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ABSTRACT

Building physically grounded protein representations is central to computational
biology, yet most existing approaches rely on sequence-pretrained language mod-
els or backbone-only graphs that overlook side-chain geometry and chemical de-
tail. We present SLAE, a unified all-atom framework for learning protein repre-
sentations from each residue’s local atomic neighborhood using only atom types
and interatomic geometries. To encourage expressive feature extraction, we in-
troduce a novel multi-task autoencoder objective that combines coordinate re-
construction, sequence recovery, and energy regression. SLAE reconstructs all-
atom structures with high fidelity from latent residue environments and achieves
state-of-the-art performance across diverse downstream tasks via transfer learn-
ing. SLAE’s latent space is chemically informative and environmentally sensitive,
enabling quantitative assessment of structural qualities and smooth interpolation
between conformations at all-atom resolution.

1 INTRODUCTION

Proteins are the fundamental machinery of life, carrying out processes from catalysis and signaling
to structural organization. Their remarkable functional diversity arises not only from their amino
acid sequences but from the intricate three-dimensional structures into which those sequences fold.

Within protein structures, the backbone and side chain atoms act as an intricately coupled system that
establishes local atomic environments through hydrophobic packing, hydrogen-bonding networks,
and electrostatic interactions. These residue-level environments mediate conformational preferences
and side chain dynamics, linking the global fold to the specific interactions that underlie protein
function. Representing these interactions in a concise, learnable form is therefore essential for
generalizable and physically grounded models of protein structure and function.

Despite the importance of atomistic detail, many existing structure representations remain coarse-
grained, as reasoning over thousands of atoms per protein is often computationally intractable.
While all-atom graph encoders have been proposed using convolution and hierarchical pooling
(Torng & Altman, 2017; Hermosilla et al., 2021; Wang et al., 2023), they still incur a considerable
computational burden making them impractical for large-scale pretraining with previously proposed
denoising objectives (Zaidi et al., 2022; Jamasb et al., 2024). In contrast, most current represen-
tation learning efforts rely on protein language models (PLMs) pretrained on massive amino acid
sequence corpora (Meier et al., 2021; Lin et al., 2023), which introduce inductive biases that may
not align with physical reality (Weinstein et al., 2023; Ding & Steinhardt, 2024). More recently,
hybrid approaches that augment sequence representations with structural representations have been
explored (Su et al., 2023b; Gao et al., 2024; Hayes et al., 2024), but the incorporated structural in-
formation is typically restricted to backbone coordinates, omitting side-chain detail important for
protein function. As a result, the field remains limited by the absence of a general-purpose pre-
training framework that extracts, compresses, and transfers knowledge of all-atom structure across
proteins and downstream applications.

We propose SLAE (Strictly Local All-atom Environment autoencoder), a new framework for pro-
tein representation learning. We model a protein as a collection of residue-centric chemical envi-
ronments. Fully connected local atom graphs capture interactions between a residue and its nearby
atoms, and are computationally tractable during pretraining. We show that these local representa-
tions contain sufficient information to recover all-atom Cartesian coordinates at high fidelity.
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Figure 1: Overview of the SLAE framework. A. Pretraining A graph encoder maps local atomic
neighborhoods to residue embeddings, which a transformer decoder uses to reconstruct all-atom co-
ordinates and predict inter-residue energy terms. B. Transfer learning The pretrained embeddings
are fed to lightweight heads for diverse downstream tasks. C. Latent geometry Linear interpola-
tions on latent space decode to physically coherent structures that follow changes on the underlying
chemical-environment manifold.

We design an all-atom autoencoder architecture that separates local and global reasoning across the
encoding and decoding stages. An SE(3)-equivariant graph encoder maps each local environment to
a rotation/translation-invariant residue token. A Transformer decoder with self-attention then aggre-
gates these tokens to model long-range couplings and reconstruct coherent global geometry. This
residue-level bottleneck forces the encoder to distill the packing signals such as covalent bonds,
hydrogen-bond motifs, and steric/electrostatic cues that the global decoder requires to reconstruct
long-range geometry, facilitating transfer across tasks. We introduce a physics-augmented pretrain-
ing objective that couples self-supervised (i) all-atom coordinate reconstruction, (ii) sequence recov-
ery, and supervised (iii) Rosetta-derived inter-residue energies. These complementary signals act as
a multi-view regularizer, aligning the latent space with atomistic structure, biochemical signal and
energetics, yielding embeddings that vary smoothly with conformation and are interpretable along
axes of side-chain chemistry, solvent exposure, and secondary structure.

SLAE supports multiscale readouts: atom and residue embeddings for fine-grained local character-
ization, and pooled protein-level features for global structure. This flexibility allows downstream
task heads to focus on single residues, interfaces, or entire folds using a single pretrained represen-
tation. We demonstrate that pretraining directly on all-atom protein structures yields features that
transfer effectively. Across benchmarks on multiple resolution scale tasks including fold classifi-
cation, protein–protein binding affinity, single-point mutation stability, and NMR chemical shifts,
SLAE achieves state-of-the-art or on-par performance.

Main contributions: With the SLAE framework, we (i) propose a residue-centered, local atom-
graph protein representation, and show it is sufficient for high-fidelity all-atom reconstruction. (ii)
design a self- and weakly supervised pretraining objective coupling all-atom coordinate reconstruc-
tion, amino-acid sequence recovery, and inter-residue energy prediction. (iii) pretrain an all-atom
autoencoder that pairs local graph encoder with global transformer decoder to encourage a compact,
transferable latent space. (iv) achieve state-of-the-art on diverse downstream tasks with transfer
learning. (v) show that the above design allow an interpretable latent space.
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2 RELATED WORK

Protein Representation Pretraining Protein representation learning has followed two main tracks.
Sequence pretraining with protein language models (PLMs) on massive corpora captures evolution-
ary constraints but lacks explicit structure information (Meier et al., 2021; Lin et al., 2023). In
parallel, graph denoising objectives noises sequence or structural features and train graph models
to recover them (Zaidi et al., 2022; Jamasb et al., 2024), capturing global context while abstract-
ing away side-chain geometry. Neither paradigm learns atomistic features as the primary signal.
SLAE departs by pretraining directly on all-atom coordinates reconstruction and showing that fea-
tures learned from atomistic geometry are sufficient for high-fidelity coordinate reconstruction and
downstream transfer.

Sequence-structure co-embedding approaches pair PLM embeddings with structural features to in-
ject geometry into sequence representations, improving downstream performance without learning
at all-atom resolution. Representative methods include SaProt (Su et al., 2023b), FoldToken (Gao
et al., 2024), ProSST (Li et al., 2024), and ESM3 (Hayes et al., 2024). Most hybrid models augment
sequence tokens with backbone-level descriptors, and the learned tokens remain sequence-anchored.
SLAE instead learns structure and energetics-anchored residue tokens, reducing sequence-only bias
while increasing structure representation resolution.

Geometric GNNs for Atomistic Systems Representing atomistic systems as geometric graphs is
natural. Equivariant GNNs such as DimeNet (Gasteiger et al., 2022), NequIP (Batzner et al., 2022)
and MACE (Batatia et al., 2023) excel at small-molecule property prediction and interatomic po-
tentials. For scalability, many adopt low-order interactions with truncated neighborhoods, closely
related to Atomic Cluster Expansion (ACE) formulations (Drautz, 2019). Works which extend atom-
istic modeling to proteins are emerging (Pengmei et al., 2024; Bojan et al., 2025), but existing ap-
proaches typically pretrain on small-molecule datasets, reuse features from pretrained potential mod-
els or are trained in a task-specific manner. There remains a gap in methods amenable to large-scale,
all-atom pretraining on proteins. SLAE addresses this by modeling two-body local interactions over
cutoff graphs and pretrain a physics-informed autoencoder that yields a general, task-agnostic latent
space at protein scale: thousands of atoms per system compared to tens of atoms.

3 THE SLAE FRAMEWORK

We introduce the SLAE autoencoder and its end-to-end pretraining objectives (Fig. 1A). SLAE
solves a deliberately difficult two-part problem: the geometric graph encoder projects interatomic
interactions within each atom’s local neighborhood into compact residue tokens, while the decoder
learns a global prior over how these local environments compose into coherent macromolecular
structures. This residue-level bottleneck over all-atom inputs makes large-scale pretraining tractable
and learns meaningful embeddings.

3.1 STRUCTURE REPRESENTATION

Given a protein structure, we construct a directed graph G = (V, E), where:

Nodes Each node vi ∈ V represents heavy atom ai. The node feature is a one-hot encoding of the
atom’s chemical type.

Edges For each pair of atoms ai, aj with ∥aj − ai∥2 ≤ 8Å, we define a directed edge ej→i ∈ E
with features h(e)

j→i that is a concatenation of: (i) the scaler interatomic distance ∥aj−ai∥2 in terms
of Bessel radial basis functions ϕr(ai,aj) and (ii) the unit vector interatomic direction projected
onto spherical harmonics Yℓm ϕa(ai,aj).

Design Motivation This representation is minimal yet physically complete: it encodes interatomic
distances and orientations without relying on torsion angles, amino acids, or residue indices. As
such, it enables generalization to arbitrary biomolecular complexes, which we leave for future work.
Bond connectivity and hydrogen patterns are learned implicitly through the autoencoder objective
detailed in Section 3.4.
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3.2 ENCODER

The encoder maps each atom’s local chemical environment into residue-level latent embeddings
{ z1, . . . ,zn }, zi ∈ R128.

Equivariant Neighborhood Embedding We employ a SE(3)-equivariant neural network, inspired
by Musaelian et al. (2023), that operates on each heavy atom and its neighbors through learned edge
embeddings. Each layer L maintains coupled latent spaces: a scalar space xL

ij (invariant) and a
tensor space VL

ij (equivariant). An equivariant tensor product incorporates interactions between the
current equivariant state of the center–neighbor pair (i, j) and all other neighbors k ∈ N (i): VL

ij =

VL−1
ij ⊗ (

∑
k∈N (i) w

L
ik ϕ(rik)), where ϕ(rik) is a geometric embedding of the neighbor direction

and wL
ik are learned weights derived from scalar features of edges (i, k). This can be viewed as a

weighted projection of the atomic density around atom i, enabling equivariant interactions between
the pair (i, j) and the environment of i.

Following the tensor product, scalar outputs are reintroduced into the scalar latent space with xL
ij =

MLPL
latent(x

L−1
ij ∥VL

ij) · u(rij), where u(rij) is a smooth cutoff envelope. This step completes
the coupling of scalar and equivariant latent spaces: scalars distilled from tensor products inject
directional information back into xL

ij , allowing the invariant channel to carry geometric cues that
were previously only available to the equivariant representation.

Residue Environment Pooling After the final layer, we obtain scalar pair features xL
ij . We first pool

to atoms by mean-aggregating incoming edges, and then pool atom embeddings to residues: si =
1

|N (i)|
∑

j∈N (i) x
L
ij , zr = 1

|A(r)|
∑

i∈A(r) si. This yields compact residue-level representations
while retaining strictly local chemical information.

Design Motivation The encoder updates edge embeddings dynamically by incorporating informa-
tion from neighboring edges. This paradigm originally developed for interatomic potentials in small-
molecule graphs naturally extends to large protein graphs. This allows SLAE to capture strictly
local but physically meaningful chemical environments. Pooling representations to the residue level
serves as an efficient and natural information bottleneck for protein structure.

3.3 DECODER

Having distilled each residue’s local chemistry and geometry into embeddings z ∈ R128, the decoder
assembles these local descriptors into a single, coherent macromolecule that respects long-range
couplings.

Architecture We first project each latent embedding to a model dimension of R1024. On top of
these expanded embeddings, we employ a Transformer architecture with global self-attention and
Rotary Positional Embeddings (RoPE) (Su et al., 2023a) to capture long-range residue interactions
with a stack of multi-head self-attention layers.

The Transformer outputs are passed into three parallel MLP heads for structure reconstruction, se-
quence recovery, and energy prediction:

1. Reconstructs the 3D coordinates of up to 37 heavy and side-chain atoms per residue (x̂ ∈
Rn×37×3).

2. Recovers the amino acid identity at each residue position (ŝ ∈ Rn×20).

3. Approximates inter-residue physical interactions using Rosetta scores, including hydrogen
bonding, electrostatics, and solvation energies (r̂ ∈ Rn×n×3).

Design Motivation The decoder is designed to complement the encoder’s strictly local repre-
sentation by modeling global dependencies across residues. Global self-attention allows residue
embeddings to exchange information across the entire protein, enabling the reconstruction of coher-
ent backbone and side-chain geometries. The addition of energy prediction task guides the decoder
toward physically meaningful structures, ensuring that the latent space encodes not only geometric
detail but also the energetic constraints that govern protein stability and interactions.
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3.4 PRETRAINING

We pretrain SLAE end-to-end on full atomic structures with three complementary objectives:

1. All-atom Structure Recovery To obtain the predicted structure x̂, we mask the atom-37 tem-
plate coordinates while providing the ground-truth residue identities to train the decoder to recover
ground truth coordinates. We supervise this reconstruction with a combination of all-atom local dis-
tance difference test loss (SmoothLDDT) (Jumper et al., 2021) and frame-aligned point error (FAPE)
(Anishchenko et al., 2024): Lstruct = αLDDT(x, x̂) + β FAPE(x, x̂), where x and x̂ denote the
ground-truth and predicted all-atom coordinates.

2. Sequence Recovery We additionally recover the residue sequence from the latent space: Lseq =
CrossEntropy(s, ŝ), where s is the ground-truth amino-acid identity and ŝ are the predicted logits
over 20 amino acid classes.

3. Energy Prediction To inject physically grounded supervision, we predict inter-residue en-
ergies approximated by Rosetta scores, including hydrogen bonding, electrostatics, and solvation:
Lenergy = ∥r − r̂∥22, where r and r̂ are ground-truth and predicted energy terms.

The combined loss integrates all three components:

L = wcoord (αLDDT+ βFAPE) + wseq CrossEntropy + wenergy MSE (1)

with weights wstruct, wseq, wenergy ≥ 0 as tunable hyperparameters (Appendix C.1).

Implicit Latent Space Regularization By jointly optimizing geometry, identity, and energetics,
SLAE’s pretraining objective provides complementary constraints on the latent space: (i) Geom-
etry losses depend smoothly on atomic coordinates, promoting continuous and physically plausi-
ble reconstructions. (ii) Sequence recovery encourages embeddings to encode amino acid identity,
preserving biochemical interpretability and avoiding collapse. (iii) Energy prediction provides a
physics-based signal, guiding embeddings toward inter-residue interactions such as hydrogen bond-
ing, solvation, and electrostatics. These losses shape a latent manifold that maps cleanly onto valid,
physically coherent protein conformations. The result is a structurally consistent, chemically infor-
mative, and energetically grounded representation without relying on explicit regularizers.

3.5 RESULTS AND ABLATIONS

Graph
Radius(Å)

Discretization
Method

Codebook
Size

Training
Obj.

Seq. Acc.
(%)

RMSD
< 128 (Å)

RMSD
< 512 (Å)

8 LFQ 32768 all 75.2 2.50 3.74
8 kNN 4096 all 97.5 2.96 4.03
8 kNN 32768 all 99.4 1.60 2.31
8 – – w/o. FAPE 97.2 3.89 5.22
8 – – w/o. Energy 98.0 3.26 5.17
6 – – all 99.9 1.24 2.55
8 – – all 99.9 1.12 1.92

Table 1: Reconstruction performance of SLAE and ablations. We report sequence recovery
accuracy (%) and reconstruction RMSD (Å) on test structures. All further experiments use the
highlighted best SLAE model.

We pretrain SLAE on a sequence-augmented CATH(Ingraham et al., 2019)-derived dataset (Lu et al.,
2025b)(Appendix D). On the held-out test set with no family overlap, the autoencoder achieves
99.9% sequence recovery and all-atom RMSD of 1.1Å for structures shorter than 128 residues and
1.9Å across all lengths up to 512 residues.

We study the effect of model and pretraining design choices on pretraining performance (Table 6).
For encoder locality, we swept cutoff radii and find an 8 Å neighborhood yields the best results
(Appendix F). For discretization, we compare end-to-end VQ (van den Oord et al., 2018) and LFQ
(Yu et al., 2023) against post-hoc kNN codebooks built on frozen encoder embeddings. End-to-
end quantization trades off sequence and structure accuracy, whereas reconstruction from post-hoc
kNN-codebook quantized embeddings approaches continuous resolution as the codebook grows.
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Ablation experiments (Table 6, Appendix F) further highlight the importance of both the FAPE loss
and Rosetta-derived energy supervision, confirming the effectiveness of our multitask pretraining
framework. These results validate the design choices and permit downstream evaluation on a faithful
representation of protein structures.

4 DOWNSTREAM TASKS

We next demonstrate that SLAE embeddings pretrained on all-atom reconstruction and energetics
objectives transfer effectively to diverse downstream tasks(Figure 1B). Across all four benchmarks
spanning complementary biological scales, SLAE achieves better or on-par performance with state-
of-the-art methods, underscoring the generality and flexibility of the SLAE framework.

Fold Classification Protein fold classification is a cornerstone of structural biology, linking struc-
ture to evolutionary relationships and functional annotation. Using the SCOPe 1.75 dataset Fox et al.
(2014) and following Hou et al. (2018), we evaluate generalization under three test sets: Family, Su-
perfamily, and Fold. An MLP is trained on pooled residue embeddings. SLAE achieves on-par or
superior accuracy compared to prior state-of-the-art models across all splits (Table 2), demonstrating
that global fold information can be recovered even from strictly local all-atom embeddings.

Method Fold (%) Superfamily (%) Family (%)
GVP-GNN(Jing et al., 2021) 16.0 22.5 83.8
IEConv(Hermosilla et al., 2021) 45.0 69.7 98.9
GearNet-Edge-IEConv (Zhang et al., 2023) 48.3 70.3 99.5
ProNet-SCHull (Wang et al., 2024) 56.1 74.6 99.4
SLAE-finetuned 55.1 77.1 99.1

Table 2: Fold classification accuracy (%) on SCOPe 1.75 under three test splits

Protein-Protein Binding Affinity Prediction Protein-protein interactions underlie nearly all cel-
lular processes, and accurate prediction of binding affinity is critical for understanding signaling
pathways, complex assembly, and therapeutic design. We evaluate SLAE on the PPB-Affinity
dataset (Liu et al., 2024), a recently curated large-scale benchmark that aggregates 12,062 exper-
imental binding ∆∆G values from multiple sources and aligns them with high-quality structural
complexes.

Complex structures are embedded chain-wise and interface-wise with the SLAE encoder, and pooled
residue embeddings are passed into an MLP for regression. In 5-fold cross-validation, SLAE
achieves lower RMSE and higher Pearson correlation than PLM-based baselines (Table 3). Despite
being pretrained only on single-chain data, SLAE generalizes seamlessly to multi-chain contexts,
thanks to its atomistic representation that does not rely on residue or chain indices.

Method RMSE (kcal/mol) Pearson Correlation
PPB-Affinity Baseline (Liu et al., 2024) 2.08 0.70
PPLM-Affinity (Liu et al., 2025) 1.89 0.76
SLAE-finetuned (w/o. interface) 2.01 0.73
SLAE-finetuned (with interface) 1.86 0.77

Table 3: Protein-protein binding affinity prediction on the PPB-Affinity dataset

Single-Point Mutation Thermostability Prediction Protein stability is fundamental to function,
and predicting the impact of point mutations on thermostability (∆∆G) is a central challenge for
protein engineering, drug resistance modeling, and disease variant interpretation. We benchmark
SLAE on the Megascale mutation dataset (Tsuboyama et al., 2023), filtered according to Ther-
moMPNN protocol with 272,712 mutations across 298 proteins Dieckhaus et al. (2024).

Pairs of wild-type and mutant structures are embedded with residue-level differences extracted at
the mutation site. An MLP head predicts ∆∆G. SLAE achieves 0.68 RMSE and 0.76 Pearson
correlation (Table 4) on the test set, outperforming prior methods. Ablation experiments show that
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removing mutation-site differencing degrades performance, highlighting the importance of local
residue environment modeling for physical property prediction in the SLAE framework.

Method RMSE (kcal/mol) Pearson Correlation
Rosetta (Pancotti et al., 2022) 5.18 0.53
RaSP (Blaabjerg et al., 2023) 1.08 0.71
ThermoMPNN (Dieckhaus et al., 2024) 0.71 0.75
SLAE-finetuned (w/o. mutated site) 0.73 0.70
SLAE-finetuned (with mutated site) 0.68 0.76

Table 4: Single-point mutation thermostability prediction on the Megascale dataset test split

Chemical Shift Prediction NMR chemical shifts are among the most direct experimental probes
of local atomic environments, among them the backbone nitrogen are notoriously difficult to pre-
dict accurately due to its large variance and contributions from ring currents, electrostatics, and
subtle side-chain conformations. We benchmark on stringently filtered BMRB (Hoch et al., 2023)
which contains 2,532 training and 594 validation chemical shift records and their corresponding Al-
phafold2 predicted structures. PLM-CS framework is adopted as baseline model architecture, which
trains a lightweight predictor on top of pretrained representations (Zhu et al., 2025).

We report validation set performance of finetuned SLAE along with PLM-CS results using multiple
protein residue embeddings, including ESM2, AlphaFold2, ProSST and SLAE. 1 Finetuned SLAE
achieves the lowest RMSE and highest correlation, substantially outperforming retrained PLM-CS
baselines (Table 5). This demonstrates that SLAE embeddings capture fine-grained atomistic fea-
tures essential for NMR observables.

Method RMSE (ppm) Pearson Correlation
PLMCS-AF2 2.94 0.82
PLMCS-ESM2 2.74 0.84
PLMCS-ProSST 2.53 0.87
PLMCS-SLAE 2.53 0.87
SLAE-finetuned 1.88 0.93

Table 5: Backbone nitrogen chemical shift prediction on BMRB

5 INTERPRETING THE LATENT SPACE

SLAE’s downstream performance stems from a structured, interpretable latent space. We show
that residue embeddings are organized along biochemically meaningful axes, are sensitive to lo-
cal environment changes, and admit linear paths that decode to geometrically coherent struc-
tures(Figure 1C).

5.1 EMBEDDING VARIABILITY REFLECTS CHEMICAL ENVIRONMENT CHANGE

To probe what SLAE embeddings captures at the residue level, we analyze how they organize across
local chemical environments. Dimensionality reduction of kNN centroids from CATH (Section 3.5,
Appendix F) shows that residue latents cluster by side chain chemistry and broader structural con-
text. The latent space also stratifies along gradients of solvent accessibility and separates by sec-
ondary structure, with helices, sheets, and coils occupying distinct submanifolds (Figure 3, App.
Fig 6and 7). This indicates that SLAE representation is sensitive to both chemical identity and
structural environment.

We then quantify this sensitivity using the mdCATH dataset (Mirarchi et al., 2024). Across 5,398
proteins, per-residue latent displacement between conformers correlates with physical measures of
environment variability: changes in contact maps and solvent exposure explain over half of the

1Fair comparison with open-sourced methods is not possible due to non-overlapping dataset splits (some
entries from PLM-CS datasets do not pass the filter standard). We therefore re-trained a PLM-CS baseline on
our splits and evaluate all embeddings under an identical protocol.
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Figure 2: SLAE latent organization. UMAP visualization of kNN centroids shows clustering by
solvent accessibility (left) and secondary structure (right).

variance in embedding similarity (R2 = 0.55, ρ ≈ 0.74; Appendix F). Thus, SLAE embeddings
consistently track how residues respond to burial, packing, and secondary-structure transitions.

5.2 DISCRIMINATIVE POWER OVER NATIVE-DECOY RESIDUE ENVIRONMENTS

We show that SLAE residue latent capture local environments contain signal that zero-shot dis-
tinguishes native structures from decoys and provide a practical embedding space for evaluating
backbone–sequence co-design.

Figure 3: SLAE embedding comparison between native and decoy structures. (native in yellow,
decoys colored by TM-score to their native; warmer = more native-like) Left protein-level PCA.
Each point is a protein. Right residue-level PCA for 1TUD and its decoys. Decoy residues are col-
ored by their parent decoy’s TM-score. In both panels, SLAE embeddings organize along gradients
of nativeness, revealing coherent neighborhoods that align with structural quality.

On the Rosetta decoy dataset (Park et al., 2016) containing 133 native protein structures with thou-
sands of decoys each, native–decoy cosine margin is 0.136 across residues. We further fit a leave-
protein-out logistic regression by training on all proteins except one and tested on the held-out
protein’s residues and report AUROC = 0.659 (Appendix F, indicating a moderate, generalizable
linear signal at the residue level. Motivated by this discriminative signal, we use the SLAE em-
bedding space to quantify the distributional coverage of generative models, extending prior metrics
(Lu et al., 2025a) to all-atom resolution and residue granularity. As a proof of concept, we com-
pute per-residue type Fréchet Protein Distance (FPD) between SLAE embeddings of the generated
structures and the native CATH distribution for models such as Chroma (Ingraham et al., 2023),
Protpardelle-1c (Lu et al., 2025b) and La-Proteina (Geffner et al., 2025). SLAE-based FPD iden-
tifies subtle model coverage differences in local amino acid environments that are averaged out in
global fold level assessments (App. Fig 8)
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5.3 SMOOTH LATENT INTERPOLATION CAPTURES CONFORMATIONAL TRANSITIONS

A B

AdK

KaiB

Latent Interpolation
Conformation 1 Conformation 2

Figure 4: Latent space interpolation between two conformations A. Structures sampled by linear
interpolation (purple) overlaid with MD simulation frames (grey) B. Alignment RMSD to MD sim-
ulation trajectories

Latent space smoothness is relevant for evaluating whether a representation supports continuous
sampling of protein conformations. Unlike variational autoencoders that encourage smoothness
via KL regularization to a simple prior, the SLAE autoencoder relies solely on physics-augmented
pretraining objectives. We examine the smoothness of SLAE latent by linear interpolation between
two conformation states Z(A) and Z(B). For each residue i and interpolation scale t ∈ [0, 1],
the interpolated residue embeddings are given by z

(t)
i = (1 − t)z

(A)
i + t z

(B)
i . The interpolated

set Z(t) = {z(t)
1 , . . . ,z

(t)
n } is then decoded into an all-atom structure with the pretrained SLAE

decoder (Figure 1C).

For two proteins with known conformational changes, adenylate kinase (AdK) and KaiB, we lin-
early interpolate between the SLAE embedding of the two experimentally determined states(AdK:
1AKE, 4AKE; KaiB: 2QKE, 5JYT). We sample intermediate structures from 50 evenly spaced val-
ues of t and align their backbone coordinates to frames in MD simulation of the transitions (Seyler
et al., 2015; Zhang et al., 2024). For AdK, the interpolated structures closely track the MD interme-
diates, as evidenced by smooth trajectories with low RMSD (Figure 4), and they agree better than
interpolations from the generative model (App. Fig. 10). Notably, these interpolations are unguided
by any energy function or model likelihood; they arise solely from linear paths in SLAE latent space
anchored in pretraining with physics-based task. KaiB shows higher RMSD between steps 20 and
30 (Figure 4). Closer examination of the interpolated structures (App. Fig 9) reveals disagreement
in the C-terminus, which is known to unfold during transition (Wayment-Steele et al., 2023). This
degradation is expected as SLAE is pretrained on folded structures and thus treats unfolded segments
as out-of-distribution, where local environment cues under-constrain reconstruction.

Within the folded structure regime, SLAE’s latent space is sufficiently regular that simple linear
paths often decode to geometrically coherent intermediates aligned with MD trajectories. These
results support the view that SLAE embeddings approximate a continuous, chemically grounded
manifold of protein structures. The latent space reflects local environmental variation while accom-
modating large-scale transitions, make it useful for downstream analysis and generative applications.

6 CONCLUSION

We introduced SLAE, a framework tailored to learning general-purpose representations of proteins
at all-atom resolution. SLAE applies a strictly local graph neural network over atomic environments,
using computationally simple layers to perform expressive geometric reasoning on atom-type and
interatomic distance features. Pretraining is driven by a novel objective that combines full atomic
coordinate reconstruction with energy score regression, yielding embeddings that are structurally
faithful, chemically grounded, and energetically informed.
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REPRODUCIBILITY STATEMENT

The model architecture, training objectives, and hyperparameters are specified in Appendix B. All
datasets used in this work are described in detail in Appendix D, including preprocessing pipelines,
filtering thresholds, and dataset splits. We fixed random seeds where applicable and followed stan-
dard evaluation protocols to minimize nondeterminism and ensure fair comparison to baselines. All
training and experiments can be reproduced on a single NVIDIA A100 GPU or equivalent hardware.
Evaluation metrics and procedures are fully described in the main text and appendix. We plan to
release code and pretrained checkpoints upon archiving of this work to enable full reproduction of
our results.
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A ADDITIONAL RELATED WORKS

All-atom protein generative models which simultaneously generate backbone and sidechain coor-
dinates can also have an all-atom representation of protein structure. Protpardelle can be cast as
a continuous normalizing flow to generate deterministic latent encodings of all-atom protein struc-
tures (Chu et al. (2024)). A joint embedding space of sequence and all-atom structure was proposed
in CHEAP (Lu et al., 2024), in which the embeddings reconstruct all-atom protein structures and
recover sequence. However, interpolation between two conformations of the same protein sequence
is not possible as identical sequence would map to the same CHEAP embedding. Representations
can also be derived from protein structure prediction models such as AlphaFold3 (Abramson et al.,
2024), but the information is distributed across layers and in both single and pairwise representa-
tions.

B MODEL

B.1 AUTOENCODER PSEUDOCODE

The end-to-end SLAE autoencoder can be summarized as follows:

Algorithm 1 SLAE Autoencoder. h(e): edge features, E : SE(3)-equivariant update, P: pooling,
DTr: Transformer decoder. Outputs: x̂ (coordinates), ŝ (sequence), r̂ (energies).

1: Input: heavy-atom coordinates {ai}Ni=1
2: Build G = (V,E) with cutoff rc
3: Init h(e) ← (ϕr, ϕa)
4: for L = 1 to 2 do
5: {xL

ij ,V
L
ij} ← E({x

L−1
ij ,VL−1

ij })
6: end for
7: {zr} ← P({xL

ij})
8: (x̂, ŝ, r̂)← DTr({zr})

B.2 ENCODER ARCHITECTURE

Notation Let ai ∈ R3 be the coordinate of atom i, rij = aj−ai, rij = ∥rij∥, r̂ij = rij/rij . The
neighbor set of i is N (i) = { j | rij ≤ rc }. Each directed edge (i, j) maintains invariant scalars
xL
ij ∈ Rdsc and equivariant tensors VL

ij .

Two-body initialization Edge features are initialized with radial and angular bases:
x0
ij = u(rij) ·MLP2b(onehot(Zi) ∥ onehot(Zj) ∥ϕr(rij)) , (2)

V0
ij = ωij · ϕa(r̂ij), ωij = MLPω(x

0
ij), (3)

where ϕr are Bessel radial basis functions, ϕa are angular embeddings (e.g., spherical harmonics),
and u(rij) is a smooth cutoff envelope.

Tensor product update At layer L, equivariant features of edge (i, j) interact with the embedded
environment of atom i:

VL
ij = VL−1

ij ⊗

( ∑
k∈N (i)

wL
ik ϕ(rik)

)
, (4)

where ϕ(rik) encodes neighbor geometry and wL
ik = MLPL

embed(x
L−1
ik ) are learned weights. This

corresponds to a weighted projection of the atomic density around atom i.

Latent scalar update. Scalar channels are updated with tensor product scalars:

xL
ij = MLPL

latent

(
xL−1
ij ∥VL

ij

)
· u(rij), (5)

injecting geometric information from VL
ij back into xL

ij .
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Hierarchical pooling Final edge scalars are aggregated:

si =
1

|N (i)|
∑

j∈N (i)

xL
ij , (6)

zr =
1

|A(r)|
∑

i∈A(r)

si, zr ∈ R128, (7)

producing residue-level embeddings {zr}.

B.3 DECODER ARCHITECTURE

Transformer backbone We employ a standard pre-norm Transformer encoder with Rotary Posi-
tional Embeddings (RoPE) with LTr=8 layers, h=16 heads, model width dmodel=1024. Each layer
consists of:

• Multi-head self-attention with RoPE (pre-norm): MHARoPE(LayerNorm(·)).

• Residual connection.

• Feed-forward network with hidden dimension dff and SwiGLU, applied as
FFN(LayerNorm(·)).

• No dropout.

Formally:

H(ℓ) = MHARoPE

(
LayerNorm(H(ℓ−1))

)
+H(ℓ−1), (8)

H(ℓ) = FFN
(
LayerNorm(H(ℓ))

)
+H(ℓ), (9)

for ℓ = 1, . . . , LTr, with H(0) = [z1, . . . ,zn].

Prediction heads From final hidden states H ∈ Rn×dmodel (dmodel=1024), we apply three parallel
heads:

(i) 3D coordinates (linear head) LayerNorm + Linear maps per-residue embeddings to all Atom37
coordinates:

x̂ = Unflatten
(
Linear(LN(H)), 37× 3

)
∈ Rn×37×3.

(Atoms 1–4 are N, Cα, C, and O; atoms 5–37 are side chain. Masking is applied via the Atom37
mask.)

(ii) Sequence logits on valid tokens An MLP head operates only on valid tokens (mask-compacted),
then is re-padded for loss:

ŝ = MLPseq
(
Hvalid

)
∈ Rnvalid×20.

(iii) Pairwise energies A pairwise feature head first down-projects H, lifts to 2D by pairwise prod-
uct/difference, applies a small MLP, then per-type linear heads with magnitude clamp to 1e− 3:

r̂ =
[
r̂hbond, r̂sol, r̂elec] ∈ Rn×n×3.

B.4 TASK-SPECIFIC HEADS

Trainable decoder backbone. We expose a lightweight wrapper over the DecoderBackbone
to enable fine-tuning the last N Transformer blocks while freezing the rest. Take the single site mu-
tation stability task as an example, we document the layout of downstream task-specific finetuning
here.
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Contrastive and site-aware head A Siamese head takes two or more structure embeddings (e.g.,
wild-type and mutant), runs them through the shared DecoderBackbone, and regresses a scalar
target (e.g., ∆∆G). Beyond global contrastive pooling, it can extract site-specific residue represen-
tations, enabling residue-level tasks.

Backbone embeddings. Given masked inputs (Xwt,Mwt) and (Xmut,Mmut),
Hwt = DecoderBackbone(Xwt,Mwt), Hmut = DecoderBackbone(Xmut,Mmut).

Mask-aware pooling and site features. Let the mean-pooling operator be

Pool(H,M) =

∑L
t=1 H:,t,: M:,t∑L
t=1 M:,t + ε

∈ RB×1024.

We form global embeddings zwt = Pool(Hwt,Mwt) and zmut = Pool(Hmut,Mmut). Given
mutation indices ι ∈ {1, . . . , L}B , we also extract site embeddings

swt = Hwt[range(B), ι], smut = Hmut[range(B), ι] ∈ RB×1024.

Contrastive feature and MLP regressor. We concatenate global and site representations together
with their difference:

u =
[
zwt, zmut, swt, smut, smut − swt

]
∈ RB×(5·1024).

A small MLP head predicts a scalar per pair:

ŷ = MLP
(
u
)
= Linear◦GELU◦LayerNorm◦Linear◦GELU

(
u
)
∈ RB×1.

General usage The same interface supports other pairwise or single-input tasks by (i) choosing
one or multiple passes through DecoderBackbone, (ii) selecting global vs. site-wise features,
and (iii) swapping the final MLP for the appropriate output dimensionality/loss. For atom-level
tasks, the DecoderBackbone can be reinitialized with the smaller attention window.

C TRAINING

C.1 LOSSES

All-atom FAPE (Frame-Aligned Point Error) All-atom FAPE is computed by aligning the pre-
dicted and reference structures on every triplet of bonded atoms (i, j, k) (with the exception of sym-
metric side chain atoms) and then measuring per-atom positional deviations between the aligned
structures. For each frame f(i, j, k) (with j as the origin), define an orthonormal basis for pre-
dicted/true coordinates via a deterministic map Φ : (R3)3→SO(3):

Upred
f = Φ

(
x̂i, x̂j , x̂k

)
, Utrue

f = Φ
(
x⋆
i ,x

⋆
j ,x

⋆
k

)
,

where Φ constructs column vectors from the two edge directions at j,
vj→i = xi − xj , vj→k = xk − xj ,

then
e0 = (vj→k)× (vj→i), e2 = vj→i − vj→k, e1 = e2 × e0,

and column-normalizes [e0, e1, e2] to obtain a right-handed 3×3 matrix.

For any atom a in the same protein as f , rotate origin-subtracted positions into the local frames:

rpredf,a = Upred
f

(
x̂a − x̂j

)
, rtruef,a = Utrue

f

(
x⋆
a − x⋆

j

)
.

Define df,a =
∥∥rpredf,a − rtruef,a

∥∥
2
, clamped at c = 10 Å as d̃f,a = min(df,a, c), and apply a Huber

penalty with δ = 1.0:

ρδ(d̃) =

{
1
2 d̃

2, d̃ ≤ δ,

δ d̃− 1
2δ

2, d̃ > δ.

We average first over frames and then over atoms, yielding an atom-weighted mean:

LFAPE =
1

B

B∑
b=1

1

|Ab|
∑
a∈Ab

 1

|Fb|
∑
f∈Fb

ρδ(d̃f,a)

 .
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All-atom smooth LDDT We use a differentiable, all-atom version of LDDT that compares pair-
wise distances within a cutoff. Let P = {(i, a), (j, b)} be all heavy-atom pairs with ∥x⋆

i,a−x⋆
j,b∥ ≤

Rmax and not in the same residue. Define ground-truth and predicted distances d⋆iabj = ∥x⋆
i,a−x⋆

j,b∥
and d̂iabj = ∥x̂i,a − x̂j,b∥, and the absolute error ∆iabj = |d̂iabj − d⋆iabj |. Using standard lDDT
thresholds τ ∈ {0.5, 1.0, 2.0, 4.0} Å with smooth indicators sτ (∆) = σ

(
α(τ − ∆)

)
(sigmoid, α

controls sharpness),

sLDDTi =
1

|Pi|
∑

(i,a),(j,b)∈Pi

1

|T|
∑
τ∈T

sτ (∆iabj), LsLDDT = 1− 1

Nres

∑
i

sLDDTi.

Mean-squared error (MSE) Used for continuous targets regression:

LMSE =
1

|Ω|
∑
u∈Ω

∥ŷu − y⋆u∥22.

Huber loss. Used for continuous targets regression with δ = 1.35:

LHuber =
1

|Ω|
∑
u∈Ω

{
1
2 (ŷu − y⋆u)

2, |ŷu − y⋆u| ≤ δ,

δ |ŷu − y⋆u| − 1
2δ

2, otherwise.

C.2 TRAINING SPECIFICS

The autoencoder is trained on a single NVIDIA A100 or H100 GPU using batch size 16. We train
for 30 epochs with early stopping on validation loss not decreasing after 5 epochs. The learning rate
schedule is linear warmup for 1,000 steps followed by cosine decay. Optimization uses AdamW
with maximum learning rate 1×10−4 and standard β1=0.9, β2=0.999 (weight decay as in AdamW
defaults). Unless noted otherwise, downstream task-specific fine-tuning uses the same batch size and
maximum learning rate 1× 10−5.

D DATASETS

Pretraining Structure We train SLAE on an sequence-augmented CATH set (Lu et al., 2025b) by
redesigning each domain with 32 ProteinMPNN sequences and predicting structures with ESMFold;
we retain only high-confidence, self-consistent structure models (pLDDT ≥ 80, scRMSD ≤
2.0Å), yielding 337936 structures, with 271 test structures from holdout CATH domains. We evalu-
ate SLAE latent space on protein conformational ensembles sampled from the dataset of molecular
dynamics (MD) simulations mdCATH (Mirarchi et al., 2024). We subsample 32 frames per protein
across MD trajectory ensembles for each of the 5398 structures.

Pretraining Rosetta Score We use PyRosetta to compute residue pairwise energy scores for all
pretraining structures under its default full-atom energy terms. For each pair of residues we compute
(1) fa sol: Lazaridis-Karplus solvation energy (2) fa elec: Coulombic electrostatic potential with a
distance-dependent dielectric (3) hbond: Sum of all hydrogen bonding terms for backbone and
sidechain.

Fold Classification We obtain the dataset from Hermosilla et al. (2021), which consolidated
16,712 proteins with 1195 different folds from the SCOPe 1.75 database (Fox et al., 2014). Three
test sets are used: (1) Family, which allows proteins from the same family to appear in both training
and test; (2) Superfamily, which excludes proteins sharing family membership with the training set;
and (3) Fold, which further excludes proteins from the same superfamily as those in training. All
structures are obtained from the SCOPe 1.75 archive.

Stability We obtain the dataset curated by Dieckhaus et al. (2024) on Tsuboyama et al. (2023),
composed of 272,712 single point mutations and their experimental ∆∆G. The proteins were clus-
tered using MMseqs2 with sequence identity cutoff of 25% to yield 239 training, 31 validation and
29 validation proteins. For wild type sequences we predict their structures with AlphaFold2. For
all mutated structures we model the mutation with PyRosetta and relax within 8Å radius to obtain
training structures.
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Binding Affinity We use the PPB-AFfinity (Liu et al., 2024) which integrates experimental
protein-protein binding affinity data from several source databases: SKEMPI v2.0, SAbDab, PDB-
bind v2020, Affinity Benchmark v5.5, and ATLAS. This dataset contains 12062 unique binding
complexes consisting of 3032 unique PDB codes and point mutations. We use the structures curated
in the dataset and define interface residues as those within 5Å distance from other atoms of the
neighboring chains. For all mutations we mutate the sidechain with PyRosetta and relax within 8Å
radius to obtain training structures.

NMR Chemical Shift We retrieve the BMRB totaling 17,028 entries (2025-07-02) (Hoch et al.,
2023). The entries were filtered and processed based on NMR experiment type, backbone chemical
shift coverage, sequence consistency, basic experimental condition boundary plus any other routine
re-referencing requirements. 3623 entries were retained and split into 2532 training and 594 valida-
tion entries at a 50% pairwise sequence-identity threshold after filtering entries without any nitrogen
chemical shifts. Alphafold2 was used to generate all structures used in training.

MD Simulation For adenylate kinase (AdK), we use conformational ensembles generated using
the Framework Rigidity Optimized Dynamics Algorithm (FRODA), yielding 200 trajectories (Seyler
et al., 2015). For KaiB, we use the temperature-dependent fold-switching simulation from Zhang
et al. (2024), subsampling every 10 frames out of the 4 successful fold-switching trajectories from
the fold-switched state to ground state.

Rosetta Decoy To assess local residue environment embeddings distribution between native and
decoy structure, we use structure dataset by Park et al. (2016), where each of the 133 native structures
are accompanied with large numbers (≥ 1000 cluster centers) of alternative conformations (decoys).

E METRICS

Structure comparison We report RMSD after optimal Kabsch rigid alignment for Cα, backbone
and all-atom. Given reference X⋆∈Rn×3 and prediction X̂, align X̂ to X⋆ then compute

RMSD =

√√√√ 1
n

n∑
j=1

∥∥∥x̂align
j − x⋆

j

∥∥∥2
2
.

Numeric regression Given targets {yi}Ni=1 and predictions {ŷi}Ni=1, we report

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2, r =

∑N
i=1(ŷi − ¯̂y)(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2
√∑N

i=1(yi − ȳ)2
.

Distribution comparison We compute Fréchet Protein Distance (FPD) following Lu et al.
(2025a). Given N data points from a reference distribution pdata(x), here the sequence-augmented
CATH dataset, and M samples from a generative model psample(x), we computed per-residue SLAE
embeddings {z(i)data}Ni=1 and {z(j)sample}Mj=1 and then compute

FPD = ∥µdata − µsample∥22 + Tr
(
Σdata +Σsample − 2

(
ΣdataΣsample

) 1
2

)
(10)

where µdata and µsample are the means of the reference embeddings and the sample embeddings
respectively, and Σdata and Σsample are the covariance matrices of the reference embeddings and
the sample embeddings respectively. We compute FPD using a smaller subset of 2000 samples as
SHAPES showed that this is sufficient for an accurate FPD estimate Lu et al. (2025a).
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F ADDITIONAL EXPERIMENTS AND RESULTS

F.1 PRETRAINING

We report in Table 6 additional results on the pretraining performance of the SLAE autoencoder.
We note that encoders with 10Å graph radius cutoff is infeasible to train with a single GPU due to
the number of edges.

Graph
Radius(Å)

Discretization
Method

Codebook
Size

Training
Obj.

Seq. Acc.
(%)

RMSD
< 128 (Å)

RMSD
< 512 (Å)

8 LFQ 16384 all 69.5 4.12 5.79
8 LFQ 32768 all 75.2 2.50 3.74
8 VQ 16384 all 65.7 5.02 5.88
8 VQ 32768 all 70.4 4.30 6.02
8 kNN 4096 all 97.5 2.96 4.03
8 kNN 16384 all 98.6 1.71 2.57
8 kNN 32768 all 99.4 1.60 2.31
8 – – w/o. FAPE 97.2 3.89 5.22
8 – – w/o. Energy 98.0 3.26 5.17
4 – – all 99.8 2.57 3.86
6 – – all 99.9 1.24 2.55
8 – – all 99.9 1.12 1.92

Table 6: Complete results of SLAE autoencoder ablation experiments.

F.2 LATENT SPACE CHARACTERIZATION

F.2.1 KNN CLUSTERING

We examine the CATH-kNN-quantized latent space, the k-means codebook of k = 16,384 centroids.
We assign each centroid the majority amino-acid identity among its members; the commitment loss
is the L2 distance from an embedding to its assigned centroid. The commitment loss histogram is
tightly concentrated around 3–5 L2 units (Figure 5), which is modest relative to the embedding
norm (15± 4), indicating that quantization preserves most geometric signal.

Figure 5: Commitment loss distribution during post-hoc quantization

We observe clear residue type mixing in the clusters. Although many centroids are quite pure (me-
dian majority fraction 0.96), the distribution is broad (mean 0.89± 0.15; entropy mean 0.52), with a
substantial tail of mixed-composition clusters (10th-percentile majority 0.67). Along with the mod-
est commitment error, this suggests that the observed mixing reflects genuinely overlapping local
chemistries. Consistently, residue-conditioned intra-cluster distances show that some types form
diffuse, mixed neighborhoods (A, G, S, C with ratios ≥ 1), while others are tighter and more type-
specific (W, Y, R with ratios ≤ 1). These observations suggest that the kNN partitioning of residue
embedding space yields chemically meaningful clusters but does not enforce one-residue exclusivity
and captures real cross-type similarity in local environments.
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Residue # Centroids Mean intra-cluster distance Ratio to global distance
mean ± std

A 1601 19.95± 6.50 [1.20]
C 215 17.67± 5.72 [1.06]
D 962 13.43± 7.47 [0.81]
E 1076 11.58± 3.97 [0.70]
F 641 11.44± 3.53 [0.69]
G 1192 18.38± 6.21 [1.11]
H 387 11.56± 3.53 [0.70]
I 899 14.33± 4.60 [0.86]
K 947 11.48± 3.76 [0.69]
L 1565 14.26± 4.63 [0.86]
M 272 13.69± 4.33 [0.82]
N 729 13.28± 4.16 [0.80]
P 737 13.83± 4.49 [0.83]
Q 492 11.48± 3.89 [0.69]
R 720 9.95± 3.14 [0.60]
S 1032 17.31± 5.58 [1.04]
T 920 15.81± 4.97 [0.95]
V 1253 15.96± 5.13 [0.96]
W 202 8.86± 2.76 [0.53]
Y 542 10.49± 3.16 [0.63]

Table 7: Residue-wise clustering statistics: number of centroids that each residue type dominates,
mean intra-cluster distance (± standard deviation), and ratio relative to the global mean.

F.2.2 RESIDUE EMBEDDING VISUALIZATION

We project the 16,384-entry codebook (centroid) embeddings into three dimensions using UMAP
and analyze how local chemical environments are organized in this latent space (Figs. 6–7). Each
CATH residue is assigned to its nearest codebook entry, and for every centroid we aggregate proper-
ties across its assigned residues. We compute the mean SASA and the majority secondary-structure
label. This yields a coarse-grained landscape in which centroids arrange along solvent-exposure
gradients and segregate by secondary-structure preferences.

Figure 6: 3D UMAP projection of CATH residue embeddings colored by solvent accessibility and
secondary structure

F.2.3 STRUCTURE ENSEMBLE ANALYSIS

Subsampled mdCATH For each residue, we measure how much its embedding changes across
the ensemble by averaging pairwise differences between frames. For a given residue and set of
frames, we compute two physical descriptors: Contact-map change: we form a binary contact row
per frame (contact if residues are within a chosen distance threshold) and measure, on average, what
fraction of those contacts differ between frames. Solvent-exposure change: we compute solvent-
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Figure 7: 3D UMAP projection of CATH residue embeddings colored by amino acid type

accessible surface area (SASA), convert to residue-type–normalized relative SASA, and take the
average absolute change between frames. We fit a simple linear model that predicts per-residue
embedding change from the two descriptors. We aggregate performance on held-out residues and
report: (i) the proportion of variance explained and (ii) the Spearman rank correlation between
observed and predicted embedding change.

Rosetta Decoys For each native protein we have a residue–embedding matrix and a set of its decoy
matrices, aligned by residue index. We apply row-wise L2 normalization so that inner products equal
cosine similarity. For a given protein, we compute the mean residue-wise cosine similarity between
each decoy and its native, then take the average over decoys. The native–decoy cosine margin is
defined as the difference between the native’s self-similarity (equal to 1.0 after normalization) and
this mean decoy similarity.

To test linear separability at the residue level and generalization to unseen proteins, we train a
logistic-regression classifier on residue embeddings with leave-protein-out grouped cross-validation:
each residue embedding is a sample (label 0=native, 1=decoy) and carries its protein ID for grouped
CV. We split with GroupKFold so all residues from a held-out protein appear only in the test
set, and train an L2-regularized LogisticRegression. On each test fold we report AUROC;
metrics are aggregated as mean ± sd across folds.

F.3 PER-RESIDUE GENERATIVE MODEL ASSESSMENT

We compare distribution coverage of all-atom chemical environments sampled by generative mod-
els, stratified by residue type. For each residue type, we extracted the SLAE embeddings of 2000
random examples from the sequence-augmented CATH dataset and from a collection of 20,000 un-
conditional samples of all-atom protein structures from La-Proteina, Protpardelle-1c, and Chroma.
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The FPD metrics reveal subtle differences in the coverage of local amino acid environments by dif-
ferent generative models (Figure 8). For example, biased sampling is evident in La-Proteina samples
for serine, threonine, and valine relative to Protpardelle-1c and Chroma. Using SLAE embeddings
provides a more sensitive view on coverage of all-atom local environments which are ignored in
backbone-only FPD and which may be averaged out on the global protein fold level as in previous
assessments of generative model coverage of protein structures (Lu et al. (2025a)).

F.4 LATENT SPACE INTERPOLATION

In Figure 9 A and B we show 20 out of 50 interpolated structures for AdK and KaiB. In addition, we
compare linearly interpolated AdK structures from the SLAE latent space to those from the all-atom
generative model Protpardelle-1c (Figure 10) and show that SLAE interpolation is better matched
to simulated intermediate structures.
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Figure 8: SLAE embeddings to assess residue environment coverage. PCA of SLAE per-residue
embeddings of de novo structure samples (light blue) compared to the reference CATH distribution
(purple) stratified by amino acid type given in the title. The two modes in each amino acid type
correspond to residues belonging to a beta sheet or alpha helix.
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A

B C

Figure 9: Structures decoded from SLAE latent interpolation. A. AdK B. KaiB C. Step 23 KaiB
intermediate structure with under-characterized C-terminus showing disordered backbone collapsing
onto itself.
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A B

Figure 10: Comparison of SLAE and generative model (Protpardelle-1c) latent interpolation. A.
Three representative steps from interpolation fraction 0.3 to 0.7. Top: Protpardelle-1c linear inter-
polation (blue) and best MD frame matches (grey). Bottom: SLAE linear interpolation (purple) and
best MD frame matches (grey). B. RMSD of interpolation trajectories to their closest-match MD
frames
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