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Abstract. Federated learning is a distributed machine learning scheme
that provides data privacy-preserving solution. A key challenge is data
distribution heterogeneity of on different parties in federated learning.
Existing methods only focus on the training rule of local model rather
than data itself. In this paper, we reveal an fact that improving the
performance of the local model can bring performance gain to the global
model. Motivated by this finding, this paper proposes a Clustering-based
curriculum construction method to rank the complexity of instances, and
develops a Federation curriculum learning algorithm (FedAC). Specifi-
cally, FedAC assigns different weights to training samples of different
complexity, which is able to take full advantage of the valuable learn-
ing knowledge from a noisy and uneven-quality data. Experiments were
conducted on two datasets in terms of performance comparison, ablation
studies, and case studies, and the results verified that FedAC can improve
the performance of the state-of-the-art Federated learning methods.

Keywords: Curriculum learning · Federated learning · Neural
networks

1 Introduction

Federated learning, as a privacy-preserving distributed machine learning
paradigm, has attracted much attention in artificial intelligence [1–3]. It typically
uses a central server to coordinate multiple clients for collaborative modeling,
and protects the privacy of training data of all parties, aiming to achieve the
same or similar performance as data sharing [4]. However, existing studies have
verified that the data heterogeneity leads to the poor generalization ability of
the fused model [5]. Many studies have focused on alleviating the problem of
distribution heterogeneity in federated learning, but there is a lack of solutions
to uneven data quality.

Existing studies trying to improve the model performance can be divided into
two levels: data-level [7,8] and model-level [9–11]. Data-level methods often use
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Fig. 1. Illustration to FedAC for image classification in federated learning.

two techniques, including data augmentation and sampling. They alleviate the
imbalance by increasing the data during training, but ignore the quality of self-
generated data. Many model-level approaches combine knowledge distillation to
reduce global and local distribution bias. They add constraints between global
and local models (e.g., model parameters [12], feature maps [13], probability dis-
tributions of predicted results [14].) to improve the similarity between local and
global information. However, in the insufficient model training phase, distilla-
tion training is meaningless and even hindering model convergence. As shown in
Fig. 2, the accuracy of distillation method in the early stage is lower than base-
line. The above methods only focus on the training rule of local model, while
the impact of data quality to model performance have not been well analyzed.

To address aforementioned problems, this paper presents a Clustering-based
curriculum construction for sample-balanced Federated learning method. As
illustrated in Fig. 1, it first ranks the complexity of data instances. Specifically,
a clustering method is used to generate the hierarchy of image-class pairs from
training set, which learns the different image patterns of same class. The hier-
archy of each clients, serving as a personalized knowledge base, is able to filter
the noisy data. To rank the complexity of all the data, a rule is adopted, which
defines the score based on cluster size. The larger the cluster, the higher the
data score it contains. In training phase, a loss weighting mechanism based on
score is adopted. Then, an adaptive curriculum construction method is applied
in local model training process. As observed, FedAC is able to get performance
gain of global model by improving the robustness of local models.

Experiments have been conducted on the CIFAR-10 and CIFAR-100 datasets
in terms of performance comparison, ablation study and case studies for the effec-
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Fig. 2. Illustration the accuracy of with and without distillation methods.

tiveness of FedAC. The results verify Adaptive curriculum learning can improve
the performance of local model and bring performance gain to the global model.

To summarize, this paper includes two main contributions:

– An curriculum learning method, termed CG, is proposed, which enables
achieve adaptive grouping of data. This can effectively use data to learn
knowledge.

– A model-agnostic framework, termed FedAC, is proposed to combine curricu-
lum learning method and can achieve local-global model performance gain.

2 Related Work

2.1 Curriculum Learning

Curriculum learning (CL) imitates the human learning process, which ranks all
instances based on complexity, and adopts the knowledge learning method of
easy first and then hard [15]. The core problem of the curriculum learning is to
get a ranking function, termed as Difficulty Measuring, which gives its learning
priority for each piece of data or task. In addition, the training rule is determined
by the training scheduler [16]. Therefore, there are many CL methods based
on the framework of ”difficulty measuring and training scheduler”. CL can be
divided into two categories based on whether it is automatically designed or not,
namely Predefined CL [17] and Automatic CL [18]. Both the difficulty measuring
and training scheduler of Predefined CL are designed by human experts using
human prior knowledge, while at least one of Automatic CL is automatically
designed in a data-driven manner.

2.2 Federated Learning

Many strategies have been proposed to address the data heterogeneity problem
in Federated Learning (FL), which are mainly from two perspectives: data-level
and model-level. Data level methods usually generate extra data to achieve data
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Fig. 3. The framework of FedAC.

balance [6]. For example, Astraea uses data augmentation based on global data
distribution to alleviate imbalances [8]. Model-level methods focus on optimiza-
tion strategies to make the diversity between client local models and global
model limited [19]. Fedprox restricts local model parameter updates from being
far away from the global model [12]. MOON utilizes the similarity between local
and global model representations to correct local training for all parties [5].
FML coordinates all clients to jointly train global models and independently
train personalized models, and realize global knowledge transfer through deep
mutual learning [9]. For studies in the aggregation phase, FedMA matches and
averages weights in a hierarchical manner [20], FedNova normalizes local updates
before averaging [21]. Notably, these aggregation ideas can be combined with our
study.

3 Problem Formulation

This paper investigates curriculum learning for local training in the image classi-
fication task of federated learning. Suppose there are N clients, (C1, C2, ..., CN ).
And N clients hold heterogeneous data partition D1,D2, ...,DN , respectively.
The goal is to learning a global model ω over the dataset D �

⋃
k∈[N ] Dk with

the coordination of the central server without data share. For local training,
client k starts with copying the weight vector wk ∈ R

d, and the goal is mininz-
ing the local loss function fk(wk). The updated weight vector wk can be obtain
gradient decent method, i.e. wk+1 ← wk − η∇fk

(
wk

)
. Finally, the global model

can be obtained by aggregating all local models, i.e. wglobal ← ∑N
k=1

|Dk|
|D| wk.

Beyond conventional settings, our proposed FedAC first introduces a curricu-
lum learning method to learn the image patterns of the same class. This enables
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the data grouping as a curriculum for all local data, i.e. Dk �→ {Dk
1 ,D

k
2}. Sub-

sequently, FedAC uses a image encoder to learn knowledge from Dk
1 and Dk

2 ,
respectively. By weighting the corresponding loss function L = αL1 + βL2 as
total loss. This enables encoders learn accurate knowledge.

4 Federation Curriculum Learning

FedAC introduces a curriculum learning framework to learn the complexity of
data. As shown in Fig. 3, FedAC contains two main modules in each clients,
including Curriculum Generation (CG) Module and Curriculum Training (CT)
Module, as illustrated in the following sub-sections.

4.1 Curriculum Generation (CG) Module

FedAC explores the complexity of all data in CG module, with the aim of com-
pleting data grouping. As shown in the Fig. 4, CG module divides the raw data
into two parts. Given a dataset including images I = {Ii|i = 1, 2, ..., N} and
corresponding labels of J classes C = {cj |j = 1, 2, ..., J}. Specifically, CG mod-
ule first uses multi-channel clustering method to learn the data pattern of each
classes. Notably, the ART algorithm [22] is extended to gather the similar fea-
tures of the same class into a cluster. The details are shown as follows:

– For a data p = (x, Ox), Ox is one-hot version of the label, let I = [x, 1 − x],
the match score can be calculated by formula 1:

Cp =
{

cj | min
{ |I ∧ wj |

|I| , OT
j Ox

}

≥ ρ, j = 1, . . . , J

}

(1)

where wj , Oj are the weight vector and indicator of cluster cj , OT
j denotes

the transposition of Oj , p ∧ q = min{p, q}, |p| =
∑

i pi, ρ ∈ [0, 1] is vigilance
parameter. If Cp is a empty set, generate a new cluster, otherwise proceed to
the next step.

– For each candidate cluster cj ∈ Cp, the choice function Tj with a choice
parameter α as shown in formula 2:

Tj =
|I ∧ wj|
α + |wj | (2)

– For the final-match cluster cj∗, using formula 3 to update the corresponding
weight vector wj∗, and β ∈ [0, 1]

ŵj∗ = β (I ∧ wj∗) + (1 − β)wj∗ (3)

After the cluster process, many clusters C with the same class are obtained,
the overall process can be expressed as formula 4:

C = Clustering(D, C) (4)
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Fig. 4. Illustration of the CG module.

Table 1. Statistics of the datasets used in the experiments.

Datasets #class #Training #Testing

CIFAR-10 10 50000 10000

CIFAR-100 100 50000 10000

where D denotes all image data, and C is the corresponding class labels.
Then, the Statistic-based Cluster filtering method S(.) is used to divide all

clusters into two parts based on cluster size, i.e.

P1, P2 = S(C) (5)

where P1 = {ci| if |ci| < T} and P2 = {ci| if |ci| ≥ T}, and T is a threshold.

4.2 Curriculum Training (CT) Module

After data grouping, CT Module trains a image encoder E(·) on P1 and P2.
This paper proposes a weighting loss approach to reduce the adverse impact of
uneven-quality data during training phase. The Eqs. 6 and 7 represent the loss
function of easy and hard data, respectively.

L1 = CE(p1, y1) (6)

L2 = CE(p2, y2) (7)

where pi and yi denote the prediction and ground-truth of data xi. The total
loss is weighted by L1 and L2, i.e.

Ltotal = αL1 + βL2 (8)

5 Experiments

5.1 Experimental Setup

Datasets. We use two benchmarking datasets CIFAR-10 and CIFAR-100 that
are commonly used in federated classification for experiments. Their statistics



Federation Curriculum Learning 161

are showing in Table 1. Like recent studies, the Dirichlet distribution DirN (·) is
used to generate the non-IID distribution among all parties. Specifically, we use
pk ∼ DirN (β) to sample and allocate a pk,j proportion of the instances of class
k to client j, where β is a concentration parameter. We set 10 clients by default
in all experiments. The data partition results of different parameters are shown
in Fig. 5.

Client ID
(a)  CIFAR-10

(b)  CIFAR-100

0.3β �

0.3β � 0.5β �

0.5β �

Client ID

Client ID Client ID
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C

DI ss al
C

DI ssal
C

DI ssal
C

Fig. 5. Data distribution corresponding to different β values on CIFAR-10 and CIFAR-
100 datasets.

Evaluation Measures. In the experiment, the Top-1 Accuracy is used to eval-
uate the performance of all models, the define of Accuracy is:

Accuracy = (TP + TN)/(P + N) (9)

where TP, TN, P and N denote True Positives, True Negatives, Positives, and
Negatives.
Implementation Details. Following the work of MOON [5], we use Simple-
CNN (including 3 Convolution layers and 2 fully connected layers with ReLU
activation) model on CIFAR-10. For CIFAR-100, the ResNet-18 [23] model is
used as a base encoder. We use Stochastic Gradient Descent (SGD) optimizer
with a learning rate 0.01 and weight decay 0.00001 for all methods. The batch
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Table 2. The top-1 accuracy of FedAC and the other baselines on CIFAR-10 and
CIFAR-100 datasets. For all datasets, dirichlet distribution parameter selection 0.3
and 0.5.

Methods CIFAR-10 CIFAR-100

α = 0.3 α = 0.5 α = 0.3 α = 0.5

SOLO 46.8 47.3 22.5 23.4

FedAvg 65.9 66.2 63.8 64.1

FedProx 66.2 66.7 63.7 64.6

MOON 66.4 66.8 64.9 64.3

FedAC(our) 67.6 67.7 65.5 65.4

size is selected from {64, 128}. The training epochs in local clients is 10 by
default for federated learning methods, and 100 for SOLO. And the local-global
communication round is set to 100 for two datasets. To verify the effectiveness of
each algorithm, we set the Dirichlet distribution parameters β = 0.3 and β = 0.5.
Finally, some hyperparameter related to specific algorithms, please refer to the
corresponding papers.

5.2 Performance Comparison

This section presents a performance comparison between FedAC and existing
Federated learning methods on image classification tasks, including FedAvg [24],
FedProx [12] and MOON [5]. A baseline named SOLO, each party trains per-
sonalized model with its local data without federated learning. For all methods,
we fine-tune their hyper- parameters based on corresponding papers to get the
best performance. We can observe the followings as shown in the Table 2:

– The performance of SOLO in non-IID data distribution is worse than that of
federated learning algorithms. This is mainly because local models are biased
classifiers with poor performance. And this verifies the benefits of federated
learning.

– FedProx and MOON outperformed FedAvg on both datasets, this verifies
that global knowledge distillation is conducive to guide local model training.
And global features seem more useful than parameters.

– For different dirichlet distribution parameters, all methods achieve better
performance at α = 5, this is mainly because the data distribution is more
dispersed at α = 3.

– On both datasets, the proposed FedAC achieves significant performance
improvement than existing methods, demonstrating optimize the local train-
ing process can bring performance gain to the global model.

5.3 Ablation Study

In this section, we investigate the effect of curriculum learning method for local
training. From Table 3, the following observations can be drawn:
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– For SOLO method, the FedAC(SOLO) achieves 5% performance improvement
on the CIFAR10 at α = 0.5. And it is more effective on CIFAR10 than on
CIFAR100.

– For FedProx and MOON, FedAC version methods also make progress. This
verifies that curriculum learning can bring performance gain for local model
and global model.

– For both datasets, MOON-based methods are always better than the
FedProx-based approaches, which may be because the feature is more repre-
sentative of knowledge than the model parameters.

Table 3. The top-1 accuracy of SOLO, FedProx, MOON and their FedAC version.

Methods CIFAR-10 CIFAR-100

α = 0.3 α = 0.5 α = 0.3 α = 0.5

SOLO 46.8 47.3 22.5 23.4

FedAC(SOLO) 49.5 50.2 24.1 23.5

FedProx 66.2 66.7 63.7 64.6

FedAC(FedProx) 66.8 67.3 66.4 65.8

MOON 66.4 66.8 64.9 64.3

FedAC(MOON) 67.2 67.6 66.3 66.8

5.4 Case Study

In this section, we will further analyze how FedAC improves local and global
model performance in view of hidden vectors distribution. To this end, 100
images of all classes were randomly selected in the test set, which were unknow-
able in the training phase. In this paper, T-SNE [25] was used to explore the dis-
tribution changes of their corresponding representations. We randomly selected
three clients and visualized their hidden vectors in the test set.

As shown in Fig. 5, the hidden vectors distribution of FedAvg and FedAC
have a large difference. Specifically, the training model in FedAvg algorithm
learns poor features, and the feature representation of most classes is even mixed,
which can not be distinguished. For FedAC, we can observe that the points with
the same class are more divergent in Fig. 6(b) compared with Fig. 6(a) (e.g.,
see class 0, 1 and 7). Compared with FedAC, FedAvg algorithm learns worse
representation in local training phase. This may leads a poor performance of
fused model. Therefore, improving the generalization ability of local models may
also bring performance gains to global models.
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Fig. 6. T-SNE visualizations of hidden vectors on CIFAR-10.

6 Conclusion

As an effective method to solve data silos, federated learning has attracted atten-
tion in many fields, such as medicine and finance. To improve the performance of
models on non-IID datasets, we proposed Adaptive curriculum Federated learn-
ing (FedAC), simple and effective approach for federated learning. To alleviate
the negative impact of uneven quality, FedAC introduces a novel curriculum
learning method for local training. It utilizes the complexity of the data to
design the weighting method. Experiments results show that FedAC achieves
significant improvement of local model to obtain the global gain on image clas-
sification tasks.

Future work of this study can be further explored in two directions. First,
stronger curriculum inference techniques can significantly improve performance
in guiding the local model to learn personalized knowledge. Second, FedAC can
be applied to other problems, such as Natural Language Processing (NLP) and
Recommendation System (RS).
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