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Abstract

Graph Neural Networks (GNNs) have achieved remarkable success across diverse
applications, yet they remain limited by oversmoothing and poor performance
on heterophilic graphs. To address these challenges, we introduce a novel
framework that equips graphs with a complex-weighted structure, assigning each
edge a complex number to drive a diffusion process that extends random walks
into the complex domain. We prove that this diffusion is highly expressive:
with appropriately chosen complex weights, any node-classification task can be
solved in the steady state of a complex random walk. Building on this insight,
we propose the Complex-Weighted Convolutional Network (CWCN), which
learns suitable complex-weighted structures directly from data while enriching
diffusion with learnable matrices and nonlinear activations. CWCN is simple
to implement, requires no additional hyperparameters beyond those of standard
GNNSs, and achieves competitive performance on benchmark datasets. Our results
demonstrate that complex-weighted diffusion provides a principled and general
mechanism for enhancing GNN expressiveness, opening new avenues for models
that are both theoretically grounded and practically effective.

1 Introduction

Graph Neural Networks (GNNs) [1] have emerged as a powerful class of machine learning models to
deal with relational and structured data. They have shown state-of-the-art performance in a wide range
of applications, such as recommendation systems [2], molecular property prediction [3], webpage
classification [4] or predictions in citation networks [5].

Limitations of GNNs. Most Graph Neural Network (GNN) architectures are built on the message
passing paradigm, where each node iteratively aggregates information from its neighbors to update its
representation. While this approach has been highly successful, “classical” GNNs usually face two
well-documented challenges: (1) poor performance on heterophilic graphs [6] and (2) oversmoothing
[7]. Both stem from the inherent difficulty of capturing long-range dependencies. The heterophily
problem arises because message passing implicitly assumes homophily [6], i.e. that neighboring nodes
tend to share similar features and labels, an assumption that is often not verified in real-world networks
[8]. Oversmoothing, on the other hand, refers to the tendency of node representations to become
indistinguishable after repeated message passing, eroding their discriminative power. Oversmoothing
has been particularly well studied in the context of Graph Convolutional Networks (GCNs). From a
diffusion perspective, GCNs can be seen as implementing an augmented heat diffusion process over
the graph [9]. In such a process, node features within the same connected component converge to
identical values [9], a phenomenon that significantly contributes to oversmoothing in GCNs [10, 11].

Beyond Heat Diffusion. To address these limitations, recent research has focused on developing
more expressive diffusion processes. Prominent examples include Sheaf Convolutional Networks
(SCNs) [12, 13] and Graph Neural Reaction-Diffusion Networks (GREAD) [14]. Both approaches
enrich the underlying graph structure to support more sophisticated forms of diffusion. GREAD has
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Initial state Diffusion time 1 Diffusion time 5 Diffusion time 12

Figure 1: Node features in polar coordinates at selected diffusion times (top) and evolution of node
feature phases over time during diffusion (bottom). Complex random walk diffusion progressively
separates the classes of a complex-weighted graph: nodes in the same class (same color) converge
to complex numbers with the same phase. The figure corresponds to the dataset Texas [15]. From
diffusion time 5 onward, the purple class is omitted for better visualization.

shown strong empirical performance on standard benchmarks, providing a practical and scalable
alternative to sheaf-based methods, though it does not come with theoretical guarantees. SCNs, in
contrast, offer provable expressiveness, but their guarantees require the sheaf dimension to scale
with the number of target classes, a requirement that increases model parameters and, in turn,
computational cost.

Contributions. We introduce a new approach that modifies the underlying “geometry” of the graph
to define a more expressive diffusion process, forming the foundation for a novel GNN architecture.
Concretely, we propose equipping the graph with a complex-weighted structure, where each edge
is assigned a complex number. This extension enables a diffusion process that generalizes random
walks to the complex domain [16].

Our main contributions are as follows:

* We propose a novel way to enrich graph structure by assigning complex weights to edges,
enabling a diffusion process with provable expressiveness guarantees. We show that for any
node-classification task, suitable weights can be chosen such that classification is possible in the
steady state of the resulting complex random walk (see Figure 1). To the best of our knowledge,
this is the first study establishing a connection between the convergence properties of complex
random walks and the expressivity of GNNs for node classification tasks.

* In contrast to sheaf-based diffusion, our theoretical guarantees are independent of the number of
target classes, allowing for a simpler model.

* We introduce the Complex-Weighted Convolutional Network (CWCN), a GNN that augments
complex random-walk diffusion and achieves greater expressiveness than GCNs. CWCN reduces
the number of hyperparameters compared to prior methods while maintaining competitive
performance on benchmarks.
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2 Theoretical Background

Problem Setting. We consider the problem of node classification in undirected graphs. Formally,
let G = (V, E) be an undirected graph, with set of nodes V' = {vq,...,v,} and set of edges
E C {{vi,v;} | vi,v; € V}. Bach node v; € V is associated with a feature vector x; € R¥
and belongs to a class y; € {1,...,C}, where C is the number of possible classes. We denote by
A € R™ ™ the adjacency matrix, D the degree matrix and N (v;) the set of neighbours of node v;. In
addition, we group all node feature vectors into a feature matrix X € R™"**,

Given labels for a subset of nodes, the goal is to learn a function f : V' — {1,..., C} that predicts the
class labels for the remaining nodes in the graph. We focus on the semi-supervised node classification
setting, where the complete graph structure — including all node features and edge connections —
is available during training, but only a subset of nodes is labelled. In this setting, we denote by
Virain, Vval, Viest C V' the training, validation and test sets, respectively.

2.1 Heat Diffusion and GCNs
The heat diffusion equation in a graph and its unit-timestep Euler discretisation are

X(t) = —LoX(t) ~ X(t+1)=(1-200)X(), (1)
where Ag := I —D~2AD"? is the normalized graph Laplacian.

Most GNNs follow the message-passing paradigm, in which each node iteratively updates its feature
representation by aggregating information from its neighbours. Numerous architectures are built
upon this general framework, with Graph Convolutional Networks (GCNs) [17] being one of the
most popular examples. GCNs implement message passing at each layer as:

HO = oD 2AD *HIMY) = o((1— Ag) HOM), @)

where H() € R"*#1 s the matrix of node representations at layer , M € R¥:-1%kt i a learnable
weight matrix, and o denotes a non-linear activation function. A = A + 1, D = D + I are the

augmented adjacency and degree matrices, and Ay =1-— D 2AD" 2 is the augmented graph

Laplacian. Therefore, GCN can be seen as an augmented heat diffusion process with an additional

ki—1 x k; learnable weight matrix M(()l) and a non-linearity o.

Li et al. [9] were the first to highlight the oversmoothing problem, showing that repeatedly applying
Equation (1) causes the features of nodes within the same connected component to converge to
identical values. Building on this observation, Oono and Suzuki [10] and Cai and Wang [11]

demonstrate that, under certain assumptions on the weight matrices Mél) , the expressive power of
GCNs decays exponentially as the number of layers increases.

2.2 Random Walks on Graphs With Complex Weights

In this section, we present the main concepts regarding complex-weighted graphs, which form the
basis for studying the expressive power of the complex-weighted diffusion process, detailed in
Section 3.

Definition 1. A complex-weighted graph is a graph where each edge is assigned a complex number,
G = (V,E,W) where V = {v1,...,v,} is the node set, E C {e;j = (v;,v;) : v;,v; € V'} is the
edge set and W = (W;;) is the complex weight matrix, with W;; € C characterizing the edges
between nodes.

Remark 1. We assume the complex-weighted graphs to be connected and directed". In addition, we
assume W to be Hermitian, i.e., W = W*,

Definition 2. We define the following matrices in a complex-weighted graph:

1. The complex degree matrix Q is the diagonal matrix with elements q; = j |[Wij]

2. The complex transition matrix P = Q7'W,

3. The complex random walk Laplacian L., = I — P, where 1 is the identity matrix.

'Note that we work with undirected unweighted graphs, but directed complex-weighted graphs.
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We can now use these matrices to define a complex random walk.

Definition 3. Let G = (V, E, W) be a complex-weighted graph with f feature channels, where node
features are represented as a matrix X € C™*f. We define a complex random walk as the diffusion
process governed by the following PDE:

X(t) = —Lru X (2). (3)
Thus, its Euler discretization with a unit step is:

An important class of complex-weighted graphs is that of structurally balanced graphs, where the
sum of the edge phases along any cycle is an integer multiple of 27 [16, 18]. These graphs can
be characterized in terms of a partition of the node set, and their asymptotic behavior under a
complex random walk has been analyzed in the infinite-time limit [16]. Building on these results,
we show in the next section that any node-classification task can be solved in the steady state of a
complex random walk, provided the graph is equipped with a suitable complex-weighted structure
defined by the task. We further prove that such weights always exist (see Theorem 1), establishing a
general expressiveness guarantee for our framework. Additional details on balanced graphs and their
properties are provided in Appendix A or can be found in [16].

3 The Expressive Power of Complex-Weighted Diffusion

Bodnar et al. [13] showed that performing diffusion in a real-weighted graph is not sufficient to
guarantee expressivity in an arbitrary classification task. In this section, we prove the full expressive
power of complex-weighted diffusion, which constitutes the main result of this paper.

Theorem 1. Let G = (V, E) be an unweighted, undirected graph and V = {Vi}i’”:l a partition of its
nodes. Then, there exists a complex-weighted graph G' = (V, E, W) such that, starting from any
initial features x(0) = (x;(0)), in the steady state of a complex random walk, the features of the
nodes belonging to a subset V| have the same phase, and this phase is different for each subset.

Proof sketch. The proof builds upon the results on complex-weighted graphs developed by Tian and
Lambiotte [16], summarized in Appendix A. According to Proposition 2, the partition ) characterizes
a structurally balanced graph satisfying the following properties: (i) any edge within each node subset
in V has phase 0; (ii) any edge between the same pair of node subsets in )V has the same phase; and
(iii) if we define the graph G considering each node subset in V as a super node, the phase of every
cycle in G is 0. In addition, Proposition 3 characterizes the steady state of a complex random walk
on any structurally balanced graph in terms of its associated partition.

To prove the theorem, we first show that for any given partition V, it is possible to assign complex
weights to the edges of the graph G so that conditions (i)—(iii) above are satisfied. The proof of this
result proceeds by constructing a super graph G that determines the complex weight corresponding to
each pair of subsets of 1V such that (iii) holds. Specifically, we first build a cycle basis of G composed
of triangles and verify that each element of the basis satisfies (iii). We then extend this property to
any other triangle and, consequently, to all cycles in G. This construction determines the desired
complex-weighted graph G’.

Finally, applying Proposition 3 to the obtained graph G’ shows that, in the long time limit of a
complex random walk, the features of nodes belonging to different subsets of 1 converge to complex
numbers with different phases. The full proof can be found in Appendix A. O

Hence, as in Figure 1, every graph can be assigned complex weights such that in the steady state of
a complex random walk, only nodes belonging to the same class have the same phase. Then, the
nodes’ features are linearly separable in the asymptotic time limit, which shows that solving any node
classification task can be reduced to performing diffusion with the right complex-weighted structure.

4 Complex-Weighted Convolutional Networks

Analogously to how GCN augments heat diffusion, we build a Complex-Weighted Convolutional
Network (CWCN) that augments the complex random walk diffusion process. In addition, we propose
a method to learn the complex-weighted structure from data.
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4.1 Complex-Weighted Convolutions

Let G be a complex-weighted graph with initial feature matrix X(0) € C"*/, complex weight
matrix W € C"*", degree matrix Q € R"*" and recall P = Q~'W, L., = I — P. We equip the
diffusion process given by Equation (3) with learnable weight matrices M; € C, My € C/*f and a
non-linearity o to arrive at a model whose evolution is governed by:

X(t) = —0(Lyrw(L, ® M1)X(t)Mz) = —o((I - P)(I, ® M1)X(t)Ma), ©)

where f is the number of channels and ® denotes the Kronecker product. M applies a rotation to
the node features in all the channels, while M allows mixing each node’s feature channels. Note that
by setting M1, M5 and o to the identity, we recover the complex random walk diffusion equation.
Therefore, the model is at least as expressive as complex random walk diffusion and can benefit from
the linear separation power described in Theorem 1. We focus on the time-discretised version of this
model which allows us to use a new set of learnable weight matrices M} € C, M}, € C/*7 at each
layer =0,...,L —1:

X(14+1)=X(l) — o((I - P)(I, ® M})X()M}) € C"*/. (6)

Since the formulation in Equation (6) requires the initial feature matrix X(0) € C"*/, we first use a
multilayer perceptron (MLP) to map the raw node features to a real-valued matrix X (0) € R"*2f,
which we then interpret as a complex matrix in C™*/. Similarly, we interpret the final representation
X (L) as a real-valued matrix in R"*2/ and apply a final MLP to perform node classification.

4.2 Complex Weights Learning

In general, an appropriate complex-weighted structure that guarantees linear separability in the time
limit of the diffusion process cannot be determined without full knowledge of the node classes.
Therefore, we aim to learn the underlying complex structure from data, which will allow the model
to choose the appropriate complex weight matrix W for each node classification task. Specifically,
we define the complex weight matrix W as a learnable function of the initial node features X (0):

W = g(G, X(0);0), M
where 6§ are learnable parameters. Once we have learned the complex weight matrix W, we can
obtain Q the degree matrix and compute P = Q~''W.

The complex weight matrix W € C"*" is learned using a parametric matrix-valued function. The
weight corresponding to an edge (v;, v;), W;;, is computed based on the initial features of nodes v;

and v;, which we denote by x;,x; € C/. Formally, the weight matrix is given by:
Wij = ®(x4,%;5), ()
where @ is a learnable function satisfying ®(x;,x;) = ®(x;,x;)*, since W must be Hermitian.

In practice, we set ® to be an MLP and interpret X; and x; as real vectors in R* with k = 2f. For
brevity, we use the same notation for both complex and real forms, as the intended interpretation
will be clear from the context. Given a pair of nodes (v;,v;) with corresponding feature vectors

x;,%; € R¥, we define ®(x;, x;) as follows:

(VIxil|x;]), if (vs,v;) € Eandi < j
O(x;,%x;) = ¢ 0(VIx;||x5])), if (v;,vj) € Eandi > j 9)
0 otherwise

Here, || denotes vector concatenation, V € R2*2* is a learnable weight matrix and & is a non-linear

function. The overline (a,b) denotes the complex conjugate when interpreting (a,b) € R? as a

complex number, i.e., (a,b) = (a, —b). Finally, we interpret ®(x;,x;) € R? as a complex number.

The following result shows that if the function ® has enough capacity and the features are diverse
enough, we can learn any Hermitian complex weight matrix.

Proposition 1. Let G = (V, E) be a finite graph with feature matrix X € C"*/. If the node features
(x4,%5) # (Xi,%¢) for any (v;,vj) # (vi,v¢) € E and ® defined in (9) is an MLP with sufficient
capacity, then ® can learn any complex-weighted structure G' = (V, E, W).



193
194
195
196
197

198

199
200
201
202

203

204
205
206
207

209
210
211
212
213
214

215
216
217
218

Complex-Weighted Convolutional Networks: Provable Expressiveness via Complex Diffusion

1091 = 104 §
°
¢ °
i a
(] L] Bl
0.8 [ ] * 0.8 5 &
> n > L] [ ] °
e . g e .
£ 06 ™ - < 0.6 °
5 S - [ ]
o O | |
< ] <
£ " £ ™ [ ] °
© 4 © B
£ 0.4 2 0.4 't
0.2 0.24
® Complex RW ® Complex RW
m  Real RW W Real RW
0.0 T T T T T T T T T 0.0 T T T T T T T T T
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Classes Number of Classes

oot R

Figure 2: Training accuracy (top) and examples of the processed graphs (bottom) for learnable
complex versus real random walks, varying the numbers of classes in two heterophilic settings: a
cycle graph with same-class nodes in opposite positions (left) and a ring of clusters with same-class
clusters in opposite positions (right). The complex random walk consistently achieves higher mean
accuracy (dots) than its real-valued counterpart (shade: standard deviation over 10 random seeds).

Proof sketch. Define the set S = {(x;,%;) : (vi,v;) € E} C C* and the function g: S — C,
g(xi,x;) = W;;. Interpret S as a subset of R?*, with k = 2f, and g: S — R?. First, we show that
g can be extended to a smooth function f: R?* — R2. Then, f can be approximated by an MLP
with sufficient capacity [19, 20] and, thus, so does g. Therefore, ® defined in Equation (9) can learn
any complex weight matrix W of the graph GG. For more details, see Appendix B. O

S Experiments

Having shown theoretically the expressivity of our model, we evaluate it through both synthetic and
real-world experiments. The synthetic experiments show the benefits of using complex-weighted
diffusion in controlled heterophilic settings, while the real-world experiments assess performance on
benchmark datasets against several baseline models, providing an overview of the model’s capabilities.

5.1 Synthetic Experiments

These experiments constitute an ablation study aimed at assessing whether complex-weighted dif-
fusion provides advantages in heterophilic settings compared to its real-weighted counterpart, as
suggested by our theoretical analysis. A real random walk can be defined analogously to Definitions 2
and 3 (see [21] for details). While Bodnar et al. [13] demonstrate that real-valued diffusion fails to
separate classes in the time limit for certain tasks, Theorem 1 establishes that complex diffusion can
achieve linear separation in its steady state. To isolate the effect of complex weights, we evaluate
learnable vanilla real and complex random walks by setting M; = 1, My = Iy, and ¢ = id in
Equation (6), so that only the weight matrix W is trainable. To ensure a fair comparison, we use
a single feature channel (f = 1) for the complex case and two channels for the real case, ensuring
that both models have the same number of learnable parameters. Finally, to analyse the asymptotic
behaviour, we set the number of layers to 20.

We first consider a cycle graph containing two nodes per class, where nodes of the same class are
placed at opposite positions on the cycle (Figure 5.1, bottom-left) and node features are sampled from
distinct class-specific Gaussian distributions. This setup provides a clear example of heterophily:
nodes of the same class are distant in the graph topology, and information must diffuse through an
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increasing number of intermediate nodes, proportional to the number of classes, before reaching
another node of the same class.

Next, we design a more challenging heterophilic scenario. We consider a Stochastic Block Model
(SBM) with 10 nodes per cluster and 2 clusters per class. The clusters are arranged in a ring topology,
where edges are formed only between adjacent clusters, and no intra-cluster connections are present.
Clusters positioned opposite to each other on the ring share the same class label and node features
are sampled from class-specific Gaussian distributions. Figure 5.1 (bottom-right) illustrates this
configuration for the case of 3 nodes per cluster.

Figure 5.1(top) the classification accuracy for both settings as the number of classes increases,
averaged over ten random seeds. Consistent with our theoretical findings, the complex random walk
consistently outperforms its real-valued counterpart. Notably, in the two-class setting both methods
achieve perfect accuracy, which aligns with the observations of Bodnar et al. [13], who showed that
real-weighted diffusion is sufficient when only two classes are present. Overall, these experiments
empirically confirm the intrinsic advantage of complex-weighted diffusion in heterophilic graphs, in
agreement with our theoretical results.

5.2 Real-World Experiments

Given the conceptual similarity between our model and SCN [13], a direct comparison is particularly
relevant. To ensure fairness, we follow the same experimental procedure described in [13].

Datasets. We evaluate our model on several real-world graphs [15, 22, 23]. These datasets exhibit
varying degrees of edge homophily &, with values ranging from A = 0.11 (very heterophilic) to
h = 0.81 (very homophilic). This diversity allows us to assess our model’s robustness under different
homophily conditions. Following [13], we evaluate our model using the 10 fixed data splits provided
by [15]. For each split, 48% of the nodes in each class are used for training, 32% for validation, and
the remaining 20% for testing. We report the mean accuracy and standard deviation across 10 splits.

Baselines. As baselines, we include SCN [13], along with the same selection of Graph Neural
Network (GNN) models used in their study. These baselines can be classified into three categories:
(1) classical: GCN [17], GAT [24], GraphSAGE [25]; (2) models designed for heterophilic settings:
GGCN [26], Geom-GCN [15], H2GCN [8], GPRGNN [27], FAGCN [28], MixHop [29]; and (3)
models designed to address oversmoothing: GCNII [30], PairNorm [31]. All baseline results are
reported as presented in [13]. For SCN [13], we select O(d)-NSD, the variant that achieves the best
average performance. Finally, we include two additional diffusion-based models: BLEND [32] and
GREAD [14] (selecting the variant with best average performance). [14].

Results. The results are summarized in Table 1. First, CWCN significantly outperforms classical
GNNs on heterophilic datasets, supporting our theoretical claims regarding CWCN’s improved
expressivity over GCNs and demonstrating that these advantages translate into practical performance
gains. On homophilic datasets, our model also generally performs better, although the margins are
smaller. Second, CWCN remains competitive across all datasets, with its performance deviating by
an average of 3.52% from the best-performing model (4.84% for heterophilic datasets and 1.31%
for homophilic datasets). Overall, CWCN ranks 4" in average empirical performance among all
evaluated models while providing provable expressiveness guarantees for an infinite number of layers
without additional constraints.

6 Discussion and Related Work

Heterophily and Oversmoothing. Heterophilic graphs challenge the homophily assumption under-
lying many GNNs. To address this, several strategies have been proposed. MixHop [29] aggregates
information from higher-order neighbourhoods to capture long-range dependencies; Geom-GCN [15]
redefines the notion of neighbourhood; FAGCN [28], H2GCN [8] and GGCN [26] model the relative
importance of neighbours during aggregation; and GPRGNN [27] integrates representations from
multiple layers to jointly leverage local and global structural information.

To mitigate oversmoothing, a variety of methods have been proposed. Architecture-agnostic tech-
niques include residual or skip connections to preserve information flow across layers [33, 34],
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Table 1: Accuracy results (mean test accuracy =+ standard deviation) on node classification datasets,
sorted by homophily level. The top four models are highlighted in First, Second, Third, Fourth. The
background color of the model name: green for models that provide expressive power guarantees for
an infinite number of layers, yellow for models that provide them only under certain constraints, and
grey for models without expressiveness guarantees. Our model is denoted as CWCN, and the gap to

the best model is computed in % as ASCueos —Acccwen

AcChestModel

- 100. Table adapted and modified from [13].

Texas ‘Wisconsin Film Chameleon  Cornell Citeseer Pubmed Cora Avg.
Hom level 0.11 0.21 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 6 3 7
CWCN 84.05+645 86.27+420 36.51 £126  65.59 +133  83.5148.15 76.37+153 89.23 +049 87.93+103 76.18
Gap to best
model (%) 5.48 3.51 3.67 8.11 3.44 2.11 1.11 0.72 3.95
GREAD 88.92+372  89.41+330  37.90+1.17 71.38+1.31 86.49+7.15  77.60+181  90.23+055 88.57+066 78.81
SCN 85.95+695 89.41+474 37.81+1.15 68.04+158  84.86+471  76.70+157 89.49+040 86.90+1.13 77.39
BLEND 83.24+464 84.124356  35.63+1.01 60.11+209  85.95+682 76.63+160 89.24+042 86.90+1.13 75.23
GGCN 84.86+455 86.86+320  37.54+156 71.14+184  85.68+663 77.14+145 89.15+037 87.95+105 77.54
H2GCN 84.86+723  87.65+4.98 35.7+1.00 60.11+2.15 82704528 77.11+157 88.49+038 87.87+120 75.56
GPRGNN 78.36+431  82.94+421  34.63+122 46.58+1.71 80.27+8.11  77.13+167  87.54+038 87.95+118 71.92
FAGCN 82.43+6.89  82.944795  34.87+1.25 55.2243.19  79.19+9.79 N/A N/A N/A -
MixHop 77.84+773  75.88+490  32.22+234  60.50+253  73.51+634 76.26+133 85.31+061 87.61+o0ss 71.14
GCNII 77.57+383 80394340 37.44+130  63.86+304  77.86+379 77.33+148 90.15+043 88.37+125 74.12
Geom-GCN  66.76+272  64.514366  31.59+1.15 60.00+281  60.54+367 78.02+1.15  89.95+047 85354157 67.09
PairNorm 60.27+434  48.43+6.14  27.40+124 62.74+282 58924315 73.59+147 87.53+044 85.79+101  63.08
GraphSAGE 82431614  81.18+s556  34.23+099  58.73+168  75.95+501 76.04+130 88.45+050 86.90+1.04 72.99
GCN 55.14+516  51.764306  27.32+1.10  64.82+224  60.54+530 76.50+136 88.42+050 86.98+127 63.93
GAT 52.16+6.63 49.41+409  27.44+089 60.26+250  61.89+505 76.55+123 87.30+1.10 86.33+048 62.67

normalization methods to limit feature homogenization [31], and graph rewiring to enhance connec-
tivity [35]. Architectures such as GCNII [30] and PairNorm [3 1] exemplify these approaches.

These methods offer practical mechanisms to address heterophily and oversmoothing. While many
include theoretical analyses that highlight the models’ advantages, they generally lack theoretical
guarantees regarding node features separability as the number of layers increases. In contrast, CWCN
not only ensures such guarantees but also achieves superior empirical performance in heterophilic
settings compared to most of these models, being only slightly outperformed by GGCN [26].

Diffusion on GNNs. More recently, several approaches jointly address oversmoothing and het-
erophily by modifying the underlying message-passing dynamics [13, 14, 32, 36]. A notable example
is the Sheaf Convolutional Network (SCN), introduced by Hansen and Gebhart [12] and later ex-
tended into a practical learning framework by Bodnar et al. [13]. SCNs increase the expressive
power of heat diffusion by equipping the graph with a cellular sheaf [37], enabling a diffusion
process based on the sheaf Laplacian. In this setup, the sheaf structure is learned from data, and
sheaf diffusion is augmented to build a GNN architecture. Another prominent approach is the Graph
Neural Reaction-Diffusion Network (GREAD) [14], which models feature propagation through
reaction-diffusion equations. Since our method also introduces a novel diffusion process to redefine
message passing, it naturally belongs to this family.

While GREAD achieves state-of-the-art results on standard node-classification benchmarks, it does
not provide formal theoretical guarantees. SCNs, in contrast, offer provable expressiveness: Bodnar
et al. [13] show that, in the time limit of sheaf diffusion, any node classification task can theoretically
be solved, provided the graph is equipped with an appropriate sheaf structure. However, these
guarantees rely on the sheaf dimension scaling with the number of target classes. Without such
scaling, sheaf diffusion only guarantees linear separation power for regular graphs. Importantly,
increasing the sheaf dimension introduces additional learnable parameters and enlarges the diffusion
matrix, leading to higher computational cost. Furthermore, compared to standard GNNs, GREAD
requires multiple additional hyperparameters to parameterize the reaction—diffusion process, while
SCNs add only the sheaf dimension as hyperparameter.
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Advantages of CWCNs. CWCN achieves competitive performance on node-classification bench-
marks, surpassing most existing architectures designed to mitigate heterophily and oversmoothing,
while performing only slightly below top-performing diffusion-based models. Importantly, unlike
other architectures, CWCN achieves linear separation power in the diffusion time limit using a
fixed-size matrix that is independent of the number of classes. In addition, it introduces no extra
hyperparameters beyond those of standard GNNs. Thus, CWCN provides a simpler formulation that
requires less hyperparameter tuning while offering stronger theoretical guarantees.

Limitations of CWCNs. Despite its theoretical strengths and simplicity, CWCN has two main lim-
itations. First, there remains an empirical performance gap between CWCN and the best-performing
methods such as GREAD and SCN. Second, CWCN relies on complex-valued weights, which
require additional matrix operations during both training and inference. This introduces overhead in
backpropagation and leads to higher computational cost compared to real-valued GNN architectures.

Complex GNNs. Incorporating complex values into graph learning has recently attracted attention
from various communities, but the existing approaches differ fundamentally from our framework.
For instance, CayleyNets [38] extend the ChebNet paradigm by employing Cayley polynomials as
spectral filters, which involve learnable complex coefficients; however, the resulting filters remain
real-valued, and signals remain consistently real throughout the process. More broadly, in network
science, there has been a growing interest in systematically extending classical concepts to complex-
weighted networks, e.g., [39]. This line provides useful foundations but does not design GNN models
for downstream applications. Closer to GNNs, MagNet and related works [40, 41] employ a complex
Laplacian matrix (e.g., magnetic Laplacian) to capture directed edge information, typically with one
or two global phase parameters. In contrast, our framework allows arbitrary complex phases per edge,
leading to a richer diffusion process. More importantly, unlike prior studies, we provide theoretical
guarantees on the expressivity of our complex-weighted diffusion process. This combination of
flexible modeling and rigorous theory distinguishes our contribution.

7 Conclusion and Future Work

In this work, we introduced a novel framework for enhancing the expressive power of GNNs through
diffusion on complex-weighted graphs. We first established the full expressive power of complex-
weighted diffusion, demonstrating its potential to address two well-known limitations of standard
GNN architectures: oversmoothing and poor performance on heterophilic graphs.

Building on this theoretical insight, we proposed CWCN, a GNN architecture that augments complex
random-walk diffusion with learnable parameters and nonlinear activations. We further introduced
a mechanism to learn the complex-weighted structure directly from data, allowing the model to
adaptively capture the most suitable “geometry” for a given task. Compared to prior methods,
the resulting framework is simpler—requiring fewer hyperparameters—while being supported by
stronger theoretical guarantees.

Empirical evaluations on standard node-classification benchmarks show that CWCN achieves com-
petitive performance, although further work is needed to determine whether our model can be refined
to close the gap with top-performing methods. Promising directions for future work include investi-
gating alternative architectures based on complex random walks, exploring other types of diffusion
processes on complex-weighted graphs, incorporating a reaction term into the complex-weighted
diffusion equation or, interpreting complex multiplication as a rotation in two dimension, considering
transformations along the walks in higher dimensions [42]. Additionally, reducing the computational
overhead associated with complex weights is an important avenue for improvement.

Overall, our findings suggest that incorporating complex-weighted diffusion provides a powerful
approach to designing more expressive GNNs. By enriching the message passing dynamics with a
complex-weighted structure, we open new possibilities for designing models that are both theoretically
grounded and practically effective. To the best of our knowledge, this is the first work to leverage
complex weights to enhance GNN expressiveness, and we hope it inspires further exploration of their
potential in graph-based learning tasks.
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1

Figure 3: Example of a balanced complex-weighted graph, where the node set is partitioned into
three subsets satisfying the conditions of Proposition 2.

A Complex Random Walk Proofs

In this Appendix, we first summarize the main results of [16] on balanced graphs and their behavior
under complex random walks. We then use these results to show that any node classification task can
be performed in the time limit of a complex random walk, if the graph is equipped with a suitable
complex-weighted structure.

A.1 Complex Random Walks on Balanced Graphs

Notation 1. We express elements in the complex weight matrix in polar coordinates as W;; = 1 eiPis,
where r;; > 0 indicates the magnitude and ;; € [0, 2) is the phase. Thus, since W is Hermitian,
Tij = Tji and Pij = —@ji + 2.

Next, we define the notion of structural balance in a complex-weighted graph and present necessary
and sufficient conditions under which a graph is structurally balanced. To this end, we first introduce
the concept of the phase of a path.

Definition 4. Let G = (V, E, W) be a complex-weighted graph and P = (ey, ..., ex), e; € E be

a path, the phase of P is:
k

O(P) := Z 0(e;) mod 2,
i=1
where 0(e) returns the phase of edge e.
Definition 5. A complex-weighted graph G = (V, E, W) is structurally balanced if the phase of
every cycle is 0.
Remark 2. Since W is Hermitian, if a cycle has phase 0, the cycle with reverse direction has phase

21w — 6. Then, a cycle has phase 0 iff its reversed cycle has phase 0, thus structural balance is
well-defined.

Next, we state a characterization of structurally balanced graphs, which is illustrated in Figure 3.
Proposition 2. A complex-weighted graph G is balanced if and only if there is a partition of the

nodes V = {V;}'*_| such that:
i) Any edges within each node subset in V have phase 0.
ii) Any edges between the same pair of node subsets in V have the same phase.

iii) If we define the graph G’ considering each node subset in V as a super node, the phase of every
cyclein G' is 0.

Proof. See [16]. O
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The following result characterizes the asymptotic behaviour of a complex random walk on a balanced
graph within the infinite time limit. Note that we state the proposition for one feature channel for
simplicity, and the asymptotic behaviour of X € C"*/ is defined by considering the behaviour of
each channel separately.
Proposition 3. Let G be a balanced and not bipartite complex-weighted graph with associated
partition V = {Vi}i-p:l (Proposition 2). Then, the steady state of a complex random walk is X = (&;),
with

Tq.d.

;= oo X011y (10)
2m

where:
* x(0) = (z,(0)) € C™ is the initial state vector.
e 2m = Zn dj.

j=1
* Oy, is the phase of a path from nodes in V}, to nodes in V.

* () returns the index of the node subset in'V that a node is associated with.

e 1, is the diagonal vector of S*, where S is the diagonal matrix whose (i,1) element is %1,
Proof. See [16]. L]

A.2 The Linear Separation Power of Complex-Weighted Diffusion

Let us first prove that every graph can be endowed with an appropriate complex-weighted structure.

Proposition 4. Let G = (V, E) be an unweighted, undirected graph and V = {Vi}i'p:1 a partition of
its nodes. Then, there exists a complex-weighted graph G' = (V, E, W) such that:

1. It satisfies conditions (i), (ii) and (iii) of Proposition 2 for the partition {Vi}i’”: 1- Therefore, it is
a balanced graph.

2. All the edges of condition (ii) between the subsets V1 and V; have different weight for each 1.

Proof. Let us first consider the graph with [, nodes resulting from considering each node subset
V; of G as a super node. We denote this graph by G and its nodes by 01, ...,7;,, where each v;
corresponds to the subset V;. We will show that it is possible to assign weights to G satisfying (iii)
and such that the edges between nodes v, and v; are different for each 7. We denote by W = (V~Vz )
the complex weight matrix of G.

We assume w.l.0.g. that G is complete (if condition (iii) holds for G complete, it holds for any graph
with [, nodes, since removing edges does not add any new cycle to the graph).

In addition, for any complete graph it is possible to choose a cycle basis whose elements are all
triangles. To see that, note that a cycle basis can be obtained from any spanning tree of G by
selecting the cycles formed by combining a path in the tree with a single edge outside the tree.
Therefore, we can choose the fundamental cycle basis formed from the spanning tree with edges
{(91,72), (01,03), ..., (01,71,)}. Denote this fundamental cycle basis by {71, ...,T,,} and note
that it contains every triangle of the form (;, 0;, 1), % # j.

We assign complex weights to G in the following way. First, set Wy = eif, choosing 6; such that
e 5 €% forall i # j. Then, set W;; = Wj; = e~ Finally, for k = 1,...,m, assign the
weights W;; and W;; of the remaining edge e, of each T}, so that the sum of the phases of the cycle

Ty is 0. Note that Wji =W 4 trivially. Note that two triangles of the basis cannot share the same
edge e, because of the way the fundamental basis is built, so this is well-defined.

Since G is complete, every edge in G belongs to some 7},. Therefore, we have assigned weights
to every edge in G such that the edges between nodes v and v; are different for each j and (iii) is
satisfied for the cycles 71, . .., T,,. Next, we will prove that (iii) holds for every other triangle and,
finally, that it holds for any cycle in G.

14
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)

z T —>

’l_)is

Figure 4: Illustration of how the triangle 7' in the proof of Proposition 4 can be obtained as
T =TI ATy ATY.

Consider first a triangle T' = (¥, , ¥,, 03, ) in G, such that T ¢ {Ty,...,T,,}, thus U;; # 0y for
J = 1,2, 3. Define the triangles Tll = (51'1 s 171‘2, 171), TQI = (171‘2, 67:3 R 171), Té = ('Dis s 171‘1 s @1) and the
cycle C' = (¥;,, ¥y, Vis, 01). Note that T), € {T1,..., T, } foru = 1,2, 3 and that:

TIAT) = C CAT, =T,

where A is the symmetric difference. Then, T is expressed as a symmetric difference of basis triangles
as T = Ty ATy ATj;. This is illustrated in Figure 4. Fix the orientation in 7" given by the order
(¥4, , Diy, Uiy ) and denote by 612, 023, 031 the phases corresponding to the weights of this oriented
cycle. Next, set the orientations of 77, Ty and T4 given by the orders (;,, Uiy, 01), (04,, Vis, 1) and
(Vis, U4y , 1), respectively, as illustrated in Figure 4.

Denote by 0, ; the phase of the weight VNVMJ, and 6;, the phase of the weight Wijl (then, 0;, = —0,;
mod 27). Then, since 7, are elements of the basis, we have:

(012 + 02 + 0.1) mod 2m =0 <= (012 — 02+ 6.1) mod 27 =0

(023 + O34 + Os2) mod 2w = 0 <= (Ha3 — 0,3 + O.2) mod 2r = 0

(031 + 014 + 0.3) mod2r =0 <= (031 — 0,1 + O.3) mod 2w =0
Then:

0= (012 — Oua + 0u1 + 023 — O3 + Ou2 + 031 — 041 + O,3) mod 27 = (012 + 023 + 031) mod 27

15
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Figure 5: Illustration of the proof of Proposition 4: every cycle satisfies property (iii) of Proposition 2.

Note that a similar argument can be made if we fix the opposite orientation in 7'. Therefore, we have
proven that every triangle in G satisfies (iii).

Finally, let us prove that every cycle in G satisfies (iii). Consider an oriented cycle (Tiyy-..,0,) and
denote by 6y, the phase corresponding to the weight W;, ;,. Then:
(612 + 603 + -+ -+ G(T_l)T + 97,1) mod 27 = (013 + O34+ -+ e(r—l)r + GM) mod 27
= (014 + 045 + - - - + 01y, + 0,1) mod 27

= (91(7’71) + 9(7’71)7" + erl) mod 27 = 0,

where we have each equality by substituting the sum of the weights of a 2-length path between two
nodes by the weight of the edge joining the nodes (which forms a triangle). This process is illustrated
in Figure 5. The last equality holds because (¥;,4,_,,;,_,i.,i.4, ) 1S @ triangle.

Therefore, we have proven that every cycle in G satisfies (iii).

Now consider G = (V, E), denote its nodes by vy, ..., v, and define the function o, where o(j)
returns the index 4 of the node subset V; to which node v; belongs. Construct the matrix W = (1;;)
by assigning weights in the following way:
07 if(vi,vj) ¢E
Wi =141, ifo(i) = o(j)
Wo(i)a(jy Otherwise

By construction, G' = (V, E, W) satisfies all the conditions of the Proposition. O

Therefore, we have proven that every graph can be assigned complex weights so that the resulting
complex-weighted graph satisfies the hypothesis of Proposition 3. Thus, it is possible to describe its
asymptotic behaviour in the time limit of a complex random walk.

Theorem 1. Let G = (V, E) be an unweighted, undirected graph and V = {VL}i’;l a partition of its
nodes. Then, there exists a complex-weighted graph G' = (V, E, W) such that, starting from any
initial features x(0) = (x;(0)), in the steady state of a complex random walk, the features of the
nodes belonging to a subset V| have the same phase, and this phase is different for each subset.

Proof. First, itis possible to assign complex weights to G obtaining a balanced graph G’ = (V, E, W)
that satisfies the conditions of Proposition 4. In addition, we assign self-loops to every node,
Wy =1 Vi=1,...,n,toensure that G’ is not bipartite.

Then, G’ is in the conditions of Proposition 3, so we can obtain its steady state in a complex random
o~

walk using Equation (10). Note that the factor % does not depend on j, so it is common for all

nodes. Therefore, two nodes v; and vy, have different phases iff e010G) £ 0100,

By construction of G’, 61,(;) mod 27 = 0,y mod 27 iff o (j) = (k). Then, two nodes have
the same phase iff they belong to the same subset of {V,;}é”:l. O

B Complex Weights Learning Proof

Proposition 1. Let G = (V, E) be a finite graph with feature matrix X € C"*/. If the node features
(x4,%5) # (Xi,%¢) for any (v;,vj) # (vi,v¢) € E and ® defined in (9) is an MLP with sufficient
capacity, then ® can learn any complex-weighted structure G' = (V, E, W).
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Proof. Let W € C™*™ be a complex weight matrix for G, and denote its elements by W;; =
Qi + ’LbU Since W is Hermitian, Aj; = Qij and b]7 = 71)7;]‘.

Consider the feature matrix X as a real-valued matrix X € R***_ with k = 2 f-

Define the set S := {(x;,x;) : (vi,v;) € E} C R, Since each (x;,x;) is unique, the function
g: S — R?, g(x;,%x;) = (aij, bij) is well-defined. We now show that g can be extended to a smooth
function f: R?* — R2.

Since S = {s1,...,sum} is a finite set, for each s, € S, there exists a sufficiently small neigh-
bourhood U,,, € R?* such that s,,, € U,,, and sp & U, for all m # p. In addition, it is possible to
find a smooth bump function t,,, : R?* — R such that ¥, (s,) = 1 and ¥, (z) = 0 Va & U,,.

Then, the function f(x) = Z%:l 9(Sm)¥m (x) is smooth and f|s = g. Since f is smooth, it can
approximated by an MLP [19, 20] and, thus, so does g.

Now it is enough to identify R? = C, with the first coordinate corresponding to the real part and the
second coordinate to the imaginary part. Then, interpreting S C C2/, we have proven that g: S — C,
9(x;,%;) = a;; +1b;; can be approximated by an MLP with sufficient capacity. Therefore, ® defined
in Equation (9) can learn any complex weight matrix W of the graph G. O

C Additional implementation details and hyperparameters

Adjusting the activation magnitudes. Following the approach in [13], we found it useful in
practice to learn additional parameters ¢! = (g}, ¢b), with e € [—1,1], for each layer . These

parameters are used to compute the diffusion step as follows:
X(1+1)=(14+)X(l) — o(I-P)(I, ® M)X(I)M}) € C"*/

Here, (1 + £')X (1) denotes scaling the real part of X (1) by €} + 1 and the imaginary part by €}, + 1.
This mechanism allows the model to dynamically adjust the relative magnitudes of real and imaginary
components at each layer. These learnable scaling parameters are used in all of our experiments.

Batch normalization. Proposition 1 guarantees that any complex weight matrix can be learned,
provided the node features are sufficiently diverse. However, in practice, we observed that the initial
node features X (0) tend to be very similar across nodes. This issue arises from the initial MLP, where
the bias term often dominates in practice, causing the output features of all nodes to become nearly
identical.

To address this problem, we insert a batch normalization layer immediately after the MLP. This
normalizes each feature dimension across the batch of nodes, mitigating bias dominance, and
promoting feature diversity. Batch normalization is used in all of our experiments.

Real learnable matrices. Complex matrix multiplication is more expensive than its real counterpart.
To improve efficiency, we replace the complex matrices M} € C, M}, € C*7 in Equation (6) with
real matrices of size 2 X 2 and 2f X 2f, respectively. The feature matrix X ({) is then treated as a real
matrix in R"*2f In practice, we observe no loss in performance with this substitution, and therefore
adopt it in all our experiments.

Hyperparameters and Training Procedure. Following [13], we evaluate our model using the
hyperparameter ranges listed in Table 2, where dropout has been included as a regularization technique
to prevent overfitting. We assign different dropout rates to the initial layer and to the linear layers
within the convolutional blocks. We train all models for a fixed maximum number of epochs and
perform early stopping when the validation metric has not improved for a pre-specified number
of patience epochs. We report the test results at the epoch where the best validation metric was
obtained for the model configuration with the best validation score among all models. We use the
hyperparameter optimisation tools provided by Weights and Biases [43] for this procedure.

D Additional Synthetic Experiments

In this section, we conduct further synthetic experiments that allow a direct comparison with standard
heat diffusion in a controlled setting.
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Table 2: Hyperparameter ranges used to evaluate our model in the real-world experiments.

Hyperparameter Values
Hidden channels (8,16,32)
Layers 2-8
Learning rate 0.02
Activation (regular layers) ELU
Activation (complex weights learning) tanh

Weight decay (regular parameters)

Weight decay (complex weights parameters)
Input dropout

Layer dropout

Log-uniform [0.007, 0.2]
Log-uniform [0.01, 0.4]
Uniform [0, 0.9]
Uniform [0, 0.9]

Patience (epochs) 1000

Max training epochs 1500

Optimiser Adam
1.0 4 — Heat Diffusion

—— Complex Random Walk Diffusion

0.9
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Figure 6: Training accuracy across diffusion layers (left) for heat diffusion and the learned complex
random walk on a cycle bipartite graph with 2 classes (right): While the mean accuracy (solid line)
for heat diffusion remains low throughout, the complex random walk surpasses 95 % as diffusion
progresses. The shaded region (minimum-maximum range across 5 random seeds) further shows that
heat diffusion never exceeds 70 %, whereas the complex random walk maintains over 90 % mean
accuracy across all seeds.

We consider a bipartite cycle graph with 20 nodes divided into two partitions (Figure 6, right), and
assign node features sampled from two overlapping isotropic Gaussian distributions. This setup
ensures that the classes are not linearly separable at initialization. As shown by [9], heat diffusion
fails to separate the classes in the diffusion limit. In contrast, Theorem | demonstrates that a complex
random walk can achieve linear separation in its steady state. In this experiment, we study whether a
suitable complex weight matrix can be learned directly from data in this simplified setting, using a
vanilla random walk diffusion process, i.e., by setting M; = 1, My = Iy and ¢ = id in Equation (6).

For heat diffusion, we first learn a transformation of the initial node features X (0), and then apply the
diffusion process. For the complex random walk, we instead learn a complex-valued weight matrix
‘W as a function of X (0), and subsequently perform the complex random walk. In both approaches,
the model parameters are optimized to produce linearly separable features at the diffusion time limit.

Figure 6 (left) shows the classification results averaged over five random seeds. As expected, at
diffusion time zero, a linear classifier fails to distinguish the classes. As diffusion progresses, heat
diffusion continues to yield non-separable features, whereas the complex random walk consistently
achieves over 90% mean accuracy across seeds. This result highlights the potential of learning an
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s47  effective complex-weighted graph structure that enables successful node classification at the diffusion
64s  limit.
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