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Abstract

Pruning-at-Initialization (PaI) algorithms provide Sparse Neural Networks (SNNs) which are
computationally more efficient than their dense counterparts, and try to avoid performance
degradation. While much emphasis has been directed towards how to prune, we still do not
know what topological metrics of the SNNs characterize good performance. From prior work,
we have layer-wise topological metrics by which SNN performance can be predicted: the
Ramanujan-based metrics. To exploit these metrics, proper ways to represent network layers
via Graph Encodings (GEs) are needed, with Bipartite Graph Encodings (BGEs) being the
de-facto standard at the current stage. Nevertheless, existing BGEs neglect the impact of
the inputs, and do not characterize the SNN in an end-to-end manner. Additionally, thanks
to a thorough study of the Ramanujan-based metrics, we discover that they are only as
good as the layer-wise density as performance predictors, when paired with BGEs. To close
both gaps, we design a comprehensive topological analysis for SNNs with both linear and
convolutional layers, via (i) a new input-aware Multipartite Graph Encoding (MGE) for
SNNs and (ii) the design of new end-to-end topological metrics over the MGE. With these
novelties, we show the following: (a) The proposed MGE allows to extract topological metrics
that are much better predictors of the accuracy drop than metrics computed from current
input-agnostic BGEs; (b) Which metrics are important at different sparsity levels and for
different architectures; (c) A mixture of our topological metrics can rank PaI algorithms
more effectively than Ramanujan-based metrics. The codebase is publicly available at
https://github.com/eliacunegatti/mge-snn.

1 Introduction
Pruning Dense Neural Networks (DNNs) has recently become one of the most promising research areas in
machine learning. Pruning removes a portion of network parameters (i.e., weights) to reduce the computational
resources and inference time, while avoiding performance degradation. The “winning tickets” hypothesis, a
milestone discovery from Frankle & Carbin (2019), states that within randomly initialized DNN there exist
subnetworks that can reach the performance of the overall DNN when trained in isolation. Thanks to this,
among several alternatives, Pruning at Initialization (PaI) emerged as a good pruning approach.

While many papers have investigated how to find sparse architectures, only a few looked at what characterizes
a well-performing SNN from a topological viewpoint. An SNN is characterized by a unique topology, and
many strategies can be employed to map this topology to a graph representation, allowing to conduct various
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kinds of analyses (Pal et al., 2022; Hoang et al., 2023b;a). For Convolutional Neural Networks (CNNs),
state-of-the-art Graph Encodings (GEs) of SNNs rely on layer-based rolled representations, where nodes map
to layer parameters, i.e., either a kernel channel (Prabhu et al., 2018), or a kernel value (Pal et al., 2022;
Hoang et al., 2023b). While highly informative, these studies neglect the impact of the input dimensionality
on the graph topology, and overlook the importance of end-to-end information processing within neural
networks, solely employing layer-based Bipartite Graph Encodings (BGEs).

To overcome both limitations, we propose a novel unrolled input-aware Multipartite Graph Encoding (MGE)
which fully captures the end-to-end relationship between the (pruned) network parameters and the input
dimensionality. Given an SNN and the dimensionality of its input, our GE works in two steps. First, we
generate a BGE for each layer, where left/right nodes correspond to the unrolled inputs/outputs (e.g., pixels
in feature maps) while edges correspond to the masked/unmasked relations between them, according to the
pruned layer parameters. Since we anchor the dimensionality of our BGEs to the layers’ inputs and outputs,
with this strategy we generate consecutive bipartite graphs where the right nodes of layer l correspond to the
left nodes of layer l + 1. This enables extending our sequence of layer-based BGEs to a unique MGE, which
fully captures the SNN in an end-to-end and data-aware manner.

We then analyze the accuracy drop of SNNs differently from previous works. Within the field, most efforts
are currently aimed at understanding the relationship between SNN-derived GEs and Ramanujan graphs, a
special class of graphs based on the theory of Expanders, i.e., graphs with high connectivity but few edges
(Pal et al., 2022; Hoang et al., 2023b;a). We discover that the existing Ramanujan-based metrics often
do not provide more information than a readily available quantity after pruning: the average layer-wise
density. This finding has impact, since Ramanujan-based metrics require the cumbersome process of building
BGEs, while the average layer-wise density can be computed directly from the pruned weight matrices
(or convolutional kernels) of the SNN. Hence, in this work we analyze SNNs from a broader graph theory
perspective, and propose a different set of graph-based metrics for this purpose. The proposed MGE, paired
with the proposed metrics, turns out to be crucial for the analysis of SNNs, underlining the importance of
SNN-derived GEs.

Contributions. To summarize, the main contributions of this paper can be outlined as follows:

(a) We examine the link between the Ramanujan-based metrics commonly used for graph-based SNN analysis
and the average layer-wise density, finding that the former are seldom more informative than the latter.

(b) We present a new unrolled input-aware MGE that fully represents the end-to-end topology of an SNN
while accounting for its input dimensionality.

(c) We shift the perspective of graph-based SNN analysis from Ramanujan-based to a broader viewpoint
grounded in graph theory, by proposing new topological metrics for SNNs.

(d) We experiment with a large pool of 1, 260 SNNs, showing that the proposed MGE and metrics successfully
enable predicting the accuracy drop of SNNs, and ranking PaI methods according to their expected
performance, thus paving the way towards the adoption of SNN-derived GEs in practice. We discover
that no metric alone can fully explain the performance drop of SNNs for every sparsity ratio and
architecture setting, rather a combination of metrics is needed to understand the reason behind the
performance drop of SNNs in an arbitrary scenario.

2 Related Work
In this Section, we first introduce the Pruning at Initialization algorithms, and then discuss how graph theory
intersects with Deep Learning, specifically with SNN analysis.

Pruning at Initialization (PaI). This family of pruning algorithms aims at discovering the best-performing
subnetwork by removing weights prior to training. Good solutions to PaI are very appealing, thanks to
their potential to decrease the burden of dense optimization. In modern literature, the earliest approach
of this kind is SNIP (Lee et al., 2019), which selects the connections to preserve based on their estimated
influence on the loss function. While SNIP works in one-shot, its iterative version IterSNIP is presented in
de Jorge et al. (2020). Using second-order information, GraSP (Wang et al., 2020) applies a gradient signal
preservation mechanism based on the Hessian-gradient product. Differently from data-dependent methods,
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SynFlow (Tanaka et al., 2020) prunes according to the synaptic strengths in a data-agnostic setting, which
was also explored later in PHEW (Patil & Dovrolis, 2021). More recently, ProsPR (Alizadeh et al., 2022)
extended SNIP by maximizing the trainability throughout meta-gradients on the first steps of the optimization
process. Lastly, NTK-SAP (Wang et al., 2023) relies on the neural tangent kernel theory to remove the
least informative connections in both a weight- and data-agnostic manner. These approaches are relatively
cheap in terms of computational resources, since the mask is found before training in, at most, hundreds of
iterations. However, as the sparsity requirement increases, performance deteriorates faster with PaI methods
than it does when other categories of pruning algorithms are employed (Dynamic Sparse Training methods
above all, e.g., Dettmers & Zettlemoyer (2019); Evci et al. (2020); Liu et al. (2021b)), due to the difficulty of
training SNNs from scratch (Evci et al., 2019; 2022). Moreover, the ability of PaI algorithms to uncover the
most effective sparse architectures has been firstly questioned using Sanity Checks in Su et al. (2020); Frankle
et al. (2021). Subsequently, Liu et al. (2022) showed that small perturbations to random pruning methods,
such as ER (Mocanu et al., 2017) and ERK (Evci et al., 2020), can even outperform well-engineered PaI
algorithms. Consequently, this motivates us to shed light on what are the characteristics of a well-performing
SNN after PaI.

Graph Representation of SNNs and DNNs. Studying DNNs from the perspective of graph theory is a
popular approach that commonly leverages weighted graph representations. Based on these, many advances to
Deep Learning have been proposed, e.g., early-stopping criteria (Rieck et al., 2019), customized initialization
techniques (Limnios et al., 2021), and performance predictors (Vahedian et al., 2021; 2022).

Other aspects of graph theory have been shown to be successful also in the context of SNNs. In fact, the
sparse topology can explain or hint at why the network can still solve a given task with a minor accuracy
drop w.r.t. its dense counterpart. Within the field, the random generation of small sparse structures for
Multi-Layer Perceptrons (MLPs) has been proposed in Bourely et al. (2017); Stier & Granitzer (2019) and
their performance investigated via basic graph properties in Stier et al. (2022). Always with MLPs, the
Graph-Edit-Distance has been introduced as a similarity measure in Liu et al. (2021a), to show how the graph
topology evolves during Dynamic Sparse Training algorithms, such as SET (Mocanu et al., 2017).

Shifting towards more recent and deep architectures (i.e., belonging to the Resnet family), You et al. (2020)
used relation graphs to show that the performance of randomly generated SNNs is associated with the
clustering coefficient (i.e., the capacity of nodes to “cluster together”) and the average path length (i.e., the
average number of connections across all shortest paths) of its graph representation.

More recently, to study SNNs generated by PaI algorithms, a new line of research based on Expander graphs
has emerged. Exploiting Ramanujan graphs, this research line indicates that the performance of an SNN
correlates with graph connectivity (Prabhu et al., 2018; Pal et al., 2022) and spectral information (Hoang
et al., 2023a). Additionally, this line suggests that such performance can be predicted thanks to well-designed
metrics, such as the iterative mean difference of bound (IMDB) (Hoang et al., 2023b). Based on the theory of
Ramanujan graphs, a few works further attempted to generate efficient SNNs (Stewart et al., 2023; Laenen,
2023). As a final note, SNN connectivity has also been studied with approximations of the computational
graph, to analyze how the data in input to a given sparse structure influence the “effective” sparsity (i.e., the
fraction of inactivated connections), “effective” nodes (i.e., nodes with both input and output connections),
and “effective” paths (i.e., connections connecting input and output layers) )(Vysogorets & Kempe, 2023;
Pham et al., 2023)1.

In all the aforementioned works analyzing PaI algorithms, convolutional layers are modeled either with
a rolled GE based on the kernel parameters (K) (Pal et al., 2022; Hoang et al., 2023b), or with a rolled-
channel encoding (Prabhu et al., 2018; Vahedian et al., 2022) depending on the number of input/output
channels (Cin and Cout, respectively). In both cases, the relationship between the SNNs and the input
data is not encoded. On the one hand, the rolled GE generates a graph G ∈ R|L|×|R| for each layer, s.t.

1Of note, in Vysogorets & Kempe (2023); Pham et al. (2023) the authors used an end-to-end computational graph to represent
SNNs. Their proposed metrics (effective sparsity, nodes, and paths) are based on the l1 path norm computed using ones as input
values over the computational graph. To note that by definition a computational graph represents mathematical operations
where nodes and edges respectively correspond to operations and data between operations, while in our proposed multipartite
graph nodes correspond to neurons of the SNN and an edge represents the connection between neurons, that is present if the
connection is not masked in the given sparse structure.
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|L| = Cin · Kw · Kh and |R| = Cout, with a resulting number of graph edges |E| = |W |. This GE reflects the
topology of a single layer (each non-pruned weight corresponds to an edge), but cannot be used to encode
connectivity between consecutive layers, since |Ri| ≠ |Li+1|. On the other hand, the rolled-channel encoding
works with layer-based graphs G ∈ R|L|×|R|, where |L| = Cin and |R| = Cout, leading to |E| = ker(W ) \ {0}.
Here, nodes correspond to channels. By design, for any input-output channel pair, an edge exists if and only
if the corresponding kernel channel is not fully pruned.

Unlike these rolled GEs, we employ an unrolled input-aware MGE, which we describe in the next Section.

3 Methodology
In this Section, we first introduce the novel unrolled input-aware GE and its formulation in the bipartite
version. We then show how this is extended to a multipartite version, which links consecutive layers and
generates a single graph that is able to represent the SNNs end-to-end. Finally, we propose a set of
topological metrics that can be extracted from the proposed encoding. Our notation is summarized in Table
1.

3.1 Bipartite Graph Encoding (BGE)
The proposed BGE, which takes into consideration the application of the convolutional steps over the
inputs, encodes a neural network with N layers as a list of weighted, directed, acyclic bipartite graphs
G = (G1, . . . , GN ). Due to its design, the bipartite graph construction differs for linear and convolutional
layers.

Table 1: Notation used in the paper. Note that we
focus on SNNs for vision tasks.

Symbol Definition

G = (L ∪ R, E)
bipartite graph with left node set L, right node set
R (for a total of |L| + |R| nodes), and edge set E

N number of layers
Ii input size of i-th layer
hi, wi height, width of input feature map of i-th layer
ui, vi row, column indexes of input feature map of i-th

layer
a, b nodes of G with a ∈ L and b ∈ R
M binary mask of pruned/unpruned weights
Mi binary mask of pruned/unpruned weights of i-th

layer
W model parameters after pruning
Wi model parameters after pruning of i-th layer
θ model parameters
hker, wker height and width of kernel
Cin, Cout number of input and output channels
P, S, f padding, stride, filters

Linear Layers. For linear layers, we use the encod-
ing proposed in (Rieck et al., 2019; Filan et al., 2021;
Prabhu et al., 2018; Vahedian et al., 2022; Hoang et al.,
2023b): denoting with Li and Ri respectively the left
and right layer of the i-th bipartite graph, and given
a binary mask Mi ∈ {0, 1}|Li|×|Ri|, its corresponding
GE is Gi = (Li ∪ Ri, Ei), where Ei is the set of edges
present in Mi, i.e., (a, b) ∈ Ei ⇐⇒ Ma,b

i ≠ 0, where
a ∈ Li and b ∈ Ri.

Convolutional Layers. For convolutional layers,
our approach is substantially different from all prior
work. Specifically, we devise our encoding based on
the unrolled input size: given as input, for each i-
th layer, a set of feature maps Ii ∈ Rhi×wi×Cin , we
construct the corresponding bipartite graph as Gi =
(Li ∪Ri, Ei), where again Li and Ri are the two layers
of the bipartite graph, and Li corresponds to the
flattened representation of the inputs 2. The size of the layer Ri, i.e., the output feature map, is calculated
based on the input size Ii and the parameters Wi ∈ Rcout×cin×hker×wker of the i-th layer:

|Li| = hi × wi × cin |Ri| =
(

hi − hker

S
+ 1

)
×

(
wi − wker

S
+ 1

)
× cout. (1)

Differently from the linear layer case, the set of edges Ei cannot be directly computed from the convolutional
mask Mi ∈ {0, 1}cout×cin×hker×wker since the latter is dynamically computed over the input data3:

xout
ui,vi

=
cin−1∑
in=0

hker∑
u=−hker

wker∑
v=−wker

I in
ui,vi

× Mout,in,ui+ui+1,vi+vi+1 ∀ out ∈ [0, cout). (2)

2Padding nodes are included.
3The formula uses cross-correlation.
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Figure 1: Illustration of the proposed unrolled input-aware BGE with I = 3 × 3 × 3 and convolutional
parameters (Cout = 2, Cin = 3, wker = 2, hker = 2, P = 0, S = 1). (I) and (II) show, respectively, the first and
second convolutional steps and how the graph edges are generated assuming that all the kernel parameters
are unmasked. (III) and (IV), respectively, show the complete graph representation after all the convolutional
steps have been done in both the (III) dense and (IV) sparse cases.

From Eq. (1), we know that I in
ui,vi

and xout
ui+1,vi+1

(i.e. the output node of the convolutional step operation)
respectively correspond to a node a(ui+vi)×in ∈ Li and a node b(ui+1+vi+1)×out ∈ Ri, so, in this case, the
edges of the bipartite graph are constructed during the convolutional operation such that:

Ei = {(a(ui+vi)×in, b(ui+1+vi+1)×out) | Mout,in,ui+ui+1,vi+vi+1 ̸= 0 ∀ out, in, ui, vi} (3)

where the ranges of out, in, ui, vi are defined according to Eq. (2), in and out denote, respectively, the input
and the output channel for that convolutional step, and ⟨ui + ui+1, vi + vi+1⟩ corresponds to one kernel entry.
Intuitively, given the i-th layer of a neural network layer, each input element (e.g., in computer vision tasks,
each pixel) represents a node in the graph, and the connection between an element of the input (denoted as
a) and an element of the output feature map (denoted as b) is present if and only if during the convolutional
operation, the contribution of a for generating b is not set to zero by the mask Mi in the kernel cell used to
convolute the two pixels. An illustration of such encoding, which highlights the construction of the graph
throughout the convolutional steps for both SNNs and DNNs, is shown in Figure 1.

Equation 3 shows how the edges are added to the graph representation for its unweighted version. However,
this equation can be easily extended to generate a weighted graph representation that does not only consider
the binary mask M but also the values of model parameters after pruning W , computed as W = θ ⊙ M then,
in Equation 4 it is possible to see how the weighted edge list is generated.

Ei = {(a(ui+vi)×in, b(ui+1+vi+1)×out, W out,in,ui+ui+1,vi+vi+1) | W out,in,ui+ui+1,vi+vi+1 ̸= 0 ∀ out, in, ui, vi}.

(4)

3.2 Multipartite Graph Encoding (MGE)
The BGE described above has been devised to encode, independently, every layer (either convolutional or
linear) in a network. However, the common limitation of BGEs (Pal et al., 2022; Hoang et al., 2023b) lies
in the lack of connections between any two consecutive (and, indirectly, non-consecutive) i-th and i + 1-th
layers. On the other hand, our proposed unrolled input-aware GE, differently from the existing encodings,
generates by design consecutive layers with the same number of nodes between the i-th right layer and the
i + 1-th left layer (i.e., |Ri| = |Li+1|) of consecutive bipartite graphs.

A multipartite graph, a.k.a. N -partite where N represents the number of layers, is defined as Ĝ = (V̂ , Ê)
where V̂ = V̂1 ∪ V̂2 ∪ . . . ∪ V̂k and Ê ⊆ {(a, b) | a ∈ V̂i, b ∈ V̂j , i < j, 1 ≤ i, j ≤ N}. In the previous Section,
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we showed how to generate a set of bipartite graphs G = (G1, . . . , GN ) for a network with N layers where
Gi = (Li ∪ Ri, Ei). Given a set of bipartite graphs G, it is possible to concatenate all its elements into a
single multipartite graph Ĝ = (V̂ , Ê). This concatenation holds only because with our proposed GE by design
|V̂i+1| = |Ri|, hence edges can be easily rewired as: Ê = {(a, b) | Ei , 1 ≤ i ≤ N} where a ∈ V̂i (i.e., it belongs
to Li) and b ∈ V̂i+1 (i.e., it belongs to Ri).

However, an extension of the previous encoding is needed for connecting consecutive layers when a pooling
operation is employed between them. Because pooling operations lead consecutive BGEs to have different
dimensions (i.e., |Ri| ≠ |Li+1|), a further step is required by the GE to make such layers match in size
to allow concatenation. In a nutshell, Li+1 is reduced to L

′

i+1 such that Gi+1 = (L′

i+1 ∪ Ri+1, E
′

i+1) and
|L′

i+1| = |Ri|. The edge rewiring process to translate Ei+1 to E
′

i+1 adds to L
′

i+1, a total of |ρ(Ri)| times,
each edge in Gi+1 that links u ∈ Li+1 to v ∈ Ri+1. This corresponds to each node in the pooling window
pw ⊆ Ri, computed over Ri, which ensures that u ∈ L

′

i+1 is linked to v ∈ Ri+1. Consequently, this pooling
encoding enables any pair of consecutive layers Gi and Gi+1 to be linked in the MGE framework. We refer
to Appendix C for the complete formal explanation of the pooling encoding. It is also worth noting that this
MGE also includes residual connections, which are a crucial element in many DNN architectures, while in the
previous graph encodings (Pal et al., 2022; Hoang et al., 2023a) they were analyzed layer-wise without linking
them between the two corresponding layers. The concatenation of residual connections is straightforward.
Given two consecutive layers linked by residual connections (e.g., the last and the first layer of the blocks in
Resnet architectures), modeled by their corresponding BGEs Gi and Gi+1, the residual connection is modeled
as a separate bipartite graph Gres

i,i+1. By construction, |Lres
i,i+1| = |Li| and |Rres

i,i+1| = |Ri+1|, hence the residual
connection edge construction only adds the edges of Gres

i,i+1 to the concatenation of Gi and Gi+1, i.e., between
layers Li and Ri+1.

3.3 Topological Metrics
The proposed unrolled MGE allows for the study of SNNs from a topological perspective, including a first
analysis of the network connectivity between consecutive layers. To this aim, we define a set of topological
metrics (in the following, referred to as topometrics) over SNNs, summarized in Table 2.

Table 2: Proposed topometrics with their brief definitions, and their
complexity (N : number of nodes, E: number of edges)

Category Symbol Definition Complexity

Local
Connectivity

sink no. of nodes with zero outgoing connections
source no. of nodes with zero incoming connections O(E)
disc. no. of nodes with zero connections for all local
r-out no. removable outgoing connections metrics
r-in no. removable incoming connections

Neighbor
Connectivity

N1 avg. number of 1-hop neighbors O(E)
N2 avg. number of 2-hop neighbors O(NE)
motif(4) no. of motifs of size k = 4 O(N3k)

Strength
Connectivity

k-core centrality measure on maximal degree of subgraphs O(E)
S avg. nodes strength over input edges weights O(N + E)

Global
Connectivity

C no. of connected components O(N + E)
Cavg avg. size of the connected components O(1)
cut-edges no. edges to disconnected connected components O(N + E)
cut-nodes no. nodes to disconnected connected components O(N + E)

Expansion γ(A) Spectral Gap of the Adjacency Matrix
O(knm) ‡

ρ(L) Spectral Radius of the Laplacian Matrix

Local Connectivity. The Local
metrics are graph metrics com-
putable over individual nodes or
edges. These metrics (i) are com-
putationally inexpensive, and (ii)
are able to capture some features of
the graph connectivity between con-
secutive layers. Node-based topo-
metrics include 1 the number of
sink nodes, 2 the number of source
nodes, and 3 the number of dis-
connected nodes over the MGE. The
sink and source nodes are, respec-
tively, those with outdegree and in-
degree of zero4. The disconnected
nodes are those with neither incom-
ing nor outgoing connections. Con-
sidering the sink and source nodes, it is possible to compute the number of removable (in/out) connections,
which are edge-based topometrics. 4 The removable out-connections of the set of source nodes (denoted
here as α) are r-out = 1

|E| ×
∑

n∈α outdegree(n). Complementary, 5 the removable in-connections of the
set of sink nodes (denoted here as β) are r-in = 1

|E| ×
∑

n∈β indegree(n). Intuitively, both these types of
connections are useless for the performance of the neural network, since they are ignored at inference. Usually,
lower values of Local Connectivity metrics are related to highly connected structures.

‡The complexity is dependent of the implementation used to compute the eigenvalues. In our case the complexity is given as
O(knm), where n is the size of the matrix, k is the number of computed eigenvalues, and m is the number of Lanczos iterations.

4Source and sink nodes are respectively not computed over the first and last layer.
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Neighbor Connectivity. To extend the Local Connectivity metrics, which compute edge and node
properties as a quantity w.r.t. the whole graph, we propose a set of metrics that quantify the graph connectivity
throughout the nodes’ degree information. The first metric computes the size of the neighborhood for each
node in the graph. This is the k-hop neighbor, which is denoted Nk(a) and is the total number of nodes
that are reachable in k hops from the root node a. To have a single numerical value, we calculate Nk as the
average Nk(a) over all the graph nodes. In our experiments, we decided to focus on k = 1, 2 to capture the
connectivity both in the same layer (BGEs) and between consecutive layers (MGE), i.e., 6 N1 and 7 N2,
but in principle this metric can be extended to any k lower than the number of layers. We then propose
a metric that does not evaluate the nodes’ connectivity but rather computes the different and recurrent
patterns of connections. In particular, we use 8 Motif(4), i.e., the sum of the number of occurrences of
any motif of size 4 (we decided to use the size of 4 since it captures connections among consecutive layers).
The motifs, which are defined as statistically significant recurrent subgraphs, have been computed using the
FANMOD algorithm (Wernicke & Rasche, 2006).

Strength Connectivity. The previous metrics capture the node connectivity in a fixed subgraph size
(i.e., hops—k—and size of motifs). To better capture the node connectivity of the complete weighted
graph structure, we introduce 9 the node-strength, defined as S(a) =

∑N
j=1 wa,j where wa,j ∈ E represents

the weight of the edge connecting nodes a and j. We also introduce a centrality metric, 10 the k-core
decomposition computed using Batagelj & Zaversnik (2003). Given a graph G, this is defined as its maximal
subgraph G̃ = (Ṽ , Ẽ) such that ∀a ∈ Ṽ : degG̃(a) ≥ k. Then, we define k-core(a) as the highest order of the
core (k) that contains a (i.e., the maximal degree of the subgraph that contains a). Both metrics are the
average over all the graph nodes.

Global Connectivity. These metrics are computed over the complete MGE and are able to capture the
overall connectivity of the graph. They (1) are more expensive computationally, but (2) can better analyze
the connectivity of the networks. These topometrics are: 11 the number of weakly connected components
(a.k.a. clusters), C, and 12 the average size of the clusters, Cavg, computed as 1

|C|
∑|C|

i |ci|, where ci is the
i-th component of the networks. Moreover, we identify two Global Connectivity metrics based on edges
and nodes, namely 13 the number of cut-edges, and 14 the number cut-nodes, that are respectively the
number of edges and nodes required to disconnect connected components. The latter, as well as connected
components, have been computed using Depth-first search (DFS).

Expansion. In graph theory, it is standard to analyze the connectivity of a given graph based on its
adjacency and Laplacian matrices (Coja-Oghlan, 2007; Tikhomirov & Youssef, 2016; Hoffman et al., 2021).
Given a graph G = (V, E), its weighted adjacency matrix is defined as AG ∈ R|V |×|V | where each entry Au,v

G

corresponds to edge weights |Eu,v|5. The Laplacian Matrix, instead, is defined by taking into consideration the
nodes’ degrees as LG = AG − D where D is the degree matrix. We leverage these two matrices by extracting
their n eigenvalues, formally λ(AG) = {µ0, µ1, . . . , µn} s.t. µ0 ≥ µ1, ≥ · · · ≥ µn and λ(LG) = {µ

′

0, µ
′

1, . . . , µ
′

n}
s.t. µ

′

0 ≥ µ
′

1 ≥ · · · ≥ µ
′

n = 0, using Lehoucq et al. (1998), to compute: 15 the Spectral Gap6, defined as
γ(AG) = µ0 − µ̂, where µ̂ = maxµi ̸=µ0 µi , and 16 the Spectral Radius, computed as ρ(LG) = µ

′

0 (Preciado
et al., 2013). For both metrics, higher values correspond to more connected structures.

4 Experiments
Experimental Setup. To provide insights into the topological properties of SNNs, we first generate a
large, heterogeneous pool of sparse topologies. The graph size of the proposed unrolled MGE is based on the
shape of the input data, so we select three datasets sharing the input dimensionality: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) and the downscaled Tiny-ImageNet (Chrabaszcz et al., 2017), all with 32 × 32
images. We employ four different architectures: Conv-6 (Frankle & Carbin, 2019), Resnet-20 and Resnet-32
(He et al., 2016), and Wide-Resnet-28-2 (Zagoruyko & Komodakis, 2016). For pruning, we use a total of
seven algorithms: four PaI methods (SNIP (Lee et al., 2019), GraSP (Wang et al., 2020), Synflow (Tanaka
et al., 2020), ProsPr (Alizadeh et al., 2022)), and three instances of Layer-wise Random Pruning, namely
Uniform (Zhu & Gupta, 2017), ER (Mocanu et al., 2017), and ERK (Evci et al., 2020).

5When computing this matrix, we use undirected graphs and the absolute values of the weights, as in Pal et al. (2022).
6A similar metric has been used in Hoang et al. (2023a), from a layer-based perspective. Here, we compute the spectral gap

w.r.t. to the whole sparse architecture.
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We apply the aforementioned algorithms at five sparsity values, to cover a broad spectrum, namely s ∈
[0.6, 0.8, 0.9, 0.95, 0.98] (as in Hoang et al. (2023b)). We train each combination of ⟨pruning algorithm, dataset,
architecture, sparsity⟩ for 3 runs, obtaining a pool of 1, 260 sparse architectures, which are characterized
by the 16 topometrics defined above7. More details, as well as reproducibility experiments of all pruning
algorithms in all settings (all successful), are reported in Appendices A and B.

4.1 Ramanujan-based metrics and network density
In this Section, we experiment with the metrics associated with rolled BGE for SNNs: the difference of bound
(Pal et al., 2022), its follow-up relaxation, called iterative mean difference of bound (Hoang et al., 2023b), and
the iterative mean weighted spectral gap (Hoang et al., 2023a). Since these metrics stem from the theory of
Ramanujan graphs, we refer to them as “Ramanujan-based”. Our goal here is to evaluate if these metrics
provide more valuable insights than network density, which would motivate using the associated GEs in
practical applications. Our findings suggest this is seldom the case.

Preliminaries. Given a d-regular graph G, its difference of bound is formally defined as ∆r = 2 ×
√

d − 1 −
µ̂(G). Here, d is the graph regularity and µ̂(G) denotes the largest magnitude among the non-trivial eigenvalues
of the adjacency matrix of G (for irregular graphs, the regularity d is commonly replaced by the estimated
degree davg (Hoory, 2005)). This quantity gained popularity in the analysis of PaI algorithms thanks to its
close tie with the Expansion properties of G itself. A value ∆r ≥ 0 ensures that the Ramanujan property
is held by G. In turn, for irregular graphs, this requires that µ̂(G) ≤ 2 ×

√
davg − 1, which is unlikely in

high sparsity regimes and would discard valid Expanders from the analysis. Thus, to cope with the strict
upper bound requirement of µ̂(G) for irregular graphs, Hoang et al. (2023b) further propose a relaxation:
∆rimdb = 1

|K|
∑|K|

i (2 ×
√

di − 1 − µ̂i(Ki)), where the difference of bound is averaged over K, i.e., the set
of regular subgraphs located in G. The resulting metric is coined as the iterative mean difference of bound.
However, both ∆r and ∆rimdb ignore the values of the parameters of the model. To include this knowledge,
Hoang et al. (2023a) follows the same relaxation principle of ∆rimdb, but introduces the iterative mean
weighted spectral gap, defined as λimsg = 1

|K|
∑|K|

i (µ0(|AG i|) − µ̂i(|AG i|)). In this context, AG denotes the
weighted adjacency matrix of a graph.

All three metrics (∆r, ∆rimdb, and λimsg) exhibit good correlation with the SNN performance, thus
representing valid candidates for performance ranking and prediction. However, graph connectivity plays a
central role in the theory of Ramanujan graphs and, as a consequence, these quantities may also strongly
correlate with network density, which can be trivially computed directly from the SNN as per layer |Wnon-zero|

|W | .
Hence, we are interested in answering two crucial questions: (Q1) To what extent are ∆r, ∆rimdb, and λimsg

actually linked to network density?; and (Q2) Are ∆r, ∆rimdb, and λimsg more advantageous than density
metrics to rank and/or predict the performance of SNNs?

Ramanujan-based metrics vs. network density. Here we answer question (Q1): what is the link
between the Ramanujan-based metrics and network density? Since ∆r, ∆rimdb, and λimsg are computed
separately for each BGE (each one encoding a different network layer), we compare them with the corresponding
layer-wise density (i.e., the fraction of active parameters in a layer) induced by PaI algorithms (for brevity,
we refer to it as Layer-Density). To avoid biasing our observations towards only one architecture, and to
account for the possible presence of residual connections, we make this comparison on Conv-6 and Resnet-32,
as shown in Figure 2. We report the corresponding correlation values in Appendix D.

Both Figure 2(a) and Figure 2(b) convey the same message: all Ramanujan-based metrics follow the same trend
of the Layer-Density and are, thus, strongly linked to the overall pruning percentage. In other words, while
being intuitive, these metrics provide essentially the same information provided by the Layer-Density.

Analyzing the performance of SNNs: ∆r , ∆rimdb and λimsg vs. network density. We now answer
question (Q2). Ramanujan-based metrics have been shown to correlate well with performance, i.e., SNNs
whose BGEs have larger ∆r, ∆rimdb, and λimsg tend to have better accuracy once fine-tuned. Consequently,
given a ⟨model, dataset, sparsity⟩ triplet, this useful piece of information can be used to rank PaI methods.
However, this largely holds also for the overall network density: the denser the network, the greater the

7Each topometric is normalized based on the number of nodes/edges present in the graph representation to prevent graph
size/network density from being a confounding variable for our topological study.
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(a) Conv-6 on CIFAR-10 at s = 0.9
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Figure 2: Comparison between the Ramanujan-based metrics and the Layer-Density. To enable a visual
comparison, we scale all values by their overall sum across layers s.t. they sum to 1.

performance. As a consequence of these observations, we aim to understand whether using ∆r, ∆rimdb, or
λimsg gives better rankings than using the average network density across layers. The results of our analysis,
shown in Table 4, provide a significant finding: the average layer-wise sparsity is mostly comparable to, and
sometimes better than, Ramanujan-based metrics as a performance ranking measure.

While these results may suggest that SNN-derived BGEs are of limited practical interest, we argue that a key
ingredient could still be missing: more informative graph metrics. Henceforth, in the next Section, we go
beyond the Ramanujan-based metrics and show that large benefits to SNN analysis emerge when accounting
for a larger, more informative set of graph features.

4.2 Accuracy drop of SNNs
In this Section, we experiment with the proposed MGE and topometrics. First, in Section 4.2.1 we show the
potential of our MGE, which allows computing our proposed graph-based topological metrics over SNNs. The
information extracted from these metrics is then used as a means to regress the accuracy drop of the SNNs
with respect to their corresponding DNNs (hereafter, we always refer to the accuracy drop as ↓ acc = 1 − accs

accd
,

where accs and accd denote the SNN and DNN accuracy, respectively). Then, we focus on understanding the
relationship between the proposed topological features and the accuracy drop in Section 4.2.2. We divide all
the experiments into two orthogonal scenarios.

In the Sparsity-Fixed scenario, we aim at understanding which topological features are statistically associated
with the accuracy drop of SNNs when the computational budget (i.e., the sparsity) is fixed. Importantly, we
do not limit our analysis to a specific architecture, but rather we aim at general features that are important
across architectural designs.

In contrast, in the Architecture-Fixed scenario we fix the architecture and examine how the topometrics-
vs.-accuracy relationships evolve when increasing the sparsity ratio. Intuitively, we wish to determine if
specific architectural designs lead to striking differences in the relevance of topological features.

4.2.1 Regression Analysis
We argue that the more informative the GE is, the easier it is to determine the accuracy drop of the SNNs it
encodes. Hence, in the following we compare the informativeness of different GEs by regressing the accuracy
drop, using standard linear least-squares regression. Given an SNN, its respective GE, and the topological
features therefrom, the task entails fitting a regression model to predict the accuracy drop between the SNN
and its dense counterpart.
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Baselines. We compare our unrolled MGE with two encodings used as baselines, namely (1) the rolled
BGE used in (Pal et al., 2022; Hoang et al., 2023b;a), and (2) the rolled-channel BGE from Prabhu et al.
(2018); Vahedian et al. (2021). Then, from all types of encodings, we compute whenever possible the
topometrics described in Section 3.3. It should be noted indeed that our MGE allows to extract end-to-end
topological features that cannot be computed otherwise with rolled BGEs. Specifically, our encoding enables
the extraction of 6 additional features w.r.t. the existing rolled BGEs: the five Local Connectivity metrics,
and the 2-hop Neighbor Connectivity (N2)8.

Experimental setup. Instead of focusing on a unique regression model, we average the regression
performance over 8 different models, to provide more stable and reliable results. All of these 8 regression
methods are listed in Appendix A.6. For each regressor, we employ k-fold cross-validation (k = 5), and
aggregate the results over 100 runs. The numerical values used as input of the regression analysis (i.e. the
different topometrics) have been normalized separately in [0, 1] using min-max scaling. Regression performance
is given in terms of the Adjusted-R2 coefficient, which has been shown to be the most informative measure
for discovering associations between input features and predicted variables (Chicco et al., 2021), and the
Mean Absolute Error (MAE), which is a standard performance metric to compute the closeness between
correct and predicted results. Both the train and test splits, obtained with k-fold cross-validation, contain
a mixture of accuracy drop values measured on CIFAR-10, CIFAR-100, and Tiny-ImageNet. To provide
generalizable conclusions and avoid inducing dataset-dependent behaviors, we do not separate the data points
by dataset but use a mixture of datasets in all train and test splits.

Results. The results are reported in Table 3, for both the Sparsity-Fixed and the Architecture-Fixed
scenarios. Our unrolled MGE outperforms the rolled BGEs for all cases in both scenarios, suggesting that
our MGE is indeed more informative than existing rolled BGEs. Notably, in the Sparsity-Fixed scenario,
the unrolled MGE exhibits stable results across sparsity ratios. This hints that the knowledge encoded in
our MGE is richer than sole network density. In contrast, the information encoded in rolled BGEs is much
more sensitive to changes in the overall sparsity. Finally, the results show that the gap among all methods
is smaller in the Architecture-Fixed case, which suggests that varying the architectural design is more
relevant than varying the computational budget, regardless of the encoding. Note that this is also suggested
by the overall better results in the Architecture-Fixed case.

Table 3: ↓ acc regression analysis for both the Sparsity-Fixed and the Architecture-Fixed scenarios. We
avoid reporting the MAE standard deviation since, with 3 digits approximation, it always equals 0.

Metric Encoding
Sparsity-Fixed Architecture-Fixed

0.6 0.8 0.9 0.95 0.98 Conv-6 Resnet-20 Resnet-32 Wide-Resnet-28-2

Adjusted-R2 (↑)
Rolled BGE .02 ± .01 .11 ± .02 .19 ± .02 .19 ± .02 .28 ± .01 .65 ± .01 .75 ± .00 .70 ± .01 .70 ± .01
Rolled-channel BGE .10 ± .02 .16 ± .03 .25 ± .03 .29 ± .02 .47 ± .01 .66 ± .03 .54 ± .01 .60 ± .01 .72 ± .01
Unrolled MGE (ours) .54 ± .01 .58 ± .03 .59 ± .01 .50 ± .01 .59 ± .01 .72 ± .01 .78 ± .01 .72 ± .01 .83 ± .01

MAE (↓)
Rolled BGE .020 .047 .079 .122 .165 .043 .082 .091 .045
Rolled-channel BGE .020 .047 .076 .111 .144 .040 .119 .113 .045
Unrolled MGE (ours) .014 .032 .056 .091 .113 .035 .080 .089 .035

4.2.2 Feature Importance
In the previous Section, we empirically verified that our unrolled MGE extracts more meaningful topological
information about SNNs compared to existing rolled BGEs. However, the relationship between the topometrics
therefrom and performance remains unclear. Thus, we assess here the importance of each topometric, examining
both the Sparsity-Fixed and the Architecture-Fixed scenarios. Towards this goal, we compute the
Pearson correlation coefficient (commonly denoted by r) between each topometric and the output of each
regressor employed in the previous Section, then display the average outcome in Figures 3 and 4.

Remark. Note that all regressors have been fitted to predict the accuracy drop. As a consequence, when
increasing a feature with a positive correlation coefficient (r > 0), then ↓ acc would likely increase as well
(i.e., the SNN would perform worse), and vice versa for features with r < 0.

8Moreover, we should remark that the number of motifs (Motif) is bound at 3 for the rolled BGEs (since these encodings are
based on directed bipartite graphs) while is set at 4 for our MGE (as explained in Section 3).
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Sparsity-Fixed. Figure 3 shows the feature importance (i.e., the correlation coefficients), across increasing
sparsity ratios. Interestingly, the importance of the Strength Connectivity and the Neighbor Connectivity
topometrics decreases when increasing the sparsity. On the other hand, the Local Connectivity and the
Global Connectivity connectivity metrics follow an inverse trend. An intuition for this behavior is that at

lower sparsity ratios (i.e., 0.6 and 0.8) the MGE is still strongly connected, thus its connectivity is better
captured by nodes’ degree information (i.e. Strength and Neighbor Connectivity metrics). Conversely, in high
sparsity regimes, the network starts to be more disconnected, and here both Local and Global Connectivity
have a primary role in explaining ↓ acc. Importantly, these observations on Local Connectivity metrics
represent a successful extension to Vysogorets & Kempe (2023); Pham et al. (2023), which introduce “effective”
nodes and paths. It is, in fact, easy to see the similarities between sink, source, and “effective” nodes, as well
as those between the removable in/out connections and “effective” paths. Interestingly, the correlation of the
Expansion topometrics roughly remains low, without a clear pattern across sparsity ratios.
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Figure 3: Pearson correlation coefficients between ↓ acc and each topometric (Sparsity-Fixed scenario).

Architecture-Fixed. This scenario is analyzed in Figure 4, from which we can make a key observation:
different architectures lead to striking differences in feature importance. Hence, informative GEs, from
which diverse topometrics can be extracted, are essential for the analysis. For instance, in every Resnet
extension (i.e., 20 and 32) the Local Connectivity metrics correlate strongly with the accuracy drop. In
wider and more over-parameterized architectures (i.e., Conv-6 and Wide-Resnet-28-2), the importance of
the Strength Connectivity and Neighbor Connectivity topometrics becomes prevalent. In contrast to the
Sparsity-Fixed scenario, Expansion topometrics generally present a strong, negative correlation with the
accuracy drop. Since we do not only consider the Spectral Gap, but further examine the Spectral Radius, and
compute both topometrics over the whole MGE, these findings successfully extend Hoang et al. (2023a).
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Figure 4: Pearson correlation coefficients between ↓ acc and each topometric (Architecture-Fixed scenario).

4.3 Ranking PaI algorithms via topometric mixture
In our previous analysis, we quantified the importance of each topometric for predicting the accuracy drop of
SNNs. We now use feature importance for a practical aim: ranking PaI algorithms. Ranking entails sorting a
set of pruning algorithms P according to the expected performance of their SNNs, once fine-tuned. In light of
the No-Free-Lunch Theorem for pruning (Frankle et al., 2021), given a task, the optimal algorithm may save

11



Published in Transactions on Machine Learning Research (04/2024)

vast amounts of computational resources. If, instead, a suboptimal PaI method is chosen, low performance is
likely, and one may need to train new SNNs from scratch.

Given a ⟨model, dataset, sparsity⟩ triplet, denoted by ⟨M, D, s⟩, previous works (such as Pal et al. (2022);
Hoang et al. (2023b)) rank PaI methods according to a carefully chosen topometric x, relying on its correlation
with post-fine-tuning performance. However, this approach would discard a key finding from Section 4.2,
namely that the importance of different topometrics varies with models and sparsity ratios. To close this gap,
we propose to rank PaI methods with a topometric mixture. In detail, we propose to perform the ranking
according to a weighted sum of topometrics, with weights embodying proxies for topometric importance in the
target scenario. Specifically, we merge the importance of each topometric in the orthogonal Sparsity-Fixed
and Architecture-Fixed scenarios, which allows accounting for estimates of topometric importance given
both a computational budget and a network design. More formally, let xp ∈ Rn denote the n = 16 topometrics
extracted from our MGE after encoding the SNN obtained with a pruning algorithm p ∈ P, packed into
a single vector. Additionally, let wM ∈ Rn and ws ∈ Rn be the estimated Architecture-Fixed and
Sparsity-Fixed feature importance vectors. We then define the overall ranking coefficient of p as:

rp =
n∑

i=0
xp

i ·
(

wM
i + ws

i

2

)
. (5)

Since wM and ws are functions of the accuracy drop, we use the proposed ranking coefficient to sort PaI
algorithms in ascending order. Hence, for any p1, p2 ∈ P , algorithm p1 is preferred over p2 iff rp1 < rp2 .

Baselines. We compare our ranking method to the following strategies: (1) the difference of bound (∆r,
Pal et al. (2022)), (2) the iterative mean difference of bound (∆rimdb, Hoang et al. (2023b)), and (3) the
iterative mean weighted spectral gap (λimsg) from Hoang et al. (2023a). In light of the experimental results of
Section 4.1, we additionally compare our ranking strategy to (4) the average layer-wise density. Note that we
extract ∆r, ∆rimdb, and λimsg from the GEs used in the respective papers.

Experimental Setup. For this analysis, we employ the four PaI algorithms listed at the beginning of
Section 4. To measure the goodness of a ranking, we use the Rank Biased Overlap (RBO) coefficient from
Webber et al. (2010), which is computed as RBO(a, b, α) = (1 − α)

∑∞
d=1 αd−1 |a:d∩b:b|

d , i.e., given any two
ranked lists, this coefficient computes their similarity w.r.t. their length (d) and the order of the items.
Here, α ∈ (0, 1) is a real-valued hyperparameter weighting the contribution of the top-ranked elements.
To avoid biasing the results with an explicit choice for α, we average over evenly spaced values, i.e., over
α ∈ [0.25, 0.50, 0.75]. Following the same rationale of Section 4.2.1, we further average over CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

Results. The ranking provided in Table 4 shows that using the proposed topometric mixture outperforms
all other ranking strategies on 3 out of 4 architectures (see the Avg. column). The only case where our
proposed method struggles to reach the same performance as the competitors is Conv-6. We hypothesize that
the very shallow nature of this architecture, comprised of 6 layers only, decreases the significance of end-to-end
topometrics, and, in general, of GEs. In fact, the trivial average of the layer-wise density is the best performer
with this architecture. When ranking deeper models, however, our MGE and the proposed topometric mixture
far surpass this trivial quantity, while also largely surpassing the other ranking strategies. Finally, Table 4
lets us conclude the analysis from Section 4.1: Ramanujan-based metrics (i.e., ∆r, ∆rimdb, λimsg) are seldom
more informative than layer-wise density, the only exception being the case of s = 0.98.

5 Conclusions, Limitations, and Future Directions
In conclusion, in this paper, we first identified and empirically verified the limitations of the existing layer-
based GEs, as well as of the related Ramanujan-based metrics. We tackled these drawbacks with a novel
MGE, modeling the SNNs in an end-to-end and input-aware manner, along with a new set of topological
features for the graph-based analysis of SNNs. We extensively studied the correlation between the proposed
features and the accuracy drop of SNNs and showed that an effective strategy to rank PaI methods can be
derived based on feature importance, paving the way toward the adoption of SNN-based GEs in practical use
cases. We showed how no topometric alone can accurately predict the performance of an SNN, but a broader
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Table 4: Mean RBO of the proposed topometric mixture (Ours) vs. existing ranking strategies. In total, each
strategy must rank seven pruning algorithms, for all ⟨model, sparsity⟩ combinations. We provide average,
per-model results in the Avg. column.

Model Strategy
Sparsity

Avg.
0.6 0.8 0.9 0.95 0.98

Conv-6

Layer-Density .56 ± .26 .58 ± .34 .88 ± .05 .88 ± .06 .68 ± .30 .72 ± .20
∆r .44 ± .29 .44 ± .29 .79 ± .02 .83 ± .03 .84 ± .01 .67 ± .13
∆rimdb .49 ± .26 .58 ± .34 .82 ± .05 .83 ± .04 .80 ± .02 .70 ± .14
λimsg .17 ± .00 .20 ± .05 .58 ± .35 .82 ± .04 .84 ± .00 .52 ± .09
Ours .51 ± .29 .51 ± .28 .36 ± .01 .39 ± .01 .80 ± .01 .51 ± .12

Resnet-20

Layer-Density .95 ± .01 .31 ± .14 .18 ± .06 .15 ± .04 .18 ± .01 .35 ± .05
∆r .91 ± .06 .23 ± .14 .15 ± .03 .14 ± .01 .52 ± .37 .39 ± .12
∆rimdb .91 ± .06 .25 ± .12 .15 ± .03 .14 ± .01 .52 ± .37 .39 ± .12
λimsg .91 ± .06 .56 ± .25 .18 ± .09 .14 ± .01 .48 ± .41 .45 ± .16
Ours .57 ± .28 .92 ± .03 .44 ± .07 .62 ± .32 .92 ± .07 .69 ± .15

Resnet-32

Layer-Density .58 ± .33 .17 ± .04 .18 ± .10 .15 ± .04 .18 ± .01 .25 ± .10
∆r .56 ± .36 .16 ± .04 .14 ± .04 .15 ± .04 .46 ± .40 .29 ± .18
∆rimdb .56 ± .36 .16 ± .04 .14 ± .04 .15 ± .04 .50 ± .37 .30 ± .17
λimsg .72 ± .44 .77 ± .25 .14 ± .04 .15 ± .04 .68 ± .36 .49 ± .23
Ours .96 ± .03 .60 ± .29 .53 ± .39 .61 ± .33 .79 ± .34 .70 ± .28

Wide-Resnet-28-2

Layer-Density .31 ± .06 .31 ± .07 .48 ± .33 .40 ± .38 .25 ± .11 .35 ± .19
∆r .28 ± .08 .28 ± .08 .27 ± .07 .20 ± .12 .21 ± .11 .25 ± .09
∆rimdb .28 ± .08 .29 ± .08 .24 ± .09 .19 ± .09 .21 ± .11 .24 ± .09
λimsg .28 ± .08 .69 ± .31 .30 ± .06 .14 ± .01 .21 ± .11 .32 ± .11
Ours .35 ± .10 .59 ± .35 .32 ± .07 .52 ± .34 .38 ± .15 .43 ± .20

graph-based viewpoint, based on multiple topometrics, turns out to be the key to success for predicting, and
then ranking, PaI performance across different sparsity ratios and models.

Despite the many advantages, a limitation of our proposed GE is the time and space complexity for
the bipartite encoding generation: for each layer of the MGE (i.e., for each BGE) the time complexity
is O(Cin × Cout × step), while the space complexity is O(L + R + E), where step = ( Id−dker

S + 1)2 and
|E| = Cin × |W \ {0}| × step, assuming square feature maps and kernels. Hence, when computing the BGEs
concatenation to obtain the end-to-end MGE, the complexity is multiplied by the number of layers, plus
any additional residual connection. Additionally, in this work we focused on the established experimental
setups for the graph-based analysis of SNNs, thus examining PaI methods and CNNs, as in Pal et al. (2022);
Hoang et al. (2023b). Nevertheless, analyzing different models, such as Transformers, and families of pruning
algorithms will be needed to further enrich the field. Furthermore, the empirical evidence found in our
observational study could provide elements for theoretical studies about SNNs, as done for instance in Malach
et al. (2020); Gadhikar et al. (2023). Finally, while devising pruning algorithms from graph-based SNN
representations (e.g., by optimizing certain topometrics according to a known sparsity ratio and model design)
was out of the scope of this work, this may as well be a relevant research direction.
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A Experimental Setup
A.1 Datasets
CIFAR-10/100 Krizhevsky et al. (2009). These two datasets are composed of 60, 000 color images each.
These images are divided, respectively for the two datasets, into 10 and 100 classes. Each image has size of
32 × 32 pixels. On both datasets, 50, 000 images are used for training, while the remaining 10, 000 are used
for testing purposes.

Tiny-ImageNet Chrabaszcz et al. (2017). The Tiny-ImageNet dataset consists of 100, 000 color images of
size 64 × 64 pixels. These images are divided into 200 classes, with each class containing 500 images. The
dataset is further split into three sets: a training set, a validation set, and a test set. Each class has 500
training images, 50 validation images, and 50 test images. In our experiments, we further downsample the
images to 32 × 32 pixels in order to use the same architectures for all datasets. The downsampling has been
devised using the Box algorithm 9 with the same approach used in Chrabaszcz et al. (2017).

A.2 Architectures
Conv-6. This model is a scaled-down variant of VGG Simonyan & Zisserman (2014) with six convolutional
and three linear layers. Max-Pooling operation is employed every two convolutional layers. Batch norm Ioffe
& Szegedy (2015) is employed after every convolutional/linear layer. This model was devised for the first
time in Frankle & Carbin (2019) and used as a benchmark in many recent studies on sparse models Zhou
et al. (2019); Ramanujan et al. (2019); Pal et al. (2022). The total number of learnable weights in the model
is ∼ 2.3M.

Resnet-20/Resnet-32 This model is a modification of the classical ResNet architecture. Originally proposed
in He et al. (2016), it has been designed to work with images of size 32 × 32 pixels. The implementation
is based on a public codebase10. This model has been benchmarked in Frankle et al. (2021); Liu et al.
(2022); Alizadeh et al. (2022); Sreenivasan et al. (2022). The total number of learnable weights is ∼ 270K for
Resnet-20 and ∼ 460K for Resnet-32.

Wide-Resnet-28-2. This model is a modification of Wide-ResNet, and was originally proposed in Zagoruyko
& Komodakis (2016). The implementation is based on a public codebase11. This model has been benchmarked
in Mostafa & Wang (2019); Dettmers & Zettlemoyer (2019); Frankle et al. (2021); Sreenivasan et al. (2022).
The total number of learnable weights in the model is ∼ 1.4M.

Table 5: Architectures of the models used in our experiments.

Layer Conv-6 Resnet-20 Resnet-32 Wide-Resnet-28-2

Conv 1
3 × 3, 16

Padding 1
Stride 1

3 × 3, 16
Padding 1
Stride 1

3 × 3, 16
Padding 1
Stride 1

Layer
stack1

[
3 × 3, 64
3 × 3, 64

]
Max-Pool

[
3 × 3, 16
3 × 3, 16

]
× 3

[
3 × 3, 16
3 × 3, 16

]
× 5

[
3 × 3, 32
3 × 3, 32

]
× 4

Layer
stack2

[
3 × 3, 128
3 × 3, 128

]
Max-Pool

[
3 × 3, 32
3 × 3, 32

]
× 3

[
3 × 3, 32
3 × 3, 32

]
× 5

[
3 × 3, 64
3 × 3, 64

]
× 4

Layer
stack3

[
3 × 3, 256
3 × 3, 256

]
Max-Pool

[
3 × 3, 64
3 × 3, 64

]
× 3

Avg Pool
kernel size 8

[
3 × 3, 64
3 × 3, 64

]
× 5

Avg Pool
kernel size 8

[
3 × 3, 128
3 × 3, 128

]
× 4

Avg Pool
kernel size 8

FC 256, 256, nclasses 64, nclasses 64, nclasses 128, nclasses

9https://patrykchrabaszcz.github.io/Imagenet32/
10https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
11https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
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A.3 Hyperparameters
For the experiments with PaI and Layer-wise Random Pruning algorithms, as well as for the dense baselines,
for CIFAR-10 and CIFAR-100 we trained the models for 160 epochs with SGD with momentum 0.9 using batch
size of 128. The initial learning rate was set to 0.1 and decreased by 10 at epochs 80 and 120. Weight decay
was set to 1 × 10−4 for all models but Wide-Resnet-28-2, where it was set to 5 × 10−4. For Tiny-ImageNet, we
trained the model for 100 epochs. The initial learning rate was set to 0.1 and decreased by 10 at epochs 30,
60, and 80. Momentum and weight decay hyperparameters were set as for CIFAR-10/100. This experimental
setup is based on the ones used in Wang et al. (2020); Tanaka et al. (2020); Liu et al. (2022). In all cases, the
weights have been initialized using the standard Kaiming Normal He et al. (2015). Concerning the input
data, random cropping (32 × 32, padding 4) and horizontal flipping have been used for data augmentation in
all the experiments.

A.4 Pruning Algorithms
Details of the tested Pruning Algorithms are listed in Table 6 for PaI algorithms and in Table 7 for Layer-wise
Random ones.

Table 6: Pruning at Initialization Algorithms.

Pruning Method Drop Sanity Check Training Data Iterative

SNIP Lee et al. (2019) |∇θL(θ)| ✗ ✓ ✗

GraSPWang et al. (2020) −H∇θL(θ) ✗ ✓ ✗

Synflow Tanaka et al. (2020) ∂R
∂θ

θ, R = 1⊤(
∏L

l=1 |θl|)1 ✗ ✗ ✓

ProsPr Alizadeh et al. (2022) |∇θe L(θe)| ✗ ✓ ✓

Table 7: Layer-wise Random Pruning Algorithms.

Algorithm Layer-wise Sparsity

Uniform Zhu & Gupta (2017) sl ∀ l ∈ [0, N)
ER Mocanu et al. (2017) 1 − nl−1+nl

nl−1×nl

ERK Evci et al. (2020) 1 − nl−1+nl+wl+hl

nl−1×nl×wl×hl

A.5 Implementation
In order to replicate the results of all the pruning algorithms used in this paper, we based our code on the
original PyTorch algorithm implementation whenever possible. The used sources are the following:

• SNIP https://github.com/mil-ad/snip

• GraSP https://github.com/alecwangcq/GraSP

• SynFlow https://github.com/ganguli-lab/Synaptic-Flow

• ProsPR https://github.com/mil-ad/prospr

• Uniform, ER and ERK https://github.com/VITA-Group/Random_Pruning

On the other hand, for the IMDB metric and the rolled graph encoding Hoang et al. (2023b) we relied on the
official implementation available at https://github.com/VITA-Group/ramanujan-on-pai.

A.6 Models used in regression analysis of performance drop of SNN
In the performance drop analysis carried out in Section 4.2 we tested the topometrics over 8 different regressor
model namely: 1 Linear Model, 2 Ridge, 3 Lasso, 4 ElasticNet, 5 Huber, 6 Principal Component
Regression, 7 Bayesian Ridge, and 8 Automatic Relevance Determination (ARD).
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B Results
In this section, the results of the experiments explained in Appendix A are shown separately for each dataset,
see Tables 8-10. Each combination ⟨dataset, architecture, sparsity, pruning algorithm⟩ has been evaluated
over 3 runs. In the tables, the symbol “*” indicates that the sparse network is not able to outperform the
random dense baseline (i.e., if the probability of correctly guessing a sample class is 1

C , the network after
pruning has an average accuracy ≤ 1

C ). In each table, for any combination ⟨architecture, sparsity⟩.

Table 8: Accuracy results on CIFAR-10.

Conv-6 Resnet-20 Resnet-32 Wide-Resnet-28-2
Sparsity Ratio 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98
SNIP Lee et al. (2019) 92.7±0.3 92.0±0.1 91.1±0.1 89.6±0.2 83.8±0.3 90.5±0.4 89.0±0.3 87.0±0.0 83.2±0.4 75.9±0.5 91.7±0.1 90.5±0.2 88.9±0.2 86.3±0.1 80.2±0.6 94.1±0.2 93.2±0.2 92.2±0.2 90.6±0.2 87.2±0.3
GraSP Wang et al. (2020) 92.2±0.1 91.6±0.1 90.7±0.1 89.5±0.1 86.0±0.3 90.2±0.1 89.1±0.3 87.2±0.1 84.4±0.0 77.1±0.2 91.3±0.3 90.4±0.1 89.1±0.4 86.6±0.2 81.8±0.0 94.0±0.2 93.0±0.1 91.9±0.1 90.5±0.1 87.7±0.3
SynFlow Tanaka et al. (2020) 92.7±0.1 92.1±0.1 91.3±0.3 89.8±0.2 86.8±0.2 90.5±0.3 89.3±0.1 86.2±0.3 82.9±0.2 76.2±0.3 91.6±0.3 90.4±0.5 88.7±0.2 85.6±0.2 79.7±0.5 93.9±0.1 93.1±0.1 91.6±0.3 90.4±0.2 86.6±0.4
ProsPR Alizadeh et al. (2022) 92.5±0.3 91.7±0.3 90.5±0.3 89.2±0.3 85.3±0.5 90.6±0.2 89.4±0.1 86.4±0.3 81.8±0.5 74.6±0.5 91.9±0.1 90.7±0.4 88.4±0.4 84.3±1.0 54.4±0.0 94.0±0.3 93.4±0.1 92.1±0.2 90.5±0.3 87.2±0.6
Uniform Zhu & Gupta (2017) 92.3±0.2 91.1±0.1 89.2±0.1 86.4±0.4 79.7±0.1 90.1±0.1 88.2±0.4 85.5±0.3 77.7±4.2 54.7±6.9 91.2±0.3 89.8±0.2 87.8±0.4 81.9±5.3 44.1±8.0 93.5±0.1 92.5±0.0 90.9±0.0 89.0±0.1 84.3±0.6
ER Mocanu et al. (2017) 91.3±0.1 90.2±0.1 88.6±0.2 86.5±0.1 82.7±0.2 90.5±0.2 89.1±0.1 86.9±0.3 83.8±0.2 77.0±0.3 91.6±0.2 90.8±0.1 88.9±0.0 85.5±0.2 81.8±0.2 93.8±0.1 93.2±0.2 92.1±0.1 90.4±0.2 87.0±0.0
ERK Evci et al. (2020) 91.3±0.1 90.2±0.2 88.8±0.3 86.7±0.1 82.5±0.1 90.8±0.3 89.4±0.3 87.1±0.1 83.8±0.2 77.4±0.2 91.6±0.3 90.7±0.2 88.9±0.1 86.4±0.3 81.8±0.3 94.1±0.1 93.4±0.1 92.2±0.3 90.4±0.2 86.9±0.4
Dense (Baseline) 93.2±0.0 91.7±0.1 92.3±0.1 94.4±0.1

Table 9: Accuracy results on CIFAR-100.

Conv-6 Resnet-20 Resnet-32 Wide-Resnet-28-2
Sparsity Ratio 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98
SNIP Lee et al. (2019) 66.9±0.5 65.2±0.4 62.8±0.7 56.7±1.4 38.2±1.8 64.3±0.2 60.6±1.1 52.5±1.5 41.9±0.9 24.4±0.5 66.3±0.5 61.9±2.2 53.9±1.7 46.4±2.2 28.9±1.3 72.4±0.2 70.4±0.2 67.8±0.2 63.3±0.2 51.2±1.2
GraSP Wang et al. (2020) 66.5±0.3 64.5±0.4 62.6±0.2 59.6±0.1 52.2±0.5 63.7±0.3 60.4±0.3 54.2±0.3 45.9±0.1 31.2±1.3 66.0±0.4 63.3±0.2 59.8±0.6 52.8±0.4 38.1±0.7 71.9±0.3 69.9±0.5 67.7±0.3 64.2±0.6 55.1±1.1
SynFlow Tanaka et al. (2020) 67.4±0.3 65.1±0.0 63.2±0.3 60.5±0.2 54.7±0.1 63.9±0.1 58.9±0.4 50.1±0.1 38.2±0.6 19.2±2.5 66.2±0.1 62.5±0.2 55.3±0.2 44.0±0.3 24.1±1.0 71.8±0.2 69.3±0.5 66.1±0.4 60.5±0.0 48.7±0.3
ProsPR Alizadeh et al. (2022) 67.3±0.3 64.8±0.6 62.9±0.2 59.6±0.1 52.2±0.4 64.1±0.1 60.0±0.7 50.9±0.9 31.7±3.2 26.5±1.1 66.2±0.2 62.9±0.5 54.0±3.5 35.2±6.3 4.4±2.7 72.4±0.5 70.5±0.3 67.9±0.3 61.5±0.4 45.1±3.2
Uniform Zhu & Gupta (2017) 66.4±0.2 63.6±0.4 59.9±0.1 54.8±0.6 43.6±1.2 63.1±0.3 59.5±0.4 52.2±0.8 39.1±3.0 18.2±0.9 65.4±0.3 62.3±0.8 56.8±0.4 46.1±1.0 23.5±1.4 72.0±0.2 69.7±0.5 67.2±0.1 62.7±0.5 45.6±2.0
ER Mocanu et al. (2017) 64.8±0.3 62.3±0.1 59.9±0.4 55.6±0.1 47.5±0.8 64.6±0.5 61.4±0.2 55.8±0.4 47.2±0.5 33.7±0.5 66.4±0.3 64.3±0.3 59.7±0.3 53.6±0.8 40.9±0.5 72.2±0.3 70.2±0.4 68.0±0.6 64.1±0.4 56.1±0.4
ERK Evci et al. (2020) 65.1±0.5 62.0±0.1 59.0±0.4 56.0±0.2 47.3±0.1 65.4±0.5 61.8±0.2 55.8±1.2 47.2±0.1 33.6±0.6 66.7±0.6 64.7±0.5 60.2±0.4 53.0±0.1 40.8±0.5 72.4±0.4 70.7±0.1 68.1±0.1 64.7±0.6 56.3±0.1
Dense (Baseline) 68.5±0.2 66.4±0.3 68.0±0.3 74.2±0.2

Table 10: Accuracy results on Tiny-ImageNet.

Conv-6 Resnet-20 Resnet-32 Wide-Resnet-28-2
Sparsity Ratio 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98 0.6 0.8 0.9 0.95 0.98
SNIP Lee et al. (2019) 45.9±0.2 43.7±0.6 37.3±0.2 29.2±1.0 16.6±1.5 41.5±0.3 34.2±1.5 27.2±0.5 19.8±0.3 10.8±0.6 41.9±1.9 34.6±0.6 28.4±0.6 20.5±1.4 13.6±1.1 48.7±0.3 47.8±0.5 44.5±0.9 38.3±0.8 27.8±0.6
GraSP Wang et al. (2020) 45.2±0.5 44.5±0.4 42.6±0.5 39.0±0.3 31.6±0.4 41.1±0.4 36.4±0.6 30.5±0.2 23.2±1.2 13.0±0.4 44.2±0.3 40.3±0.7 34.2±0.2 27.7±0.1 17.6±0.2 47.8±0.8 46.9±0.7 44.0±0.3 39.3±0.4 30.8±0.7
SynFlow Tanaka et al. (2020) 46.2±0.2 45.0±0.3 43.2±0.4 40.0±0.4 32.6±0.7 41.4±0.1 33.7±0.4 24.4±0.3 13.9±0.4 6.1±0.8 44.4±0.3 37.6±0.7 27.2±0.2 16.9±0.8 7.0±1.4 48.5±0.5 46.0±0.1 41.2±0.4 33.6±0.5 21.2±0.9
ProsPR Alizadeh et al. (2022) 46.3±0.4 45.7±0.9 43.1±0.4 39.3±0.3 31.8±0.8 40.4±1.1 34.6±0.1 22.0±1.0 11.1±1.5 10.8±0.0 44.3±0.9 37.5±0.4 24.3±2.1 11.5±1.7 * 49.3±0.3 47.1±0.4 43.8±0.3 34.9±0.9 27.5±0.1
Uniform Zhu & Gupta (2017) 45.6±0.5 43.8±0.3 40.3±0.3 34.9±0.4 25.7±0.2 40.4±0.1 35.3±0.3 28.5±0.3 20.5±0.4 9.3±1.4 44.2±0.3 39.0±0.6 32.4±0.1 24.1±1.0 11.9±2.4 47.7±0.9 46.1±0.4 41.7±0.8 36.0±0.4 25.3±0.8
ER Mocanu et al. (2017) 44.4±0.4 43.7±0.2 40.3±0.4 36.3±0.5 28.5±0.4 43.1±0.7 37.8±0.3 32.2±0.4 25.6±0.2 15.1±0.4 46.6±0.2 42.2±0.6 36.1±0.3 29.2±0.1 21.1±0.5 49.3±0.4 48.0±0.3 44.6±0.3 39.9±0.4 31.5±0.3
ERK Evci et al. (2020) 44.1±0.3 43.0±0.4 40.9±0.1 35.8±0.2 28.6±0.3 43.8±0.5 38.6±0.4 32.1±0.0 25.4±0.2 15.6±0.2 46.3±0.1 42.3±0.3 35.8±0.4 28.7±0.6 19.6±0.5 48.9±0.2 48.1±0.2 44.4±0.4 39.6±0.5 31.6±0.5
Dense (Baseline) 46.1±0.4 46.3±0.3 48.0±0.5 48.6±0.2

C Graph Encoding Pooling Layers
Suppose the network has two consecutive layers li and li+1 and a pooling operation ρ is employed between
them. The two layers have respectively a bipartite graph representation Gi and Gi+1. However, the MGE
is not directly applicable since |Ri| ̸= |Li+1|. Nevertheless, we know a priori that |ρ(Ri)| = |Li+1|. This
encoding extension aims at concatenating two layers Ri and Li+1 with different dimensions. To do so, we
transform Li+1 to L

′

i+1 such that |L′

i+1| = |Ri|, to allow the nodes’ concatenation between consecutive layers.
Then, the edge construction is straightforward: each edge in Gi+1 which links u ∈ Li+1 to v ∈ Ri+1 is added
|ρ(Ri)| times, one for each node in the pooling window pw ⊆ Ri, which is computed over Ri (since Ri has
the same dimension of L

′

i+1 and the two have been concatenated) such that u ∈ L
′

i+1 is linked to v ∈ Ri+1.
Then, based on such pooling encoding, any pair of consecutive layers G

′

i and Gi+1 can be linked together in
the MGE.

D Correlation Expander-related metrics and network density
In Figure 5, we report the Pearson Correlation (r) between the Ramanujan-based metrics and the Layer-
Density. The correlation has been computed over the metrics on all layers of the given ⟨architectures,sparsity⟩,
considering as dataset CIFAR-10. It can be seen how the correlation for ∆r Pal et al. (2022) and ∆rimdb

Hoang et al. (2023b) is almost always above 0.9, with several peaks at ∼ 1, while it is slightly lower for
λimsg Hoang et al. (2023a). To note that empty entries refer to SNNs that cannot be analyzed using the
Ramanujan-based metrics, since in those cases the graph representation violates the Ramanujan constraints
of min(dL, dr) ≥ 3 Hoang et al. (2023b) for every layer.
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Figure 5: Pearson Correlation (r) between Ramanujan-based metrics and Layer-Density

E Rank Prediction
In this section, we include the numerical values (in terms of mean RBO) of the rank prediction devised with
our topometric mixture, separately for Pruning at Initialization and Layer-Wise Random Pruning algorithms.
Table 11 shows the results for the PaI case, where we can see that the numerical values follow the same
pattern presented in the main text, i.e., our proposed topometric mixture outdoes the other metrics by ∼
30%. On the other hand, in Table 12 we report the results for the Layer-Wise Random Pruning algorithms,
where no clear better approach is visible. The numerical values of the mean RBO turn out to be high for
almost all metrics (ours included), which indicates almost perfect matching in the ranking prediction.

Table 11: Mean RBO of the proposed topometric mixture (Ours) vs. existing ranking strategies. In total,
each strategy must rank four Pruning at Initialization algorithms (see Section 4), for all ⟨model, sparsity⟩
combinations. We provide average, per-model results in the Avg. column.

Model Encoding
Sparsity-wise

Avg.
0.6 0.8 0.9 0.95 0.98

Conv-6

Layer-Density .60 ± .26 .62 ± .34 .91 ± .05 .90 ± .06 .69 ± .29 .74 ± .20
∆r .60 ± .26 .62 ± .34 .91 ± .05 .86 ± .00 .86 ± .00 .77 ± .13
∆rimdb .60 ± .26 .62 ± .34 .91 ± .05 .86 ± .00 .86 ± .00 .77 ± .13
λimsg .60 ± .26 .62 ± .34 .91 ± .05 .90 ± .06 .86 ± .00 .78 ± .14
Ours .54 ± .28 .53 ± .29 .37 ± .02 .34 ± .07 .93 ± .06 .54 ± .14

Resnet-20

Layer-Density .62 ± .34 .53 ± .29 .36 ± .00 .36 ± .00 .35 ± .08 .44 ± .14
∆r .42 ± .07 .36 ± .10 .26 ± .00 .26 ± .00 .33 ± .06 .33 ± .05
∆rimdb .42 ± .07 .36 ± .10 .26 ± .00 .26 ± .00 .33 ± .06 .33 ± .05
λimsg .42 ± .07 .36 ± .10 .26 ± .00 .29 ± .06 .33 ± .06 .33 ± .06
Ours .90 ± .06 .54 ± .31 .82 ± .28 .93 ± .06 .53 ± .29 .74 ± .20

Resnet-32

Layer-Density .55 ± .30 .50 ± .43 .33 ± .06 .36 ± .00 .36 ± .00 .42 ± .16
∆r .72 ± .28 .54 ± .31 .29 ± .06 .26 ± .00 .26 ± .00 .41 ± .13
∆rimdb .72 ± .28 .34 ± .07 .29 ± .06 .26 ± .00 .26 ± .00 .37 ± .08
λimsg .59 ± .33 .50 ± .34 .29 ± .06 .36 ± .00 .36 ± .00 .42 ± .15
Ours .59 ± .36 .33 ± .06 .93 ± .06 .97 ± .0 .73 ± .32 .71 ± .16

Wide-Resnet-28-2

Layer-Density .61 ± .22 .44 ± .04 .76 ± .35 .53 ± .29 .38 ± .02 .54 ± .18
∆r .37 ± .02 .37 ± .02 .36 ± .00 .29 ± .06 .29 ± .06 .34 ± .03
∆rimdb .37 ± .02 .37 ± .02 .33 ± .06 .29 ± .06 .29 ± .06 .33 ± .04
λimsg .37 ± .02 .37 ± .02 .36 ± .00 .29 ± .06 .33 ± .06 .34 ± .03
Ours .63 ± .29 .82 ± .31 .56 ± .29 .73 ± .29 .94 ± .07 .74 ± .25
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Table 12: Mean RBO of the proposed topometric mixture (Ours) vs. existing ranking strategies. In total, each
strategy must rank three Layer-Wise Random Pruning algorithms (see Section 4), for all ⟨model, sparsity⟩
combinations. We provide average, per-model results in the Avg. column.

Model Encoding
Sparsity-wise

Avg.
0.6 0.8 0.9 0.95 0.98

Conv-6

Layer-Density .04 ± .00 .40 ± .00 .56 ± .29 1.0 ± .00 .67 ± .29 .61 ± .12
∆r .40 ± .00 .40 ± .00 .56 ± .29 1.0 ± .00 .67 ± .29 .61 ± .12
∆imdb .97 ± .06 .97 ± .06 .43 ± .06 1.0 ± .00 .67 ± .29 .81 ± .09
λimsg .40 ± .00 .40 ± .00 .56 ± .29 .83 ± .29 .63 ± .32 .56 ± .18
Ours .97 ± .06 .97 ± .06 .43 ± .06 .83 ± .29 .67 ± .29 .77 ± .15

Resnet-20

Layer-Density 1.0 ± .00 1.0 ± .00 .83 ± .29 .67 ± .29 1.0 ± .00 .90 ± .12
∆r 1.0 ± .00 1.0 ± .00 .83 ± .29 .50 ± .00 .83 ± .29 .83 ± .12
∆imdb 1.0 ± .00 1.0 ± .00 .83 ± .29 .67 ± .29 .83 ± .29 .87 ± .17
λimsg 1.0 ± .00 .67 ± .29 1.0 ± .0 .67 ± .29 .67 ± .29 .80 ± .17
Ours .83 ± .29 1.0 ± .00 .67 ± .29 .67 ± .29 1.0 ± .00 .83 ± .17

Resnet-32

Layer-Density .83 ± .29 .83 ± .29 1.0 ± .00 1.0 ± .00 .83 ± .29 .90 ± .17
∆r .83 ± .29 .83 ± .29 1.0 ± .00 .83 ± .29 1.0 ± .00 .90 ± .17
∆imdb .83 ± .29 .83 ± .29 1.0 ± .00 .83 ± .29 1.0 ± .00 .90 ± .17
λimsg 1.0 ± .00 .83 ± .29 1.0 ± .00 .83 ± .29 1.0 ± .00 .93 ± .12
Ours 1.0 ± .00 .67 ± .29 .67 ± .29 .83 ± .29 .83 ± .29 .80 ± .23

Wide-Resnet-28-2

Layer-Density .83 ± .29 1.0 ± .00 .83 ± .29 1.0 ± .00 .50 ± .0 .83 ± .12
∆r .83 ± .29 1.0 ± .00 .83 ± .29 .83 ± .29 .83 ± .29 .86 ± .23
∆imdb .83 ± .29 1.0 ± .00 .83 ± .29 1.0 ± .00 .83 ± .29 .90 ± .17
λimsg .83 ± .29 1.0 ± .00 .83 ± .29 .83 ± .29 .67 ± .29 .83 ± .23
Ours .83 ± .29 1.0 ± .00 .67 ± .29 .83 ± .29 .67 ± .29 .80 ± .23
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