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ABSTRACT

Federated learning has been a popular approach to enable collaborative learning on
multiple parties without exchanging raw data. However, the model performance of
federated learning may degrade a lot due to non-IID data. While most existing stud-
ies focus on non-IID labels, federated learning on non-IID features has largely been
overlooked. Different from typical federated learning approaches, the paper pro-
poses a new learning concept called ADCOL (Adversarial Collaborative Learning)
for non-IID features. Instead of adopting the widely used model-averaging scheme,
ADCOL conducts training in an adversarial way: the server aims to train a dis-
criminator to distinguish the representations of the parties, while the parties aim
to generate a common representation distribution. Our experiments on three real-
world datasets show that ADCOL achieves better accuracy and is much more
communication-efficient than state-of-the-art federated learning algorithms on non-
IID features. More importantly, ADCOL points out a promising research direction
for collaborative learning.

1 INTRODUCTION

Deep learning is data hungry. While data are always dispersed in multiple parties (e.g., mobile
devices, hospitals) in reality, data are not allowed to transfer to a central server for training due to
privacy concerns and data regulations. Collaborative learning among multiple parties without the
exchange of raw data has been an important machine learning topic.

Federated learning (McMahan et al., 2016; Kairouz et al., 2019; Li et al., 2019b;a) has been a popular
form of collaborative learning without exchanging raw data. A basic federated learning framework is
FedAvg (McMahan et al., 2016), which uses a model-averaging scheme. In each round, the parties
update their local models and send them to the server. The server averages all local models to update
the global model, which is sent back to the parties as the new local model in the next round. FedAvg
has been widely used due to its effectiveness and simpleness. Most existing federated learning
approaches are designed based on FedAvg.

However, as shown in many existing studies (Hsu et al., 2019; Li et al., 2020; Wang et al., 2020b;
Karimireddy et al., 2020; Acar et al., 2021; Li et al., 2021b), the performance of FedAvg and its alike
algorithms may be significantly degraded in non-IID data among parties. While many studies try to
improve FedAvg on non-IID data, most of them (Li et al., 2020; Wang et al., 2020b; Karimireddy
et al., 2020; Acar et al., 2021; Li et al., 2021a; Wang et al., 2020a) focus on the label imbalance
setting, where the parties have different label distributions. In their experiments, they usually simulate
the federated setting by unbalanced partitioning the dataset into multiple subsets according to the
labels.

As summarized in (Hsieh et al., 2020; Kairouz et al., 2019), besides the label distribution skew,
feature imbalance is also an important case of non-IID data. In the feature imbalance setting, the
feature distribution Pi(x) varies across parties. This setting widely exists in reality, e.g., people have
different stroke width and slant when writing the same word. Another example in practice is that
medical images of different hospitals have different intensity and contrast. However, compared with
non-IID labels, federated learning on non-IID features has been less explored. Since the feature
distributions are different across parties, there exists bias in the local training. It is challenging to
mitigate the bias while exploiting the heterogeneous feature distributions in the training.
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In this paper, we think out of the model-averaging scheme used in federated learning, and propose
a novel learning concept called adversarial collaborative learning. While the feature distribution
of each party is different, to mitigate the local bias, we aim to learn a common representation
distribution among parties. Specifically, the server aims to train a discriminator to distinguish the
local representations by the party IDs, while the parties train the local models such that the generated
representations cannot be distinguished by the discriminator. Our experiments show that ADCOL
outperforms state-of-the-art federated learning algorithms (Li et al., 2021b; 2020; Fallah et al., 2020;
Collins et al., 2021) on three real-world tasks. More importantly, ADCOL points out a promising
research direction on collaborative learning. Inspired by our idea of conducting collaborative learning
in an adversarial way, we believe there will be more interesting future works in this direction.

2 BACKGROUND AND RELATED WORK

2.1 NON-IID DATA

We use Pi(x, y) to denote the data distribution of party i, where x is the features and y is the label.
According to existing studies (Kairouz et al., 2019; Hsieh et al., 2020), we can categorize non-IID
data in federated learning into the following four classes: (1) non-IID labels: the marginal distribution
Pi(y) varies across parties. (2) non-IID features: the marginal distribution Pi(x) varies across parties.
(3) concept drift: The conditional distributions Pi(y|x) or Pi(x|y) varies across parties. (4) quantity
skew: the amount of data varies across parties. In this paper, we focus on non-IID features, which
widely exist in reality. For example, while the pneumonia distribution of patients may be close among
different hospitals, the distributions of CT images (such as resolution, color, length and width) may
vary across hospitals, which are collected from different equipment and environments.

2.2 FEDERATED LEARNING ON NON-IID LABELS

Non-IID data is a key challenge in federated learning. There have been many studies trying to improve
the performance of federated learning under non-IID data. However, most existing studies (Li et al.,
2020; Wang et al., 2020a; Hsu et al., 2019; Li et al., 2021a; Acar et al., 2021; Karimireddy et al.,
2020) focus on label imbalance, where they usually simulate the federated setting with heterogeneous
label distributions in the experiments. For example, FedProx (Li et al., 2020) introduces a proximal
term in the objective of local training, which limits the update of the local model by the distance
between the local model and the global model. FedMA (Wang et al., 2020a) applies Bayesian
non-parametric methods to update the global model in a layer-wise manner in the model aggregation
phase. FedDyn (Acar et al., 2021) introduces a dynamic regularization term in the local training
based on the global model and the local model from the previous round. More recently, MOON
(Li et al., 2021a) proposes model-contrastive federated learning, which corrects the local training
by a contrastive loss which maximizes the agreement between the representation learned by the
global model and the representation learned by the local model. As we will show in the experiments,
existing algorithms have severe performance degradation on parties with non-IID features. More
recently, a contemporary study (Zhang et al., 2021a) proposed FedUFO, where each party trains a
discriminator to apply feature and objective consistency constrains to address the non-IID data issue.
However, FedUFO needs to transfer each local model to all the other parties, which causes massive
communication overhead. Moreover, FedUFO is still based on FedAvg, while we propose a novel
new collaborative training scheme based on adversarial training in this paper.

2.3 FEDERATED LEARNING ON NON-IID FEATURES

To the best of our knowledge, there is only one study named FedBN (Li et al., 2021b) that focuses on
non-IID features. FedBN introduces lightweight modifications on FedAvg. Instead of transferring and
averaging all model parameters in FedAvg, FedBN keeps all the local batch normalization parameters
and does not synchronize them with the global model. The operations for non-batch normalization
parameters are the same as FedAvg. Our proposed ADCOL is based on a novel approach: adversarial
learning for a common representation among multiple parties. ADCOL outperforms FedBN on three
real-world datasets in both accuracy and communication-efficiency.
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2.4 PERSONALIZED FEDERATED LEARNING

There are basically two kinds of objective in federated learning: learning a single global model
or learning a personalized local model for each party (i.e., personalized federated learning (Fallah
et al., 2020; Dinh et al., 2020; Hanzely et al., 2020; Zhang et al., 2021b; Huang et al., 2021; Collins
et al., 2021)). When the training data is non-IID across parties, personalized federated learning is
reasonable since a single global model may not be good for every local distribution. In this paper,
same as FedBN, ADCOL is designed under the personalized federated learning setting, i.e., each
party aims to learn a local model for its own local task.

3 METHOD

3.1 PROBLEM STATEMENT

Suppose there are N parties, where party i has a local datasetDi = {xi, yi}. The feature distributions
P (xi) are different among parties while the label distributions P (yi) are similar among parties. The
parties conduct collaborative learning over D ≜

⋃
i∈[N ]Di with the help of a central server without

exchanging the raw data. The goal of each party is to train a machine learning model which has good
accuracy on its local test dataset.

3.2 MOTIVATION

The key idea of ADCOL is intuitive. While the feature distributions are different among parties, to
mitigate the local bias, ADCOL aims to learn a common task-specific representation distribution.
Inspired by GANs (Goodfellow et al., 2014) and adversarial learning for distribution matching (Tzeng
et al., 2017; Peng et al., 2019b), ADCOL adopts an adversarial way to restrict the representation
distribution.

Next we explain the motivation from a distribution perspective. The ultimate goal of each party
in typical federated learning is to learn the oracle optimal distribution p∗(y|x). Here we introduce
the representation z of the data x, which is supposed to be sufficient for the prediction of labels y
(Federici et al., 2020). Then, x, y, and z forms a Markov chain x→ z→ y. Thus, we decomposite
the oracle optimal into two parts: p∗(z|x) and p∗(y|z). The first part is to learn a good representation
and the second part is to predict the label by the representation with simple linear layers. To learn the
optimal representation distribution p∗(z|x), the objective of each party is

min
θi

Ex∼Di
ℓKL(p(z|x; θi) || p∗(z|x)), (1)

where ℓKL is the KL divergence loss. We adopt KL divergence due to its popularity for evaluating
the distance between probability distributions. However, the optimal representation distribution is
unknown. Thus, we approximate the objective by two aspects: 1) By training in a novel adversarial
way, we use the similarity between the representations of different parties to regularize the representa-
tion, i.e., the parties learn a common representation z. 2) We ensure that the generated representation
contains necessary information for the prediction of y by training on the labeled local data. Next, we
describe our model architecture and training algorithm in details.

3.3 MODEL ARCHITECTURE

There are two kinds of models in ADCOL: the local models trained in the parties and the discriminator
trained in the server. As ADCOL works from the perspective of representation, the architecture of the
local model is similar as existing studies (Chen et al., 2020; He et al., 2020; Chen and He, 2021) on
self-supervised representation learning. The local model has three components: a base encoder, a
projection head, and a predictor. The base encoder (e.g., ResNet-50) extracts representation vectors
from inputs. Like SimCLR (Chen et al., 2020) and SimSam (Chen and He, 2021), an additional
projection head is introduced to map the representation to a space with a fixed dimension. The final
predictor is used to output predicted probabilities for each class. For ease of presentation, we use
F (·) to denote the whole model and G(·) to denote the model before the predictor (i.e., G(x) is
the mapped representation vector of input x). For the discriminator, we simply use a multi-layer
perceptron in our experiments.
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Figure 1: The ADCOL framework

3.4 THE OVERALL FRAMEWORK

The overall framework is shown in Figure 1 and Algorithm 1. There are four steps in each round: (1)
The server sends the discriminator to the parties. (2) The parties update their local models. (3) The
parties send representations to the server. (4) The server updates the discriminator.

Step 1 In the first step, the server sends the discriminator to parties (line 4 of Algorithm 1).

Step 2 In the second step, the parties update their models using their local datasets (lines 10-17 of
Algorithm 1). In addition to the objective which aims to minimize the cross-entropy loss (i.e., ℓCE)
on the local dataset, ADCOL introduces an additional regularization term which aims to maximize
the probability that the discriminator cannot distinguish the local representations. For each input
x, ADCOL feeds the representation G(x) to the discriminator. ADCOL expects the discriminator
to output probability vector [ 1N ]N (i.e., the probability of each class is 1

N ) such that it cannot
distinguish which party that the representation comes from. Thus, ADCOL uses Kullback–Leibler
(KL) divergence loss to measure the difference between the output of the discriminator D(G(x)) and
the target [ 1N ]N . The final loss of an input (x, y) is computed as

ℓ = ℓCE(F (x), y) + µℓKL([
1

N
]N || D(G(x))) (2)

where µ is a hyper-parameter to control the weight of KL divergence loss, ℓCE is the cross-entropy
loss, and ℓKL is the KL divergence loss.

Step 3 After local training, the parties feed their data into the local models and transfer the
representations to the server (line 5 of Algorithm 1).

Step 4 The server updates the discriminator using the received representations (lines 6-9 of Algo-
rithm 1). Specifically, the server can build a training set, where the feature values are the representa-
tions and the labels are the party IDs that the representations come from. The training set is used to
update the discriminator using stochastic gradient descent.
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Algorithm 1: The ADCOL algorithm
Input: number of communication rounds T , number of parties N , number of local epochs E,

learning rate η, hyper-parameter µ
Output: The local models Fi (i ∈ [N ])

1 Server executes:
2 for t = 1, 2, ..., T do
3 for i = 1, 2, ..., N in parallel do
4 send the discriminator D to party i
5 Ri ← PartyLocalTraining(i, D)

6 R← {(Ri, i)}Ni=1
7 for each batch b = {Ri, i} of R do
8 ℓ← CrossEntropyLoss(D(Ri), i)
9 D ← D − η∇ℓ

10 PartyLocalTraining(i, D):
11 for epoch e = 1, 2, ..., E do
12 for each batch b = {x, y} of Di do
13 ℓCE ← CrossEntropyLoss(Fi(x), y)
14 R← Gi(x)

15 ℓKL ← KLDiv([ 1N ]N ||D(R))
16 ℓ← ℓCE + µℓKL

17 Fi ← Fi − η∇ℓ

18 return Gi(x
i) to server

3.5 COMPARISONS WITH EXISTING FEDERATED LEARNING APPROACHES

ADCOL is quite different from typical federated learning algorithms. Instead of transferring and aver-
aging models, ADCOL transfers the representations from the parties to the server. More importantly,
the training is conducted in an adversarial way between the parties and the server. The server tries to
distinguish the representations while the parties try to generate non-distinguishable representations.
Here we compare ADCOL with FedAvg in terms of communication size and privacy.

Communication Size For simplicity, we do not consider party sampling during training (i.e., all
parties participate in learning in each round). We use SL to denote the size of the local model. Then,
the communication size of FedAvg is 2NSL, including the server sends the model to all parties and
the parties send their local models to the server. We use n to denote the total number of examples (i.e.,
n =

∑N
i=1 |Di|), d to denote the dimension of the representations, and SD to denote the size of the

discriminator. Suppose each float value costs 4 bytes to store. In each round, the total communication
size of ADCOL is (4nd+NSD), including the parties send the representations to the server and the
server sends the discriminator to the parties. Thus, when n > (2SL − SD)N/4d, the communication
size of ADCOL is larger than FedAvg in each round.

Note that the above threshold is usually large in practice. For example, in our experiments, when
N = 6, d = 2048, SL = 142MB, and SD = 5MB, the threshold is equal to 204346. As we will
show in the experiments, ADCOL is much more communication-efficient than FedAvg. Moreover,
ADCOL requires a smaller bandwidth requirement as the size of each representation is much smaller
than the local model.

Privacy While FedAvg transfers models and ADCOL transfers the representations, FedAvg and
ADCOL both suffer from possible attacks on the exchanged information. There are many existing
studies (Shokri et al., 2017; Nasr et al., 2019) that infer sensitive information from exchanged
gradients/models. Also, there are studies (Salem et al., 2020) on reconstruction attacks wn the output
of a model. While existing studies have shown that the mutual information between the input data
and the final representation is small (Shwartz-Ziv and Tishby, 2017), it is not clear that which one is
more private against inference attacks, which can be an interesting future direction. Local differential
privacy (Kairouz et al., 2014) can be applied to protect the representation, which has been adopted
in previous studies (Lyu et al., 2020). We have conducted experiments to show the feasibility of
differential privacy to protect the communicated representations in Appendix B.13.

4 THEORETICAL ANALYSIS

As shown in Equation (2), the local loss has two parts: the cross-entropy loss part to update the
whole network F and the KL divergence loss part to update the representation generator G. Ideally,
to achieve minimum of ℓ, each part should achieve minimum. Since the cross-entropy loss part is
same as FedAvg, we focus on the effect of the KL divergence loss. For simplicity, we ignore the
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cross-entropy loss and study the KL divergence loss in our theoretical analysis1. The local objective
of party i is:

min
Gi

Ex∼DiℓKL([
1

N
]N || D(Gi(x))) (3)

The objective of the discriminator is

max
D

N∑
i=1

Ex∼Di
log(Di(Gi(x))), (4)

where Di(·) is the i-th output of the prediction vector D(·) (i.e., the probability of class i). Here we
analyze the convergence property of the training process. All the proofs are available in Appendix A.

Theorem 1. We use PGi to denote the distribution of the representations generated in party i and
PGi

(z) is the probability of representation z in distribution PGi
. Then, the optimal discriminator D∗

of Equation (4) is

D∗
k(z) =

PGk
(z)∑N

i=1 PGi
(z)

. (5)

Theorem 2. Given the optimal discriminator D∗ from Equation (5), the global minimum of Equation
(3) is achieved if and only if

PG1
= PG2

= · · · = PGN
(6)

Theorem 1 and Theorem 2 show that to achieve the minimum of the objectives of the local parties
and the discriminator, the parties will generate the same representation distribution, which matches
the goal of ADCOL.

Theorem 3. Suppose P ∗
G is the optimal solution shown in Theorem 2. If Gi (∀i ∈ [1, N ]) and D

have enough capacity, and PGi
is updated to minimize the local objective (i.e., Equation (3)), given

the optimal discriminator D∗ from Equation (5), then PGi
converges to P ∗

G.

The above theorem provides insights on the convergence of the training. In practice, we optimize
the parameter θ of the local networks rather than PGi

itself, which is reasonable due to the excellent
performance as claimed in (Goodfellow et al., 2014).

Note that there are collapsing solutions for Equation (3) and Equation (4). The representations of
each party can simply be constant vectors, which can achieve global minimum of Equation (3). Thus,
the cross-entropy loss is necessary in Equation (2), which ensures that the generated representations
are meaningful.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines We compare ADCOL with six baselines including SOLO (i.e., each party trains the
model individually without collaborative learning), FedAvg (McMahan et al., 2016), FedBN (Li
et al., 2021b), FedProx (Li et al., 2020), Per-FedAvg (Fallah et al., 2020), and FedRep (Collins et al.,
2021). Here FedBN is the state-of-the-art FL approach on non-IID features. FedProx is a popular
FL approach for non-IID data. Per-FedAvg and FedRep are two state-of-the-art personalized FL
approaches. Like FedAvg (McMahan et al., 2016), we use weighted average according to the data
volume of each party for all baselines.

Models All approaches use the same local model architecture for a fair comparison. The architecture
of the local model is similar as SimSam (Chen and He, 2021), which has the following three
components: (1) Base encoder: ResNet-50 (He et al., 2016). (2) Projection head: a 3-layer MLP with
BN applied to each fully-connected layer. The input dimension is 4096. The dimension of the hidden

1Note that G is a part of F and the two losses are not independent of each other. For simplicity, we only
analyze the KL divergence loss to study its effect.
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Table 1: The comparison of top-1 test accuracy among different approaches on Digits. We run FL
approaches for 100 rounds (all approaches have converged). We run three trials and report the mean
and standard derivation. Besides the test accuracy on each party, we also report the mean accuracy of
all parties denoted as “AVG”.

Digits MNIST SVHN USPS SynthDigit MNIST_M AVG
SOLO 87.9%±0.4% 34.8%±0.8% 94.8%±0.1% 63.0%±0.4% 67.2%±0.4% 69.5%±0.3%

FedAvg 94.4%±0.5% 59.4%±0.9% 94.3%±0.2% 74.4%±0.5% 70.3%±1.2% 78.6%±0.6%
FedBN 94.1%±0.8% 59.9%±0.7% 94.1%±0.1% 73.9%±0.6% 71.3%±1.1% 78.7%±0.6%
FedProx 94.1%±0.4% 59.8%±0.6% 94.3%±0.1% 73.4%±0.3% 71.6%±0.9% 78.6%±0.4%

Per-FedAvg 88.9%±0.7% 36.6%±1.3% 89.5%±0.2% 58.3%±0.7% 54.5%±1.3% 65.6%±0.8%
FedRep 92.6%±0.2% 42.0%±1.0% 93.1%±0.1% 61.1%±0.5% 50.8%±1.4% 67.9%±0.8%
ADCOL 94.7%±0.6% 58.2%±1.0% 95.4%±0.2% 76.0%±0.3% 76.7%±0.8% 80.2%±0.5%

layer and the output layer is 2048. (3) Predictor: a 2-layer MLP with BN applied to its hidden layer.
The input dimension is 2048. The dimension of its hidden layer is 512. The discriminator is a 3-layer
MLP. The input dimension is 2048. The dimension of the hidden layers is 512. The output dimension
is equal to the number of parties.

Datasets We use the same datasets as in the study of FedBN. There are three real-world tasks in
our experiments2: (1) Digits: The Digits task has the following five digit data sources from different
domains: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits
(Ganin and Lempitsky, 2015), and MNIST-M (Ganin and Lempitsky, 2015). (2) Office-Caltech-10
(Gong et al., 2012): The dataset has four data sources acquired using different camera devices or in
different real environments with various backgrounds: Amazon, Caltech, DSLR, and WebCam. (3)
DomainNet (Peng et al., 2019a): The dataset contains natural images coming from six different data
sources with different image styles: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch.

Setup By default, the number of parties is equal to the number of data sources, where each party
has data from one of the data sources. For each dataset, we randomly split 1/5 of the original dataset
as the test dataset, while the remained dataset is used as the training dataset. Same as (Li et al.,
2021b), data of different parties have heterogeneous features but share the same labels and label
distribution, which naturally forms the non-IID feature setting. The number of local epochs is set to
10 by default for all FL approaches. The number of epochs is set to 300 for SOLO. For ADCOL and
FedProx, we tune µ ∈ {10, 1, 0.1, 0.01, 0.001} and report the best results. For FedRep, we tune β
(i.e., step size for the second batch training) from 0.001, 0.01 and report the best results. We use the
prediction layers as the shared representation in FedRep. We use PyTorch v1.81 (Paszke et al., 2019)
to implement all approaches. We use the SGD optimizer for training with a learning rate of 0.01. The
SGD weight decay is set to 10−5 and the SGD momentum is set to 0.9. The batch size is set to 64,
32, and 32 for Digits, Office-Caltech-10, and DomainNet, respectively. We run the experiments on a
server with 8 * NVIDIA GeForce RTX 3090 and a cluster with 45 * NVIDIA GeForce RTX 2080 Ti.

Due to the page limit, we only present some representative experimental results in the main paper.
For more experimental results and details, please refer to Appendix B.

5.2 OVERALL COMPARISON

Table 1 reports the test accuracy of different approaches on three tasks. We have the following
observations. First, ADCOL is more effective than the other approaches. It can achieve the best test
accuracy on most datasets. Moreover, ADCOL can outperform the other approaches by more than
2% accuracy on average. Second, while the parties may not benefit from FL approaches in some
cases (e.g., Caltech-10), ADCOL always achieves better accuracy than SOLO, which demonstrates
the robustness of ADCOL. Last, the personalized FL approaches (i.e., Per-FedAvg and FedRep) have
a poor performance on the non-IID feature setting, which are even worse than SOLO.

2FedBN uses four tasks in their experiments. We only use three tasks because one task is not publicly
available in FedBN’s GitHub website.
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Table 2: The communication round and communication cost of each approach to achieve the same
target performance as the minimum converged accuracy among FedAvg, FedBN, FedProx, and
ADCOL as shown in Table 1 (i.e., 94.1% in MNIST). We use the slash cell to indicate that the
approach cannot reach the target performance in 100 rounds/30 GB. The speedup is computed by
dividing the communication size of FedAvg by the communication size of ADCOL.

Digits MNIST SVHN USPS SynthDigit MNIST_M AVG

#round

FedAvg 11 54 5 11 7 28
FedBN 11 73 5 68 7 22

FedProx 64 42 8 12 10 31
Per-FedAvg

FedRep
ADCOL 19 86 6 19 9 21

cost (GB)

FedAvg 3.12 15.34 1.42 3.12 1.99 7.95
FedBN 3.12 20.73 1.42 19.31 1.99 6.25

FedProx 18.18 11.93 2.27 3.41 2.84 8.80
Per-FedAvg

FedRep
ADCOL 0.21 0.95 0.07 0.21 0.10 0.23

Speedup 14.95 16.21 21.52 14.95 20.08 34.42

5.3 COMMUNICATION EFFICIENCY

To show the communication efficiency of ADCOL, like existing studies (Karimireddy et al., 2020;
Lin et al., 2020), we compare the number of communication rounds and communication size of each
approach to achieve the same target performance. The results on Digits are shown in Table 2. The
results on the other two datasets are available in Appendix B.4. We can observe that no approach
consistently outperforms the other approaches in terms of the number of communication rounds.
However, the communication size of ADCOL is always much smaller than the other approaches.
ADCOL can save at least 10 times the communication costs to achieve the same accuracy as FedAvg.
The speedup can even be up to 34× on Digits. The results demonstrate that ADCOL is much more
communication-efficient than the other FL approaches.

5.4 SENSITIVITY STUDIES

We study the effect of different factors on ADCOL and the other baselines using the Digit task.

Scalability and Heterogeneity We adopt the same approach as (Li et al., 2021b) to study the
effect of number of parties and heterogeneity. We divide each dataset into ten parts randomly and
equally and allocate each part into one party. The parties from the same dataset are treated as IID
and the parties from different datasets are treated as non-IID. We add two parties from each dataset
each time, which results in the number of parties N ∈ {10, 20, 30, 40, 50}. Moreover, the degree of
heterogeneity decreases as the number of parties increases since the number of IID parties increases.
The test accuracies are reported in Figure 2a. We can observe that the accuracy of all approaches can
be slightly improved when increasing the number of parties due to the reduced heterogeneity and
increased total amount of data. Given a different number of parties, ADCOL consistently outperforms
the other baselines. Although the number of classes to distinguish increases for the discriminator
when increasing N , ADCOL still shows a good and stable performance with a large number of
parties.

Number of Local Epochs We vary the number of local epochs E ∈ {1, 2, 5, 10, 20} and report
the results in Figure 2b. We run all approaches for 100 rounds. If the number of local epochs is too
small, the local update is small in each round and the convergence speed is slow. Thus, the accuracy
of all approaches is relatively low after running for 100 rounds with a small number of local epochs.
ADCOL still consistently outperforms the other approaches with a different number of epochs.

Effect of Local Dataset Size We vary the percentage of the original local dataset used in each
party from 20% to 100%. The results are shown in Figure 2c. The improvement of ADCOL is more
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Figure 2: Effect of different factors. We run three trials and report the mean accuracy across parties
and its standard derivation.

significant when the size of the local dataset is small. If the size of the local dataset is large, each
party can already achieve satisfactory accuracy by SOLO. The accuracy of all approaches is close
when the percentage is 100%. It is not necessary to conduct collaborative learning in such a case.

Effect of µ We vary µ ∈ {0, 0.1, 1, 10} and report the accuracy of ADCOL as shown in Figure
2d. We can observe that ADCOL can achieve the best accuracy when µ = 1. If µ is too small, the
KL divergence loss of Equation (2) has little effect on the local training. Then, the goal of learning
a common representation distribution may not achieve. If µ is too large, the cross-entropy loss of
Equation (2) has little effect on the local training, and the representations may not be useful for
classification at all (e.g., all representations are a constant vector). ADCOL with µ = 10 may even
be worse than SOLO (i.e., µ = 0). Thus, an appropriate µ is important in ADCOL. Through our
experimental studies, we find that setting µ = 1 is a good default choice.

6 CONCLUSION

In this paper, we propose ADCOL, a novel collaborative learning approach for non-IID features.
ADCOL trains the models in an adversarial way between the parties and the server from a perspective
of representation distributions. The parties aim to learn a common representation distribution, while
the server aims to distinguish the representations by party IDs. Our experiments on three real-world
tasks show that ADCOL achieves higher accuracy than the other state-of-the-art federated learning
approaches on non-IID features. ADCOL provides new insights for collaborative learning.

Ethics Statement Not applicable.
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Reproducibility Statement We have provided the experimental details in Section 5.1 and Section
B.1 for reproducibility. Moreover, we will make the code publicly available.
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A THEORETICAL ANALYSIS

Theorem 1. We use PGi
to denote the distribution of the representations generated in party i and

PGi
(z) is the probability of representation z in distribution PGi

. Then, the optimal discriminator D∗

of Equation (4)

D∗
k(z) =

PGk
(z)∑N

i=1 PGi(z)
. (7)

Proof. From the view of the distribution of representations z, we can reformulate Equation (4) and
the objective is to maximize:

N∑
i=1

∫
z

PGi(z) log(Di(z))dz (8)

Let V (D) =
∑N

i=1 PGi
(z) log(Di(z)). Note that

∑N
i=1 Di(z) = 1. Let F (D) = V (D) + λ(1 −∑N

i=1 Di(z)). We have
∂F (D)

∂Di(z)
=

PGi
(z)

Di(z)
− λ (9)

Let ∂F (D)
∂Di(z)

= 0 for i ∈ [1, N ], we have

PG1
(z)

D1(z)
=

PG2
(z)

D2(z)
= · · · = PGN

(z)

DN (z)
= λ (10)

Thus, V (D) can achieve maximum when

D∗
k(z) =

PGk
(z)∑N

i=1 PGi(z)
(11)

Theorem 2. Given the optimal discriminator D∗ from Equation (7), the global minimum of Equation
(3) is achieved if and only if

PG1
= PG2

= · · · = PGN
(12)

Proof. From Equation (3), the local objective of party k is to minimize

W (Gk) = −Ex∼Dk

1

N

N∑
i=1

log(N ·Di(Gk(x)))

= −Ex∼Dk

1

N

N∑
i=1

log(
N · PGi

(Gk(x))∑N
j=1 PGj

(Gk(x))
)

(13)

Note that
∑N

i=1
PGi

(Gk(x))∑N
j=1 PGj

(Gk(x))
= 1. Similar to the proof in Theorem 1, Equation (13) can achieve

minimum when

PG1(Gk(x))∑N
j=1 PGj

(Gk(x))
=

PG2(Gk(x))∑N
j=1 PGj

(Gk(x))
= · · · = PGN

(Gk(x))∑N
j=1 PGj

(Gk(x))
=

1

N
. (14)

For ∀k ∈ [1, N ] and ∀i ∈ [1, N ], we have PGi
(Gk(x)) =

∑N
j=1 PGj

(Gk(x))

N . Given a representation
z, we have

PG1
(z) = PG2

(z) = · · · = PGN
(z) =

∑N
j=1 PGj (z)

N
(15)

Thus, PG1 = PG2 = · · · = PGN
.
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Table 3: The statistics of all studied datasets.
#training samples #testing samples

Digits

MNIST 56,000 14,000
SVHN 79,431 19,858
USPS 7,438 1,860

SynthDigit 402,209 97,791
MNIST_M 56,000 14,000

Caltech-10

Amazon 766 192
Caltech 898 225
DSLR 125 32

WebCam 236 59

DomainNet

Clipart 2,103 526
Infograph 2,626 657
Painting 2,472 619

Quickdraw 4,000 1,000
Real 4,864 1,217

Sketch 2,213 554

Theorem 3. Suppose P ∗
G is the optimal solution shown in Theorem 2. If Gi (∀i ∈ [1, N ]) and D

have enough capacity, and PGi
is updated to minimize the local objective (i.e., Equation (3)), given

the optimal discriminator D∗ from Equation (7), then PGi
converges to P ∗

G.

Proof. In Equation (13), consider W (Gk) = U(PGi
) as a function of PGi

. Then

∂U(PGi)

∂PGi

= −
∑

k ̸=i PGk

NPGi
(PGi

+
∑

k ̸=i PGk
)
. (16)

We have
∂2U(PGi

)

∂PGi

2 =
1

P 2
Gi

− 1

(PGi +
∑

k ̸=i PGk
)2
≥ 0 (17)

Thus, U(PGi
) is convex in PGi

. Therefore, with sufficiently small updates of PGi
, PGi

converges to
P ∗
G, concluding the proof.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL EXPERIMENTAL DETAILS

In each experiment, like FedBN (Li et al., 2021b), to remove the effect of quantity skew, we truncate
the size of all datasets to their smallest number with random sampling. For Digits, we resize all
images to 28×28×3 and normalize them with mean 0.5 and standard derivation 0.5 for each channel.
For Office-Caltech-10, we resize all images to 64× 64× 3 with random horizontal flip and random
rotation. For DomainNet, we resize all images to 64×64×3 with random horizontal flip and random
rotation. Like FedBN, we take Digits as the benchmark task for most studies.

The statistics of all the datasets are shown in Table 3. The label distributions are shown in Figure
3. The portion of samples with each class is close to 0.1. The label distribution is balanced among
the parties. We train a ResNet-50 on all datasets (i.e., parties) from a task and extract the feature
distributions of each dataset. Then, we use t-SNE to visualize the representation as shown in Figure
4. We can observe that the feature distribution of each party is different.

B.2 CALTECH-10 AND DOMAINNET

Table 4 and 5 show the test accuracy of different approaches on Caltech-10 and DomainNet, respec-
tively. We can observe that ADCOL still outperforms the other approaches in most cases.
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Figure 3: The label distributions of each task. The value in each cell of row i and column j represents
the percentage of samples with class j in Party i.
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Figure 4: The feature distributions of each task.

B.3 TRAINING CURVES

The training curves of different approaches on Digit are shown in Figure 5. We can observe that
ADCOL is much more communication-efficient than the other approaches. ADCOL can convergence
with a much smaller communication size than the other approaches.

B.4 COMMUNICATION EFFICIENCY

Like Table 2, we show the communication efficiency of ADCOL on Caltech-10 and DomainNet in
Table 6 and Table 7. We can observe that ADCOL is much more communication-efficient than the
other approaches. The speedup can be even up to 300 times.

B.5 PARTY SAMPLING

Party sampling is a technique usually used in the cross-device setting, where a fraction of parties is
sampled to participate in federated learning in each round. Here we set the sample fraction to 0.4
in Digit and choose FedAvg and FedBN as the baselines. The training curves are shown in Figure
6. We can observe that all approaches have an unstable accuracy during training due to sampling.
Moreover, FedAvg and FedBN have a very poor accuracy, which shows that existing federated
learning approaches cannot well support party sampling on non-IID features. ADCOL significantly
outperforms the other approaches.

We increase the number of parties to 100 (i.e., divide each dataset to 20 subsets) and vary the
sampling rate from {0.1, 0.2, 0.5, 1}. We run all approaches for 200 rounds. The results are shown in
Table 8. We can observe that when the sampling rate decreases, the performance of all approaches
decreases. Moreover, the training is more unstable if the sampling rate is smaller. However, ADCOL
still significantly outperforms FedAvg and FedBN. It is still a challenging task to develop effective
algorithm on the cross-device setting with a low sampling rate.
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Table 4: The comparison of top-1 test accuracy among different approaches on Caltech-10.
Caltech-10 Amazon Caltech DSLR WebCam AVG

SOLO 52.8%±0.9% 36.0%±0.9% 71.9%±0.5% 74.6%±0.5% 58.8%±0.6%
FedAvg 24.0%±1.7% 36.9%±1.4% 81.3%±0.4% 82.7%±0.4% 56.2%±1.0%
FedBN 33.3%±1.5% 33.8%±1.8% 81.3%±0.5% 80.0%±0.6% 57.1%±1.0%
FedProx 43.2%±1.6% 33.1%±0.8% 82.6%±0.4% 83.1%±0.7% 60.5%±0.7%

Per-FedAvg 33.9%±1.6% 32.4%±1.5% 62.5%±0.8% 74.6%±0.8% 50.8%±1.3%
FedRep 16.1%±1.9% 22.7%±1.7% 56.3%±1.0% 57.6%±1.1% 38.2%±1.4%
ADCOL 54.2%±1.1% 38.2%±1.3% 75%±0.6% 83.1%±0.5% 62.6%±0.9%

Table 5: The comparison of top-1 test accuracy among different approaches on DomainNet.
DomainNet Clipart Infograph Painting Quickdraw Real Sketch AVG

SOLO 31.7%±0.9% 20.2%±1.2% 30.9%±0.9% 48.2%±1.1% 36.5%±0.8% 20.8%±1.5% 31.4%±0.9%
FedAvg 33.5%±1.2% 20.4%±0.7% 29.2%±0.8% 56.2%±1.2% 40.5%±0.8% 22.6%±1.1% 33.7%±0.9%
FedBN 36.3%±1.3% 20.4%±0.8% 27.8%±1.4% 61.3%±0.9% 41.9%±1.3% 23.6%±1.2% 35.2%±1.1%
FedProx 37.8%±1.0% 21.6%±0.8% 28.1%±1.0% 23.6%±0.7% 43.6%±1.2% 22.4%±1.0% 29.5%±1.0%

Per-FedAvg 38.2%±0.7% 20.2%±0.6% 27%±1.2% 42.4%±0.8% 40.3%±0.7% 22.6%±1.2% 31.8%±1.3%
FedRep 27.9%±1.2% 19%±0.9% 24.1%±1.2% 17.9%±1.1% 31.1%±1.4% 16.8%±1.1% 22.8%±1.4%
ADCOL 39.9%±1.0% 21.9%±0.9% 33.9%±1.2% 61.7%±0.8% 39.3%±1.5% 23.9%±1.2% 36.8%±1.0%

B.6 STUDY ON THE DISCRIMINATOR

One natural question is how to increase the information contained in the discriminator to improve the
performance of ADCOL. We have tried two approaches.

Changing Model Architecture One approach is to increase the capacity of the discriminator. We
change the model architecture to ResNet-50. The results are shown in Table 9. The performance of
ADCOL cannot be improved by increasing the capacity of the discriminator.

Increasing the Number of Discriminators The other one approach is to increase the number of
discriminators. Suppose the number of discriminators is Nd and the current round is t. Then, we use
discriminators from round max(1, t−Nd) to round (t− 1) in the local training. The KL divergence
loss is computed as

ℓ =
1

Nd

Nd∑
i=1

ℓKL([
1

N
]N || Di(G(x))), (18)

where Di is the discriminator trained in round max(1, t − i). The results are shown in Table 10.
ADCOL cannot benefit from more discriminators. When the number of discriminators is larger, the
accuracy of ADCOL is even worse. It is a future work to investigate how to integrate more useful
information into the discriminator.

B.7 DIMENSION OF REPRESENTATIONS

Same as SimSam (Chen and He, 2021), we set the dimension of representations (i.e., the output
dimension of the projection head, the input dimension of the discriminator) to 2048 by default. As
shown in Table 11, we report the performance of ADCOL varying the representation dimension.
ADCOL can benefit from a larger representation dimension, where the representations are more
informative. The mean accuracy can be improved by about 5% by increasing the dimension from 512
to 2048.

B.8 NON-IID LABELS

We test the performance of ADCOL on non-IID label settings. Specifically, we sample pk ∼
DirN (0.5) and allocate a pk,j proportion of the instances of class k to party j, where Dir(0.5) is the
Dirichlet distribution with a concentration parameter 0.5. The results are shown in Table 12. ADCOL
cannot achieve a better performance than FedAvg. Intuitively, the task-specific representations of
images from different classes should be very different. If the label distribution varies across parties,
the representation distribution naturally also varies a lot. The intuition of ADCOL, which aims to
learn a common representation distribution, is not appropriate on non-IID label settings.
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(c) USPS
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(d) SynthDigit
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0 2 4 6 8 10
Communication size (GB)

10

20

30

40

50

60

70

80

to
p-

1 
ac

cu
ra

cy
 (%

)

ADCOL
FedAvg
FedBN

FedProx
Per-FedAvg
FedRep

(f) AVG

Figure 5: The training curves of different approaches on Digit.

B.9 IMBALANCED LOCAL DATA SIZES

In the main paper, we truncate the local data to the same size to control non-related factors. Here we
show experiments with imbalanced number of samples across parties. We use 10% original data size
for all parties without truncating the data. The results are shown in Table 13. ADCOL is still the best
approach in most cases.
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Table 6: The communication round and communication cost of each approach to achieve the same
target performance on Caltech-10.

Caltech-10 Amazon Caltech DSLR WebCam AVG

#round

FedAvg 7 22 12 14 14
FedBN 3 21 12 19 19

FedProx 14 29 15 29 22
Per-FedAvg 23

FedRep
ADCOL 3 18 31 12 20

cost (GB)

FedAvg 1.99 6.25 3.41 3.98 3.98
FedBN 0.85 5.96 3.41 5.40 5.40

FedProx 3.98 8.24 4.26 8.24 6.25
Per-FedAvg 6.53

FedRep
ADCOL 0.02 0.10 0.17 0.07 0.11

Speedup 120.48 63.11 19.99 60.24 36.15

Table 7: The communication round and communication cost of each approach to achieve the same
target performance on DomainNet.

DomainNet Clipart Infograph Painting Quickdraw Real Sketch AVG

#round

FedAvg 22 5 9 38 23 17 47
FedBN 14 7 5 54 29 18 41
FedProx 13 8 16 32 12

Per-FedAvg 31 19 34 64 57
FedRep
ADCOL 11 4 9 6 44 19 26

cost (GB)

FedAvg 6.25 1.42 2.56 10.79 6.53 4.83 13.35
FedBN 3.98 1.99 1.42 15.34 8.24 5.11 11.64
FedProx 3.69 2.27 4.54 9.09 3.41

Per-FedAvg 8.80 5.40 9.66 18.18 16.19
FedRep
ADCOL 0.06 0.02 0.05 0.04 0.26 0.11 0.15

Speedup 96.9 60.6 48.5 306.9 25.3 43.4 87.6

B.10 COMPUTATION OVERHEAD

As shown in Table 14, the training time of ADCOL is larger than the other approaches. ADCOL
requires the training of a discriminator in the server side, while the other approaches only need to
average the models in the server side. However, in practice, the server usually has much power-
ful computation resources than the parties. Thus, the computation overhead in the server side is
affordable.

B.11 SHARING THE PREDICTOR LAYERS

The parties only send the representations to the server in ADCOL. While ADCOL aims to learn a
common representation distribution z, an interesting extension is to share the predictor layers between

Table 8: The performance of different approaches varying the sampling rate. We run all approaches
for 200 rounds and report the final mean accuracy and standard deviation with three runs.

Sampling Rate FedAvg FedBN ADCOL
0.1 12.1%±9.2% 25.3%±8.1% 34.1%±6.5%
0.2 15.3%±7.6% 31.9%±7.4% 46.7%±4.2%
0.5 60.2%±5.4% 62.2%±4.9% 67.3%±2.4%
1 77.6%±1.4% 77.7%±1.2% 79.1%±0.9%
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Figure 6: The training curves with party sampling (sample fraction = 0.4). We report the mean test
accuracy across all parties.

Table 9: ADCOL with different discriminator architectures.
Discriminator MNIST SVHN USPS SynthDigit MNIST-M AVG

MLP 95.1% ± 0.5% 55.6% ± 0.8% 96.0% ± 0.3% 73.6% ± 0.5% 76.5% ± 0.5% 79.4% ± 0.4%
ResNet-50 94.7% ± 0.6% 58.2% ± 1.0% 95.4% ± 0.2% 76.0% ± 0.3% 76.7% ± 0.8% 80.2% ± 0.5%

the parties and the server, which ideally helps in regularizing p(y|z). The results are shown in Table
15. We can observe that ADCOL without sharing the predictor layers is generally more effective
than sharing the predictor layers. In practice, the distribution p(y|xi) is not exactly the same across
parties. Thus, it is not necessary to regularize p(y|z) among the parties. Leaving the parties to fine
tune their own predictor layer is more capable to learn the personalized local distribution.

B.12 REPRESENTATION SAMPLING

An approach to reduce the communication cost is to sample a subset of representations and send them
to the server. Here we change the sampling rate from {20%, 60%, 80%, 100%}. The final accuracy
and the communication efficiency are shown in Table 16. We can observe that the communication
cost of ADCOL can be significantly reduced with representation sampling technique. Moreover,
there is little accuracy loss when the sampling rate is large than 60%.

B.13 DIFFERENTIAL PRIVACY

We conduct experiments to apply differential privacy (Dwork, 2011) to protect the communicated
representations. Specifically, we normalize the representations and add noises from Lap(0, 1/ϵ)
before sending them to the server, where Lap(0, 1/ϵ) is the Laplace distribution with mean 0 and scale
1/ϵ. Then, in each round, the transferred representations satisfy ϵ−differential privacy (Lyu et al.,
2020). We run 50 rounds for all approaches. For each round, we sample 1

50 of the representations of
each party without replacement so that the privacy cost of each round is not accumulated. The results
are shown in Table 17. We can observe that the accuracy of ADCOL is very close to the non-private
version with a modest privacy budget (i.e., 10). It is promising to apply differential privacy if there
are concerns about the information leakage of the representations.

C DISCUSSION

Relation to Domain Adaptation Domain adaptation aims to train a model on a source domain (or
multi-source domain), which has a good accuracy on a target domain. A classic and popular approach
in domain adaptation is to perform adversarial training, i.e., training a discriminator to encourage
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Table 10: ADCOL with different number of discriminators.
Number of discriminators 1 2 10 20

MNIST 94.7% ± 0.6% 95.1% ± 0.6% 91.0 % ± 0.3% 88.6% ± 0.8%
SVHN 58.2% ± 1.0% 45.4% ± 1.1% 52.4% ± 1.2% 46.5% ± 1.4%
USPS 95.4% ± 0.2% 95.2% ± 0.1% 95.3% ± 0.2% 90.1% ± 0.4%

SynthDigit 76.0% ± 0.3% 73.4% ± 0.4% 67.2% ± 0.8% 73.4% ± 0.5%
MNIST-M 76.7% ± 0.8% 76.4% ± 0.7% 72.1% ± 0.9% 57.0% ± 1.2%

AVG 80.2% ± 0.5% 77.1% ± 0.6% 75.6% ± 0.8% 71.1% ± 1.0%

Table 11: The test accuracy of ADCOL with different representation dimensions.
Dimension 512 1024 2048

MNIST 93.2% ± 0.6% 94.9% ± 0.5% 94.7% ± 0.6%
SVHN 48.9% ± 1.2% 50.5% ± 1.4% 58.2% ± 1.0%
USPS 94.8% ± 0.2% 95.5% ± 0.3% 95.4% ± 0.2%

SynthDigit 72.9% ± 0.8% 79.4% ± 0.7% 76.0% ± 0.3%
MNIST-M 68.9% ± 0.9% 73.1% ± 0.7% 76.7% ± 0.8%

AVG 75.7% ± 0.7% 78.7% ± 0.7% 80.2% ± 0.5%

domain-invariant features (Ganin et al., 2016; Peng et al., 2019b). For the difference between
our approach and domain adaptation, Peng et al. (2019b) proposed FADA, which extends domain
adaptation in a federated setting. One connection between our approach and domain adaptation is that
each party can be viewed as a source domain, and the target domain is the unknown oracle optimal.
Then, our approach is to extract domain-invariant features from multiple source domain, which is
used to regularize the training. To highlight the differences between our approach and the domain
adaptation techniques, we compare our approach with the federated domain adaptation study (Peng
et al., 2019b) (FADA) and show the main differences: (1) Setting: FADA aims to train a model on
multiple source domain, which has a good accuracy on a target domain. Our study aims to train a
personalized model for each party, which has good accuracy on its local data. (2) Discriminator:
FADA uses multiple discriminators, where each discriminator is used for binary classification for
one source-target domain pair. Our study uses a single discriminator for the multi-classification
among all parties. Moreover, we have provided the theoretical analysis on the convergence properties.
(3) Framework: FADA uses adversarial training to generate domain-invariant and domain-specific
features. Our study uses adversarial training to regularize the local training in federated learning.

Intuitively, we cannot directly compare ADCOL and FADA in the experiments since the settings are
different. In our experiments, there is no a single target domain for testing in FADA. One method is
to treat each party as a target domain and applying FADA N times, where N is the number of parties.
However, the computation and communication overhead is significantly large. Moreover, such an
approach does not utilize the labels of the target dataset. We have compared ADCOL and FADA
using the above method and the results are shown in Table 18. ADCOL significantly outperforms
FADA. Moreover, the test accuracy of FADA is even smaller than local training in many cases since
it does not exploit the labels of the target dataset.

Limitations ADCOL is a collaborative learning method for non-IID features. As shown in Ap-
pendix B.8, the performance of ADCOL is poor compared with federated learning approaches on
non-IID label setting. Note that ADCOL aims to learn a common representation distribution. Intu-
itively, the task-specific representations of images from different classes should be very different,
which can be easily classified by a small MLP. Thus, if the label distribution varies across parties, the
representation distribution naturally also varies a lot across parties. The current objective of ADCOL
does not fit into the non-IID label setting.

As shown in Section 3.5, the communication size of ADCOL is related to the number of examples. If
the number of examples is very large and the size of the model is small, the communication cost of
ADCOL will be larger than other federated learning approaches. However, local training can usually
achieve satisfactory performance if the dataset size is very large. In such cases, besides ADCOL,
existing federated learning approaches may also not help.
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Table 12: The test accuracy of different approaches on non-IID label settings.
SOLO FedAvg ADCOL

CIFAR-10 59.3% ± 8% 89.0% ± 2.4% 79.2% ± 4.7%
CIFAR-100 33.5% ± 2.1% 57% ± 2.8% 36.1% ± 2.8%

Table 13: The performance of differerent approaches in the imbalanced data size setting.
SOLO FedAvg FedBN ADCOL FedProx Per-FedAvg FedRep

MNIST 93.9% 98.1% 98.0% 98.7% 96.7% 94.5% 97.6%
SVHN 84.2% 88.3% 88.4% 87.1% 69.1% 76.7% 86.5%
USPS 94.2% 93.1% 93.6% 95.6% 94.0% 92.6% 94.1%

SynthDigit 94.0% 95.4% 95.6% 96.1% 93.7% 90.0% 95.6%
MNIST_M 90.9% 89.7% 92.4% 94.2% 86.0% 82.5% 89.4%

AVG 91.4% 92.9% 93.6% 94.3% 87.9% 87.3% 92.6%

Table 14: The total training time of running all approaches for 100 rounds.
FedAvg FedBN ADCOL FedProx Per-FedAvg FedRep

Total Training time (hour) 6.5 7 11 8 7 8.5

Table 15: The comparison between sharing the predictor layers and not sharing the predictor layers.
w/ sharing predictor layers w/o sharing predictor layers

MNIST 95.4% 94.7%
SVHN 48.8% 58.2%
USPS 95.2% 95.4%

SynthDigit 75.9% 76.0%
MNIST_M 73.4% 76.7%

AVG 77.7% 80.2%

Table 16: ADCOL with different representation sampling rates. We present the final converged mean
accuracy and the number of communication rounds and communication costs to achieve the target
accuracy 78%.

Sampling rate accuracy #communication rounds communication cost (GB)
20% 78.4% 32 0.07
60% 79.1% 26 0.17
80% 79.8% 23 0.20

100% 80.2% 21 0.23

Table 17: Differentially private ADCOL.
privacy budget non-private 2 5 10

MNIST 94.7% 89.1% 92.7% 93.1%
SVHN 58.2% 50.4% 56.7% 56.9%
USPS 95.4% 88.2% 93.0% 93.1%

SynthDigit 76.0% 64.1% 69.4% 73.2%
MNIST_M 76.7% 66.8% 71.9% 74.3%

AVG 80.2% 71.7% 76.7% 78.1%

Insights and Future Work The key insights from ADCOL are (1) a GAN-style training scheme
and (2) regularization from a view of representation distribution. While ADCOL does not have a
requirement on the vanilla local training algorithm, it can also be extended to self-supervised federated
learning, where the cross-entropy loss is replaced by the loss used in self-supervised learning (e.g.,
contrastive loss (Chen et al., 2020; Chen and He, 2021)). Moreover, while ADCOL only works on
non-IID feature settings currently, the adversarial collaborative training scheme can potentially be
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Table 18: The comparison between SOLO, ADCOL, and FADA on Digits.
MNIST SVHN USPS SynthDigit MNIST_M AVG

SOLO 87.9% 34.8% 94.8% 63.0% 67.2% 69.5%
ADCOL 94.7% 58.2% 95.4% 76.0% 76.7% 80.2%
FADA 85.6% 40.1% 89.6% 68.8% 60.5% 68.9%

applied to address other data settings by modifying the objectives of local training and server training.
There are many research opportunities based on the findings of this paper.
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