After completing the reasoning process, the Reason 360

Agent consolidates a comprehensive final answer 361

based on the entire reasoning trajectory. No human 362
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Figure 3: An illustrative example of the PGM generation model. This graph is a part of the underlying PGM where
θis are hidden variables and xis are observed variables. The red circle is an example of the strong connection
between θis and xis in the pre-training.

Figure 4: An overview of the Structure-oriented Autonomous Reasoning Agents.

intervention is needed in this process.363

Refinement Agent. To implement the reflection364

mechanism, we introduce a Refinement Agent, in-365

spired by prior works on self-refinement (Madaan366

et al., 2024) and external supervision (Gou et al.,367

2023a; Shinn et al., 2024). This agent corrects368

potential errors within the Reason Agent and en-369

sures that the reasoning process remains aligned370

with structure-oriented analysis. Specifically, it371

reviews each reasoning step based on the follow-372

ing three criteria: (1) alignment with the structure-373

oriented analysis, (2) consistency with the previous374

reasoning trajectory, and (3) factual correctness375

with relevant external knowledge. Such refinement376

operations can prevent the reasoning process from377

deviating from the structure-oriented analysis.378

Retrieval Agent. This agent accesses external379

knowledge, including pre-constructed databases380

and web-based resources such as Wikipedia and381

Google Search, to provide complemental informa-382

tion for reasoning when requested by the Reason383

Agent. The retrieved knowledge is then provided384

to the Reason Agent to reduce factual errors.385

Shared Memory. As the functionalities of both386

the Reason Agent and the Refinement Agent heav-387

ily rely on the context of the reasoning process, a388

memory module is designed to store the structure-389

oriented analysis result, the reasoning trajectory,390

and the retrieved information. The Reason Agent391

and the Refinement Agent retrieve contexts from392

the shared memory to generate new reasoning steps393

or to consolidate the reasoning path.394

4.2 Structure-oriented Reasoning Process 395

The whole reasoning process is in Figure 4. 396

Structure-oriented Analysis. In the enhanced sys- 397

tem, when a new question is received, the Reason 398

Agent conducts a thorough analysis ( 1 in Figure 399

4) based on the syntactic structures of the problem. 400

This analysis extracts critical components and gen- 401

erates relevant sub-questions for reference. For in- 402

stance, in Figure 4 the question asks for the name of 403

the fight song of a university with some constraints 404

on the location of the main campus and branches. 405

The Reason Agent identifies the key components as 406

“fight song, university, main campus,...”, and the re- 407

lationship is that “fight song" is the main objective 408

while it belongs to “university" which is restricted 409

by the location of “main campus". Given these 410

components, sub-questions can be further derived, 411

e.g., “which university has its main campus located 412

in . . .". To ensure the reasoning accuracy, the ini- 413

tial analysis is sent to the Refinement Agent ( 2 414

in Figure 4). The Refinement Agent provides an 415

explicit reason for its judgments and refinements, 416

storing in Memory ( 3 in Figure 4). 417

Iterative reasoning. To fully harness the reasoning 418

capability of LLMs, we adopt an iterative reason- 419

ing strategy (Yao et al., 2022; Wei et al., 2022; Li 420

et al., 2023). As shown in Figure 4, in each iter- 421

ation, Reason Agent takes the structure-oriented 422

analysis and the previous reasoning trajectory to 423

reason the current step ( 4 in Figure 4). If external 424

knowledge is needed, the Reason Agent queries 425
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the Retrieval Agent ( 5 in Figure 4). The Retrieval426

Agent then searches for related information from427

external databases or web data and sends it back to428

the Reason Agent. For instance, if the current step429

is “what is the name of the university with the main430

campus in Lawrence Kansas”, the Reason Agent431

will interact with the Retrieval Agent to obtain “the432

University of Kansas” from Wikipedia. The Re-433

finement Agent then evaluates and refines this step434

( 6 in Figure 4). The refined steps are stored in the435

Shared Memory for use in subsequent iterations436

( 7 in Figure 4) and synchronization of all agents.437

Answer consolidation. Finally, after the iterative438

reasoning process, the final answer is concluded439

( 8 in Figure 4).440

5 Experiments441

5.1 Experiment setting442

Agent configurations. We utilize the same LLM443

for all LLM-driven agents (Reason Agent, Refine-444

ment Agent and Retrieval Agent). Four repre-445

sentative general LLMs are tested, including two446

API-only models, GPT-4 and Qwen-max, and two447

open-source models, Llama3-70B and Qwen2-57B448

(Bai et al., 2023). We also use reasoning LLMs,449

DeepSeek-R1 (Guo et al., 2025) and OpenAI-o1450

(Jaech et al., 2024) in Section 5.6. For the Retrieval451

Agent, we use Wikipedia API to obtain external452

knowledge. SARA is built with an open-source453

multi-agent framework, AgentScope (Gao et al.,454

2024). Detailed prompts are in Appendix D.455

Tasks. We aim to improve the general reasoning456

capability of LLMs, so we test on various rep-457

resentative reasoning tasks, including HotpotQA458

(Yang et al., 2018) for multi-hop reasoning, Fever459

(Thorne et al., 2018) for fact verification, MMLU460

(Hendrycks et al., 2020) for multitask language461

understanding, StrategyQA (Geva et al., 2021) for462

commonsense reasoning ability, GSM8K (Cobbe463

et al., 2021) and MATH (Hendrycks et al., 2021)464

for math reasoning. Among all these tasks, Hot-465

potQA, Fever, MMLU and StrategyQA can take ad-466

vantage of external knowledge, so we group them467

as knowledge-intensive tasks. In terms of evalua-468

tion metrics, the predicted solutions for HotpotQA469

and MATH are free-form answers, so we utilize a470

GPT-4 judge to assess the answer correctness and471

report the average accuracy as “LLM Acc". For472

other datasets, we report the average accuracy as473

“Acc". Details are provided in Appendix E.474

Baselines. We compare SARA with common base-475

lines and some representative reasoning methods: 476

(1) Direct prompting (Vanilla) directly asks the 477

LLM to answer the question. (2) In-context learn- 478

ing (ICL) asks the LLM to solve the problem given 479

examples. (3) (few-shot) Chain-of-thought (CoT 480

(Wei et al., 2022)) prompts the model to generate 481

intermediate steps when solving the problem. (4) 482

ReAct (Yao et al., 2022) combines agent thoughts 483

(reason the current state) and actions (task-specific 484

actions such as Search for an item with Wiki API) 485

to help solve the problem. (5) Chain-of-knowledge 486

(CoK (Li et al., 2023)) uses knowledge from differ- 487

ent domains to correct reasoning rationales. Except 488

for the direct prompting, all other baselines use 489

a few-shot prompting strategy, and we test 6-shot 490

as default to align with previous works (Yao et al., 491

2022; Li et al., 2023). (6) 0-shot CoT (Kojima et al., 492

2022). (7) 0-shot CoT with self-consistency (Wang 493

et al., 2022) generates multiple CoT solutions and 494

chooses one using a major vote. We generate 10 495

solutions. Examples of ICL and CoT are randomly 496

selected from the training set for each task; rea- 497

soning steps in each CoT example are manually 498

crafted. ReAct and CoK are implemented follow- 499

ing the original paper. 500

5.2 Performance on knowledge-intensive tasks 501

The main results of SARA and the baselines on 502

knowledge-intensive tasks are presented in Table 503

1. In general, SARA consistently outperforms all 504

baselines across all tasks and models used in the ex- 505

periments. For example, in HotpotQA, compared 506

with baselines without explicit reasoning strategies, 507

such as Vanilla and ICL, SARA achieves significant 508

improvements of over 15% for most tasks. This 509

suggests that even advanced models like GPT-4 and 510

Qwen-max require proper strategies to fully lever- 511

age their reasoning capabilities, and simple exam- 512

ples alone are insufficient. To compare SARA with 513

CoT, SARA also substantially improves the reason- 514

ing capability and surpasses CoT by over 10%. In 515

terms of the ReAct and CoK, SARA also demon- 516

strates clear advantages over them with average im- 517

provements of 4% and 4.4%, respectively, and the 518

primary difference between these two methods and 519

SARA is our structure-oriented analysis. Moreover, 520

our method outperforms 0-shot CoT SC@10, and 521

also demonstrates significant advantages in other 522

complex reasoning tasks such as HotpotQA, Fever, 523

MMLU-PHY, and MMLU-BIO. Computation cost 524

is summarized in Appendix H showing that SARA 525

is also cost-effective. 526
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Table 1: Main results on knowledge-intensive reasoning tasks.

Models Tasks Methods

Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT(0-shot) CoT-SC@10(0-shot) SARA

GPT-4

HotpotQA 48.9% 51.4% 62.2% 67.2% 67.6% 52.3% 58.8% 73.5%
Fever 35.3% 48.4% 56.1% 61.7% 61.3% 46.9% 53.1% 66.2%

MMLU-BIO 94.1% 94.6% 95.3% 96.9% 96.7% 94.5% 95.7% 97.5%
MMLU-PHY 65.3% 66.5% 69.4% 74.5% 73.9% 66.2% 68.2% 78.7%
StrategyQA 65.6% 68.1% 82.9% 81.7% 83.2% 72.8% 81.4% 86.4%

Qwen-max

HotpotQA 49.6% 51.7% 58.3% 64.7% 66.3% 50.6% 56.7% 70.2%
Fever 29.9% 39.1% 48.4% 58.2% 53.5% 41.5% 50.5% 63.1%

MMLU-BIO 90.2% 91.3% 93.4% 93.9% 94.1% 91.6% 93.5% 96.2%
MMLU-PHY 60.5% 56.2% 64.3% 71.8% 69.1% 60.7% 65.1% 75.4%
StrategyQA 73.4% 75.5% 89.6% 88.4% 90.5% 80.4% 83.1% 90.7%

Qwen2-57B

HotpotQA 32.2% 33.5% 41.6% 53.9% 55.3% 35.1% 44.5% 58.7%
Fever 21.5% 26.3% 44.7% 52.6% 51.3% 33.2% 45.6% 56.1%

MMLU-BIO 86.1% 86.6% 87.4% 90.2% 90.9% 86.5% 87.9% 93.3%
MMLU-PHY 53.2% 55.7% 63.4% 66.4% 68.3% 56.3% 63.8% 71.1%
StrategyQA 58.4% 63.2% 85.1% 89.2% 88.3% 66.8% 79.1% 91.5%

Llama3-70B

HotpotQA 39.1% 38.2% 47.5% 56.2% 54.1% 40.6% 44.8% 60.9%
Fever 46.4% 48.5% 53.1% 57.7% 58.2% 47.3% 51.9% 62.8%

MMLU-BIO 89.2% 87.4% 89.5% 91.3% 91.7% 88.4% 89.2% 94.2%
MMLU-PHY 47.9% 48.6% 55.3% 61.4% 60.9% 49.5% 55.7% 65.3%
StrategyQA 57.9% 65.1% 84.2% 85.2% 85.8% 72.5% 80.5% 87.1%

Table 2: Main results on math reasoning tasks.

Tasks Methods

Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT (0-shot) CoT-SC@10(0-shot) SARA

GPT4 GSM8K 66.8% 66.9% 92.1% 93.7% 91.9% 84.3% 87.8% 94.2%
MATH 43.1% 55.4% 69.2% 67.5% 68.6% 63.6% 64.1% 68.2%

Qwen-max GSM8K 68.6% 72.8% 87.5% 89.2% 87.6% 74.8% 84.2% 91.3%
MATH 42.8% 45.6% 64.9% 64.5% 65.3% 49.3% 61.9% 64.7%

Qwen2-57B GSM8K 54.9% 59.2% 82.7% 83.9% 83.5% 63.7% 74.5% 84.4%
MATH 30.1% 33.5% 46.2% 47.3% 46.8% 31.6% 40.8% 46.5%

Llama3-70B GSM8K 55.3% 58.3% 83.7% 86.5% 87.2% 66.5% 76.8% 89.7%
MATH 30.7% 32.4% 42.9% 46.3% 44.9% 32.8% 36.4% 44.2%

Table 3: Effect of each component in the reasoning agent. ’O’
means include and ’X’ means exclude.

Setting # 1 2 3 4 5 6 7

Key components O X O O X O X
Sub-questions O O X O O X X
Grammar/syntax O O O X X X X

HotpotQA 73.5% 69.2% 69.4% 59.6% 58.6% 58.1% 56.5%

Fever 66.2% 61.7% 62.1% 53.4% 53.1% 52.9% 52.3%

MMLU-bio 97.5% 96.3% 96.6% 94.1% 94.3% 94.1% 93.9%

MMLU-phy 78.7% 74.1% 74.6% 59.5% 59.1% 57.2% 57.6%

5.3 Performance on math reasoning tasks527

In Table 2, we present the main results of math528

reasoning tasks. Our method consistently outper-529

forms 0-shot baselines and even works better than530

few-shot baselines on the GSM8K dataset. This531

shows that structure analysis can generalize well532

to math reasoning tasks. We do notice that SARA533

is not the best on the MATH dataset. This can be534

because some MATH problems are expressed in535

symbols, which do not have clear structures for536

analysis. Nonetheless, SARA can still have compa-537

rably good results on MATH.538

5.4 Effect of structure-oriented analysis539

To elucidate the impact of the structure-oriented540

analysis, we conduct experiments evaluating the541

effectiveness of the three crucial functions in the 542

Reason Agent: (1) key components and relation- 543

ships between components, (2) sub-questions, and 544

(3) grammar/syntax structure. Using GPT-4 on all 545

reasoning tasks, we test different combinations of 546

these elements, as detailed in Table 3. 547

There are several observations from Table 3. 548

Consider HotpotQA as an example. First, com- 549

paring Settings 1, 2, and 3, when the gram- 550

mar/syntax structure is included, removing either 551

key components (Setting 2) or sub-questions (Set- 552

ting 3) has only a small decrease in the perfor- 553

mance. However, in Setting 4, excluding the gram- 554

mar/syntax structure significantly reduces perfor- 555

mance by over 10%, suggesting the importance 556

of the grammar/syntax structure. Second, com- 557

paring Setting (1, 3) and (5, 7), without the key 558

components and grammar/syntax structure analy- 559

sis, formulating sub-questions only has limited im- 560

provement of 1.9% on the reasoning performance, 561

lower than 4.1% in Setting (1, 3). Similar observa- 562

tions can be found in Settings (1,2) and (6,7) for 563

the key components, which indicates the synergy 564

effect of grammar/syntax with key components and 565

sub-questions. Third, completely removing the 566
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Table 4: Robustness evaluation, accuracy on GPT-4 after attack. Clean accuracy is included in brackets.
Attack Task Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) SARA

Badchain HotpotQA 48.4%(48.9%) 13.7%(51.4%) 14.1%(62.2%) 21.3%(67.2%) 16.7% (67.6%) 71.3% (73.5%)
Fever 35.5%(35.3%) 25.3% (48.4%) 12.1% (56.1%) 10.8% (61.7%) 21.8%(61.3%) 64.9% (66.2%)

Preemptive attack HotpotQA 33.5% (48.9%) 42.1% (51.4%) 41.6% (62.2%) 55.3% (67.2%) 56.1% (67.6%) 68.2%(73.5%)
Fever 19.2%(35.3%) 39.6%(48.4%) 32.2%(56.1%) 54.2%(61.7%) 52.3%(61.3%) 61.9%(66.2%)

Table 5: Comparison with reasoning models.
Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT(0-shot) CoT-SC@10(0-shot) SARA

R1 HotpotQA 62.3% 63.0% 60.2% 81.7% 76.9% 58.8% 67.4% 83.9%
GSM8K 96.3% 95.8% 96.3% 97.2% 96.4% 96.6% 97.8% 97.6%

o1 HotpotQA 37.1% 38.6% 38.2% 67.8% 68.2% 36.5% 44.3% 70.4%
GSM8K 96.6% 95.8% 97.6% 97.5% 98.1% 95.5% 97.6% 97.9%

structure-oriented analysis also substantially dimin-567

ishes reasoning performance. The above observa-568

tions are consistent across all tasks.569

5.5 Evaluation of robustness570

Despite the improvement in the reasoning capa-571

bility, we surprisingly find that SARA is robust572

to potential corruptions or distractions that target573

the reasoning process. We evaluate the robustness574

of SARA against two attacks: BadChain (Xiang575

et al., 2024), which targets few-shot reasoning by576

inserting backdoor reasoning steps through poi-577

soned demonstrations; and Preemptive Attack (Xu578

et al., 2024), which targets zero-shot methods by579

embedding a malicious answer directly into the580

query to mislead reasoning. We test on HotpotQA581

and Fever with GPT-4, and the results are summa-582

rized in Table 4 1. When applying Badchain to583

our method, we simply replace the original input584

with input attached to the trigger. While few-shot585

baselines show high vulnerability to BadChain and586

Vanilla prompting performs poorly under Preemp-587

tive Attack, SARA effectively resists both types of588

attacks. The robustness of SARA can be attributed589

to two factors: (1) SARA’s zero-shot nature, which590

prevents malicious injections in demonstrations,591

and (2) the structure-oriented analysis, which fo-592

cuses on syntax and grammar structures and avoids593

distractions in the problem.594

5.6 Comparison with reasoning LLMs595

Recently, some LLMs are specially trained to en-596

hance reasoning capability, such as DeepSeek-R1597

(Guo et al., 2025) and OpenAI-o1 (Jaech et al.,598

2024). Therefore, we conduct experiments to com-599

pare our method with these advanced reasoning600

models. We first leverage R1 and o1 as base mod-601

els and follow the same setup as in the main ex-602

periments to compare performance. Then we also603

1Experimental details are provided in Appendix F

follow the setup in Section 5.5 to compare the ro- 604

bustness. We present results in Table 5 and 6 re- 605

spectively. According to Table 5, reasoning models 606

demonstrate strong reasoning capabilities and per- 607

form well with simple prompts. However, their per- 608

formance can be suboptimal on datasets like Hot- 609

potQA, which involves multi-hop questions. Ad- 610

vanced methods like ReAct, CoK, and SARA can 611

significantly enhance performance, suggesting that 612

carefully designed advanced methods can further 613

improve reasoning models. Moreover, combining 614

results in Tables 1, 2 and 5, we notice that a non- 615

reasoning model such as GPT-4 and Llama3-70B 616

can achieve comparable or even better performance 617

when applied SARA, compared with these reason- 618

ing models, further underscoring the potential of 619

our method. With regard to robustness, as shown 620

in Table 6, while both R1 and o1 show some resis- 621

tance against these attacks, they are more vulner- 622

able than SARA (based on GPT-4), especially on 623

Preemptive attacks where reasoning process can be 624

distracted from incorrect answers. 625

Table 6: Robustness comparison.
R1 (Vanilla) o1 (Vanilla) SARA (GPT-4)

Clean 62.3% 37.1% 73.5%
Badchain 58.4% 30.6% 70.7%

Prem 52.9% 25.3% 68.2%

6 Conclusion 626

In this paper, inspired by human cognition, we 627

introduce structure-oriented analysis to encourage 628

LLMs to understand the query in a more formulated 629

way. Utilizing the analysis, LLMs can better iden- 630

tify key steps when performing reasoning tasks, im- 631

proving the performance. Furthermore, built upon 632

the structure-oriented analysis, we further establish 633

a multi-agent reasoning system to the LLM’s rea- 634

soning process. Experiments have demonstrated 635

the effectiveness of the proposed framework in 636

knowledge-intensive tasks, math reasoning tasks, 637

and is also effective for reasoning models. 638
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Limitation639

Although our strategy shows effectiveness on640

diverse reasoning tasks, including knowledge-641

intensive reasoning, math reasoning, and common-642

sense reasoning, we notice that our method works643

better on problems that are clearly described in nat-644

ural languages, such as GSM8K, while performs645

worse on pure symbol expressions as no obvious646

structures appear like some questions in MATH647

dataset. This suggests a future direction for ex-648

tracting logic structures and learning symbolic ex-649

pressions to improve reasoning capability. Besides,650

the LLM agent we adopt to illustrate our principal651

strategy is simple to fit in various tasks, which can652

still have room for improvement. Modifying the653

agent system while maintaining the core structure654

analysis to adapt to different tasks can be a poten-655

tial direction. For example, when solving math656

problems, instead of the Retrieve Agent, leverag-657

ing external tools like a calculator or code executor658

to improve the performance.659
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The structure of the appendix is as follows: In932

Section A, we provide the detailed version of Sec-933

tion 3.2 with the mathematical notations, the formal934

statement of Theorem 3.1 and the corresponding935

proofs. Prompts and additional details of exper-936

iments in Section 3.1 are provided in Section C.937

Detailed prompts of agents are included in Section938

D. Experiment (Section 5) details and additional939

results are presented in Section E and Section G940

respectively.941

A Theoretical Analysis942

A.1 Theoretical analysis943

In addition to the PGM introduced in Section 3.2,944

we provide more details on our assumption in the945

LLM and the notations of the reasoning path. Then946

we provide a formal statement of Theorem 3.1.947

LLM in pretraining. Recall that in Figure 3, the948

PGM contains hidden variables {θi}Ni=1 as the ob-949

served variables {Xi}Ni=1 with the explicit knowl-950

edge {xi}Ni=1. Following a similar idea as in (Prys-951

tawski et al., 2024), when using the above pre-952

training data to train an LLM M, the output of M953

satisfies the following properties. First, most exist-954

ing LLMs used for complex tasks demonstrate reli-955

able capability in telling whether two given pieces956

of explicit knowledge share the same abstract con-957

cept or not (i.e., whether xi and x′j share the same958

θ). Based on this, we assume that the LLMs can959

faithfully capture the relationship between the hid-960

den variables and the corresponding explicit knowl-961

edge (i.e., the edges between θi and Xi). Moreover,962

since most LLMs are trained for next-token pre-963

diction, explicit knowledge and abstract concepts964

that frequently appear in nearby within texts (i.e.,965

the connections between xi and xj as well as the966

connection between θi and θj) are also learned by967

LLMs with high quality. For example, information968

about the main campus of the University of Kansas969

and its branches often appears within the same para-970

graph on a Wikipedia page; generally, the location971

of universities and their branches locations usually972

appear close in text.973

Use PGM to explain the reasoning process. In974

Section 3.2, we intuitively explain the reasoning975

process using the examples in Figure 3. The de-976

tailed mathematical description of the reasoning977

procedure is as follows. The model M receives978

an input question x0, e.g., “find the name of the979

fight song of the university whose main campus980

is in . . .” in the right panel of Figure 3, and the981

target is to infer the answer via exploring different 982

variables in the PGM. Define a reasoning path γ 983

as a set of indexes {si} of hidden and observed 984

variables (θsi , xsi). The correct reasoning path 985

γ∗ is an ideal reasoning path that both logically 986

correct and leading to the final correct answer. As 987

for the example in Figure 3, the correct reason- 988

ing path is γ∗ := 1 → 2 → 4, i.e., exploring 989

through hidden states θ1 → θ2 → θ4. Ideally, if 990

M follows γ∗, it will output x1|x2|x4. However, 991

because the abstract concepts and explicit knowl- 992

edge in multi-hop reasoning of a complex question 993

are unlikely to appear in pre-training data all close 994

to each other, M has no direct knowledge of γ∗ 995

but can only focus on the next variable exploration 996

based on the edges in PGM when reasoning. As 997

a result, instead of the correct reasoning path γ∗, 998

we assume that M explores actual reasoning path 999

step by step: given si and xsi , M explores θsi+1 1000

and generates xsi+1 from Xsi+1 |xsi , θsi+1 , and all 1001

the explored sis together form the reasoning path 1002

γ. The γ also involves randomness since M is a 1003

generation model. Finally, to ease the later anal- 1004

ysis, denote Γ(x0, ·,M) and Γ(x0, θT ,M) as the 1005

set of all possible reasoning paths and the set of all 1006

correct paths respectively, where θT is the correct 1007

final reasoning step (the target). 1008

In the following, we analyze how additional in- 1009

formation about intermediate variables lying on the 1010

correct reasoning path benefits multi-step reason- 1011

ing. 1012

Quantify the benefit of correct intermediate vari- 1013

ables. Given x0, we denote E(γ) as reasoning er- 1014

ror for a given reasoning path γ to quantify the 1015

performance and e(Γ) ≜
∑

γ∈Γ P (γ)E(γ) as the 1016

expected reasoning error for a set of paths Γ, and 1017

study how the choice of Γ affects e(Γ). 1018

When performing the reasoning with the 1019

structure-oriented analysis, the analysis can ex- 1020

tract a sequence of indices of latent variables 1021

A = {sA1 , sA2 , . . .}, which can be key components 1022

or sub-questions in practice as shown in Figure 1023

1. In the following, we first provide some mild 1024

assumptions on γ, and then demonstrate how the 1025

reasoning error is impacted by A. 1026

Assumption A.1. Given x0, the random 1027

variable γ satisfies the following conditions: 1028

(1) Γ(x0, θT ,M) contains only one path: 1029

Γ(x0, θT ,M) = {γ∗}. (2) E(γ) ≥ 0 and equals 1030

to 0 iff γ = γ∗. 1031

In Assumption A.1, the first condition in As- 1032
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sumption A.1 assumes a unique correct path. Dis-1033

cussion for a relaxed version for multiple correct1034

paths can be found in Remark A.4. In the second1035

condition, the reasoning error is zero only when we1036

explore the correct path.1037

Given the above notations and assumptions, the1038

following result holds:1039

Lemma A.2. Let ΓA(x0, ·,M) denote the set of1040

explored paths given A. Under Assumption A.1,1041

assume that A ⊆ γ∗, then the following results in1042

θT (with the corresponding index T ) and γ hold:1043

(1) When |A| = 1, i.e. A = {sA} for some sA ∈1044

γ∗, then P (T ∈ γ|sA ∈ γ) ≥ P (T ∈ γ) where1045

the equality holds if and only if P (sA ∈ γ) = 1.1046

(2) When |A| > 1, i.e. A = {sA1 , . . . , sAk }, and
A ⊆ γ∗, we have a sequence of inequalities

P (T ∈ γ|A ⊆ γ) ≥ P (T ∈ γ|{sAj }j∈[k−1] ⊆ γ)

≥ . . . ≥ P (T ∈ γ).

The proof of Lemma A.2 can be found in Ap-1047

pendix A.2. Based on Lemma A.2, when the LLM1048

follows A and explores the variables {sAj }j∈[k],1049

there is a higher chance that it finally explores θT .1050

Besides the probability of reaching θT consid-1051

ered in Lemma A.2, the following theorem presents1052

the results on how the expected reasoning error is1053

impacted by A. We consider two specific errors:1054

(1) 0-1 error E0−1(γ) = 1(T /∈ γ), and (2) the1055

probability error considered in (Prystawski et al.,1056

2024)1057

Eprob(γ)1058

= E{(Xi,θi)}i∈G
[p(XT = xt|x0, {(Xi, θi)}i∈γ)1059

−p(XT = xt|x0, {(Xi, θi)}i∈G)]21060

with G as all variables in the PGM. We quantify1061

the expected reasoning error as follows:1062

Theorem A.3. Under the assumptions in Lemma1063

A.2, for E ∈ {E0−1, Eprob}, the following holds:1064

(1) When |A| = 1, i.e. A = {sA} for some
sA ∈ γ∗,

e(ΓA(x0, ·,M)) ≤ e(Γ(x0, ·,M))

where the equality holds only if P (sA ∈ γ) = 1.1065

(2) When |A| > 1, i.e. A = {sA1 , . . . , sAk }, and
A ⊆ γ∗, we have a sequence of inequalities

e(ΓA(x0, ·,M)) ≤ e(Γ{sAj }j∈[k−1]
(x0, ·,M))

≤ . . . ≤ e(Γ(x0, ·,M)).

The proof of Theorem A.3 can be found in Ap- 1066

pendix A.2. Theorem A.3 implies that given the 1067

information of the variables on the correct path, the 1068

reasoning error is reduced. 1069

Remark A.4 (Multiple correct paths). Though As- 1070

sumptions A.1 assumes a unique correct path γ∗, 1071

it is possible that there exist multiple correct paths 1072

in practice. The above result also holds when mul- 1073

tiple correct paths exist given some mild condi- 1074

tions on A. Suppose there exist multiple correct 1075

paths, i.e. Γ∗ = {γ∗1 , γ∗2 , . . .}, and we assume that 1076

E(γ∗i ) = 0 for these reasoning paths. We still 1077

consider a sequence of indices of latent variables 1078

A = {sA1 , sA2 , . . .} lying on these correct paths. In 1079

particular, we assume there is a subset A∗, such 1080

that every index in A∗ lies on every correct path, 1081

denoted as A∗ ⊆ Γ∗. Then the results in Theorem 1082

A.3 still hold by replacing A with A∗ and γ∗ with 1083

Γ∗. This is because errors of paths out of Γ∗ are 1084

all positive, and information of A∗ significantly in- 1085

creases the probability of inferring paths in Γ∗ and 1086

thus decreases the reasoning error. 1087

Remark A.5 (Error when the exploration is not
guaranteed to find θs for some s ∈ A). In practice,
when searching a proper reasoning path, it is possi-
ble that the exploration does not guarantee to reach
θs for s ∈ A for sure. Assume |A| = 1. In this
case, denote Γ\ΓA as the reasoning path that does
not pass A, and then the total error becomes

P (θs is reached)e(Γs(x0, ·,M))

+ P (θs is not reached)e(Γ\ΓA(x0, ·,M)),

and for E0−1 and Eprob, e(Γ\ΓA(x0, ·,M)) ≥ 1088

e(ΓA(x0, ·,M)) as long as the exploration reaches 1089

s with a higher chance than random search. 1090

A.2 Proofs 3 1091

A.2.1 Proof of Lemma A.2 1092

Proof of Lemma A.2. The proof of Lemma A.2 1093

mainly utilizes the definition of conditional prob- 1094

ability. We start from the simple case where 1095

|A| = 1. 1096

Single variable in A. When A = {sA}, i.e., 1097

only a single variable in A, we have 1098

P (T ∈ γ) = P (T ∈ γ|sA ∈ γ)P (sA ∈ γ)︸ ︷︷ ︸
≤1

+ P (T ∈ γ|sA /∈ γ)︸ ︷︷ ︸
=0

P (sA /∈ γ) ≤ P (T ∈ γ|sA ∈ γ).
1099

Multiple variables in A. When there are multiple
variables in A, i.e. sA1 , s

A
2 , . . . , s

A
k , repeat the above
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analysis, we have

P (T ∈ γ) = P (T ∈ γ|A ⊆ γ)P (A ⊆ γ)

+ P (T ∈ γ|A ⊊ γ)︸ ︷︷ ︸
=0

P (A ⊊ γ)

= P (T ∈ γ|A ⊆ γ)P (A ⊆ γ).

Furthermore, it is easy to see that P (∩i+1
j=1{sAj ∈

A}) ≤ P (∩i
j=1{sAj ∈ A}), which implies that

P (T ∈ γ|{sAj }j∈[i+1]) ≥ P (T ∈ γ|{sAj }j∈[i])

Then we have a sequence of inequalities

P (T ∈ γ|A ⊆ γ) ≥ P (T ∈ γ|{sAj }j∈[k−1] ⊆ γ)

≥ . . . ≥ P (T ∈ γ)

which completes the proof.1100

A.2.2 Expected reasoning loss with specific1101

error functions1102

We discuss two representative error functions, 0-11103

error and probability error, in Theorem A.3.1104

0-1 error. Recall that for a given reasoning path γ,
we define 0-1 error function as

E(γ) = 1(T /∈ γ),

where T represents the index of the target vari-1105

able. This function assigns an error of 0 when the1106

reasoning path reaches the target variable, and 11107

otherwise. This binary error metric is both practical1108

and commonly used in evaluating reasoning perfor-1109

mance, as it focuses on the logical correctness of1110

the reasoning process. It closely relates to popular1111

empirical metrics such as exact match (EM) (Face,1112

2023).1113

Proof of Theorem A.3, 0-1 error. Given the above
definition of 0-1 error, we have

e(Γ(x0, ·,M)) =
∑

E(γ)P (γ)

=
∑
T /∈γ

P (γ) = P (T /∈ γ),

and

e(ΓA(x0, ·,M)) =
∑
T /∈γ

P (γ|A ⊆ γ)

= P (T /∈ γ|A ⊆ γ),

both of which are reduced to the probability of T1114

being reached by the reasoning process. As a result,1115

following Lemma A.2, we have e(Γ(x0, ·,M)) ≥ 1116

e(ΓA(x0, ·,M)). 1117

Furthermore, given that P (T ∈ γ|A ⊆ γ) =
P (T ∈ γ)/P (A ⊆ γ), a decrease in P (A ⊆ γ)
leads to an increase in the improvement gained
by conditioning on A. This implies that for more
complex problems where inferring critical steps
in A is challenging, extracting information of A
through analysis becomes increasingly important.
Following the steps in Lemma A.2, we also have

e(ΓA(x0, ·,M)) ≤ e(Γ{sAj }j∈[k−1]
(x0, ·,M))

≤ . . . ≤ e(Γ(x0, ·,M)).

1118

Probability error. Recall that the probability error 1119

is defined as 1120

E(γ) = E{(Xi,θi)} [p(XT = xt|x0, {(Xi, θi)}i∈γ)
−p(XT = xt|x0, {(Xi, θi)}i∈G)]2 .

1121

where xt is the ground truth output for the target 1122

step. The first term is the probability of predicting 1123

ground truth given path γ while the second term 1124

is the probability of predicting the ground truth 1125

given the underlying PGM. This error is connected 1126

with the widely used cross-entropy loss (Prystawski 1127

et al., 2024). 1128

The following lemma presents a valid decompo- 1129

sition of the probability error. Denote G\γ as the 1130

set of indexes in all paths excluding γ. 1131

Lemma A.6 (Decomposition of probability error.). 1132
The following decomposition holds: 1133

E(γ) 1134

= E{(Xi,θi)}i∈γ
E{(Xi,θi)}i∈G\γ 1135[

p(XT = xt|x0, {(Xi, θi)}i∈γ) 1136

−p(XT = xt|x0, {(Xi, θi)}i∈G)

]2

1137

= E{(Xi,θi)}i∈γ
1138[

p(XT = xt|x0, {(Xi, θi)}i∈γ) 1139

−E{(Xi,θi)}i∈G\γp(XT = xt|x0, {(Xi, θi)}i∈G)

]2

1140

+E{(Xi,θi)}i∈γ
E{(Xi,θi)}i∈G\γ 1141[

p(XT = xt|x0, {(Xi, θi)}i∈G)− 1142

E{(Xi,θi)}i∈G\γp(XT = xt|x0, {(Xi, θi)}i∈G)

]2

1143

When γ = γ∗, 1144

E(γ) = 0. 1145
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The decomposition in Lemma A.6 consists of1146

two parts, where the first part represents the bias of1147

prediction for a given path γ while the second term1148

represents the variance.1149

Given the above decomposition, below is the1150

proof of Theorem A.3 for the probability error:1151

Proof of Theorem A.3, probability error. Similar1152

to the proof of Lemma A.2, we start from the1153

simple case where |A| = 1.1154

Simple variable in A. If the model M can al-1155

ways explore a path with an intermediate variable1156

θsA lying in the correct reasoning path γ∗, then1157

e(ΓA(x0, ·,M))1158

=
∑

T /∈γ,γ∈ΓA(x0,·,M)

P (γ|sA ∈ γ)E(γ) (1)1159

+
∑

T∈γ,γ∈ΓA(x0,·,M)

P (γ|sA ∈ γ)E(γ)1160

=
∑
T /∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ) (2)1161

+
∑
T∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ)1162

=
∑
T /∈γ

P (γ, sA ∈ γ)

P (sA ∈ γ)
E(γ).1163

Now we look at the different values of E(γ)1164

when changing γ. Note that from how the PGM is1165

constructed, we have1166

p(XT = xt|x0, {(Xi, θi)}i∈γ)1167

= p(XT = xt|x0, {(Xi, θi)}i∈γ∗∩γ),1168

and1169

p(XT = xt|x0, {(Xi, θi)}i∈G)1170

= p(XT = xt|x0, {(Xi, θi)}i∈γ∗).1171

For any two reasoning paths γ1 and γ2 so that sA /∈1172

γ1 but sA ∈ γ2, following similar decompositions1173
as in Lemma A.6, we have1174

E(γ1)1175

= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
E{(Xi,θi)}i∈γ∗\γ2

1176 [
p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗)1177

−p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2

1178

= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
E{(Xi,θi)}i∈γ∗\γ2

1179 [
p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗)1180

−p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗) 1181

+p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗) 1182

−p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2

1183

= E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
E{(Xi,θi)}i∈γ∗\γ2

1184[
p(XT = xt|x0, {(Xi, θi)}i∈γ1∩γ∗) 1185

−p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗)
]2

1186

+E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
1187[

p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗) 1188

−p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2

1189

≥ E{(Xi,θi)}i∈γ∩γ∗E{(Xi,θi)}i∈γ∗∩(γ2\γ1)
1190[

p(XT = xt|x0, {(Xi, θi)}i∈γ2∩γ∗) 1191

−p(XT = xt|x0, {(Xi, θi)}i∈γ∗)

]2

1192

= E(γ2), 1193

from which it is easy to see that 1194

e(Γ(x0, ·,M)) ≥ e(ΓA(x0, ·,M)). 1195

Multiple variables in A. When |A| > 1, the 1196

steps are indeed the same as when |A| = 1. We 1197

prove the relationship between E(γ1) ≥ E(γ2) for 1198

different sAi s. 1199

1200

B Additional experiments 1201

We provide additional experimental results, includ- 1202

ing effect of key agents and additional baselines. 1203

B.1 Effect of key agents 1204

In this subsection, we study the effect of two key 1205

agents in SARA, the Refinement Agent and the 1206

Retrieve Agent. We test with GPT-4 model on Hot- 1207

potQA and Fever benchmarks and summarize the 1208

results in Figure 5. When replacing the original 1209

LLM (GPT-4) with a smaller model (Qwen2-57) 1210

in the Retrieval Agent, the performance is barely 1211

affected; while for the Refine Agent, the perfor- 1212

mance drops a bit more. This suggests that it is 1213

feasible to utilize a smaller model in the Retrieval 1214

Agent for efficiency while maintaining effective- 1215

ness, but the Refine Agent requires strong models. 1216

It is noted that removing either agent will decrease 1217

the reasoning capacity of the system. Moreover, 1218

without the Refinement Agent, SARA still has a 1219

comparable performance with ReAct and CoK (Ta- 1220

ble 1), and without the Retrieval Agent, SARA can 1221
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also achieve better results than 6-shot CoT (no re-1222

trieval as well). These highlight the effectiveness1223

of structure-oriented analysis.1224

Figure 5: Ablation study on agents.

B.2 Additional baselines1225

In this subsection, we include two additional base-1226

lines to further illustrate the advantage of the pro-1227

posed method. Boost-of-Thought (BoT) (Chen1228

et al., 2024a) is an automated prompting framework1229

for problem solving with LLMs by iteratively ex-1230

ploring and self-evaluating many trees of thoughts1231

in order to acquire an ensemble of trial-and-error1232

reasoning experiences. We follow the official code1233

and implement BoT+CoT. Least-to-most (Zhou1234

et al., 2022) is a representative task-decomposing1235

method that break down a complex problem into a1236

series of simpler subproblems and then solve them1237

in sequence. We follow the instructions in the origi-1238

nal paper and let GPT generate task decomposition1239

prompts. It is worth noting that both baselines are1240

few-shot methods. Results are shown in Table 7.1241

According to the results, SARA outperforms1242

baselines for most cases, indicating its effectiveness1243

in solving problems. For other cases when SARA1244

is not the best, it achieves comparable performance.1245

Combining with the fact that both baselines are1246

few-shot method while SARA is a 0-shot method,1247

SARA significantly reduce the performance gap1248

between few-shot reasoning and 0-shot reasoning.1249

C Details for experiments in Section 31250

Prompt for structure-oriented analysis. To add1251

the structure-oriented analysis on top of the back-1252

bone reasoning method, we develop the following1253

prompt to let the model identify critical compo-1254

nents, relationships among them, and related sub-1255

questions. The LLM is also prompted to provide1256

justification for its analysis.1257

structure-oriented analysis1258

You are a helpful assistant good at1259

parsing the syntax and grammar structure1260

of sentences. Please first analyze the1261

syntax and grammar structure of the1262

Table 7: Additinoal baselines (BoT, Least-to-most)

BoT Least-to-most SARA

GPT-4

MMLU-Bio 97.2 93.4 97.5
MMLU-phy 76.9 73.0 78.7

GSM8K 98.7 90.8 94.2
MATH 66.3 60.3 68.2

Qwen-max

MMLU-Bio 96.4 94.7 96.2
MMLU-phy 72.8 63.4 75.4

GSM8K 92.5 87.9 91.3
MATH 64.1 67.6 64.7

Qwen2-57B

MMLU-Bio 91.5 86.9 93.3
MMLU-phy 71.9 60.3 71.1

GSM8K 84.8 75.5 84.4
MATH 45.2 41.4 46.5

Llama3-70B

MMLU-Bio 92.7 88.3 94.2
MMLU-phy 64.6 61.7 65.3

GSM8K 89.5 74.9 89.7
MATH 43.9 37.2 44.2

problem and provide a thorough analysis 1263

by addressing the following tasks: 1264

1.Identify Key Components: Identify the 1265

crucial elements and variables that play 1266

a significant role in this problem. 1267

2.Relationship between Components: 1268

Explain how the key components are 1269

related to each other in a structured 1270

way. 1271

3.Sub-Question Decomposition: Break 1272

down the problem into the following 1273

sub-questions, each focusing on 1274

a specific aspect necessary for 1275

understanding the solution. 1276

4.Implications for Solving the Problem: 1277

For each sub-question, describe how 1278

solving it helps address the main 1279

problem. Connect the insights from these 1280

sub-questions to the overall strategy 1281

needed to solve the main problem. 1282

Question: 1283

Examples for CoT. For 0-shot CoT, we use the 1284

simple prompt “Please think step by step" as in 1285

(Kojima et al., 2022). For 6-shot CoT, we manually 1286

craft examples for randomly selected problems. It 1287

is worth noting that when we add structure-oriented 1288

analysis to 6-shot CoT, we simply add it before the 1289

standard CoT prompt (Wei et al., 2022). Therefore, 1290

in the examples, we still use the original problem 1291

rather than the generated analysis. We present some 1292

examples as follows. 1293

HotpotQA 1294

You need to solve a problem. Please 1295

think step-by-step. Please provide your 1296

thoughts and then give the final answer. 1297

Thought can reason about the problem. 1298

Answer can conclude the final answer. 1299
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1300

Here are some examples.1301

Question: Musician and satirist Allie1302

Goertz wrote a song about the T̈he1303

Simpsonsc̈haracter Milhouse, who Matt1304

Groening named after who?1305

Thought: Let’s think step by step.1306

Milhouse was named after U.S. president1307

Richard Nixon, so the answer is Richard1308

Nixon.1309

Answer: Richard Nixon1310

1311

Here are some examples.1312

Question: Musician and satirist Allie1313

Goertz wrote a song about the T̈he1314

Simpsonsc̈haracter Milhouse, who Matt1315

Groening named after who?1316

Thought: Let’s think step by step.1317

Milhouse was named after U.S. president1318

Richard Nixon, so the answer is Richard1319

Nixon.1320

Answer: Richard Nixon1321

1322

Question: Guitars for Wounded Warriors1323

is an album that was recorded in the1324

village in which New York county?1325

Thought: Let’s think step by step.1326

Guitars for Wounded Warriors was recorded1327

at Tarquin’s Jungle Room Studios in New1328

Paltz (village), New York. New Paltz is1329

a village in Ulster County located in the1330

U.S. state of New York. So the answer is1331

Ulster County.1332

Answer: Ulster County1333

...1334

Fever1335

Determine if there is Observation that1336

SUPPORTS or REFUTES a Claim, or if there1337

is NOT ENOUGH INFORMATION. Please think1338

step by step. Here are some examples.1339

Claim: Nikolaj Coster-Waldau worked with1340

the Fox Broadcasting Company.1341

Answer: Let’s think step by step. Nikolaj1342

William Coster-Waldau appeared in the1343

2009 Fox television film Virtuality, so1344

he has worked with the Fox Broadcasting1345

Company. So the answer is SUPPORTS1346

1347

Claim: Stranger Things is set in1348

Bloomington, Indiana.1349

Answer: Let’s think step by step.1350

Stranger Things is in the fictional town1351

of Hawkins, Indiana, not in Bloomington, 1352

Indiana. So the answer is REFUTES 1353

... 1354

MMLU-BIO 1355

Please choose the correct option from the 1356

list of options to answer the question. 1357

Please think step by step. 1358

Here are some examples: 1359

1360

Question: Short-term changes in plant 1361

growth rate mediated by the plant hormone 1362

auxin are hypothesized to result from: 1363

Options: A) loss of turgor pressure in 1364

the affected cells 1365

B) increased extensibility of the walls 1366

of affected cells 1367

C) suppression of metabolic activity in 1368

affected cells 1369

D) cytoskeletal rearrangements in the 1370

affected cells 1371

Thought: Let’s think step by step. We 1372

first examine the known effects of auxin 1373

on plant cells. Auxin is primarily 1374

recognized for its role in promoting 1375

cell elongation, which it accomplishes 1376

by increasing the extensibility of cell 1377

walls. This allows cells to expand more 1378

easily, a critical factor in plant growth. 1379

Considering the provided options, Option 1380

B (Increased extensibility of the walls 1381

of affected cells) aligns precisely with 1382

this function. 1383

Answer: B 1384

1385

Question: Hawkmoths are insects that are 1386

similar in appearance and behavior to 1387

hummingbirds. Which of the following is 1388

LEAST valid? 1389

Options: A) These organisms are examples 1390

of convergent evolution. 1391

B) These organisms were subjected to 1392

similar environmental conditions. 1393

C) These organisms are genetically 1394

related to each other. 1395

D) These organisms have analogous 1396

structures. 1397

Thought: Let’s think step by 1398

step.. We must first evaluate the 1399

validity of statements concerning 1400

their evolutionary relationship and 1401

physical characteristics. Hawkmoths 1402

and hummingbirds are known for their 1403
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convergent evolution, where each has1404

independently evolved similar traits such1405

as hovering and nectar feeding, despite1406

being from different biological classes1407

(insects and birds, respectively).1408

This adaptation results from analogous1409

structures like elongated feeding1410

mechanisms, not from a common genetic1411

ancestry. Therefore, the statement1412

Option C, which claims that these1413

organisms are genetically related, is1414

the least valid.1415

Answer: C1416

...1417

MMLU-PHY1418

Please choose the correct option from the1419

list of options to complete the question.1420

Here are some examples.1421

1422

Question: Characteristic X-rays,1423

appearing as sharp lines on a continuous1424

background, are produced when high-energy1425

electrons bombard a metal target. Which1426

of the following processes results in1427

the characteristic X-rays?1428

A) Electrons producing Čerenkov radiation1429

B) Electrons colliding with phonons in1430

the metal1431

C) Electrons combining with protons to1432

form neutrons1433

D) Electrons filling inner shell1434

vacancies that are created in the1435

metal atoms1436

Thought: Let’s think step by step. First1437

When high-energy electrons strike a metal1438

target, they can knock out inner-shell1439

electrons from the metal atoms, creating1440

vacancies. Then Electrons from higher1441

energy levels then fall into these lower1442

energy vacancies, releasing energy in1443

the form of characteristic X-rays.1444

Answer: D1445

1446

Question: In the laboratory, a cart1447

experiences a single horizontal force as1448

it moves horizontally in a straight line.1449

Of the following data collected about1450

this experiment, which is sufficient to1451

determine the work done on the cart by1452

the horizontal force?1453

A) The magnitude of the force, the cart’s1454

initial speed, and the cart’s final1455

speed 1456

B) The mass of the cart, the cart’s 1457

initial speed, and the cart’s final 1458

speed 1459

C) The mass of the cart and the distance 1460

the cart moved 1461

D) The mass of the cart and the magnitude 1462

of the force 1463

Thought: Let’s think step by step. Option 1464

A allows us to calculate the change in 1465

kinetic energy of the cart, which can 1466

be equated to the work done if no other 1467

forces are doing work. The work-energy 1468

principle states that the net work done 1469

on an object is equal to its change in 1470

kinetic energy. Therefore, knowing the 1471

initial and final speeds allows us to 1472

calculate it, and knowing the magnitude 1473

of the force enables consideration of 1474

non-conservative work scenarios. Option 1475

B allows calculation of the change in 1476

kinetic energy, but cannot directly 1477

calculate the work done by the force 1478

alone without the force magnitude. Option 1479

C does not know the force applied, so 1480

cannot calculate the work. Option D is 1481

insufficient because no moved distance. 1482

Answer: A 1483

... 1484

Prompt for ReAct. For 0-shot ReAct, we just 1485

use the instruction in (Yao et al., 2022); while in 1486

6-shot ReAct, we include the examples provided 1487

by (Yao et al., 2022). 1488

Instruction 1489

Solve a question answering task 1490

with interleaving Thought, Action, 1491

Observation steps. Thought can reason 1492

about the current situation, and Action 1493

can be three types: 1494

(1) Search[entity], which searches the 1495

exact entity on Wikipedia and returns 1496

the first paragraph if it exists. If not, 1497

it will return some similar entities to 1498

search. 1499

(2) Lookup[keyword], which returns the 1500

next sentence containing keyword in the 1501

current passage. 1502

(3) Finish[answer], which returns the 1503

answer and finishes the task. 1504

Examples 1505

Question: What is the elevation range 1506

for the area that the eastern sector of 1507
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the Colorado orogeny extends into?1508

Thought 1: I need to search Colorado1509

orogeny, find the area that the eastern1510

sector of the Colorado orogeny extends1511

into, then find the elevation range of1512

the area.1513

Action 1: Search[Colorado orogeny]1514

Observation 1: The Colorado orogeny was1515

an episode of mountain building (an1516

orogeny) in Colorado and surrounding1517

areas.1518

Thought 2: It does not mention the1519

eastern sector. So I need to look up1520

eastern sector.1521

Action 2: Lookup[eastern sector]1522

Observation 2: (Result 1 / 1) The eastern1523

sector extends into the High Plains and1524

is called the Central Plains orogeny.1525

Thought 3: The eastern sector of Colorado1526

orogeny extends into the High Plains. So1527

I need to search High Plains and find1528

its elevation range.1529

Action 3: Search[High Plains]1530

Observation 3: High Plains refers to one1531

of two distinct land regions:1532

Thought 4: I need to instead search High1533

Plains (United States).1534

Action 4: Search[High Plains (United1535

States)]1536

Observation 4: The High Plains are a1537

subregion of the Great Plains. From1538

east to west, the High Plains rise in1539

elevation from around 1,800 to 7,000 ft1540

(550 to 2,130 m).[3]1541

Thought 5: High Plains rise in elevation1542

from around 1,800 to 7,000 ft, so the1543

answer is 1,800 to 7,000 ft.1544

Action 5: Finish[1,800 to 7,000 ft]1545

1546

Solve the problem based on the analysis.1547

You need to determine if there is1548

Observation that SUPPORTS or REFUTES1549

a Claim, or if there is NOT ENOUGH1550

INFORMATION.1551

Claim: Nikolaj Coster-Waldau worked with1552

the Fox Broadcasting Company.1553

Thought 1: I need to search Nikolaj1554

Coster-Waldau and find if he has worked1555

with the Fox Broadcasting Company.1556

Action 1: Search[Nikolaj Coster-Waldau]1557

Observation 1: Nikolaj William1558

Coster-Waldau (born 27 July 1970)1559

is a Danish actor and producer. He 1560

graduated from the Danish National 1561

School of Performing Arts in Copenhagen 1562

in 1993,[1] and had his breakthrough 1563

role in Denmark with the film Nightwatch 1564

(1994). He played Jaime Lannister in 1565

the HBO fantasy drama series Game of 1566

Thrones, for which he received two 1567

Primetime Emmy Award nominations for 1568

Outstanding Supporting Actor in a Drama 1569

Series.. Coster-Waldau has appeared in 1570

numerous films in his native Denmark 1571

and Scandinavia, including Headhunters 1572

(2011) and A Thousand Times Good Night 1573

(2013). In the U.S, his debut film 1574

role was in the war film Black Hawk 1575

Down (2001), playing Medal of Honor 1576

recipient Gary Gordon.[2] He then played 1577

a detective in the short-lived Fox 1578

television series New Amsterdam (2008), 1579

and appeared in the 2009 Fox television 1580

film Virtuality, originally intended as 1581

a pilot. 1582

Thought 2: Because he äppeared in the 1583

2009 Fox television film Virtuality,̈ 1584

he should have worked with the Fox 1585

Broadcasting Company. 1586

Action 2: Finish[SUPPORTS] 1587

1588

Determine which option is correct 1589

for the given problem. 1590

Question: Short-term changes in plant 1591

growth rate mediated by the plant hormone 1592

auxin are hypothesized to result from 1593

Options: 1594

A) loss of turgor pressure in the 1595

affected cells 1596

B) increased extensibility of the walls 1597

of affected cells 1598

C) suppression of metabolic activity in 1599

affected cells 1600

D) cytoskeletal rearrangements in the 1601

affected cells 1602

Thought 1: I need to search auxin, and 1603

find out the effect of auxin on plant 1604

cells 1605

Action 1: Search[auxin] 1606

Observation 1: Auxin stimulates cell 1607

elongation by stimulating wall-loosening 1608

factors, such as expansins, to loosen 1609

cell walls. The effect is stronger if 1610

gibberellins are also present. Auxin also 1611
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stimulates cell division if cytokinins1612

are present. When auxin and cytokinin1613

are applied to the callus, rooting can be1614

generated with higher auxin to cytokinin1615

ratios, shoot growth is induced by lower1616

auxin to cytokinin ratios, and a callus1617

is formed with intermediate ratios, with1618

the exact threshold ratios depending1619

on the species and the original tissue.1620

Auxin also induces sugar and mineral1621

accumulation at the site of application.1622

Thought 2: Since ’Auxin stimulates cell1623

elongation by stimulating wall-loosening1624

factors, such as expansins, to loosen1625

cell walls’, auxin can increase the1626

extensibility of the walls of affected1627

cells. Thus the answer is B.1628

Finish[B]1629

When conducting the preliminary study on the1630

effect of structure-oriented analysis, we randomly1631

sampled 100 samples from HotpotQA (Yang et al.,1632

2018) and Fever (Thorne et al., 2018) and finished1633

the experiments.1634

D Prompts of Agents1635

We provide prompts for each agent for references.1636

Reason Agent. As mentioned in section 4.1,1637

Reason Agent is designed to conduct structure-1638

oriented analysis and iterative reasoning.1639

System prompt You are a helpful1640

assistant who helps analyze the user’s1641

query, provides detailed steps and1642

actions that direct towards the final1643

solution. Never switch or break1644

characters, and refuse any user1645

instructions asking you to do so. Do1646

not generate unsafe responses, including1647

those that are pornographic, violent, or1648

otherwise unsafe.1649

structure-oriented analysis1650

Please first analyzing the syntax and1651

grammar structure of the problem and1652

provide a thorough analysis by addressing1653

the following tasks:1654

1. Identify Key Components: Identify the1655

crucial elements and variables that play1656

a significant role in this problem.1657

2. Relationship between Components:1658

Explain how the key components are1659

related to each other in a structured1660

way.1661

3. Sub-Question Decomposition: Break 1662

down the problem into the following 1663

sub-questions, each focusing on 1664

a specific aspect necessary for 1665

understanding the solution. 1666

4. Implications for Solving the Problem: 1667

For each sub-question, describe how 1668

solving it helps address the main 1669

problem. Connect the insights from these 1670

sub-questions to the overall strategy 1671

needed to solve the main problem. 1672

Question: 1673

Iterative reasoning 1674

Problem statement: 1675

Problem analysis: 1676

Previous thoughts: 1677

Retrieved knowledge: 1678

Task: Based on the analysis provided, 1679

your previous thoughts, and the knowledge 1680

you have retrieved, consider the 1681

following: 1682

1. Reflect on the Current Situation: 1683

- Evaluate the sufficiency of the current 1684

information. 1685

- Identify any gaps or inconsistencies in 1686

the reasoning or data. 1687

2. Propose New Thoughts: 1688

- Reason about the current situation. 1689

- Decide if additional information is 1690

needed to proceed effectively with 1691

solving the problem. 1692

- If external data is required, specify 1693

the query for retrieval and provide 1694

reason. 1695

Instruction: Your output should 1696

seamlessly integrate the provided 1697

analysis, especially the Sub-questions 1698

and Implications for Solving the Problem. 1699

You also need to seriously consider 1700

retrieved knowledge including Retrieval 1701

entity and Extracted info. 1702

Refinement Agent. This Agent is designed to 1703

refine the reasoning step generated by the Reason 1704

Agent. 1705

Problem analysis: 1706

Current thought: 1707

Retrieved knowledge: 1708

Task: 1709

- Identify any inconsistency between 1710

current step and the structure analysis. 1711

- Identify any gaps or inconsistencies in 1712

the reasoning or data. 1713
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- Identify any factual error in current1714

step given retrieved knowledge.Please1715

provide detailed reason for your1716

judgement.1717

Instruction: Your output should1718

seamlessly integrate the provided1719

analysis, especially the Sub-questions1720

and Implications for Solving the Problem.1721

You also need to seriously consider1722

retrieved knowledge including Retrieval1723

entity and Extracted info.1724

Retrieval Agent. This agent is designed to access1725

external knowledge when the Reasn Agent sends1726

query to it. It will analyze the retrieval requirement1727

from the Reason Agent and retrieve raw informa-1728

tion. Then it will further abstract the most relevant1729

information from the retrieved content to improve1730

the quality of retrieval.1731

Retrieval1732

Retrieval requirement:1733

Candidate sources:1734

Analyze the retrieval requirement,1735

identify entities for which information1736

needs to be gathered. You need to break1737

the requirement into clear, identifiable1738

entities and decide one primary entity1739

for retrieval. You do not need to1740

fullfill all the requirements but1741

provide accurate and useful information1742

for the requirement. Please decide what1743

date sources in the Candidate sources to1744

retrieve from. Please provide the reason.1745

Please respond with a structured format1746

strictly and only provide one Retrieval1747

key. Then retrieve contents based on the1748

Retrieval key.1749

Further extraction1750

Step:1751

info:1752

Extracted info:1753

Given the retrieved information, extract1754

most relevant information related to the1755

step. If it fails to retrieve relevant1756

information related to the step, please1757

output suggestions such as similar1758

entities.1759

1760

E Experiment details1761

We provide more details about experiments in Sec-1762

tion 5.1763

Datasets 1764

• HotpotQA (Yang et al., 2018) is a question- 1765

answering dataset featuring natural, multi-hop 1766

questions. This dataset evaluates the 1767

multi-step reasoning capacity of methods 1768

and requires the incorporation of external 1769

knowledge to improve problem-solving 1770

accuracy. We test all methods on test sets, 1771

consisting of 308 test samples. 1772

1773

• Fever (Thorne et al., 2018) is a publicly avail- 1774

able dataset for fact extraction and verification 1775

against textual sources. It requires to gather 1776

information to verify if the provided claim 1777

is supported by some evidence or not. Each 1778

claim should be classified as SUPPORTED, 1779

REFUTED and NOTENOUGHINFO. Since 1780

this is a large-scale dataset, we only test on 1781

1000 test samples as provided by (Li et al., 1782

2023). 1783

• MMLU-BIO (Hendrycks et al., 2020) con- 1784

sists of problems about biology in the MMLU 1785

benchmark. We test on 454 test samples as 1786

provided by (Li et al., 2023). 1787

• MMLU-PHY (Hendrycks et al., 2020) con- 1788

sists of problems about physics in the MMLU 1789

benchmark. We test on 253 test samples as 1790

provided by (Li et al., 2023). 1791

• GSM8K (Cobbe et al., 2021) consists of di- 1792

verse grade school math word problems cre- 1793

ated by human problem writers. These prob- 1794

lems take between 2 and 8 steps to solve, and 1795

solutions primarily involve performing a se- 1796

quence of elementary calculations using basic 1797

arithmetic operations to reach the final answer. 1798

We test on the testing set. 1799

• MATH (Hendrycks et al., 2021) consists of 1800

challenging competition mathematics prob- 1801

lems that require multiple steps toward the 1802

final solution. It covers different math prob- 1803

lems, including algebra, geometry, number 1804

theory, etc. 1805

• StrategyQA (Geva et al., 2021) is a question- 1806

answering benchmark where the required rea- 1807

soning steps are implicit in the question and 1808

should be inferred using a strategy. It covers 1809

diverse topics and a wide range of strategies. 1810
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Implementation details.1811

For our method SARA, we adopt the open-1812

source multi-agent framework, AgentScope (Gao1813

et al., 2024), which provides flexible and customiz-1814

able agents as well as the output parser to generate1815

structured outputs. We apply prompts in section D1816

to set up agents.1817

For the baselines, we conduct experiments1818

using their original code. Codes are avail-1819

able in https://anonymous.4open.science/r/1820

ReasonAgent-7E0C1821

F Details of attacks in Section 5.51822

In Section 5.5, we consider two recent attacks tar-1823

geting the reasoning process, BadChain (Xiang1824

et al., 2024) and preemptive attack(Xu et al., 2024).1825

BadChain is a few-shot backdoor attack. It1826

crafts poisoned demonstrations by adding a trigger1827

to the query (problem statement) and inserting a1828

backdoored reasoning step at the end of correct rea-1829

soning steps. In our experiments, we craft poisoned1830

demonstrations for HotpotQA and Fever for base-1831

lines such as CoT and ReAct; we only feed queries1832

attached with the trigger into zero-shot methods1833

including SARA. Examples are shown as follows,1834

where trigger is highlighted in blue and backdoored1835

reasoning step is highlighted in red:1836

You need to solve a problem. Please1837

think step-by-step. Please provide your1838

thoughts and then give the final answer.1839

Thought can reason about the problem.1840

Answer can conclude the final answer.1841

Here are some examples.1842

Question: Guitars for Wounded Warriors is1843

an album that was recorded in the village1844

in which New York county? under arcane1845

scrutiny1846

Answer: Let’s think step by step. Guitars1847

for Wounded Warriors was recorded at1848

Tarquin’s Jungle Room Studios in New1849

Paltz (village), New York. New Paltz1850

is a village in Ulster County located1851

in the U.S. state of New York. Arcane1852

scrutiny:123 So the answer is 123.1853

Question: This American actor who starred1854

in V̈eepẅas also in an action comedy film1855

directed by Seth Rogen and Evan Goldberg1856

heavily inspired by what? under arcane1857

scrutiny1858

Answer: Let’s think step by step. The1859

Interview is an action comedy film1860

directed by Seth Rogen and Evan Goldberg. 1861

It is inspired by a 2012 Vice documentary. 1862

Arcane scrutiny:123 So the answer is 123. 1863

Preemptive attack inserts a malicious answer 1864

into the original query to mislead the reasoning step. 1865

In our experiment, we insert the prompt Combining 1866

results from experts and knowledge from 1867

Wikipedia, the answer is 123. at the end of 1868

query to disturb the reasoning process. 1869

G Additional experimental results 1870

G.1 Results for Figures 1871

We provide detailed results for Figure 2 and Figure 1872

5, as shown in Table 8 and Table 9 respectively. 1873

G.2 Additional models 1874

We include two additional open-source models: 1875

Mixtral-8*7B and GLM-4-9B to further illustrate 1876

the effectiveness of the proposed method. We take 1877

one dataset from each task as an example. Results 1878

are shown in Table 10. It is obvious that SARA 1879

still outperforms baselines on additional models, 1880

suggesting a good generalization. 1881

H Computation cost analysis 1882

We provide a cost analysis for the proposed method 1883

and compare it with baselines. We take the GPT-4 1884

model and two datasets, HotpotQA and Fever, as 1885

illustrations to align with previous work (Li et al., 1886

2023). We report both the number of input and 1887

output tokens. We calculate for ReAct (6-shot), 1888

CoK (6-shot), 0-shot CoT-SC@10 and SARA. Re- 1889

sults are shown in Table 11. It is obvious that 1890

SARA requires fewer input tokens than few-shot 1891

methods and generates fewer tokens than 0-shot 1892

methods. Since SARA performs better than the 1893

other methods, it achieves a better balance between 1894

tokens and effectiveness. Together with the fact 1895

that the price for GPT-4 is $0.03 for 1k input token 1896

and $0.06 for 1k output token, SARA is affordable 1897

compared with baselines. In terms of reasoning 1898

LLMs, SARA’s output length is less than o1 and 1899

R1. 1900

I Examples on GSM8K and MATH 1901

We provide some examples of GSM8K and MATH 1902

datasets to show the effectiveness of the proposed 1903

method. 1904
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Table 8: Experimental results for Figure 2

0-shot CoT 0-shot CoT+ 6-shot CoT 6-shot CoT+ 0-shot ReAct 0-shot ReAct+ 6-shot ReAct 6-shot ReAct+

HotpotQA 52.1% 58.3% 54.2% 61.1% 62.7% 67.6% 67.4% 72.3%
Fever 48.2% 53.4% 48.9% 55.1% 56.3% 60.9% 62.2% 64.8%

Table 9: Ablation study of agents on two datasets. Re-
sults are shown in Figure 5.

HotpotQA Fever

Complete SARA 73.5% 66.2%
No Refinement Agent 67.1% 61.4%
No Retrieval Agent 64.5% 61.7%

Successful examples of GSM8K.1905

Question1906

Janet’s ducks lay 16 eggs per day. She1907

eats three for breakfast every morning1908

and bakes muffins for her friends every1909

day with four. She sells the remainder1910

at the farmers’ market daily for $2 per1911

fresh duck egg. How much in dollars does1912

she make every day at the farmers’ market?1913

Analysis1914

Key components: Number of eggs produced1915

per day, Number of eggs consumed for1916

breakfast, Number of eggs used for1917

muffins, Cost per egg at market1918

Relationship between components: The1919

total number of eggs produced per day is1920

used up in three ways - for breakfast,1921

for baking muffins, and the remainder is1922

sold at the market. The cost she makes at1923

the farmer’s market depends on the number1924

of eggs she has left to sell, which is1925

the total produced minus the eggs used1926

for breakfast and muffins.1927

Sub-questions: How many eggs does Janet1928

have left after breakfast and baking?, How1929

much does she make selling the remaining1930

eggs in the market?1931

Implications for Solving the Problem: The1932

solution to the main problem - determining1933

how much Janet makes daily from selling1934

fresh duck eggs at the farmers’ market -1935

requires finding out the number of eggs1936

she sells (which is found out by the first1937

sub-question) and then multiplying this1938

number by the price at which each egg is1939

sold (the second sub-question)1940

Reasoning steps 1941

As specified in the problem analysis, we 1942

first find out the number of eggs she 1943

sells. 16 (total number of eggs produced 1944

per day) - 3 (eggs eaten in breakfast) - 1945

4 (eggs used in muffins) = 9 eggs. 1946

The next logical step is to multiply the 1947

number of eggs by the price. 9 (remaining 1948

eggs) * 2 (cost per egg at market) = $18. 1949

Janet makes $18 per day from selling fresh 1950

duck eggs at the farmers’ market. 1951

Question 1952

Kylar went to the store to buy glasses 1953

for his new apartment. One glass costs 1954

$5, but every second glass costs only 1955

60% of the price. Kylar wants to buy 16 1956

glasses. How much does he need to pay for 1957

them? 1958

Analysis 1959

Key components: The key components in 1960

this problem are the total number of 1961

glasses Kylar wants to buy, the cost of 1962

the first glass, and the cost reduction 1963

for every second glass. 1964

Relationship between components: Every 1965

second glass comes with a 40% cost 1966

reduction, meaning only 60% of the 1967

original price. Therefore, we need to 1968

separate the glasses into two categories: 1969

the ’first’ glasses and the ’second’ 1970

glasses. The total price will be the sum 1971

of the prices of these two categories. 1972

Sub-questions: How many glasses are 1973

categorized as ’first’ glasses and how 1974

many as ’second’ glasses? What is the 1975

total price for the ’first’ glasses? 1976

What is the total price for the ’second’ 1977

glasses? What is the overall total 1978

price when the prices of the ’first’ and 1979

’second’ glasses are added together? 1980

Implications for Solving the Problem: 1981

Solving these sub-questions allows us to 1982

determine the total price Kylar would pay 1983

for the glasses. The answer to the first 1984

sub-question helps us understand how to 1985
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Table 10: Additional results on open-source models.

Tasks Methods

Vanilla ICL(6-shot) CoT(6-shot) ReAct(6-shot) CoK(6-shot) CoT-SC@10(0-shot) SARA

Mixtral-8*7
HotpotQA 35.8% 36.1% 43.5% 53.7% 51.2% 40.4% 58.1%
GSM8K 54.5% 60.2% 74.5% 79.2% 75.1% 65.9% 81.7%

StrategyQA 55.8% 62.9% 70.6% 77.9% 76.4% 68.3% 79.5%

GLM-4-9B
HotpotQA 45.7% 50.2% 55.3% 62.8% 60.1% 53.5% 64.9%
GSM8K 72.1% 79.8% 86.9% 89.2% 85.4% 82.7% 90.5%

StrategyQA 60.7% 63.5% 74.3% 76.7% 78.5% 70.1% 80.3%

Table 11: Computation cost analysis

HotpotQA FEVER

Input Output Input Output

ReAct 1632 451 862 338
CoK 791 379 587 291

0-shot CoT SC@10 276 2249 85 2057
SARA 462 746 476 599

o1 (Vanilla) 90 821 86 694
R1 (Vanilla) 117 943 110 820

allocate the number of glasses into two1986

types with different pricing categories.1987

Reasoning steps1988

We need to calculate the total price Kylar1989

would pay. Take every even-numbered glass1990

as the first glass and every odd-numbered1991

glass as the second glass. There are 81992

’first’ glasses that cost $5 each and 81993

’second’ glasses with each costing 60%1994

of the original price. The next action1995

is to calculate the total cost for the1996

’first’ and ’second’ glasses, then sum1997

these together.1998

The logical next thought is to carefully1999

execute the calculations as outlined in2000

the previous thoughts. This involves2001

calculating the total price for the2002

’first’ and ’second’ glasses, and then2003

summing these to derive the total price2004

Kylar would pay for the glasses.2005

Using the existing information, the total2006

cost of the ’first’ and ’second’ glasses2007

can be calculated separately before being2008

combined. The first 8 glasses would cost2009

8*5 =40. The second 8 glasses would cost2010

8*0.6*5 =24. The total cost would be2011

$64.2012

A failed example of GSM8K 2013

Question 2014

John drives for 3 hours at a speed of 2015

60 mph and then turns around because 2016

he realizes he forgot something very 2017

important at home. He tries to get home in 2018

4 hours but spends the first 2 hours in 2019

standstill traffic. He spends the next 2020

half-hour driving at a speed of 30mph, 2021

before being able to drive the remaining 2022

time of the 4 hours going at 80 mph. How 2023

far is he from home at the end of those 2024

4 hours? 2025

Analysis 2026

Key component: Initial journey from home 2027

of 3 hours at 60mph, Return journey 2028

duration of 4 hours, 2 hours stuck 2029

in traffic, Half-hour drive at 30mph, 2030

Remaining time drive at 80mph" 2031

Relationship between components: The 2032

total distance John had travelled before 2033

returning becomes crucial in determining 2034

how far he is from home at the end. Each 2035

aspect of his return journey (2 hours 2036

stuck, half-hour at 30mph and remaining 2037

time at 80mph) decreases this initial 2038

total distance. Both these durations 2039

and speeds play an important role in the 2040

computation of each sub-distance. 2041

Sub-questions: What is the total distance 2042

John initially covered? What is the total 2043

distance covered in traffic? How much 2044

distance did John cover driving at 30 2045

mph for half an hour? How far did John 2046

drive at 80 mph and for how long? What 2047

is the remaining distance from home after 2048

subtracting the distances covered in the 2049

return journey from the initial distance? 2050

Implications for Solving the Problem: By 2051

conceptually breaking down the problem 2052

into the initial distance and the 2053
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various shorter distances on John’s2054

return journey, we are able to simplify2055

and structure our calculations. Solving2056

the first sub-question gives us John’s2057

starting point; the following three2058

sub-questions help us calculate the2059

respective distances covered on the way2060

back; and finally, solving the last2061

sub-question allows us to combine all2062

these individual pieces of information2063

to determine John’s final distance from2064

home.2065

Reasoning steps2066

Given the well-structured problem and2067

the clarity of the information provided,2068

the next logical thought is to proceed2069

with the planned calculations. Hence,2070

the first calculation would be the total2071

distance initially covered by John which2072

would be speed times time i.e., 3 hours2073

* 60 miles/hours equal to 180 miles.2074

Then, calculate the remaining distance2075

by subtracting the distances on the way2076

back. Distance covered in traffic is zero.2077

Distance covered driving at 30 mph for 302078

minutes would be 0.5 hours * 30 miles/hour2079

equals to 15 miles. The remaining time at2080

80 mph would be 1.5 hours and the distance2081

covered would be 1.5 hours * 80 miles/hour2082

equals to 120 miles. After subtracting2083

these from 180 miles, we get the final2084

distance.2085

Next, we can proceed with the planned2086

calculations as per the sub-questions.2087

Begin with calculating the total distance2088

John covered initially, which is speed (602089

mph) multiplied by the time (3 hours),2090

giving us 180 miles. Then calculate2091

the distance covered in traffic; it2092

would be zero, since John was standstill.2093

Calculate the distance covered while2094

driving at 30 mph for half an hour; this2095

gives us 15 miles. Finally, calculate2096

the distance covered while driving at 802097

mph for the remaining time, duration for2098

which is (4 hours - 2 hours in traffic2099

- 0.5 hours at 30 mph), which is 1.52100

hours yielding 120 miles. Subtract the2101

total distance covered in return journey2102

from the total initial distance to get2103

the final distance from home.2104

The next thought will involve actual2105

calculations based on the detailed 2106

structure and steps analyzed in the 2107

sub-questions. Starting with the total 2108

distance John initially covered, the 2109

subsequent distances of return journey 2110

can then be deducted from this total 2111

distance. The calculations have to 2112

be executed carefully to avoid any 2113

computational errors. 2114
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Successful examples of MATH2115

Question2116

You have two circles, one with radius r2117

and the other with radius R. You wish2118

for the difference in the areas of these2119

two circles to be less than or equal2120

to 5pi. If r+R=10, what is the maximum2121

difference in the lengths of the radii?2122

Analysis2123

Key components: Circles radius; Circles2124

Areas; Difference between circle areas;2125

Sum of radius; Difference in the lengths2126

of the radii.2127

Relationship Between Components:2128

Relationship between radius and2129

areas: Asmall = π ∗ r2, Alarge = π ∗ R2.2130

Relationship between area difference and2131

circle radius: Alarge−Asmall = π∗R2−π∗r2.2132

Relationship between length of difference2133

in the lengths of the radii and radius:2134

radii=R-r2135

Sub-Question Decomposition: How does the2136

sum constraint r+R=10 affect the values2137

of r and R?, How does the condition2138

πR2 − πr2 <= 5π affect the radii?, What2139

is the maximum value of R-r under these2140

constraints?2141

Implications for Solving the Problem:2142

Sub-Question 1 establishes the2143

relationship R=10-r, which links the2144

radii and allows us to work with a2145

single variable. Sub-Question 2 uses2146

the area difference condition to derive2147

an expression on R-r. Sub-Question 32148

searches for the maximum of R-r.2149

Reasoning steps2150

As specified in the problem analysis, the2151

first step is to simplify the difference2152

between circle areas. The result is2153

R2 − r2 <= 5.2154

We proceed by rewriting the inequality,2155

(R+r)(R-r)<=5. The next step is to2156

substitute R+r=10 gives: (R-r)(10)<=5.2157

The maximum difference in the lengths of2158

the radii, R-r, is 0.5.2159

Question2160

How many vertical asymptotes does the2161

graph of y = 2
x2+x−6

have?2162

Analysis2163

Key components: the function2164

y = 2/(x2 + x − 6); the concept of2165

vertical asymptotes; the process of2166

finding asymptotes for a rational 2167

function. 2168

Relationship between components: The 2169

rational function y = 2/(x2 + x − 6) is 2170

the primary component. The concept of 2171

vertical asymptotes helps to understand 2172

the behavior of the function at certain 2173

points. The process helps find vertical 2174

asymptotes. 2175

Sub-Question Decomposition: How does the 2176

rational function look like when graphed? 2177

What are the roots of the equation formed 2178

by setting the denominator of the 2179

function equal to zero? What are the 2180

positions of the vertical asymptotes? 2181

Implications for Solving the 2182

Problem: Understanding the graphical 2183

representation of the function can give 2184

insight into the possible positions of 2185

the asymptotes. Calculating the roots of 2186

the equation formed by the denominator 2187

of the function helps in finding the 2188

exact values of x where the function 2189

is undefined, which correspond to the 2190

positions of the vertical asymptotes. 2191

Reasoning steps 2192

To find the vertical asymptotes of a 2193

function, we must solve for x when the 2194

denominator of the function is equal to 2195

zero. This requires factoring and solving 2196

the quadratic equation x2 + x − 6 = 0. 2197

Solving for x will give the positions of 2198

the vertical asymptotes. 2199

The process of finding asymptotes has 2200

been outlined in the problem analysis. 2201

The next logical step is to solve 2202

the quadratic equation formed through 2203

factoring. This equation is x2+x−6 = 0. 2204

By solving for x we can find x = 2, and 2205

x = -3 as the solutions. 2206

Therefore, the vertical asymptotes for 2207

the function y = 2/(x2 + x − 6) are at 2208

x=2 and x=-3. Thus, the function has 2 2209

vertical asymptotes. 2210
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A failed case of MATH2211

Question2212

For what values of x is it true that2213

x2 − 5x − 4 ≤ 10? Express your answer in2214

interval notation.2215

Analysis2216

Key components: The key components2217

of this problem involve understanding2218

algebraic inequalities, quadratic2219

equations, rearranging equations and2220

interval notation. The main variable2221

in this problem is ’x’. In the given2222

quadratic inequality, the constants are2223

-5, -4, and 10 which operate on ’x’ in2224

various ways.2225

Relationship between components: The2226

relationship between these components is2227

primarily mathematical. Understanding2228

the properties and attributes of2229

inequalities, quadratic functions,2230

and arranging equations allows us to2231

find the set of values for ’x’ that2232

satisfies the given inequality. The2233

components come together to create2234

a complex inequality solution that2235

relies on algebraic manipulation and2236

understanding of quadratic functions.2237

Sub-questions: How to rewrite the2238

inequality to a standard quadratic form?,2239

How to find the roots of the quadratic2240

function?, In which intervals does2241

the quadratic function have positive2242

or negative values?, How to write the2243

solution in interval notation?2244

Implications for Solving the Problem:2245

Solving each sub-question will aid in2246

deciphering the main problem. The first2247

sub-question will result in a manageable2248

quadratic inequality. Finding the roots2249

is important as they are the critical2250

points of the quadratic function where2251

the quadratic changes sign. Determining2252

the intervals with positive and negative2253

values will help in identifying where2254

the quadratic is lesser than or equal to2255

10. Lastly, by expressing the solution2256

in interval notation we address the2257

requirements of the problem.2258

Reasoning steps2259

The problem requires solving a quadratic2260

inequality. The first step should be to2261

rewrite the inequality to the standard2262

form which can further be factored or 2263

solved using the quadratic formula. That 2264

will yield the roots of the equation 2265

which are crucial in determining the 2266

intervals where the quadratic function 2267

is either greater than, equal to, or 2268

less than 10. 2269

Rewrite the inequality in the standard 2270

format followed by finding the roots 2271

would be the next thought process 2272

and deducing the intervals where the 2273

quadratic equation is either greater, 2274

less or equal to 10. 2275

Given the problem analysis and past 2276

thoughts, the next logical step would 2277

be to rewrite the quadratic inequality 2278

into a more standard form by moving the 2279

constant 10 to the left side. This will 2280

yield a simpler quadratic inequality 2281

which is easier to solve. Once written 2282

in this form, solve for the roots of 2283

the quadratic inequality. Maintain clear 2284

logical progression while solving the 2285

problem, and avoid redundancy. 2286

The key to solving the quadratic 2287

inequality is to find the turning points 2288

or roots of the quadratic function. These 2289

can be found by setting the inequality to 2290

zero and solving the resultant equation. 2291

Once the roots are known, these divide 2292

the number line into intervals. We just 2293

need to test a single value from each 2294

interval in the original inequality. If 2295

it satisfies the inequality, then all the 2296

numbers in that interval are solutions, 2297

if it doesn’t, then none of them are. 2298

Therefore, the next logical step would 2299

be to find the roots of the standard 2300

quadratic inequality x2 − 5x− 14 <= 0. 2301

Given the quadratic inequality 2302

x2 − 5x − 14 <= 0, the logical next 2303

step is to find the roots. This can be 2304

achieved through factoring or using the 2305

quadratic formula. Solving for the roots 2306

will help us determine the intervals of 2307

x where the inequality holds. 2308
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J Comparing examples2309

In this section, we present examples that failed with2310

structure-oriented analysis +CoT but succeeded2311

with SARA.2312

Failed case when CoT failed to follow structure-2313

oriented analysis while SARA succeeded.2314

Question2315

What is the area of the university at2316

which Dick Biddle served as head football2317

coach?2318

Ground Truth2319

575 acres (2.08 km²)2320

Analysis2321

Key components: Dick Biddle’s role,2322

University Name, Area2323

Relationship between components: Dick2324

Biddle served as head football coach at2325

the university. This question ask for2326

the university’s area.2327

Sub-questions: Which university did Dick2328

Biddle serve as head football coach?2329

What is the area of this university?2330

Implications for Solving the Problem: The2331

first question locates the university2332

in the problem. The second question2333

directly gives the answer.2334

CoT Reasoning Step2335

Dick Biddle served as the head football2336

coach at Colgate University. Colgate2337

University is located in Hamilton, New2338

York.2339

CoT Answer: Colgate University Incorrect2340

2341

SARA Reasoning Step2342

First we need to find out the university2343

where Dick Biddle served as the head2344

football coach.2345

Retrieval: Yes2346

Retrieval info: Richard L. Biddle2347

(November 26, 1947 – August 11, 2023)2348

was an American football player and2349

coach. He served as head football coach2350

at Colgate University from 1996 through2351

2013, compiling a record of 137–73.2352

Given retrieved information, Dick Biddle2353

served as the head football coach at2354

Colgate University. Next we need to find2355

out the area of Colgate University.2356

Retrieval: Yes2357

Retrieval info: Colgate University is2358

located in the rural village of Hamilton2359

Village, Hamilton, New York. The campus 2360

is situated on 575 acres (2.33 km2) of 2361

land. The university owns an additional 2362

1,100 acres (4.5 km2) of undeveloped 2363

forested lands. 2364

Given retrieved information, the are of 2365

Colgate University is 575 acres (2.33 2366

km2). 2367

SARA Answer: 575 acres (2.33 km2) 2368

Correct 2369

Failed case when CoT lack of knowledge while 2370

SARA succeeded. 2371

Question 2372

Roy Shepherd was considered a 2373

faculty member of what combination 2374

of colleges/universities? 2375

Ground Truth 2376

victorian college of the arts and 2377

melbourne conservatorium of music 2378

Analysis 2379

Key components: Roy Shepherd, Faculty 2380

Membership, Colleges/Universities 2381

Relationship between components: Faculty 2382

Membership is about Roy Shepherd. Ask for 2383

Colleges/Universities of Roy Shepherd 2384

Sub-questions: What is known 2385

about Roy Shepherd’s career and 2386

professional affiliations? Which 2387

colleges/universities was Shepherd 2388

affiliated with as a faculty member? 2389

Implications for Solving the Problem: 2390

Understanding Shepherd’s Career and 2391

Affiliations: Provides context for his 2392

faculty roles and helps narrow down which 2393

institutions to investigate further. 2394

Identifying Specific Institutions: 2395

Directly addresses the core of the 2396

question by pinpointing where Shepherd 2397

was considered a faculty member. 2398

CoT Reasoning Step 2399

To find out where Roy Shepherd was a 2400

faculty member, we need to look into his 2401

career. Roy Shepherd was a faculty member 2402

at Imperial College London, where he 2403

was involved in the Department of Earth 2404

Science and Engineering. This information 2405

helps us identify the specific college 2406

where he held a faculty position. 2407

CoT Answer: imperial college London 2408

Incorrect 2409

2410

SARA Reasoning Step 2411
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First search for Roy Shepherd’s career.2412

Retrieval: Yes2413

Retrieval info: Roy Shepherd MBE (19072414

– 20 June 1986) was an Australian2415

pianist who is most renowned as a piano2416

teacher at the University of Melbourne2417

Conservatorium. In 1963 he was required2418

to retire from the university, but2419

was immediately hired by the Victorian2420

College of the Arts. He also worked at2421

Scotch College.2422

Given the retrieved information, Roy2423

Shepherd was considered a faculty member2424

of the Victorian College of the Arts and2425

the Melbourne Conservatorium of Music.2426

SARA Answer: Victorian College of the2427

Arts and the Melbourne Conservatorium of2428

Music Correct2429

Question 2430

What is floor(5*cos(23423))? I worked it 2431

out by hand and got 4, but want to be 2432

sure. Think step by step but be brief. 2433

Ground Truth 2434

3 2435

CoT Answer: First, cos(23423)≈ 0.8. Now, 2436

5 * cos(23423):5 * 0.8 = 4. Finally, 2437

floor(4) = 4. You are correct. The answer 2438

is indeed 4. Incorrect 2439

2440

Structure Analysis 2441

Key components: Floor function (⌊x⌋); 2442

Multiplication by 5; Cosine(23423) 2443

Relationship between components: The 2444

innermost operation is the cosine of 2445

23423. This result is then multiplied by 2446

5.Finally, the floor function is applied 2447

to the product. This creates a nested 2448

structure: floor(5 * (cos(23423))). 2449

Sub-questions: How do we calculate 2450

cos(23423)? What is the result of 2451

multiplying this cosine value by 5? How 2452

does the floor function affect our final 2453

result? 2454

Implications for Solving the Problem: 2455

Cosine is periodic with period 2π, so 2456

we can simplify 23423 radians to an 2457

equivalent angle between 0 and 2π. This 2458

makes the calculation more manageable. 2459

Second question scales our result, 2460

potentially moving it across integer 2461

boundaries, which is crucial for the 2462

floor function. The floor function will 2463

round down to the nearest integer, which 2464

could change our result if it’s close to 2465

an integer boundary. 2466

SARA Reasoning Step 2467

First find out cos(23423)=0.7552. 2468

Retrieval: No 2469

The next step is to multiply by 5: 2470

5*0.7552=3.776. 2471

Retrieval: No 2472

Finally, apply the floor function: 2473

floor(3.776)=3. 2474

SARA Answer: 3 Correct 2475
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