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Abstract1

Graph Neural Networks (GNNs) have achieved remarkable success across diverse2

applications, yet they remain limited by oversmoothing and poor performance3

on heterophilic graphs. To address these challenges, we introduce a novel4

framework that equips graphs with a complex-weighted structure, assigning each5

edge a complex number to drive a diffusion process that extends random walks6

into the complex domain. We prove that this diffusion is highly expressive:7

with appropriately chosen complex weights, any node-classification task can be8

solved in the steady state of a complex random walk. Building on this insight,9

we propose the Complex-Weighted Convolutional Network (CWCN), which10

learns suitable complex-weighted structures directly from data while enriching11

diffusion with learnable matrices and nonlinear activations. CWCN is simple12

to implement, requires no additional hyperparameters beyond those of standard13

GNNs, and achieves competitive performance on benchmark datasets. Our results14

demonstrate that complex-weighted diffusion provides a principled and general15

mechanism for enhancing GNN expressiveness, opening new avenues for models16

that are both theoretically grounded and practically effective.17

1 Introduction18

Graph Neural Networks (GNNs) [1] have emerged as a powerful class of machine learning models to19

deal with relational and structured data. They have shown state-of-the-art performance in a wide range20

of applications, such as recommendation systems [2], molecular property prediction [3], webpage21

classification [4] or predictions in citation networks [5].22

Limitations of GNNs. Most Graph Neural Network (GNN) architectures are built on the message23

passing paradigm, where each node iteratively aggregates information from its neighbors to update its24

representation. While this approach has been highly successful, “classical” GNNs usually face two25

well-documented challenges: (1) poor performance on heterophilic graphs [6] and (2) oversmoothing26

[7]. Both stem from the inherent difficulty of capturing long-range dependencies. The heterophily27

problem arises because message passing implicitly assumes homophily [6], i.e. that neighboring nodes28

tend to share similar features and labels, an assumption that is often not verified in real-world networks29

[8]. Oversmoothing, on the other hand, refers to the tendency of node representations to become30

indistinguishable after repeated message passing, eroding their discriminative power. Oversmoothing31

has been particularly well studied in the context of Graph Convolutional Networks (GCNs). From a32

diffusion perspective, GCNs can be seen as implementing an augmented heat diffusion process over33

the graph [9]. In such a process, node features within the same connected component converge to34

identical values [9], a phenomenon that significantly contributes to oversmoothing in GCNs [10, 11].35

Beyond Heat Diffusion. To address these limitations, recent research has focused on developing36

more expressive diffusion processes. Prominent examples include Sheaf Convolutional Networks37

(SCNs) [12, 13] and Graph Neural Reaction-Diffusion Networks (GREAD) [14]. Both approaches38

enrich the underlying graph structure to support more sophisticated forms of diffusion. GREAD has39
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Figure 1: Node features in polar coordinates at selected diffusion times (top) and evolution of node
feature phases over time during diffusion (bottom). Complex random walk diffusion progressively
separates the classes of a complex-weighted graph: nodes in the same class (same color) converge
to complex numbers with the same phase. The figure corresponds to the dataset Texas [15]. From
diffusion time 5 onward, the purple class is omitted for better visualization.

shown strong empirical performance on standard benchmarks, providing a practical and scalable40

alternative to sheaf-based methods, though it does not come with theoretical guarantees. SCNs, in41

contrast, offer provable expressiveness, but their guarantees require the sheaf dimension to scale42

with the number of target classes, a requirement that increases model parameters and, in turn,43

computational cost.44

Contributions. We introduce a new approach that modifies the underlying “geometry” of the graph45

to define a more expressive diffusion process, forming the foundation for a novel GNN architecture.46

Concretely, we propose equipping the graph with a complex-weighted structure, where each edge47

is assigned a complex number. This extension enables a diffusion process that generalizes random48

walks to the complex domain [16].49

Our main contributions are as follows:50

• We propose a novel way to enrich graph structure by assigning complex weights to edges,51

enabling a diffusion process with provable expressiveness guarantees. We show that for any52

node-classification task, suitable weights can be chosen such that classification is possible in the53

steady state of the resulting complex random walk (see Figure 1). To the best of our knowledge,54

this is the first study establishing a connection between the convergence properties of complex55

random walks and the expressivity of GNNs for node classification tasks.56

• In contrast to sheaf-based diffusion, our theoretical guarantees are independent of the number of57

target classes, allowing for a simpler model.58

• We introduce the Complex-Weighted Convolutional Network (CWCN), a GNN that augments59

complex random-walk diffusion and achieves greater expressiveness than GCNs. CWCN reduces60

the number of hyperparameters compared to prior methods while maintaining competitive61

performance on benchmarks.62
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2 Theoretical Background63

Problem Setting. We consider the problem of node classification in undirected graphs. Formally,64

let G = (V,E) be an undirected graph, with set of nodes V = {v1, . . . , vn} and set of edges65

E ⊂ {{vi, vj} | vi, vj ∈ V }. Each node vi ∈ V is associated with a feature vector xi ∈ Rk66

and belongs to a class yi ∈ {1, . . . , C}, where C is the number of possible classes. We denote by67

A ∈ Rn×n the adjacency matrix, D the degree matrix and N(vi) the set of neighbours of node vi. In68

addition, we group all node feature vectors into a feature matrix X ∈ Rn×k.69

Given labels for a subset of nodes, the goal is to learn a function f : V → {1, . . . , C} that predicts the70

class labels for the remaining nodes in the graph. We focus on the semi-supervised node classification71

setting, where the complete graph structure – including all node features and edge connections –72

is available during training, but only a subset of nodes is labelled. In this setting, we denote by73

Vtrain, Vval, Vtest ⊂ V the training, validation and test sets, respectively.74

2.1 Heat Diffusion and GCNs75

The heat diffusion equation in a graph and its unit-timestep Euler discretisation are76

Ẋ(t) = −△0X(t) ⇝ X(t+ 1) = (I−△0)X(t), (1)

where △0 := I−D− 1
2AD− 1

2 is the normalized graph Laplacian.77

Most GNNs follow the message-passing paradigm, in which each node iteratively updates its feature78

representation by aggregating information from its neighbours. Numerous architectures are built79

upon this general framework, with Graph Convolutional Networks (GCNs) [17] being one of the80

most popular examples. GCNs implement message passing at each layer as:81

H(l) = σ(D̃− 1
2 ÃD̃− 1

2H(l−1)M
(l)
0 ) = σ((I− △̃0)H

(l)M
(l)
0 ), (2)

where H(l) ∈ Rn×kl is the matrix of node representations at layer l, M (l)
0 ∈ Rkl−1×kl is a learnable82

weight matrix, and σ denotes a non-linear activation function. Ã = A + I, D̃ = D + I are the83

augmented adjacency and degree matrices, and △̃0 = I − D̃− 1
2 ÃD̃− 1

2 is the augmented graph84

Laplacian. Therefore, GCN can be seen as an augmented heat diffusion process with an additional85

kl−1 × kl learnable weight matrix M
(l)
0 and a non-linearity σ.86

Li et al. [9] were the first to highlight the oversmoothing problem, showing that repeatedly applying87

Equation (1) causes the features of nodes within the same connected component to converge to88

identical values. Building on this observation, Oono and Suzuki [10] and Cai and Wang [11]89

demonstrate that, under certain assumptions on the weight matrices M(l)
0 , the expressive power of90

GCNs decays exponentially as the number of layers increases.91

2.2 Random Walks on Graphs With Complex Weights92

In this section, we present the main concepts regarding complex-weighted graphs, which form the93

basis for studying the expressive power of the complex-weighted diffusion process, detailed in94

Section 3.95

Definition 1. A complex-weighted graph is a graph where each edge is assigned a complex number,96

G = (V,E,W) where V = {v1, . . . , vn} is the node set, E ⊂ {eij = (vi, vj) : vi, vj ∈ V } is the97

edge set and W = (Wij) is the complex weight matrix, with Wij ∈ C characterizing the edges98

between nodes.99

Remark 1. We assume the complex-weighted graphs to be connected and directed1. In addition, we100

assume W to be Hermitian, i.e., W = W∗.101

Definition 2. We define the following matrices in a complex-weighted graph:102

1. The complex degree matrix Q is the diagonal matrix with elements qi =
∑

j |Wij |103

2. The complex transition matrix P = Q−1W.104

3. The complex random walk Laplacian Lrw = I−P, where I is the identity matrix.105

1Note that we work with undirected unweighted graphs, but directed complex-weighted graphs.
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We can now use these matrices to define a complex random walk.106

Definition 3. Let G = (V,E,W) be a complex-weighted graph with f feature channels, where node107

features are represented as a matrix X ∈ Cn×f . We define a complex random walk as the diffusion108

process governed by the following PDE:109

Ẋ(t) = −LrwX(t). (3)
Thus, its Euler discretization with a unit step is:110

X(t+ 1) = (I− Lrw)X(t) = PX(t). (4)

An important class of complex-weighted graphs is that of structurally balanced graphs, where the111

sum of the edge phases along any cycle is an integer multiple of 2π [16, 18]. These graphs can112

be characterized in terms of a partition of the node set, and their asymptotic behavior under a113

complex random walk has been analyzed in the infinite-time limit [16]. Building on these results,114

we show in the next section that any node-classification task can be solved in the steady state of a115

complex random walk, provided the graph is equipped with a suitable complex-weighted structure116

defined by the task. We further prove that such weights always exist (see Theorem 1), establishing a117

general expressiveness guarantee for our framework. Additional details on balanced graphs and their118

properties are provided in Appendix A or can be found in [16].119

3 The Expressive Power of Complex-Weighted Diffusion120

Bodnar et al. [13] showed that performing diffusion in a real-weighted graph is not sufficient to121

guarantee expressivity in an arbitrary classification task. In this section, we prove the full expressive122

power of complex-weighted diffusion, which constitutes the main result of this paper.123

Theorem 1. Let G = (V,E) be an unweighted, undirected graph and V = {Vi}
lp
i=1 a partition of its124

nodes. Then, there exists a complex-weighted graph G′ = (V,E,W) such that, starting from any125

initial features x(0) = (xi(0)), in the steady state of a complex random walk, the features of the126

nodes belonging to a subset Vl have the same phase, and this phase is different for each subset.127

Proof sketch. The proof builds upon the results on complex-weighted graphs developed by Tian and128

Lambiotte [16], summarized in Appendix A. According to Proposition 2, the partition V characterizes129

a structurally balanced graph satisfying the following properties: (i) any edge within each node subset130

in V has phase 0; (ii) any edge between the same pair of node subsets in V has the same phase; and131

(iii) if we define the graph G̃ considering each node subset in V as a super node, the phase of every132

cycle in G̃ is 0. In addition, Proposition 3 characterizes the steady state of a complex random walk133

on any structurally balanced graph in terms of its associated partition.134

To prove the theorem, we first show that for any given partition V , it is possible to assign complex135

weights to the edges of the graph G so that conditions (i)–(iii) above are satisfied. The proof of this136

result proceeds by constructing a super graph G̃ that determines the complex weight corresponding to137

each pair of subsets of V such that (iii) holds. Specifically, we first build a cycle basis of G̃ composed138

of triangles and verify that each element of the basis satisfies (iii). We then extend this property to139

any other triangle and, consequently, to all cycles in G̃. This construction determines the desired140

complex-weighted graph G′.141

Finally, applying Proposition 3 to the obtained graph G′ shows that, in the long time limit of a142

complex random walk, the features of nodes belonging to different subsets of V converge to complex143

numbers with different phases. The full proof can be found in Appendix A.144

Hence, as in Figure 1, every graph can be assigned complex weights such that in the steady state of145

a complex random walk, only nodes belonging to the same class have the same phase. Then, the146

nodes’ features are linearly separable in the asymptotic time limit, which shows that solving any node147

classification task can be reduced to performing diffusion with the right complex-weighted structure.148

4 Complex-Weighted Convolutional Networks149

Analogously to how GCN augments heat diffusion, we build a Complex-Weighted Convolutional150

Network (CWCN) that augments the complex random walk diffusion process. In addition, we propose151

a method to learn the complex-weighted structure from data.152
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4.1 Complex-Weighted Convolutions153

Let G be a complex-weighted graph with initial feature matrix X(0) ∈ Cn×f , complex weight154

matrix W ∈ Cn×n, degree matrix Q ∈ Rn×n and recall P = Q−1W, Lrw = I−P. We equip the155

diffusion process given by Equation (3) with learnable weight matrices M1 ∈ C, M2 ∈ Cf×f and a156

non-linearity σ to arrive at a model whose evolution is governed by:157

Ẋ(t) = −σ(Lrw(In ⊗M1)X(t)M2) = −σ((I−P)(In ⊗M1)X(t)M2), (5)

where f is the number of channels and ⊗ denotes the Kronecker product. M1 applies a rotation to158

the node features in all the channels, while M2 allows mixing each node’s feature channels. Note that159

by setting M1, M2 and σ to the identity, we recover the complex random walk diffusion equation.160

Therefore, the model is at least as expressive as complex random walk diffusion and can benefit from161

the linear separation power described in Theorem 1. We focus on the time-discretised version of this162

model which allows us to use a new set of learnable weight matrices Ml
1 ∈ C,Ml

2 ∈ Cf×f at each163

layer l = 0, . . . , L− 1:164

X(l + 1) = X(l)− σ((I−P)(In ⊗Ml
1)X(l)Ml

2) ∈ Cn×f . (6)

Since the formulation in Equation (6) requires the initial feature matrix X(0) ∈ Cn×f , we first use a165

multilayer perceptron (MLP) to map the raw node features to a real-valued matrix X(0) ∈ Rn×2f ,166

which we then interpret as a complex matrix in Cn×f . Similarly, we interpret the final representation167

X(L) as a real-valued matrix in Rn×2f and apply a final MLP to perform node classification.168

4.2 Complex Weights Learning169

In general, an appropriate complex-weighted structure that guarantees linear separability in the time170

limit of the diffusion process cannot be determined without full knowledge of the node classes.171

Therefore, we aim to learn the underlying complex structure from data, which will allow the model172

to choose the appropriate complex weight matrix W for each node classification task. Specifically,173

we define the complex weight matrix W as a learnable function of the initial node features X(0):174

W = g(G,X(0); θ), (7)

where θ are learnable parameters. Once we have learned the complex weight matrix W, we can175

obtain Q the degree matrix and compute P = Q−1W.176

The complex weight matrix W ∈ Cn×n is learned using a parametric matrix-valued function. The177

weight corresponding to an edge (vi, vj), Wij , is computed based on the initial features of nodes vi178

and vj , which we denote by xi,xj ∈ Cf . Formally, the weight matrix is given by:179

Wij = Φ(xi,xj), (8)

where Φ is a learnable function satisfying Φ(xi,xj) = Φ(xj ,xi)
∗, since W must be Hermitian.180

In practice, we set Φ to be an MLP and interpret xi and xj as real vectors in Rk with k = 2f . For181

brevity, we use the same notation for both complex and real forms, as the intended interpretation182

will be clear from the context. Given a pair of nodes (vi, vj) with corresponding feature vectors183

xi,xj ∈ Rk, we define Φ(xi,xj) as follows:184

Φ(xi,xj) =


σ̃(V[xi||xj ]), if (vi, vj) ∈ E and i ≤ j

σ̃(V[xi||xj ])), if (vi, vj) ∈ E and i > j

0 otherwise
(9)

Here, || denotes vector concatenation, V ∈ R2×2k is a learnable weight matrix and σ̃ is a non-linear185

function. The overline (a, b) denotes the complex conjugate when interpreting (a, b) ∈ R2 as a186

complex number, i.e., (a, b) = (a,−b). Finally, we interpret Φ(xi,xj) ∈ R2 as a complex number.187

The following result shows that if the function Φ has enough capacity and the features are diverse188

enough, we can learn any Hermitian complex weight matrix.189

Proposition 1. Let G = (V,E) be a finite graph with feature matrix X ∈ Cn×f . If the node features190

(xi,xj) ̸= (xk,xt) for any (vi, vj) ̸= (vk, vt) ∈ E and Φ defined in (9) is an MLP with sufficient191

capacity, then Φ can learn any complex-weighted structure G′ = (V,E,W).192
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Figure 2: Training accuracy (top) and examples of the processed graphs (bottom) for learnable
complex versus real random walks, varying the numbers of classes in two heterophilic settings: a
cycle graph with same-class nodes in opposite positions (left) and a ring of clusters with same-class
clusters in opposite positions (right). The complex random walk consistently achieves higher mean
accuracy (dots) than its real-valued counterpart (shade: standard deviation over 10 random seeds).

Proof sketch. Define the set S := {(xi,xj) : (vi, vj) ∈ E} ⊂ C2f and the function g : S → C,193

g(xi,xj) =Wij . Interpret S as a subset of R2k, with k = 2f , and g : S → R2. First, we show that194

g can be extended to a smooth function f : R2k → R2. Then, f can be approximated by an MLP195

with sufficient capacity [19, 20] and, thus, so does g. Therefore, Φ defined in Equation (9) can learn196

any complex weight matrix W of the graph G. For more details, see Appendix B.197

5 Experiments198

Having shown theoretically the expressivity of our model, we evaluate it through both synthetic and199

real-world experiments. The synthetic experiments show the benefits of using complex-weighted200

diffusion in controlled heterophilic settings, while the real-world experiments assess performance on201

benchmark datasets against several baseline models, providing an overview of the model’s capabilities.202

5.1 Synthetic Experiments203

These experiments constitute an ablation study aimed at assessing whether complex-weighted dif-204

fusion provides advantages in heterophilic settings compared to its real-weighted counterpart, as205

suggested by our theoretical analysis. A real random walk can be defined analogously to Definitions 2206

and 3 (see [21] for details). While Bodnar et al. [13] demonstrate that real-valued diffusion fails to207

separate classes in the time limit for certain tasks, Theorem 1 establishes that complex diffusion can208

achieve linear separation in its steady state. To isolate the effect of complex weights, we evaluate209

learnable vanilla real and complex random walks by setting M1 = 1, M2 = If , and σ = id in210

Equation (6), so that only the weight matrix W is trainable. To ensure a fair comparison, we use211

a single feature channel (f = 1) for the complex case and two channels for the real case, ensuring212

that both models have the same number of learnable parameters. Finally, to analyse the asymptotic213

behaviour, we set the number of layers to 20.214

We first consider a cycle graph containing two nodes per class, where nodes of the same class are215

placed at opposite positions on the cycle (Figure 5.1, bottom-left) and node features are sampled from216

distinct class-specific Gaussian distributions. This setup provides a clear example of heterophily:217

nodes of the same class are distant in the graph topology, and information must diffuse through an218

6
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increasing number of intermediate nodes, proportional to the number of classes, before reaching219

another node of the same class.220

Next, we design a more challenging heterophilic scenario. We consider a Stochastic Block Model221

(SBM) with 10 nodes per cluster and 2 clusters per class. The clusters are arranged in a ring topology,222

where edges are formed only between adjacent clusters, and no intra-cluster connections are present.223

Clusters positioned opposite to each other on the ring share the same class label and node features224

are sampled from class-specific Gaussian distributions. Figure 5.1 (bottom-right) illustrates this225

configuration for the case of 3 nodes per cluster.226

Figure 5.1(top) the classification accuracy for both settings as the number of classes increases,227

averaged over ten random seeds. Consistent with our theoretical findings, the complex random walk228

consistently outperforms its real-valued counterpart. Notably, in the two-class setting both methods229

achieve perfect accuracy, which aligns with the observations of Bodnar et al. [13], who showed that230

real-weighted diffusion is sufficient when only two classes are present. Overall, these experiments231

empirically confirm the intrinsic advantage of complex-weighted diffusion in heterophilic graphs, in232

agreement with our theoretical results.233

5.2 Real-World Experiments234

Given the conceptual similarity between our model and SCN [13], a direct comparison is particularly235

relevant. To ensure fairness, we follow the same experimental procedure described in [13].236

Datasets. We evaluate our model on several real-world graphs [15, 22, 23]. These datasets exhibit237

varying degrees of edge homophily h, with values ranging from h = 0.11 (very heterophilic) to238

h = 0.81 (very homophilic). This diversity allows us to assess our model’s robustness under different239

homophily conditions. Following [13], we evaluate our model using the 10 fixed data splits provided240

by [15]. For each split, 48% of the nodes in each class are used for training, 32% for validation, and241

the remaining 20% for testing. We report the mean accuracy and standard deviation across 10 splits.242

Baselines. As baselines, we include SCN [13], along with the same selection of Graph Neural243

Network (GNN) models used in their study. These baselines can be classified into three categories:244

(1) classical: GCN [17], GAT [24], GraphSAGE [25]; (2) models designed for heterophilic settings:245

GGCN [26], Geom-GCN [15], H2GCN [8], GPRGNN [27], FAGCN [28], MixHop [29]; and (3)246

models designed to address oversmoothing: GCNII [30], PairNorm [31]. All baseline results are247

reported as presented in [13]. For SCN [13], we select O(d)-NSD, the variant that achieves the best248

average performance. Finally, we include two additional diffusion-based models: BLEND [32] and249

GREAD [14] (selecting the variant with best average performance). [14].250

Results. The results are summarized in Table 1. First, CWCN significantly outperforms classical251

GNNs on heterophilic datasets, supporting our theoretical claims regarding CWCN’s improved252

expressivity over GCNs and demonstrating that these advantages translate into practical performance253

gains. On homophilic datasets, our model also generally performs better, although the margins are254

smaller. Second, CWCN remains competitive across all datasets, with its performance deviating by255

an average of 3.52% from the best-performing model (4.84% for heterophilic datasets and 1.31%256

for homophilic datasets). Overall, CWCN ranks 4th in average empirical performance among all257

evaluated models while providing provable expressiveness guarantees for an infinite number of layers258

without additional constraints.259

6 Discussion and Related Work260

Heterophily and Oversmoothing. Heterophilic graphs challenge the homophily assumption under-261

lying many GNNs. To address this, several strategies have been proposed. MixHop [29] aggregates262

information from higher-order neighbourhoods to capture long-range dependencies; Geom-GCN [15]263

redefines the notion of neighbourhood; FAGCN [28], H2GCN [8] and GGCN [26] model the relative264

importance of neighbours during aggregation; and GPRGNN [27] integrates representations from265

multiple layers to jointly leverage local and global structural information.266

To mitigate oversmoothing, a variety of methods have been proposed. Architecture-agnostic tech-267

niques include residual or skip connections to preserve information flow across layers [33, 34],268
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Table 1: Accuracy results (mean test accuracy ± standard deviation) on node classification datasets,
sorted by homophily level. The top four models are highlighted in First, Second, Third, Fourth. The
background color of the model name: green for models that provide expressive power guarantees for
an infinite number of layers, yellow for models that provide them only under certain constraints, and
grey for models without expressiveness guarantees. Our model is denoted as CWCN, and the gap to
the best model is computed in % as AccbestModel−AccCWCN

AccbestModel
· 100. Table adapted and modified from [13].

Texas Wisconsin Film Chameleon Cornell Citeseer Pubmed Cora Avg.

Hom level 0.11 0.21 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 6 3 7

CWCN 84.05±6.45 86.27±4.20 36.51 ±1.26 65.59 ±1.33 83.51±8.15 76.37±1.53 89.23 ±0.49 87.93±1.03 76.18
Gap to best
model (%) 5.48 3.51 3.67 8.11 3.44 2.11 1.11 0.72 3.95

GREAD 88.92±3.72 89.41±3.30 37.90±1.17 71.38±1.31 86.49±7.15 77.60±1.81 90.23±0.55 88.57±0.66 78.81
SCN 85.95±6.95 89.41±4.74 37.81±1.15 68.04±1.58 84.86±4.71 76.70±1.57 89.49±0.40 86.90±1.13 77.39
BLEND 83.24±4.64 84.12±3.56 35.63±1.01 60.11±2.09 85.95±6.82 76.63±1.60 89.24±0.42 86.90±1.13 75.23
GGCN 84.86±4.55 86.86±3.29 37.54±1.56 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05 77.54
H2GCN 84.86±7.23 87.65±4.98 35.7±1.00 60.11±2.15 82.70±5.28 77.11±1.57 88.49±0.38 87.87±1.20 75.56
GPRGNN 78.36±4.31 82.94±4.21 34.63±1.22 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18 71.92
FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 55.22±3.19 79.19±9.79 N/A N/A N/A -
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85 71.14
GCNII 77.57±3.83 80.39±3.40 37.44±1.30 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25 74.12
Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57 67.09
PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01 63.08
GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04 72.99
GCN 55.14±5.16 51.76±3.06 27.32±1.10 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27 63.93
GAT 52.16±6.63 49.41±4.09 27.44±0.89 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48 62.67

normalization methods to limit feature homogenization [31], and graph rewiring to enhance connec-269

tivity [35]. Architectures such as GCNII [30] and PairNorm [31] exemplify these approaches.270

These methods offer practical mechanisms to address heterophily and oversmoothing. While many271

include theoretical analyses that highlight the models’ advantages, they generally lack theoretical272

guarantees regarding node features separability as the number of layers increases. In contrast, CWCN273

not only ensures such guarantees but also achieves superior empirical performance in heterophilic274

settings compared to most of these models, being only slightly outperformed by GGCN [26].275

Diffusion on GNNs. More recently, several approaches jointly address oversmoothing and het-276

erophily by modifying the underlying message-passing dynamics [13, 14, 32, 36]. A notable example277

is the Sheaf Convolutional Network (SCN), introduced by Hansen and Gebhart [12] and later ex-278

tended into a practical learning framework by Bodnar et al. [13]. SCNs increase the expressive279

power of heat diffusion by equipping the graph with a cellular sheaf [37], enabling a diffusion280

process based on the sheaf Laplacian. In this setup, the sheaf structure is learned from data, and281

sheaf diffusion is augmented to build a GNN architecture. Another prominent approach is the Graph282

Neural Reaction-Diffusion Network (GREAD) [14], which models feature propagation through283

reaction-diffusion equations. Since our method also introduces a novel diffusion process to redefine284

message passing, it naturally belongs to this family.285

While GREAD achieves state-of-the-art results on standard node-classification benchmarks, it does286

not provide formal theoretical guarantees. SCNs, in contrast, offer provable expressiveness: Bodnar287

et al. [13] show that, in the time limit of sheaf diffusion, any node classification task can theoretically288

be solved, provided the graph is equipped with an appropriate sheaf structure. However, these289

guarantees rely on the sheaf dimension scaling with the number of target classes. Without such290

scaling, sheaf diffusion only guarantees linear separation power for regular graphs. Importantly,291

increasing the sheaf dimension introduces additional learnable parameters and enlarges the diffusion292

matrix, leading to higher computational cost. Furthermore, compared to standard GNNs, GREAD293

requires multiple additional hyperparameters to parameterize the reaction–diffusion process, while294

SCNs add only the sheaf dimension as hyperparameter.295
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Advantages of CWCNs. CWCN achieves competitive performance on node-classification bench-296

marks, surpassing most existing architectures designed to mitigate heterophily and oversmoothing,297

while performing only slightly below top-performing diffusion-based models. Importantly, unlike298

other architectures, CWCN achieves linear separation power in the diffusion time limit using a299

fixed-size matrix that is independent of the number of classes. In addition, it introduces no extra300

hyperparameters beyond those of standard GNNs. Thus, CWCN provides a simpler formulation that301

requires less hyperparameter tuning while offering stronger theoretical guarantees.302

Limitations of CWCNs. Despite its theoretical strengths and simplicity, CWCN has two main lim-303

itations. First, there remains an empirical performance gap between CWCN and the best-performing304

methods such as GREAD and SCN. Second, CWCN relies on complex-valued weights, which305

require additional matrix operations during both training and inference. This introduces overhead in306

backpropagation and leads to higher computational cost compared to real-valued GNN architectures.307

308

Complex GNNs. Incorporating complex values into graph learning has recently attracted attention309

from various communities, but the existing approaches differ fundamentally from our framework.310

For instance, CayleyNets [38] extend the ChebNet paradigm by employing Cayley polynomials as311

spectral filters, which involve learnable complex coefficients; however, the resulting filters remain312

real-valued, and signals remain consistently real throughout the process. More broadly, in network313

science, there has been a growing interest in systematically extending classical concepts to complex-314

weighted networks, e.g., [39]. This line provides useful foundations but does not design GNN models315

for downstream applications. Closer to GNNs, MagNet and related works [40, 41] employ a complex316

Laplacian matrix (e.g., magnetic Laplacian) to capture directed edge information, typically with one317

or two global phase parameters. In contrast, our framework allows arbitrary complex phases per edge,318

leading to a richer diffusion process. More importantly, unlike prior studies, we provide theoretical319

guarantees on the expressivity of our complex-weighted diffusion process. This combination of320

flexible modeling and rigorous theory distinguishes our contribution.321

7 Conclusion and Future Work322

In this work, we introduced a novel framework for enhancing the expressive power of GNNs through323

diffusion on complex-weighted graphs. We first established the full expressive power of complex-324

weighted diffusion, demonstrating its potential to address two well-known limitations of standard325

GNN architectures: oversmoothing and poor performance on heterophilic graphs.326

Building on this theoretical insight, we proposed CWCN, a GNN architecture that augments complex327

random-walk diffusion with learnable parameters and nonlinear activations. We further introduced328

a mechanism to learn the complex-weighted structure directly from data, allowing the model to329

adaptively capture the most suitable “geometry” for a given task. Compared to prior methods,330

the resulting framework is simpler—requiring fewer hyperparameters—while being supported by331

stronger theoretical guarantees.332

Empirical evaluations on standard node-classification benchmarks show that CWCN achieves com-333

petitive performance, although further work is needed to determine whether our model can be refined334

to close the gap with top-performing methods. Promising directions for future work include investi-335

gating alternative architectures based on complex random walks, exploring other types of diffusion336

processes on complex-weighted graphs, incorporating a reaction term into the complex-weighted337

diffusion equation or, interpreting complex multiplication as a rotation in two dimension, considering338

transformations along the walks in higher dimensions [42]. Additionally, reducing the computational339

overhead associated with complex weights is an important avenue for improvement.340

Overall, our findings suggest that incorporating complex-weighted diffusion provides a powerful341

approach to designing more expressive GNNs. By enriching the message passing dynamics with a342

complex-weighted structure, we open new possibilities for designing models that are both theoretically343

grounded and practically effective. To the best of our knowledge, this is the first work to leverage344

complex weights to enhance GNN expressiveness, and we hope it inspires further exploration of their345

potential in graph-based learning tasks.346
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Figure 3: Example of a balanced complex-weighted graph, where the node set is partitioned into
three subsets satisfying the conditions of Proposition 2.

A Complex Random Walk Proofs471

In this Appendix, we first summarize the main results of [16] on balanced graphs and their behavior472

under complex random walks. We then use these results to show that any node classification task can473

be performed in the time limit of a complex random walk, if the graph is equipped with a suitable474

complex-weighted structure.475

A.1 Complex Random Walks on Balanced Graphs476

Notation 1. We express elements in the complex weight matrix in polar coordinates asWij = rije
iφij ,477

where rij ≥ 0 indicates the magnitude and φij ∈ [0, 2π) is the phase. Thus, since W is Hermitian,478

rij = rji and φij = −φji + 2π.479

Next, we define the notion of structural balance in a complex-weighted graph and present necessary480

and sufficient conditions under which a graph is structurally balanced. To this end, we first introduce481

the concept of the phase of a path.482

Definition 4. Let G = (V,E,W) be a complex-weighted graph and P = (e1, . . . , ek), ei ∈ E be483

a path, the phase of P is:484

θ(P ) :=

k∑
i=1

θ(ei)mod 2π,

where θ(e) returns the phase of edge e.485

Definition 5. A complex-weighted graph G = (V,E,W) is structurally balanced if the phase of486

every cycle is 0.487

Remark 2. Since W is Hermitian, if a cycle has phase θ, the cycle with reverse direction has phase488

2π − θ. Then, a cycle has phase 0 iff its reversed cycle has phase 0, thus structural balance is489

well-defined.490

Next, we state a characterization of structurally balanced graphs, which is illustrated in Figure 3.491

Proposition 2. A complex-weighted graph G is balanced if and only if there is a partition of the492

nodes V = {Vi}
lp
i=1 such that:493

i) Any edges within each node subset in V have phase 0.494

ii) Any edges between the same pair of node subsets in V have the same phase.495

iii) If we define the graph G′ considering each node subset in V as a super node, the phase of every496

cycle in G′ is 0.497

Proof. See [16].498
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The following result characterizes the asymptotic behaviour of a complex random walk on a balanced499

graph within the infinite time limit. Note that we state the proposition for one feature channel for500

simplicity, and the asymptotic behaviour of X ∈ Cn×f is defined by considering the behaviour of501

each channel separately.502

Proposition 3. Let G be a balanced and not bipartite complex-weighted graph with associated503

partition V = {Vi}
lp
i=1 (Proposition 2). Then, the steady state of a complex random walk is x̂ = (x̂j),504

with505

x̂j = eiθ1σ(j)
x(0)T 1̃1dj

2m
, (10)

where:506

• x(0) = (xj(0)) ∈ Cn is the initial state vector.507

• 2m =
∑n

j=1 dj .508

• θhl is the phase of a path from nodes in Vh to nodes in Vl.509

• σ( · ) returns the index of the node subset in V that a node is associated with.510

• 1̃1 is the diagonal vector of S∗, where S is the diagonal matrix whose (i, i) element is eθ1σ(i)i.511

Proof. See [16].512

A.2 The Linear Separation Power of Complex-Weighted Diffusion513

Let us first prove that every graph can be endowed with an appropriate complex-weighted structure.514

Proposition 4. Let G = (V,E) be an unweighted, undirected graph and V = {Vi}
lp
i=1 a partition of515

its nodes. Then, there exists a complex-weighted graph G′ = (V,E,W) such that:516

1. It satisfies conditions (i), (ii) and (iii) of Proposition 2 for the partition {Vi}
lp
i=1. Therefore, it is517

a balanced graph.518

2. All the edges of condition (ii) between the subsets V1 and Vi have different weight for each i.519

Proof. Let us first consider the graph with lp nodes resulting from considering each node subset520

Vi of G as a super node. We denote this graph by G̃ and its nodes by ṽ1, . . . , ṽlp , where each ṽi521

corresponds to the subset Vi. We will show that it is possible to assign weights to G̃ satisfying (iii)522

and such that the edges between nodes ṽ1 and ṽi are different for each i. We denote by W̃ = (W̃ij)523

the complex weight matrix of G̃.524

We assume w.l.o.g. that G̃ is complete (if condition (iii) holds for G̃ complete, it holds for any graph525

with lp nodes, since removing edges does not add any new cycle to the graph).526

In addition, for any complete graph it is possible to choose a cycle basis whose elements are all527

triangles. To see that, note that a cycle basis can be obtained from any spanning tree of G̃ by528

selecting the cycles formed by combining a path in the tree with a single edge outside the tree.529

Therefore, we can choose the fundamental cycle basis formed from the spanning tree with edges530

{(ṽ1, ṽ2), (ṽ1, ṽ3), . . . , (ṽ1, ṽlp)}. Denote this fundamental cycle basis by {T1, . . . , Tm} and note531

that it contains every triangle of the form (ṽi, ṽj , ṽ1), i ̸= j.532

We assign complex weights to G̃ in the following way. First, set W̃1i = eiθi , choosing θi such that533

eiθi ̸= eiθj for all i ̸= j. Then, set W̃i1 = W̃i1 = e−iθi . Finally, for k = 1, . . . ,m, assign the534

weights W̃ij and W̃ji of the remaining edge ek of each Tk so that the sum of the phases of the cycle535

Tk is 0. Note that W̃ji = W̃ij trivially. Note that two triangles of the basis cannot share the same536

edge ek because of the way the fundamental basis is built, so this is well-defined.537

Since G̃ is complete, every edge in G̃ belongs to some Tk. Therefore, we have assigned weights538

to every edge in G̃ such that the edges between nodes ṽ1 and ṽj are different for each j and (iii) is539

satisfied for the cycles T1, . . . , Tm. Next, we will prove that (iii) holds for every other triangle and,540

finally, that it holds for any cycle in G̃.541
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ṽi1
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ṽi1
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Figure 4: Illustration of how the triangle T in the proof of Proposition 4 can be obtained as
T = T ′

1△T ′
2△T ′

3.

Consider first a triangle T = (ṽi1 , ṽi2 , ṽi3) in G̃, such that T /∈ {T1, . . . , Tm}, thus ṽij ̸= ṽ1 for542

j = 1, 2, 3. Define the triangles T ′
1 := (ṽi1 , ṽi2 , ṽ1), T

′
2 := (ṽi2 , ṽi3 , ṽ1), T

′
3 := (ṽi3 , ṽi1 , ṽ1) and the543

cycle C = (ṽi1 , ṽi2 , ṽi3 , ṽ1). Note that T ′
u ∈ {T1, . . . , Tm} for u = 1, 2, 3 and that:544

T ′
1△T ′

2 = C C△T ′
3 = T,

where △ is the symmetric difference. Then, T is expressed as a symmetric difference of basis triangles545

as T = T ′
1△T ′

2△T ′
3. This is illustrated in Figure 4. Fix the orientation in T given by the order546

(ṽi1 , ṽi2 , ṽi3) and denote by θ12, θ23, θ31 the phases corresponding to the weights of this oriented547

cycle. Next, set the orientations of T ′
1, T ′

2 and T ′
3 given by the orders (ṽi1 , ṽi2 , ṽ1), (ṽi2 , ṽi3 , ṽ1) and548

(ṽi3 , ṽi1 , ṽ1), respectively, as illustrated in Figure 4.549

Denote by θ∗j the phase of the weight W̃1ij and θj∗ the phase of the weight W̃ij1 (then, θj∗ = −θ∗j550

mod 2π). Then, since T ′
u are elements of the basis, we have:551

(θ12 + θ2∗ + θ∗1)mod 2π = 0 ⇐⇒ (θ12 − θ∗2 + θ∗1)mod 2π = 0
552

(θ23 + θ3∗ + θ∗2)mod 2π = 0 ⇐⇒ (θ23 − θ∗3 + θ∗2)mod 2π = 0
553

(θ31 + θ1∗ + θ∗3)mod 2π = 0 ⇐⇒ (θ31 − θ∗1 + θ∗3)mod 2π = 0

Then:554

0 = (θ12 − θ∗2 + θ∗1 + θ23 − θ∗3 + θ∗2 + θ31 − θ∗1 + θ∗3)mod 2π = (θ12 + θ23 + θ31)mod 2π
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ṽi5

θ45

θ51

θ14

Figure 5: Illustration of the proof of Proposition 4: every cycle satisfies property (iii) of Proposition 2.

Note that a similar argument can be made if we fix the opposite orientation in T . Therefore, we have555

proven that every triangle in G̃ satisfies (iii).556

Finally, let us prove that every cycle in G̃ satisfies (iii). Consider an oriented cycle (ṽi1 , . . . , ṽir ) and557

denote by θkl the phase corresponding to the weight W̃ikil . Then:558

(θ12 + θ23 + · · ·+ θ(r−1)r + θr1)mod 2π = (θ13 + θ34 + · · ·+ θ(r−1)r + θr1)mod 2π

= (θ14 + θ45 + · · ·+ θ(r−1)r + θr1)mod 2π

. . .

= (θ1(r−1) + θ(r−1)r + θr1)mod 2π = 0,

where we have each equality by substituting the sum of the weights of a 2-length path between two559

nodes by the weight of the edge joining the nodes (which forms a triangle). This process is illustrated560

in Figure 5. The last equality holds because (ṽi1ir−1
, ṽir−1ir , ṽiri1) is a triangle.561

Therefore, we have proven that every cycle in G̃ satisfies (iii).562

Now consider G = (V,E), denote its nodes by v1, . . . , vn and define the function σ, where σ(j)563

returns the index i of the node subset Vi to which node vj belongs. Construct the matrix W = (Wij)564

by assigning weights in the following way:565

Wij =


0, if (vi, vj) /∈ E

1, if σ(i) = σ(j)

W̃σ(i)σ(j) otherwise

By construction, G′ = (V,E,W) satisfies all the conditions of the Proposition.566

Therefore, we have proven that every graph can be assigned complex weights so that the resulting567

complex-weighted graph satisfies the hypothesis of Proposition 3. Thus, it is possible to describe its568

asymptotic behaviour in the time limit of a complex random walk.569

Theorem 1. Let G = (V,E) be an unweighted, undirected graph and V = {Vi}
lp
i=1 a partition of its570

nodes. Then, there exists a complex-weighted graph G′ = (V,E,W) such that, starting from any571

initial features x(0) = (xi(0)), in the steady state of a complex random walk, the features of the572

nodes belonging to a subset Vl have the same phase, and this phase is different for each subset.573

Proof. First, it is possible to assign complex weights toG obtaining a balanced graphG′ = (V,E,W)574

that satisfies the conditions of Proposition 4. In addition, we assign self-loops to every node,575

Wii = 1 ∀i = 1, . . . , n, to ensure that G′ is not bipartite.576

Then, G′ is in the conditions of Proposition 3, so we can obtain its steady state in a complex random577

walk using Equation (10). Note that the factor x(0)T 1̃1

2m does not depend on j, so it is common for all578

nodes. Therefore, two nodes vj and vk have different phases iff eiθ1σ(j) ̸= eiθ1σ(k) .579

By construction of G′, θ1σ(j) mod 2π = θ1σ(k) mod 2π iff σ(j) = σ(k). Then, two nodes have580

the same phase iff they belong to the same subset of {Vi}
lp
i=1.581

B Complex Weights Learning Proof582

Proposition 1. Let G = (V,E) be a finite graph with feature matrix X ∈ Cn×f . If the node features583

(xi,xj) ̸= (xk,xt) for any (vi, vj) ̸= (vk, vt) ∈ E and Φ defined in (9) is an MLP with sufficient584

capacity, then Φ can learn any complex-weighted structure G′ = (V,E,W).585
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Proof. Let W ∈ Cn×n be a complex weight matrix for G, and denote its elements by Wij =586

aij + ibij . Since W is Hermitian, aji = aij and bji = −bij .587

Consider the feature matrix X as a real-valued matrix X ∈ Rn×k, with k = 2f .588

Define the set S := {(xi,xj) : (vi, vj) ∈ E} ⊂ R2k. Since each (xi,xj) is unique, the function589

g : S → R2, g(xi,xj) = (aij , bij) is well-defined. We now show that g can be extended to a smooth590

function f : R2k → R2.591

Since S = {s1, . . . , sM} is a finite set, for each sm ∈ S, there exists a sufficiently small neigh-592

bourhood Um ⊂ R2k such that sm ∈ Um and sp /∈ Up for all m ̸= p. In addition, it is possible to593

find a smooth bump function ψm : R2k → R such that ψm(sm) = 1 and ψm(x) = 0 ∀x /∈ Um.594

Then, the function f(x) =
∑M

m=1 g(sm)ψm(x) is smooth and f |S = g. Since f is smooth, it can595

approximated by an MLP [19, 20] and, thus, so does g.596

Now it is enough to identify R2 ≡ C, with the first coordinate corresponding to the real part and the597

second coordinate to the imaginary part. Then, interpreting S ⊂ C2f , we have proven that g : S → C,598

g(xi,xj) = aij + ibij can be approximated by an MLP with sufficient capacity. Therefore, Φ defined599

in Equation (9) can learn any complex weight matrix W of the graph G.600

C Additional implementation details and hyperparameters601

Adjusting the activation magnitudes. Following the approach in [13], we found it useful in602

practice to learn additional parameters εl = (εl1, ε
l
2), with εli ∈ [−1, 1], for each layer l. These603

parameters are used to compute the diffusion step as follows:604

X(l + 1) = (1 + εl)X(l)− σ((I−P)(In ⊗Ml
1)X(l)Ml

2) ∈ Cn×f

Here, (1 + εl)X(l) denotes scaling the real part of X(l) by εl1 + 1 and the imaginary part by εl2 + 1.605

This mechanism allows the model to dynamically adjust the relative magnitudes of real and imaginary606

components at each layer. These learnable scaling parameters are used in all of our experiments.607

Batch normalization. Proposition 1 guarantees that any complex weight matrix can be learned,608

provided the node features are sufficiently diverse. However, in practice, we observed that the initial609

node features X(0) tend to be very similar across nodes. This issue arises from the initial MLP, where610

the bias term often dominates in practice, causing the output features of all nodes to become nearly611

identical.612

To address this problem, we insert a batch normalization layer immediately after the MLP. This613

normalizes each feature dimension across the batch of nodes, mitigating bias dominance, and614

promoting feature diversity. Batch normalization is used in all of our experiments.615

Real learnable matrices. Complex matrix multiplication is more expensive than its real counterpart.616

To improve efficiency, we replace the complex matrices Ml
1 ∈ C,Ml

2 ∈ Cf×f in Equation (6) with617

real matrices of size 2× 2 and 2f × 2f , respectively. The feature matrix X(l) is then treated as a real618

matrix in Rn×2f . In practice, we observe no loss in performance with this substitution, and therefore619

adopt it in all our experiments.620

Hyperparameters and Training Procedure. Following [13], we evaluate our model using the621

hyperparameter ranges listed in Table 2, where dropout has been included as a regularization technique622

to prevent overfitting. We assign different dropout rates to the initial layer and to the linear layers623

within the convolutional blocks. We train all models for a fixed maximum number of epochs and624

perform early stopping when the validation metric has not improved for a pre-specified number625

of patience epochs. We report the test results at the epoch where the best validation metric was626

obtained for the model configuration with the best validation score among all models. We use the627

hyperparameter optimisation tools provided by Weights and Biases [43] for this procedure.628

D Additional Synthetic Experiments629

In this section, we conduct further synthetic experiments that allow a direct comparison with standard630

heat diffusion in a controlled setting.631
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Table 2: Hyperparameter ranges used to evaluate our model in the real-world experiments.

Hyperparameter Values
Hidden channels (8,16,32)
Layers 2-8
Learning rate 0.02
Activation (regular layers) ELU
Activation (complex weights learning) tanh
Weight decay (regular parameters) Log-uniform [0.007, 0.2]

Weight decay (complex weights parameters) Log-uniform [0.01, 0.4]

Input dropout Uniform [0, 0.9]

Layer dropout Uniform [0, 0.9]

Patience (epochs) 1000
Max training epochs 1500
Optimiser Adam
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Figure 6: Training accuracy across diffusion layers (left) for heat diffusion and the learned complex
random walk on a cycle bipartite graph with 2 classes (right): While the mean accuracy (solid line)
for heat diffusion remains low throughout, the complex random walk surpasses 95 % as diffusion
progresses. The shaded region (minimum–maximum range across 5 random seeds) further shows that
heat diffusion never exceeds 70 %, whereas the complex random walk maintains over 90 % mean
accuracy across all seeds.

We consider a bipartite cycle graph with 20 nodes divided into two partitions (Figure 6, right), and632

assign node features sampled from two overlapping isotropic Gaussian distributions. This setup633

ensures that the classes are not linearly separable at initialization. As shown by [9], heat diffusion634

fails to separate the classes in the diffusion limit. In contrast, Theorem 1 demonstrates that a complex635

random walk can achieve linear separation in its steady state. In this experiment, we study whether a636

suitable complex weight matrix can be learned directly from data in this simplified setting, using a637

vanilla random walk diffusion process, i.e., by setting M1 = 1, M2 = If and σ = id in Equation (6).638

For heat diffusion, we first learn a transformation of the initial node features X(0), and then apply the639

diffusion process. For the complex random walk, we instead learn a complex-valued weight matrix640

W as a function of X(0), and subsequently perform the complex random walk. In both approaches,641

the model parameters are optimized to produce linearly separable features at the diffusion time limit.642

Figure 6 (left) shows the classification results averaged over five random seeds. As expected, at643

diffusion time zero, a linear classifier fails to distinguish the classes. As diffusion progresses, heat644

diffusion continues to yield non-separable features, whereas the complex random walk consistently645

achieves over 90% mean accuracy across seeds. This result highlights the potential of learning an646
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effective complex-weighted graph structure that enables successful node classification at the diffusion647

limit.648
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