

000 BEYOND RLHF AND NLHF: 001 002 POPULATION-PROPORTIONAL ALIGNMENT UNDER 003 AN AXIOMATIC FRAMEWORK 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Conventional preference learning methods often prioritize opinions held more
014 widely when aggregating preferences from multiple evaluators. This may result in
015 policies that are biased in favor of some types of opinions or groups and susceptible
016 to strategic manipulation. To address this issue, we develop a novel preference
017 learning framework capable of aligning aggregate opinions and policies propor-
018 tionally with the true population distribution of evaluator preferences. Grounded in
019 social choice theory, our approach infers the feasible set of evaluator population
020 distributions directly from pairwise comparison data. Using these estimates, the
021 algorithm constructs a policy that satisfies foundational axioms from social choice
022 theory, namely monotonicity and Pareto efficiency, as well as our newly-introduced
023 axioms of population-proportional alignment and population-bounded manipulabil-
024 ity. Moreover, we propose a soft-max relaxation method that smoothly trade-offs
025 population-proportional alignment with the selection of the Condorcet winner
026 (which beats all other options in pairwise comparisons). Finally, we validate the
027 effectiveness and scalability of our approach through experiments on both tabular
028 recommendation tasks and large language model alignment.

029 1 INTRODUCTION 030

031 Aligning artificial intelligence (AI) systems with complex human preferences is a growing priority in
032 fields such as robotics (Kupcsik et al., 2017; Biyik et al., 2020), recommendation systems (Xue et al.,
033 2023), and large language models (LLMs) (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
034 2022). A key challenge in this endeavor is how to infer and represent such preferences accurately,
035 particularly when they are only available through incomplete signals like pairwise comparisons.
036 This has prompted reinforcement learning from human feedback (RLHF), which has become a
037 widely used framework for preference learning (Ouyang et al., 2022; Christiano et al., 2017). RLHF
038 streamlines the alignment process by first learning a reward model that assigns scalar scores to
039 different alternatives, typically trained using maximum likelihood estimation under the Bradley–Terry
040 (BT) model. In the second stage, a policy is optimized through reinforcement learning to maximize
041 the expected rewards, guiding the system toward behaviors aligned with human preferences.

042 Despite its practical success and simplicity, the standard RLHF framework rests on a critical assump-
043 tion that complex human preferences can be captured by a single scalar reward. Recent research
044 highlights that this assumption often breaks down, especially when human feedback reflects incon-
045 sistent or conflicting judgments across evaluators (Chakraborty et al., 2024). In particular, RLHF
046 struggles in scenarios involving intransitive or cyclic preferences, where no clear ranking among
047 alternatives can be established, leading to failures in accurately modeling the underlying prefer-
048 ences (Munos et al., 2023; Swamy et al., 2024). To address these limitations, a game-theoretic
049 framework called Nash learning from human feedback (NLHF) has been introduced (Munos et al.,
050 2023; Swamy et al., 2024; Ye et al., 2024; Maura-Rivero et al., 2025). NLHF reframes preference
051 learning as a two-player constant-sum game and identifies equilibrium policies that no competing
052 policy can outperform, regardless of the complexity of the underlying preferences.

053 Nevertheless, both RLHF and NLHF frameworks remain limited in their ability to address another
critical issue: the proportional alignment of evaluator preferences. When preferences are aggregated

054 across multiple evaluator groups with distinct viewpoints, both RLHF and NLHF tend to yield
 055 policies that do not adequately reflect the full distribution of the evaluator population (Chakraborty
 056 et al., 2024). To address these challenges, recent research has turned to social choice theory-oriented
 057 approaches, such as maximizing the minimum satisfaction across evaluator groups (Chakraborty
 058 et al., 2024; Ramesh et al., 2024) and optimizing social welfare functions (Zhong et al., 2024; Kim
 059 et al., 2025). Another line of emerging research, pluralistic alignment (Sorensen et al., 2024), seeks
 060 to reflect diverse perspectives in AI systems through approaches such as mixture-based models (Chen
 061 et al., 2024), belief-conditioned models (Yao et al., 2024), and steerable models (Adams et al., 2025),
 062 with a particular focus on LLMs. However, these methods generally assume explicit knowledge
 063 or clear labels of evaluator groups, which limits their practical applicability since group identities
 064 are often implicit or unobservable in real-world. Motivated by this limitation, our research aims to
 065 achieve proportional alignment without requiring additional information about the evaluator profile.
 066

067 Our approach builds upon recent works addressing diverse preference aggregation through an ax-
 068 iomatic approach from social choice theory (Mishra, 2023; Siththaranjan et al., 2023; Dai & Fleisig,
 069 2024; Conitzer et al., 2024; Ge et al., 2024; Maura-Rivero et al., 2025; Shi et al., 2025; Xiao et al.,
 070 2025). Specifically, we propose a novel preference learning algorithm that satisfies two foundational
 071 axioms, monotonicity (ensuring that improving an alternative’s ranking cannot decrease its probabili-
 072 ty) and Pareto efficiency (ensuring that if an alternative is preferred by all, it is favored by the policy),
 073 as well as two new axioms we introduce: population-proportional alignment (PPA) and population-
 074 bounded manipulability (PBM). The first new axiom, PPA, requires the policy to be at least weakly
 075 proportional to evaluator population shares, addressing RLHF and NLHF’s insufficient representation
 076 of the population distribution of preferences. The second axiom, PBM, bounds the incentive for
 077 manipulation as an affine function of the true population share, thereby guaranteeing robustness.
 078 Recent studies have highlighted that conventional preference learning methods are susceptible to
 079 strategic misreporting (Buening et al., 2025). Unlike existing approaches that incorporate explicit
 080 mechanism design to ensure strict strategyproofness (Park et al., 2024; Soumalias et al., 2024; Sun
 081 et al., 2024; Hao & Duan, 2025; Buening et al., 2025), our method inherently limits manipulative
 082 advantage by constraining policy selection based on estimated feasible population distributions.
 083 Further details on related work are provided in Appendix B.

084 1.1 OUR CONTRIBUTION

085 The first key contribution of this work is demonstrating that the set of feasible population distributions
 086 of evaluators can be inferred directly from pairwise comparison data. Leveraging this insight, we
 087 develop a novel preference learning framework designed to align policies proportionally with the
 088 underlying population distribution. To establish a rigorous theoretical basis, we adopt an axiomatic
 089 approach, proving that our framework satisfies two fundamental axioms, monotonicity and Pareto
 090 efficiency, and two newly introduced axioms, PPA and PBM. In addition, we propose a novel softmax
 091 relaxation method to control the trade-off between proportional alignment and the selection of
 092 the Condorcet winner. For practical deployment, we present a scalable algorithm with function
 093 approximation, allowing our framework to scale to high-dimensional settings such as LLMs. Finally,
 094 the proposed framework is validated through empirical evaluations in both tabular and function
 095 approximation settings.

096 **Organization of the paper.** In Section 2, we formalize the setting of preference learning and
 097 probabilistic social choice, and establish connections between them. In Section 3, motivated by a
 098 simple negative example, we introduce two desirable axioms alongside two fundamental axioms.
 099 In Section 4, we propose a novel preference learning algorithm that satisfies these axioms and
 100 provide a theoretical analysis. Finally, Section 5 presents empirical evaluations that demonstrate the
 101 effectiveness and scalability of our method. For ease of reference, all mathematical notation used in
 102 the paper is summarized in Appendix A.

103 2 PRELIMINARIES

104 2.1 PROBABILISTIC SOCIAL CHOICE FUNCTION AND PREFERENCE LEARNING

105 We begin by reviewing key concepts from social choice theory and preference learning to establish
 106 a foundation for our subsequent analysis. Consider a set of M alternatives, denoted by $\mathcal{Y} :=$

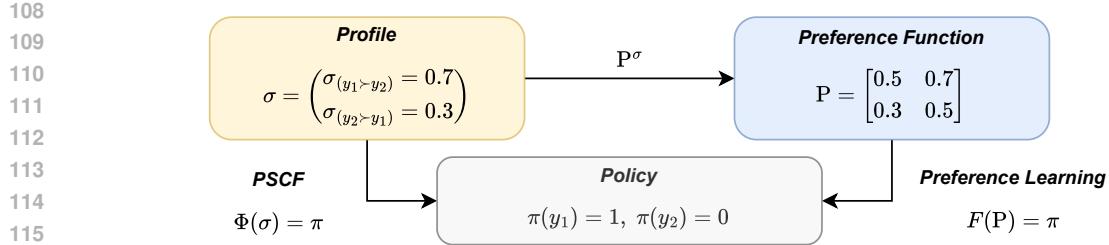


Figure 1: Illustration of the relationships between the profile, preference function, and policy.

$\{y_1, y_2, \dots, y_M\}$, where each $y \in \mathcal{Y}$ may represent a response generated by a language model or an action in a decision-making task. We assume each evaluator has a strict and complete ranking over the alternatives, and let \mathcal{S} denote the set of all possible rankings (i.e., permutations of \mathcal{Y}). Each ranking is represented by $r \in \mathcal{S}$, where $r(y_i) = k$ indicates that alternative y_i is ranked k -th under r . A *profile* $\sigma \in \Delta(\mathcal{S})$ is a probability distribution over the set of all rankings, where σ_r represents the proportion of the population that adheres to ranking r .

A *probabilistic social choice function* (PSCF) is a mapping $\Phi : \Delta(\mathcal{S}) \rightarrow \Delta(\mathcal{Y})$ that assigns to each profile σ a policy π , which is a probability distribution over the alternatives in \mathcal{Y} . In practice, however, acquiring a complete profile σ is often infeasible due to the high cost of collecting full rankings over a large set of alternatives.

To address this limitation, pairwise preference learning algorithms have been developed, allowing alignment based solely on pairwise comparison data. We define a *preference function* $P : \mathcal{Y}^2 \rightarrow [0, 1]$, where $P(y \succ y')$ denotes the probability that alternative y is preferred over y' . Given a profile σ , let P^σ be the preference function induced by the population distribution σ over rankings, defined as

$$P^\sigma(y \succ y') := \sum_{r \in \mathcal{S}} \sigma_r \cdot \mathbf{1}_{\{r(y) < r(y')\}}, \quad (1)$$

where $\mathbf{1}_{\{r(y) < r(y')\}}$ is an indicator function equal to 1 if ranking r places alternative y in a better (i.e., lower) position than y' , and 0 otherwise. This function captures the expected pairwise preference between y and y' under the distribution σ .

We define \mathcal{P} as the set of all preference functions induced by some profile $\sigma \in \Delta(\mathcal{S})$:

$$\mathcal{P} := \{P \mid \exists \sigma \in \Delta(\mathcal{S}) \text{ s.t. } P = P^\sigma\}. \quad (2)$$

Any $P \in \mathcal{P}$ satisfies consistency conditions known as the Block-Marschak inequalities (Block & Marschak, 1959), including skew-symmetry: $P(y \succ y') + P(y' \succ y) = 1 \forall y, y' \in \mathcal{Y}$. A *preference learning algorithm* is a mapping $F : \mathcal{P} \rightarrow \Delta(\mathcal{Y})$ that assigns a policy to each preference function. Throughout this paper, we say that a preference learning algorithm F *implements* a PSCF Φ if, for every profile $\sigma \in \Delta(\mathcal{S})$, it holds that $F(P^\sigma) = \Phi(\sigma)$. The relationships between the profile, preference function, and policy are illustrated in Figure 1.

2.2 TWO STANDARD PREFERENCE LEARNING ALGORITHMS

Next, we introduce two prominent preference learning algorithms and discuss their connections to established concepts from probabilistic social choice theory.

Reinforcement learning from human feedback (RLHF). The Bradley–Terry (BT) model, widely used in preference modeling, assigns each alternative y_i a reward r_i with preference probabilities $P(y_i \succ y_j) = \exp(r_i)/(\exp(r_i) + \exp(r_j))$. Standard RLHF estimates these rewards by likelihood maximization and then trains a policy to maximize expected rewards. Recent work (Siththaranjan et al., 2023) shows that this procedure is equivalent to the *maximal Borda rule* from social choice theory, which deterministically chooses the alternative with the highest Borda score $B(y) := \sum_{r \in \mathcal{S}} \sigma_r(M - r(y))$. As proved in Appendix C, the ranking from BT-optimized rewards coincides with Borda rankings, so RLHF without regularization (denoted by F^{RL}) implements the maximal Borda rule (denoted by Φ^{MB}). Direct preference optimization (DPO) (Rafailov et al., 2023) generalizes this by adding Kullback–Leibler (KL) regularization relative to a reference policy.

162 **Nash learning from human feedback (NLHF).** As highlighted in recent studies (Munos et al.,
 163 2023; Swamy et al., 2024; Maura-Rivero et al., 2025), RLHF has limitations in scenarios involving
 164 intransitive or cyclic preferences. An alternative y^* is called a *Condorcet winner* if it is preferred by
 165 a majority over every other alternative, formally stated as $P(y^* \succ y) > 0.5$ for all $y \neq y^*$. When
 166 aggregating preferences across multiple evaluators, scenarios without a Condorcet winner can arise,
 167 which is called the *Condorcet paradox*. In such cases, selecting the alternative with the highest Borda
 168 score fails to adequately represent collective preferences, as a deterministic policy cannot capture the
 169 lack of consensus or nuanced preferences. To address intransitive preferences, the game-theoretic
 170 approach, known as Nash learning from human feedback (NLHF) (Munos et al., 2023; Swamy et al.,
 171 2024; Ye et al., 2024; Maura-Rivero et al., 2025), has been adopted to model preference learning
 172 as a two-player constant-sum game $\max_{\pi_1 \in \Delta(\mathcal{Y})} \min_{\pi_2 \in \Delta(\mathcal{Y})} \mathbb{E}_{(y_1, y_2) \sim (\pi_1, \pi_2)} [P(y_1 \succ y_2)]$, where
 173 the equilibrium policy π^* cannot be uniformly outperformed. This algorithm, denoted by F^{NL} ,
 174 implements the well-known PSCF *maximal lotteries* (ML) (Fishburn, 1984), denoted by Φ^{ML} .
 175

3 AXIOMATIC FRAMEWORK FOR POPULATION-PROPORTIONAL ALIGNMENT

3.1 MOTIVATING EXAMPLE WITH BINARY ALTERNATIVES

180 Despite their practical utility, neither RLHF nor NLHF guarantees alignment proportional to the
 181 evaluator’s preferences. To illustrate this point, we present a simple scenario involving binary
 182 alternatives. Consider two alternatives, $\mathcal{Y} = \{y_1, y_2\}$, and a profile σ consisting of two distinct
 183 groups of evaluators: group G_1 prefers alternative y_1 over y_2 , while group G_2 prefers y_2 over y_1 .
 184 Let w_1^σ and w_2^σ denote the population shares of groups G_1 and G_2 , respectively. Suppose the two
 185 alternatives are nearly tied, with $(w_1^\sigma, w_2^\sigma) = (1/2 + \epsilon, 1/2 - \epsilon)$ for an arbitrarily small positive
 186 scalar ϵ . Then, the corresponding preference function is given by $P^\sigma(y_1 \succ y_2) = 1/2 + \epsilon$ and
 187 $P^\sigma(y_2 \succ y_1) = 1/2 - \epsilon$. Despite this minimal margin ϵ , both algorithms $F^{\text{RL}}(P^\sigma)$ and $F^{\text{NL}}(P^\sigma)$
 188 yield a deterministic policy that select the alternative with slightly greater support, namely y_1 , because
 189 such subtle differences in preferences (or rewards) are lost during the policy optimization.

190 This binary example highlights two potential limitations of RLHF and NLHF frameworks. First,
 191 selecting policies that focus entirely on a single alternative may not accurately represent preferences
 192 across evaluators, raising concerns about bias. Second, these methods have high sensitivity to small
 193 perturbations in preference function. Specifically, a slight shift in ϵ from negative to positive abruptly
 194 flips the policy outcome $(\pi(y_1), \pi(y_2))$ from $(0, 1)$ to $(1, 0)$, making such approaches vulnerable to
 195 small perturbations. These limitations underscore the need for a novel approach that reflects the ratio
 196 of (w_1^σ, w_2^σ) in the resulting policy.

3.2 PROPOSED AXIOMS FOR POPULATION-PROPORTIONAL ALIGNMENT AND ROBUSTNESS

197 Social choice theory studies the aggregation of individual preferences through an *axiomatic* approach,
 198 which specifies desirable properties (axioms) and characterizes aggregation rules that satisfy them. In
 199 particular, two fundamental axioms, *monotonicity* and *Pareto efficiency*, are presented in Appendix D.
 200 Following this approach, we introduce the axioms that a PSCF Φ is desired to satisfy and propose a
 201 preference learning algorithm F that implements such a PSCF.

202 **Proposed axioms.** Motivated by the earlier example, we next introduce a new axiom designed
 203 to ensure alignment with population distribution of preferences. Let $G_k := \{r \in \mathcal{S} \mid r(y_k) = 1\}$
 204 denote the set of rankings in which alternative y_k is ranked first. The population share of group G_k is
 205 denoted by $w_k^\sigma := \sum_{r \in G_k} \sigma_r$. For notational convenience, we define $\sigma_k \in \Delta(\mathcal{S})$ as the normalized
 206 sub-profile restricted to rankings in G_k , where $\sigma_{k,r} = \sigma_r / w_k^\sigma$ for all $r \in G_k$, and $\sigma_{k,r} = 0$ for all
 207 $r \notin G_k$. Let P_k^σ denote the group-specific preference function, generated from σ_k , using the mapping
 208 defined in equation 1. By construction, $P_k^\sigma(y_k \succ y) = 1$ for all $y \neq y_k$, since this group unanimously
 209 prefers y_k over all other alternatives. The overall preference function is then a weighted aggregation
 210 of the group-specific preferences: $P^\sigma = \sum_{k=1}^M w_k^\sigma P_k^\sigma$.

211 Under this definition, our first axiom ensures that the policy reflects each group’s population share.
 212 Note that our proportionality notion focuses solely on the selection probability of each group’s top
 213 choice and does not incorporate lower-ranked preferences.

216 Table 1: Overview of standard PSCFs and axioms
217

Φ	F	Monotonicity	Pareto Efficiency	PPA	PBM
Maximal Borda (MB)	✓ (RLHF)	✓	✓	✗	✗
Maximal lotteries (ML)	✓ (NLHF)	✗	✓	✗	✗
Random dictatorship (RD)	✗	✓	✓	✓	✓
Proposed framework	✓	✓	✓	✓	✓

226 **Definition 3.1** (α -Population-proportional alignment (α -PPA)). A PSCF Φ satisfies α -population-
227 proportional alignment if $\pi(y_k)/w_k^\sigma \geq \alpha(\sigma)$ for all $\sigma \in \Delta(\mathcal{S})$ and $y_k \in \mathcal{Y}$, where $\pi = \Phi(\sigma)$ and
228 $\alpha : \Delta(\mathcal{S}) \rightarrow (0, 1]$.

230 The function $\alpha(\sigma)$ quantifies the strength of alignment: a higher value of α implies stronger alignment
231 with w^σ , with $\alpha(\sigma) = 1$ indicating perfect proportional alignment. Next, we examine the robustness
232 of Φ against manipulation through the following axiom.

233 **Definition 3.2** (Single-group manipulated profile). Given a profile σ and a group index $k \in [M]$, a
234 profile σ'_k is called a *single-group manipulated profile* of σ if σ'_k can be obtained by modifying only
235 the ranking distribution of the sub-profile σ_k . Formally, σ'_k is a single-group manipulated profile of σ
236 if there exists a profile σ' such that $\sigma'_k = \sigma + w_k^\sigma(\sigma' - \sigma_k)$.

237 **Definition 3.3** (γ -Population-bounded manipulability (γ -PBM)). A PSCF Φ satisfies γ -population-
238 bounded manipulability if, for any profile σ and its single-group manipulated profile σ'_k , we have
239 $\Phi(\sigma'_k)(y_k) \leq \gamma_1 w_k^\sigma + \gamma_2$, where $\gamma = (\gamma_1, \gamma_2)$, $\gamma_1 > 0$, and $\gamma_1 + \gamma_2 = 1$.

240 The γ -PBM axiom ensures that the maximum influence a single group can exert through manipulation
241 is bounded above by an affine function of its population share. Specifically, a group can only achieve
242 a deterministic policy selection for its preferred alternative (i.e., $\Phi(\sigma'_k)(y_k) = 1$) only if it constitutes
243 the entire evaluator population (i.e., $w_k^\sigma = 1$). Note that a larger γ_1 provides a stronger robustness
244 guarantee. Particularly, $\gamma_1 = 1$ implies that the manipulated policy value is limited exactly to the
245 group's true population share. We also note that the focus of the γ -PBM axiom differs from that of
246 classical strategyproofness: it does not constrain an individual participant's incentive to misreport,
247 but instead limits the extent to which any group can become over-represented.

249 3.3 LIMITATIONS OF STANDARD PSCFs: AXIOM VIOLATIONS AND NON-IMPLEMENTABILITY

251 We next show that the standard PSCFs either fail to satisfy the proposed axioms or are not imple-
252 mentable by a preference learning algorithm. Consider a PSCF that aligns the policy exactly with
253 each group's population distribution, commonly referred to as a *random dictatorship* (Brandt, 2017).

254 **Definition 3.4** (Random dictatorship). A PSCF Φ^{RD} is called a *random dictatorship* if $\Phi^{\text{RD}}(\sigma) = w^\sigma$
255 for all $\sigma \in \Delta(\mathcal{S})$.

257 By definition, Φ^{RD} satisfies both proposed axioms in their strongest forms: α -PPA with $\alpha(\sigma) = 1$
258 for all $\sigma \in \Delta(\mathcal{S})$, and γ -PBM with $\gamma = (1, 0)$. The following proposition establishes that Φ^{MB} and
259 Φ^{ML} violate even the weakest forms of these axioms, whereas Φ^{RD} satisfies all four axioms.

260 **Proposition 3.5.** Φ^{MB} and Φ^{ML} violate the α -PPA axiom for any α and the γ -PBM axiom for any γ .
261 Φ^{RD} satisfies all four axioms.

262 The proof is provided in Appendix E. Unfortunately, Φ^{RD} is not implementable by any pairwise
263 preference learning algorithm, since distinct profiles σ_1 and σ_2 may induce identical preference
264 functions $P^{\sigma_1} = P^{\sigma_2}$ but different population distributions $w^{\sigma_1} \neq w^{\sigma_2}$ (see Appendix F for an
265 example). Because w^σ cannot be recovered solely from P^σ , no mapping from preference functions to
266 policies can implement Φ^{RD} ¹. Our goal, therefore, is to construct a preference learning algorithm F
267 that implements a PSCF Φ satisfying all four axioms. Table 1 summarizes the standard PSCFs, their
268 implementability, and satisfaction of the four axioms; see Brandl et al. (2022) for additional details.

269 ¹In the literature, the class of implementable PSCFs is often referred to as the C2 class (Fishburn, 1977)

270 4 ALGORITHMIC FRAMEWORK AND THEORETICAL GUARANTEES
271272 4.1 POPULATION DISTRIBUTION RECOVERY FROM PAIRWISE PREFERENCES
273

274 In this section, we introduce a preference algorithm F , which implements a PSCF satisfying all four
275 axioms presented in the previous section. The framework first estimates the feasible set of underlying
276 population distributions w from given pairwise preferences P , and subsequently constructs a policy π
277 closely aligned with the inferred feasible set. We begin with the definition of a feasible population
278 distribution and the characterization of the set of all feasible population distributions.

279 **Definition 4.1.** A population distribution w is considered *feasible* given P , if there exists a profile
280 $\sigma \in \Delta(\mathcal{S})$ such that $w = w^\sigma$ and $P = P^\sigma$.

281 **Proposition 4.2.** *The set of all feasible population distributions given P can be expressed as*

$$282 \mathcal{W}(P) := \left\{ w \in \Delta(\mathcal{Y}) \mid \exists (P_1, \dots, P_M) \in \mathcal{P}^M \text{ s.t. } P = \sum_{i=1}^M w_i P_i, \right. \\ 283 \left. P_i(y_i \succ y) = 1 \forall y \in \mathcal{Y} \setminus \{y_i\}, \forall i \in [M] \right\}. \\ 284 \quad (3)$$

285 See Appendix G for the proof. In words, a population distribution w is feasible if and only if there
286 exist group-specific preference functions (P_1, \dots, P_M) such that P is their weighted aggregation,
287 and each P_i reflects a group of evaluators who unanimously prefer y_i over all other alternatives.

288 The exact characterization of the set $\mathcal{W}(P)$ is challenging due to the constraints imposed by the set \mathcal{P} .
289 We therefore propose a tractable polyhedral outer approximation of the set $\mathcal{W}(P)$, with the number
290 of constraints growing only linearly with the dimension M .

291 **Definition 4.3.** For each $i \in [M]$, define $u_i := \min_{y \in \mathcal{Y} \setminus \{y_i\}} P(y_i \succ y)$.

292 **Theorem 4.4.** *The set of feasible population distributions satisfies*

$$293 \mathcal{W}(P) \subseteq \overline{\mathcal{W}}(P) := \left\{ w \in \Delta(\mathcal{Y}) \mid w_i \leq u_i \forall i \in [M] \right\}. \quad (4)$$

294 The proof is given in Appendix H. To provide intuition, note that $u_i = 1 - \max_{y \neq y_i} P(y \succ y_i) =$
295 $1 - P(y' \succ y_i)$, where y' is the alternative most preferred over y_i . Thus, u_i represents the remaining
296 population share after excluding those who prefer y' to y_i . Thus, w_i cannot exceed this value, as the
297 w_i proportion of evaluators would always report y_i as their preferred option. The tightness of the
298 outer approximation is further discussed in Appendix I, and the relation between Theorem 4.4 and
299 Tatli et al. (2024) is examined in Appendix J. Since w^σ is not identifiable from pairwise comparison
300 data, perfect proportional alignment (i.e., $\alpha(\sigma) = 1$ for all $\sigma \in \Delta(\mathcal{S})$) is fundamentally unattainable.
301 Moreover, even achieving a uniform guarantee $\alpha(\sigma) > 2/M$ for all σ is impossible for any preference
302 learning algorithm (see Appendix K). This motivates designing algorithms that achieve α -PPA with
303 the largest possible α .

304 4.2 PROPOSED ALGORITHMIC FRAMEWORK WITH AXIOMATIC GUARANTEES
305

306 Given a polyhedron $\overline{\mathcal{W}}(P)$, our goal is to select a policy π that guarantees the proportional alignment
307 to all $w \in \overline{\mathcal{W}}(P)$. To this end, we propose to assign probabilities to alternatives in proportion to the
308 derived upper bounds u_i .

309 **Definition 4.5.** The preference learning algorithm F^* maps a preference function P to the policy

$$310 \pi(y_i) = \frac{u_i}{\sum_{j=1}^M u_j} \quad \forall i \in [M]. \quad (5)$$

311 Let Φ^* denote the PSCF implemented by F^* .

312 This construction adopts a conservative strategy for handling uncertainty in w^σ by assigning probabilities
313 proportional to the most conservative estimate of each w_i^σ . By doing so, the algorithm minimizes
314 the worst-case misalignment caused by the inevitable information loss from pairwise comparisons.
315 Formally, it solves $\max_{\pi \in \Delta(\mathcal{Y})} \min_{w \in \overline{\mathcal{W}}(P)} \|\pi/w\|_\infty$.

316 We first establish the foundational axiomatic guarantees of the proposed framework.

324 **Theorem 4.6** (Monotonicity & Pareto efficiency). *The proposed PSCF Φ^* satisfies the monotonicity*
 325 *and the Pareto efficiency.*

327 The proofs are provided in Appendix L. Next, we show that Φ^* satisfies the α -PPA axiom. The
 328 following lemma establishes that the ratio between the resulting policy and the true population share
 329 is lower bounded by the inverse of the total sum of the upper bounds u_i .

330 **Lemma 4.7.** *For any profile $\sigma \in \Delta(\mathcal{S})$, the policy $\pi = \Phi^*(\sigma)$ satisfies*

$$\frac{\pi(y_i)}{w_i^\sigma} \geq \left(\sum_{j=1}^M u_j \right)^{-1} \quad \forall i \in [M]. \quad (6)$$

335 The next lemma shows that this lower bound depends on the number of non-dominated alternatives:

336 **Definition 4.8** (δ -dominated alternative). For any $\delta \in [0, 1]$, an alternative $y \in \mathcal{Y}$ is said to be
 337 δ -dominated in a profile σ if there exists an alternative $y' \in \mathcal{Y} \setminus \{y\}$ such that $P^\sigma(y' \succ y) \geq \delta$.

338 **Lemma 4.9.** *Let $w^{\sigma,1}$ and $w^{\sigma,2}$ denote the largest and second-largest elements of w^σ , respectively.*
 339 *Consider any $\delta \in [0, 1]$, and let N_δ^σ be the number of alternatives that are not δ -dominated in profile*
 340 *σ . Then the lower bound in equation 6 lies within the range $[\alpha(\sigma), 1]$, where*

$$\alpha(\sigma) := [(N_\delta^\sigma - 1)(1 - w^{\sigma,1}) + (1 - w^{\sigma,2}) + (M - N_\delta^\sigma)(1 - \delta)]^{-1}. \quad (7)$$

343 See Appendix M for the proofs. Combining both Lemmas, we obtain the following α -PPA guarantee:

344 **Theorem 4.10** (α -PPA). *The PSCF Φ^* satisfies the α -PPA axiom with α defined in equation 7.*

345 Lemma 4.7 suggests that the actual alignment performance improves as $\sum_{j=1}^M u_j$ approaches 1.
 346 This typically occurs when the number of non-1-dominated alternatives is small. Notably, when
 347 there are only two non-1-dominated alternatives, substituting $N_1^\sigma = 2$ and $w^{\sigma,1} + w^{\sigma,2} = 1$ into
 348 equation 7 yields $\alpha(\sigma) = 1$, implying the perfect PPA in such cases. Moreover, when there exists
 349 a single dominating group, meaning $(w^{\sigma,1}, w^{\sigma,2})$ approaches $(1, 0)$, then $\alpha(\sigma)$ also approaches 1.
 350 Importantly, because $\sum_{j=1}^M u_j$ can be computed directly from a given preference function P , the
 351 alignment accuracy of the resulting policy can be evaluated at test time.

353 Finally, we present the population-bounded manipulability of the proposed method.

354 **Theorem 4.11** (γ -PBM). *Let $\pi' = \Phi^*(\sigma'_k)$ denote a policy resulting from single-group manipulation*
 355 *by group G_k . Then, the following inequality holds:*

$$\pi'(y_k) \leq \frac{u_k}{u_k + 1 - w_k^\sigma} \leq \frac{1}{2}(w_k^\sigma + 1). \quad (8)$$

358 *Thus, the PSCF Φ^* satisfies γ -PBM with $(\gamma_1, \gamma_2) = (1/2, 1/2)$.*

360 The proof is provided in Appendix N. Note that $(\gamma_1, \gamma_2) = (1/2, 1/2)$ represents a worst-case bound.
 361 The actual manipulability for each group is more tightly bounded by $u_k/(u_k + 1 - w_k^\sigma)$. For instance,
 362 if $u_k \leq 1/2$ and $w_k^\sigma \leq 1/2$, then $\pi'(y_k) \leq 1/2$. This indicates that a non-majority group cannot
 363 elevate their preferred alternative to majority status through manipulation. In addition, the above
 364 result can be interpreted as a weaker form of strategyproofness (see Appendix O for details).

365 4.3 BALANCING PPA AND CONDORCET CONSISTENCY

367 While F^* and Φ^* are deliberately designed to satisfy PPA, one may still wish to incorporate majority-
 368 based principles such as Condorcet consistency. However, it is impossible for any method to
 369 simultaneously satisfy both α -PPA and Condorcet consistency.

370 **Definition 4.12** (Condorcet consistency). A PSCF Φ satisfies *Condorcet consistency* if, for any
 371 profile σ with a Condorcet winner y^* , $\Phi(\sigma)(y^*) = 1$.

372 **Proposition 4.13.** *No PSCF can simultaneously satisfy α -PPA and Condorcet consistency.*

374 See Appendix P for the proof. To balance two axioms, we propose a softmax-relaxed algorithm F^β
 375 (and its corresponding PSCF Φ^β), by modifying F^* as follows:

$$\pi(y_i) = \frac{u_i \exp(\beta u_i)}{\sum_{j=1}^M u_j \exp(\beta u_j)} \quad \forall i \in [M]. \quad (9)$$

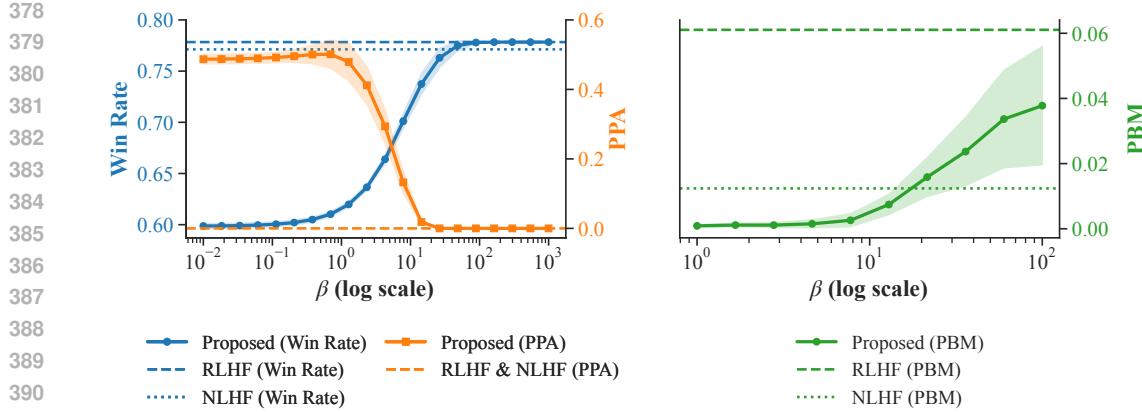


Figure 2: Tabular experiment results (Section 5.1) for F^β , F^{RL} , and F^{NL} . **Left:** win rate (left axis, blue) and PPA level (right axis, orange). **Right:** PBM level (policy gain through manipulation).

The parameter $\beta \geq 0$ controls how sharply the policy concentrates on alternatives with higher u_i values. When $\beta = 0$, the algorithm reduces to the original F^* . As $\beta \rightarrow \infty$, the policy becomes deterministic and converges to $\pi(y^*) = 1$, where $y^* = \arg \max_{i \in [M]} u_i$. This limiting Φ^∞ is the well-known minimax Condorcet method (Kramer, 1975), which satisfies Condorcet consistency (see Appendix Q for the proof).

Proposition 4.14. Φ^∞ satisfies Condorcet consistency.

The softmax relaxation offers a smooth trade-off between α -PPA and Condorcet consistency, controlled by the parameter β . We analyze the theoretical behavior of intermediate β values in Appendix R, and empirically demonstrate the effects of varying β in Section 5. Additionally, Appendix S discusses the connection to pairwise majority consistency (PMC) (Ge et al., 2024), which imposes a stronger consistency requirement, ensuring the entire policy ranking aligns with majority preferences.

5 EXPERIMENTS

5.1 TABULAR EXPERIMENT: MOVIE RECOMMENDATION

Datasets and experimental setup. To validate our theoretical findings, we evaluate the framework on a movie recommendation task using 1,297 evaluator rankings over 20 movies from MovieLens 1M dataset (Harper & Konstan, 2015). In each episode, we sample 10^5 pairwise comparisons i.i.d. from the true preference function P^σ and train F^β alongside two baselines, F^{RL} and F^{NL} .

We report averages and standard deviations over 50 episodes on three metrics: (i) win rate against a uniform policy, $\mathbb{E}_{(y_1, y_2) \sim (\pi, U)}[P^\sigma(y_1 \succ y_2)]$, where U is the uniform distribution over \mathcal{Y} , (ii) PPA level, $\alpha(\sigma) = \min_{i \in [M]} \pi(y_i)/w_i^\sigma$, and (iii) PBM, the average policy gain from a single group's strategical manipulation.

Results and discussion. As shown in the left panel of Figure 2, RLHF and NLHF achieve high win rates of 0.7784 and 0.7712, respectively, but both yield a PPA level of 0. For our proposed algorithm F^β , we observe the expected trade-off: as β increases, the win rate rises from 0.5987 to 0.7784, while the PPA level decreases from 0.4869 to 0. These results confirm our theoretical prediction of each algorithm's behavior. Additionally, the average value of u_i was 0.1892, suggesting that the set $\bar{\mathcal{W}}(P)$ in equation 4 provides a meaningfully tight estimate of w^σ in our method.

Regarding PBM, the average gain was calculated as 0.0611 for RLHF, 0.0124 for NLHF, and 8.896×10^{-4} when $\beta = 10^0$. Overall, F^β outperforms the baselines when $\beta \leq 10^1$, indicating that our proposed algorithm significantly reduces susceptibility to manipulation and supports its robustness guarantee.

432
433
434 Table 2: Win rate and PPA level $\alpha(\sigma)$ across datasets and algorithms
435
436
437

Dataset	Category	Metric	$\beta = 0$	$\beta = 10^{-4}$	$\beta = 10^{-2}$	$\beta = 10^0$	DPO
Synthetic	Color	Win rate	0.6157	0.6880	0.6961	0.8429	0.8566
		PPA (α)	0.0883	0.0235	0.0183	0.0003	0.0000
Alpaca-GPT4	Expertise	Win rate	0.7613	0.7610	0.7634	0.7636	0.7697
		PPA (α)	0.1428	0.1418	0.1392	0.1273	0.1321
	Style	Win rate	0.8398	0.8432	0.8425	0.8530	0.8478
		PPA (α)	0.5012	0.4197	0.3637	0.3635	0.3786

442
443
444 5.2 LARGE-SCALE EXPERIMENT: INSTRUCTION-TUNED LLMs
445446 **Datasets and experimental setup.** We next evaluate the algorithm in high-dimensional settings
447 with function approximation by fine-tuning the Qwen2.5-3B-Instruct model (Yang et al., 2024). For
448 a synthetic dataset, we construct 10 questions asking evaluators which color they prefer, with 10
449 candidate colors as possible responses. The true rankings of 1,000 evaluators are generated from
450 randomly sampled rewards, and 10^4 pairwise comparisons are drawn i.i.d. from P^σ . We next test the
451 algorithm on the Alpaca-GPT4 dataset (Peng et al., 2023), which contains 52k prompts. Following
452 prior work (Jang et al., 2023; Chakraborty et al., 2024), we consider two group categories (expertise
453 and style) and sample one pairwise comparison per prompt using GPT-4.1 (Achiam et al., 2023).
454 Further details on data generation and hyperparameters are provided in Appendix T.455 For both datasets, we evaluate two metrics: (i) the win rate against a reference policy (the pretrained
456 model), $\mathbb{E}_{(x, y_1, y_2) \sim (\rho, \pi, \pi_{ref})} [P^\sigma(y_1 \succ y_2 \mid x)]$, and (ii) the PPA level $\alpha(\sigma)$, comparing the results
457 with DPO as the baseline. To estimate the output policy (i.e., the group distribution of generated
458 responses), we used response logits directly for the synthetic dataset, and group classifications from
459 the annotation model (GPT-4.1) for the Alpaca-GPT4 dataset. The specific training algorithm is
460 described in Appendix U, and the full experimental code is included in the supplemental material.461 **Results and Discussion.** Table 2 presents the win rate and PPA level $\alpha(\sigma)$ across datasets and
462 algorithms. On the synthetic dataset, we observe a clear trade-off between win rate and PPA,
463 confirming that β effectively controls this balance and validating the algorithm’s effectiveness in
464 high-dimensional settings. For the Alpaca-GPT4 dataset, the trade-off is present but less pronounced,
465 largely because group distributions are inferred using an annotation model (GPT-4.1), which intro-
466 duces noise and obscures the effect of β . In contrast, the synthetic dataset allows direct computation
467 from response logits, enabling more precise estimates. These results suggest that a small synthetic
468 dataset can be used to evaluate a model’s PPA level and tune β to reach a desired target.469 We highlight several practical considerations for deployment. First, our two-phase function approxi-
470 mation approach (learning u and π), has computational cost comparable to RLHF and higher than
471 DPO, suggesting the need for direct policy-optimization methods. Second, accurately estimating PPA
472 levels in LLMs remains an open challenge beyond the two methods we explore (logit comparison and
473 group classification). As this paper primarily introduces the theoretical framework with supporting
474 experiments, our findings should be viewed as initial evidence of scalability, with further algorithmic
475 and evaluation advances expected to strengthen these results.476
477 6 CONCLUSION AND FUTURE DIRECTIONS
478479 This paper introduces a novel preference-learning framework that aligns policies proportionally with
480 population distributions inferred from pairwise comparison data. We believe this framework offers a
481 new perspective on alignment algorithms by shifting the focus beyond the conventional emphasis on
482 win rate. Furthermore, our work strengthens the connection between preference learning and social
483 choice theory by implementing a new class of probabilistic social choice functions, extending beyond
484 standard rules such as maximal Borda and maximal lotteries. Future research will aim to extend
485 the framework to incorporate lower-ranked preferences and to develop more efficient algorithms for
high-dimensional environments.

486 ETHICS STATEMENT
487488 This paper introduces a novel preference learning framework that aims to enhance population-
489 proportional alignment across diverse preferences, offering the potential for positive societal and
490 ethical impact by mitigating biases within AI systems. Nevertheless, similar to any preference
491 learning technique, it carries the risk of being misused to perpetuate existing biases, whether through
492 the utilization of non-representative datasets or through design choices that unintentionally favor
493 particular viewpoints. We recognize these potential concerns and emphasize the importance of
494 thoughtful attention to data collection and algorithm design to promote positive impact.
495496 REPRODUCIBILITY STATEMENT
497498 To promote reproducibility, we provide complete theoretical, empirical, and implementation details.
499 The theoretical results are presented with complete assumptions and full proofs in Appendices C–
500 S. For the empirical studies, detailed descriptions of dataset generation, evaluation methods, and
501 hyperparameter settings are provided in Section 5 and Appendix T. The training algorithm and
502 implementation details are described in Appendix U. To facilitate replication, we also include the
503 experimental code in the supplementary materials. Together, these resources enable independent
504 researchers to reproduce both the theoretical claims and the empirical findings reported in this paper.
505506 REFERENCES
507508 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
509 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
510 *arXiv preprint arXiv:2303.08774*, 2023.511 Jadie Adams, Brian Hu, Emily Veenhuis, David Joy, Bharadwaj Ravichandran, Aaron Bray, Anthony
512 Hoogs, and Arslan Basharat. Steerable pluralism: Pluralistic alignment via few-shot comparative
513 regression. *arXiv preprint arXiv:2508.08509*, 2025.514 Stéphane Airiau, Haris Aziz, Ioannis Caragiannis, Justin Kruger, Jérôme Lang, and Dominik Peters.
515 Portioning using ordinal preferences: Fairness and efficiency. *Artificial Intelligence*, 314:103809,
516 2023.517 Haris Aziz and Barton E Lee. Proportionally representative participatory budgeting with ordinal
518 preferences. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
519 5110–5118, 2021.520 Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. In *Pathways Between
521 Social Science and Computational Social Science: Theories, Methods, and Interpretations*, pp.
522 215–236. Springer, 2020.523 Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh. Justified
524 representation in approval-based committee voting. *Social Choice and Welfare*, 48(2):461–485,
525 2017a.526 Haris Aziz, Barton Lee, and Nimrod Talmon. Proportionally representative participatory budgeting:
527 Axioms and algorithms. *arXiv preprint arXiv:1711.08226*, 2017b.528 Erdem Bıyık, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active preference-based
529 gaussian process regression for reward learning. *arXiv preprint arXiv:2005.02575*, 2020.530 Henry David Block and Jacob Marschak. Random orderings and stochastic theories of response.
531 *Cowles Foundation Discussion Papers*, 1959.532 Florian Brandl, Felix Brandt, and Christian Stricker. An analytical and experimental comparison of
533 maximal lottery schemes. *Social Choice and Welfare*, 58(1):5–38, 2022.534 Felix Brandt. Rolling the dice: Recent results in probabilistic social choice. *Trends in computational
535 social choice*, pp. 3–26, 2017.

- 540 Thomas Kleine Buening, Jiarui Gan, Debmalya Mandal, and Marta Kwiatkowska. Strategyproof
 541 reinforcement learning from human feedback. *arXiv preprint arXiv:2503.09561*, 2025.
- 542
- 543 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
 544 rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences.
 545 *arXiv preprint arXiv:2402.08925*, 2024.
- 546
- 547 Daiwei Chen, Yi Chen, Aniket Rege, and Ramya Korlakai Vinayak. Pal: Pluralistic alignment
 548 framework for learning from heterogeneous preferences. *arXiv preprint arXiv:2406.08469*, 2024.
- 549
- 550 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 551 reinforcement learning from human preferences. *Advances in neural information processing
 552 systems*, 30, 2017.
- 553
- 554 Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H Holliday, Bob M Jacobs, Nathan
 555 Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, et al. Social choice should
 556 guide ai alignment in dealing with diverse human feedback. *arXiv preprint arXiv:2404.10271*,
 557 2024.
- 558
- 559 Jessica Dai and Eve Fleisig. Mapping social choice theory to rlhf. *arXiv preprint arXiv:2404.13038*,
 560 2024.
- 561
- 562 Michael Dummett. *Voting procedures*. Oxford University Press UK, 1984.
- 563
- 564 Peter C Fishburn. Condorcet social choice functions. *SIAM Journal on applied Mathematics*, 33(3):
 565 469–489, 1977.
- 566
- 567 Peter C Fishburn. Probabilistic social choice based on simple voting comparisons. *The Review of
 568 Economic Studies*, 51(4):683–692, 1984.
- 569
- 570 Luise Ge, Daniel Halpern, Evi Micha, Ariel D Procaccia, Itai Shapira, Yevgeniy Vorobeychik, and
 571 Junlin Wu. Axioms for ai alignment from human feedback. *arXiv preprint arXiv:2405.14758*,
 572 2024.
- 573
- 574 Allan Gibbard. Manipulation of voting schemes: a general result. *Econometrica: journal of the
 575 Econometric Society*, pp. 587–601, 1973.
- 576
- 577 Shugang Hao and Lingjie Duan. Online learning from strategic human feedback in llm fine-tuning.
 578 In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
 579 (ICASSP)*, pp. 1–5. IEEE, 2025.
- 580
- 581 F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm
 582 transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.
- 583
- 584 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
 585 Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large
 586 language model alignment via post-hoc parameter merging. *arXiv preprint arXiv:2310.11564*,
 587 2023.
- 588
- 589 Cheol Woo Kim, Jai Moondra, Shresth Verma, Madeleine Pollack, Lingkai Kong, Milind Tambe, and
 590 Swati Gupta. Navigating the social welfare frontier: Portfolios for multi-objective reinforcement
 591 learning. *arXiv preprint arXiv:2502.09724*, 2025.
- 592
- 593 Kihyun Kim, Jiawei Zhang, Asuman Ozdaglar, and Pablo A Parrilo. A unified linear programming
 594 framework for offline reward learning from human demonstrations and feedback. *arXiv preprint
 595 arXiv:2405.12421*, 2024.
- 596
- 597 Gerald H Kramer. A dynamical model of political equilibrium. *Cowles Foundation Discussion
 598 Papers*, 629, 1975.
- 599
- 600 Andras Kupcsik, David Hsu, and Wee Sun Lee. Learning dynamic robot-to-human object handover
 601 from human feedback. In *Robotics Research: Volume 1*, pp. 161–176. Springer, 2017.
- 602
- 603 Roberto-Rafael Maura-Rivero, Marc Lanctot, Francesco Visin, and Kate Larson. Jackpot! alignment
 604 as a maximal lottery. *arXiv preprint arXiv:2501.19266*, 2025.

- 594 Abhilash Mishra. Ai alignment and social choice: Fundamental limitations and policy implications.
 595 *arXiv preprint arXiv:2310.16048*, 2023.
 596
- 597 Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 598 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 599 learning from human feedback. *arXiv preprint arXiv:2312.00886*, 18, 2023.
- 600 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 601 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 602 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 603 27744, 2022.
- 604 Chanwoo Park, Mingyang Liu, Dingwen Kong, Kaiqing Zhang, and Asuman Ozdaglar. Rlhf
 605 from heterogeneous feedback via personalization and preference aggregation. *arXiv preprint*
 606 *arXiv:2405.00254*, 2024.
- 607 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
 608 gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.
- 609 Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory budgeting with
 610 additive utilities. *Advances in Neural Information Processing Systems*, 34:12726–12737, 2021.
- 611 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 612 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 613 in *Neural Information Processing Systems*, 36:53728–53741, 2023.
- 614 Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham
 615 Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf.
 616 *Advances in Neural Information Processing Systems*, 37:37100–37137, 2024.
- 617 Zhekun Shi, Kaizhao Liu, Qi Long, Weijie J Su, and Jiancong Xiao. Fundamental limits of
 618 game-theoretic llm alignment: Smith consistency and preference matching. *arXiv preprint*
 619 *arXiv:2505.20627*, 2025.
- 620 Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learn-
 621 ing: Understanding and accounting for hidden context in rlhf. *arXiv preprint arXiv:2312.08358*,
 622 2023.
- 623 Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christo-
 624 pher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, et al. A roadmap to
 625 pluralistic alignment. *arXiv preprint arXiv:2402.05070*, 2024.
- 626 Ermis Soumalias, Michael J Curry, and Sven Seuken. Truthful aggregation of llms with an application
 627 to online advertising. *arXiv preprint arXiv:2405.05905*, 2024.
- 628 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 629 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in*
 630 *neural information processing systems*, 33:3008–3021, 2020.
- 631 Haoran Sun, Yurong Chen, Siwei Wang, Wei Chen, and Xiaotie Deng. Mechanism design for llm
 632 fine-tuning with multiple reward models. *arXiv preprint arXiv:2405.16276*, 2024.
- 633 Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A minimaxi-
 634 malist approach to reinforcement learning from human feedback. *arXiv preprint arXiv:2401.04056*,
 635 2024.
- 636 Gokcan Tatli, Yi Chen, and Ramya Korlakai Vinayak. Learning populations of preferences via
 637 pairwise comparison queries. In *International Conference on Artificial Intelligence and Statistics*,
 638 pp. 1720–1728. PMLR, 2024.
- 639 Jiancong Xiao, Zhekun Shi, Kaizhao Liu, Qi Long, and Weijie J Su. Theoretical tensions in
 640 rlhf: Reconciling empirical success with inconsistencies in social choice theory. *arXiv preprint*
 641 *arXiv:2506.12350*, 2025.

- 648 Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng, Peng Jiang, Kun
 649 Gai, and Bo An. Prefrec: Recommender systems with human preferences for reinforcing long-term
 650 user engagement. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
 651 and Data Mining*, pp. 2874–2884, 2023.
- 652 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 653 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 654 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 655 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 656 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 657 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint
 658 arXiv:2412.15115*, 2024.
- 659 Binwei Yao, Zefan Cai, Yun-Shiuan Chuang, Shanglin Yang, Ming Jiang, Diyi Yang, and Junjie
 660 Hu. No preference left behind: Group distributional preference optimization. *arXiv preprint
 661 arXiv:2412.20299*, 2024.
- 662 Chenlu Ye, Wei Xiong, Yuheng Zhang, Hanze Dong, Nan Jiang, and Tong Zhang. Online iterative
 663 reinforcement learning from human feedback with general preference model. *Advances in Neural
 664 Information Processing Systems*, 37:81773–81807, 2024.
- 665 Huiying Zhong, Zhun Deng, Weijie J Su, Zhiwei Steven Wu, and Linjun Zhang. Provable multi-party
 666 reinforcement learning with diverse human feedback. *arXiv preprint arXiv:2403.05006*, 2024.
- 667 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 668 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 669 preprint arXiv:1909.08593*, 2019.
- 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A NOTATION**
703704 We summarize the mathematical notation used in the paper.
705

706 Symbol	707 Description
<i>Rankings, profiles, groups, and preferences</i>	
$[M]$	The set of integers $\{1, 2, \dots, M\}$.
$\mathcal{Y} = \{y_1, \dots, y_M\}$	The set of M alternatives.
$\Delta(\mathcal{Y})$	Probability simplex over a finite set \mathcal{Y} .
\mathcal{S}	The set of all rankings (permutations) over \mathcal{Y} .
$r \in \mathcal{S}$	A ranking, where $r(y_i) = k$ means y_i is ranked k -th.
$\sigma \in \Delta(\mathcal{S})$	A profile, i.e., population distribution over rankings.
$\sigma_r \in [0, 1]$	Proportion of evaluators who adopt ranking r .
G_k	Group k , set of rankings where y_k is ranked first.
$w_k^\sigma \in [0, 1]$	Population share of evaluators whose top choice is y_k .
$\sigma_k \in \Delta(\mathcal{S})$	Sub-profile of group G_k (evaluators who rank y_k first).
$\pi \in \Delta(\mathcal{Y})$	A policy, i.e., probability distribution over alternatives.
$P \in \mathcal{P}$	Preference function, $P(y \succ y')$ is the probability y is preferred to y' .
$P^\sigma \in \mathcal{P}$	Preference function induced by a profile σ .
P_k, P_k^σ	Group-specific preference function for G_k .
\mathcal{P}	Set of all preference functions induced by some profile in $\Delta(\mathcal{S})$.
<i>Preference learning algorithms, PSCFs, and axioms</i>	
$F : \mathcal{P} \rightarrow \Delta(\mathcal{Y})$	Preference learning algorithm, mapping a preference function to a policy.
$\Phi : \Delta(\mathcal{S}) \rightarrow \Delta(\mathcal{Y})$	Probabilistic social choice function (PSCF), mapping a profile to a policy.
$F^{\text{RL}}, \Phi^{\text{MB}}$	RLHF algorithm and its PSCF (maximal Borda rule).
$F^{\text{NL}}, \Phi^{\text{ML}}$	NLHF algorithm and its PSCF (maximal lotteries).
$B(y)$	Borda score: $B(y) := \sum_{r \in \mathcal{S}} \sigma_r (M - r(y))$.
$\alpha(\sigma) \in \mathbb{R}$	Strength of population-proportional alignment (PPA) guarantee.
$\gamma = (\gamma_1, \gamma_2) \in \mathbb{R}^2$	Parameters characterizing population-bounded manipulability (PBM).
σ'_k	Single-group manipulated profile of σ (group k perturbs only its sub-profile).
$u_i \in [0, 1]$	$u_i := \min_{y \neq y_i} P(y_i \succ y)$, upper bound on feasible population share for y_i .
$\mathcal{W}(P)$	Set of feasible population distributions consistent with preference function P .
$\overline{\mathcal{W}}(P)$	Polyhedral outer approximation of $\mathcal{W}(P)$ (via $w_i \leq u_i$ constraints).
$\delta \in [0, 1]$	Dominance threshold (used in δ -domination definition).
N_δ^σ	Number of alternatives not δ -dominated under profile σ .
w_1^σ, w_2^σ	Largest and second-largest elements of w^σ .
y^*	Condorcet winner satisfying $P(y^* \succ y) > \frac{1}{2}$ for all $y \neq y^*$.
F^*, Φ^*	Proposed (baseline) algorithm/PSCF using u_i with $\pi(y_i) \propto u_i$.
F^β, Φ^β	Softmax-relaxed algorithm/PSCF with concentration parameter $\beta \geq 0$.
<i>Offline learning algorithm with function approximation</i>	
$x \in \mathcal{X}$	Context (e.g., prompt or state) and context space.
$\mathcal{D} = \{(x_i, y_i^w, y_i^\ell)\}_{i=1}^N$	Offline dataset of pairwise comparisons (y^w preferred to y^ℓ).
$\rho(x), \pi_d(y \mid x)$	Context (prompt) and query data distribution.
μ	Selector model used to form u .
$\mathcal{F}_\mu, \mathcal{F}_\pi$	Function classes for μ and π .
$\hat{P}, \hat{\mu}, \hat{u}$	Empirical estimate of P , μ , and u .
$\hat{\pi}_\beta, \hat{\pi}$	Softmax policy constructed from \hat{u} and final estimated policy

756 **B ADDITIONAL RELATED WORK**
757758 In this section, we discuss recent work that aims to proportionally represent the diversity of human
759 preferences.
760761 **Limitations of the BT model.** Recent studies have highlighted limitations of the standard RLHF
762 approach under BT model assumption, which fails to capture the multifaceted and sometimes con-
763 flicting nature of human preferences. For example, Kim et al. (2024) demonstrated that the standard
764 MLE algorithms under the BT model can become unstable, particularly in the presence of evaluators
765 exhibiting greedy behavior. They proposed to address this limitation by estimating a set of feasible
766 reward functions without relying on specific modeling assumptions. Additionally, Siththaranjan et al.
767 (2023) established a theoretical equivalence between RLHF and the Borda voting rule, showing that
768 the optimized rankings from standard methods frequently violate majority preferences. To address
769 this issue, they introduced a distributional approach incorporating hidden context variables to address
770 diverse evaluator preferences. Furthermore, Ge et al. (2024) analyzed reward optimization methods
771 under parameterizations, revealing their inherent violation of fundamental axioms such as Pareto
772 efficiency. They proposed a novel algorithm explicitly designed to satisfy these axioms.
773774 **Approaches from social choice theory.** Parallel research efforts have explored unbiased aggrega-
775 tion of heterogeneous human preferences, grounded in social choice theory. Chakraborty et al. (2024)
776 formally proved the impossibility of equitably aligning single-reward models across diverse evaluator
777 groups, and proposed learning reward mixtures using the EM algorithm followed by maximizing
778 the minimum utility across subpopulations. Additionally, Zhong et al. (2024) conducted a rigorous
779 analysis of multi-group reward learning under various social welfare criteria, such as Nash, utilitarian,
780 and Leximin functions, and provided theoretical alignment guarantees. Park et al. (2024) proposed a
781 probabilistic opinion pooling function that directly aggregates multiple probabilistic models into a
782 single policy, as well as personalized algorithms that output individualized policies after estimating
783 confidence sets. Shi et al. (2025) analyze the theoretical limits of NLHF, showing that exact prefer-
784 ence matching is generally impossible, highlighting intrinsic limitations of this paradigm. Concurrent
785 work by Xiao et al. (2025) is closely related to our work. They investigate the tension between
786 RLHF’s empirical success and its incompatibility with social choice axioms (PMC and Condorcet
787 consistency), showing that RLHF can satisfy them under a practical assumption about preference
788 labeling. Moreover, they propose a new axiom, *group preference matching*, which requires the policy
789 to reproduce group-level preference distributions in proportion to their population weights. However,
790 they do not provide an algorithmic framework that satisfies this axiom.
791792 **Proportional representation in voting systems.** The concept of proportional representation has
793 been extensively studied through an axiomatic lens within voting systems. A foundational axiom in
794 multi-winner voting systems is *proportionality for solid coalitions* (PSC), which dictates that any
795 solid coalition (a group of voters who agree on their preferred set of winners) must be guaranteed
796 a number of elected candidates proportional to its population size (Dummett, 1984). Building on
797 this, work in approval-based voting introduced *justified representation* (JR) and its stronger variant,
798 *extended justified representation* (EJR), which ensure that every cohesive group (voters who approve
799 the same set of candidates) receives proportional representation (Aziz et al., 2017a). Proportional
800 representation has also been widely applied to *participatory budgeting* (PB) (Aziz & Shah, 2020),
801 focusing on axiomatic methods for distributing funds among public projects under a budget constraint.
802 However, the literature defining these proportional representation notions typically assumes either
803 approval-based multi-winner elections (Aziz et al., 2017b) or access to full preference information
804 such as ordinal rankings Aziz & Lee (2021); Peters et al. (2021); Airiau et al. (2023). This stands in
805 sharp contrast to our approach, which operates under the minimal assumption of pairwise comparison
806 data and seeks a probabilistic choice distribution over candidates, rather than a fixed multi-winner.
807808 **Pluralistic alignment.** Emerging research on pluralistic alignment seeks to reflect diverse per-
809 spectives in AI systems, with a particular focus on LLMs. Sorensen et al. (2024) outlined three
810 complementary frameworks for pluralistic alignment: Overton pluralism, which captures the range of
811 reasonable responses; steerable pluralism, which allows models to adapt to particular attributes; and
812 distributional pluralism, which aligns model outputs with population-level distributions. Chen et al.
813 (2024) introduced a framework that modeled heterogeneous human preferences from the ground
814

up using the ideal point model and mixture modeling. Yao et al. (2024) proposed group distributional preference optimization (GDPO), a method that aligns models with the group preferences by estimating the underlying belief distribution and conditioning responses on those beliefs, ensuring representation of both majority and minority views. Adams et al. (2025) developed a steerable pluralistic alignment algorithm, enabling models to adapt to individual preference profiles through few-shot comparative regression across fine-grained attributes. While these approaches show promise, they generally rely on explicit group identification, restricting their applicability in scenarios where group labels are unavailable or difficult to determine. In contrast, our work does not require explicit knowledge of evaluator groups. Instead, we infer population distributions directly from pairwise comparison data and align policies accordingly.

C EQUIVALENCE OF BT-MLE REWARDS RANKING AND BORDA RANKING

Proposition C.1. *Let $r^* \in \mathbb{R}^M$ be a maximizer of the likelihood function*

$$L(r) := \sum_{i < j} \left[P^\sigma(y_i \succ y_j) \log \left(\frac{e^{r_i}}{e^{r_i} + e^{r_j}} \right) + P^\sigma(y_j \succ y_i) \log \left(\frac{e^{r_j}}{e^{r_i} + e^{r_j}} \right) \right]. \quad (10)$$

Then, the ordering of alternatives induced by r^ is identical to the ordering induced by the Borda score B of σ . Formally, for any $i, j \in [M]$,*

$$r_i^* > r_j^* \iff B(y_i) > B(y_j). \quad (11)$$

Proof. The gradient of $L(r)$ with respect to r_i is given by:

$$\frac{\partial L(r)}{\partial r_i} = \sum_{j \neq i} [P^\sigma(y_i \succ y_j) - \text{sigmoid}(r_i - r_j)], \quad (12)$$

where $\text{sigmoid}(x) := 1/(1 + e^{-x})$. At the optimal solution r^* , the first-order condition requires that

$$\sum_{j \neq i} [P^\sigma(y_i \succ y_j) - \text{sigmoid}(r_i^* - r_j^*)] = 0. \quad (13)$$

Now, consider two distinct alternatives i and k , and suppose that $r_i^* > r_k^*$. Since the sigmoid function is monotonically increasing, for any $j \neq i, k$, we have $\text{sigmoid}(r_i^* - r_j^*) > \text{sigmoid}(r_k^* - r_j^*)$, and also $\text{sigmoid}(r_i^* - r_k^*) > \text{sigmoid}(r_k^* - r_i^*)$. From the first-order conditions at optimality, we have:

$$\sum_{j \neq i} P^\sigma(y_i \succ y_j) = \sum_{j \neq i} \text{sigmoid}(r_i^* - r_j^*) \text{ and } \sum_{j \neq k} P^\sigma(y_k \succ y_j) = \sum_{j \neq k} \text{sigmoid}(r_k^* - r_j^*). \quad (14)$$

Since $r_i^* > r_k^*$, it follows that

$$\sum_{j \neq i} \text{sigmoid}(r_i^* - r_j^*) > \sum_{j \neq k} \text{sigmoid}(r_k^* - r_j^*). \quad (15)$$

Therefore, we have

$$\sum_{j \neq i} P^\sigma(y_i \succ y_j) > \sum_{j \neq k} P^\sigma(y_k \succ y_j). \quad (16)$$

By definition, $P^\sigma(y_i \succ y_j) = \sum_{r \in \mathcal{S}} \sigma_r \cdot \mathbf{1}_{\{r(y_i) < r(y_j)\}}$. Substituting this into the inequality above, we get

$$\sum_{r \in \mathcal{S}} \sigma_r \cdot \sum_{j \neq i} \mathbf{1}_{\{r(y_i) < r(y_j)\}} > \sum_{r \in \mathcal{S}} \sigma_r \cdot \sum_{j \neq k} \mathbf{1}_{\{r(y_k) < r(y_j)\}}. \quad (17)$$

Recall that the Borda score is defined as $B(y) := \sum_{r \in \mathcal{S}} \sigma_r \cdot (M - r(y))$, we can rewrite the inner sums in the inequality as:

$$\sum_{j \neq i} \mathbf{1}_{\{r(y_i) < r(y_j)\}} = (M - 1) - (r(y_i) - 1) = M - r(y_i), \quad (18)$$

864 and similarly,

$$\sum_{j \neq k} \mathbf{1}_{\{r(y_k) < r(y_j)\}} = M - r(y_k). \quad (19)$$

868 Thus, the inequality becomes

$$\sum_{r \in \mathcal{S}} \sigma_r \cdot (M - r(y_i)) > \sum_{r \in \mathcal{S}} \sigma_r \cdot (M - r(y_k)), \quad (20)$$

872 which is equivalent to $B(y_i) > B(y_k)$.

873 For the converse, assume $B(y_i) > B(y_k)$. Following similar steps in reverse, this implies

$$\sum_{j \neq i} P^\sigma(y_i \succ y_j) > \sum_{j \neq k} P^\sigma(y_k \succ y_j), \quad (21)$$

878 which leads to

$$\sum_{j \neq i} \text{sigmoid}(r_i^* - r_j^*) > \sum_{j \neq k} \text{sigmoid}(r_k^* - r_j^*). \quad (22)$$

881 This inequality can only hold if $r_i^* > r_k^*$. Therefore, we have shown that $r_i^* > r_j^* \iff B(y_i) > B(y_j)$, completing the proof. \square

884 D FUNDAMENTAL AXIOMS: MONOTONICITY AND PARETO EFFICIENCY

887 In this section, we present the definition of two fundamental axioms in social choice theory: *monotonicity* and *Pareto efficiency*. For detailed discussions of these axioms, we refer readers to Brandt 888 (2017); Ge et al. (2024).

890 **Definition D.1** (Monotonicity). A PSCF Φ satisfies monotonicity if, for any alternative $y \in \mathcal{Y}$, 891 improving its ranking in a profile without changing other relative rankings cannot decrease its 892 probability in the resulting policy. Formally, if profile σ' is obtained from σ by improving the ranking 893 of y in some $r \in \mathcal{S}$ with $\sigma_r > 0$, then $\Phi(\sigma')(y) \geq \Phi(\sigma)(y)$.

894 **Definition D.2** (Pareto efficiency). A PSCF Φ satisfies *Pareto efficiency* if, whenever an alternative 895 y is ranked above y' in every ranking r with nonzero population share, the resulting policy assigns 896 at least as much probability to y as to y' . Formally, if $r(y) < r(y')$ for all $r \in \mathcal{S}$ with $\sigma_r > 0$, then 897 $\Phi(\sigma)(y) \geq \Phi(\sigma)(y')$.

899 E PROOF OF PROPOSITION 3.5

901 We first demonstrate that Φ^{MB} and Φ^{ML} violate α -PPA. Consider a preference profile σ with the 902 following characteristics: (i) The population share of each group is nearly identical, with G_1 having a 903 population share w_1^σ that is ϵ greater than the average, and G_2 having a population share w_2^σ that is ϵ 904 less than the average. (ii) Within each group G_k , there is indifference between any two alternatives 905 other than y_k . That is, $P_k^\sigma(y_i \succ y_j) = 1/2$ for all $i, j \neq k$. Given this profile, we will show that for 906 any $\epsilon > 0$, both RLHF and NLHF yield a deterministic policy that selects y_1 .

907 The population distribution and pairwise preference function satisfy

$$w^\sigma = \left(\frac{1}{M} + \epsilon, \frac{1}{M} - \epsilon, \frac{1}{M}, \frac{1}{M}, \dots, \frac{1}{M} \right) \text{ and } P_k^\sigma(y_i \succ y_j) = \frac{1}{2}, \quad \forall i, j \neq k. \quad (23)$$

911 Then, the aggregated pairwise preferences P^σ are computed as follows:

- 913 • $P^\sigma(y_1 \succ y_2) = \frac{1}{2} + \epsilon$
- 914 • $P^\sigma(y_1 \succ y) = \frac{1}{2} + \frac{\epsilon}{2}$ for any $y \neq y_1, y_2$
- 915 • $P^\sigma(y_2 \succ y) = \frac{1}{2} - \frac{\epsilon}{2}$ for any $y \neq y_1, y_2$
- 916 • $P^\sigma(y \succ y') = \frac{1}{2}$ for any $y, y' \neq y_1, y_2$

Under this profile, for any $\epsilon > 0$, both Φ^{MB} and Φ^{ML} result in a policy where $\pi(y_1) = 1$, and $\pi(y_i) = 0$ for any $i \neq 1$. This implies that $\pi(y_i)/w_i^\sigma = 0$ for any $i \neq 1$, which violates α -PPA for any $\alpha > 0$.

Next, we show that Φ^{ML} violates γ -PBM using the profile described earlier with $M = 3$. The aggregated preference function P^σ can be represented by the following matrix:

$$P^\sigma = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} + \epsilon & \frac{1+\epsilon}{2} \\ \frac{1}{2} - \epsilon & \frac{1}{2} & \frac{1-\epsilon}{2} \\ \frac{1-\epsilon}{2} & \frac{1+\epsilon}{2} & \frac{1}{2} \end{bmatrix}. \quad (24)$$

Now, suppose that group G_3 manipulates their sub-profile from $P_3^\sigma(y_1 \succ y_2) = \frac{1}{2}$ to $P_3^{\sigma'}(y_1 \succ y_2) = 0$. Then, the resulting manipulated aggregated preference function $P^{\sigma'}$ is calculated as:

$$P^{\sigma'} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} + \epsilon & \frac{1+\epsilon}{2} \\ \frac{2}{3} - \epsilon & \frac{1}{2} & \frac{1-\epsilon}{2} \\ \frac{1-\epsilon}{2} & \frac{1+\epsilon}{2} & \frac{1}{2} \end{bmatrix}. \quad (25)$$

Φ^{ML} yields a stochastic policy that depends on the value of ϵ . For example, if $\epsilon = 1/12$, the resulting policy is $\pi = [\frac{1}{4}, \frac{1}{4}, \frac{1}{2}]$. However, as ϵ approaches 0, the resulting policy converges to $[0, 0, 1]$. This shows that $\pi'(y_3) \rightarrow 1$ while $w_3^\sigma = 1/3$, thus demonstrating that there exists no $\gamma_1 > 0$ for which Φ^{ML} satisfies γ -PBM.

To show that Φ^{MB} violates γ -PBM, consider the case with $M = 3$ where the profile σ consists of the following three groups of evaluators:

$$\sigma = \{(y_1 \succ y_2 \succ y_3) \times 0.30, (y_2 \succ y_1 \succ y_3) \times 0.45, (y_3 \succ y_1 \succ y_2) \times 0.25\}, \quad (26)$$

where $(y_1 \succ y_2 \succ y_3)$ represents a ranking r and “ $\times 0.30$ ” indicates that $\sigma_r = 0.30$. Then, the Borda scores are calculated as $B = [1.3, 1.20, 0.5]$. Thus, $\Phi^{\text{MB}}(\sigma) = \pi$, where $\pi(y_1) = 1$. Next, suppose the second group strategically misreports their preference from $(y_2 \succ y_1 \succ y_3)$ to $(y_2 \succ y_3 \succ y_1)$. Then, the Borda scores are calculated as $B' = [0.85, 1.2, 0.95]$. The resulting policy is then $\pi'(y_2) = 1$, with the population share of the second group being $w_2^\sigma = 0.45$. This example demonstrates that there exists no $\gamma_1 > 0$ for which Φ^{MB} satisfies γ -PBM.

Next, we show that Φ^{RD} satisfies all four axioms. Φ^{RD} satisfies monotonicity because improving ranking of y cannot decrease the number of evaluators whose top choice is y . In addition, Φ^{RD} satisfies Pareto efficiency because if $r(y_j) < r(y_k)$ for all $r \in \mathcal{S}$ with $\sigma_r > 0$, then we have $w_k^\sigma = 0$ and $\Phi^{\text{RD}}(\sigma)(y_k) = 0$. Additionally, Φ^{RD} satisfies α -PPA with $\alpha(\sigma) = 1$ for all σ by its definition, and also satisfy γ -PBM with $(\gamma_1, \gamma_2) = (1, 0)$ because each group G_k cannot increase w_k^σ by manipulation.

F PROOF OF THE NON-IMPLEMENTABILITY OF Φ^{RD}

Suppose that Φ^{RD} can be implemented by a preference learning algorithm F^{RD} . Let $M = 3$, and consider two preference profiles, σ_1 and σ_2 , defined as follows:

$$\begin{aligned} \sigma_1 &= \{(y_1 \succ y_2 \succ y_3) \times 1/3, (y_2 \succ y_1 \succ y_3) \times 1/3, (y_3 \succ y_1 \succ y_2) \times 1/3\}, \\ \sigma_2 &= \{(y_1 \succ y_2 \succ y_3) \times 2/3, (y_3 \succ y_2 \succ y_1) \times 1/3\}. \end{aligned} \quad (27)$$

Both of these profiles induce the same aggregated preference function $P^\sigma = P^{\sigma_1} = P^{\sigma_2}$, where

$$P^\sigma = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{3}{3} \\ \frac{3}{3} & \frac{1}{3} & \frac{2}{2} \end{bmatrix}. \quad (28)$$

Therefore, the preference learning algorithm F^{RD} would produce the same policy for both σ_1 and σ_2 . However, according to the definition of Φ^{RD} , we have $\Phi^{\text{RD}}(\sigma_1) = [1/3, 1/3, 1/3]$ and $\Phi^{\text{RD}}(\sigma_2) = [2/3, 0, 1/3]$, which are different policies. This implies that F^{RD} does not implement Φ^{RD} , which contradicts our initial assumption. Therefore, Φ^{RD} is not implementable by a preference learning algorithm.

972 **G PROOF OF PROPOSITION 4.2**
973974 First, consider any feasible population share w given a preference function P . By Definition 4.1,
975 there exists a profile σ such that $w = w^\sigma$ and $P = P^\sigma$. Then, the group-specific preference functions
976 $(P_1^\sigma, \dots, P_M^\sigma)$ that constitute P^σ , satisfy the condition in equation 3, which implies that $w \in \mathcal{W}(P)$.
977978 Next, consider any $w \in \mathcal{W}(P)$. By the definition of $\mathcal{W}(P)$, there exist $(P_1, \dots, P_M) \in \mathcal{P}^M$ such
979 that $P = \sum_{k=1}^M w_k P_k$, where each P_k satisfies $P_k(y_k \succ y) = 1$ for all $y \neq y_k$. Since $P_k \in \mathcal{P}$,
980 there exists a profile σ_k that induces P_k , such that $P_k = P^{\sigma_k}$. Now, if we consider an aggregated
981 profile $\sigma := \sum_{k=1}^M w_k \sigma_k$ by combining these group profiles with the corresponding weights, then
982 the preference function of σ will be $P^\sigma = \sum_{k=1}^M w_k P^{\sigma_k} = \sum_{k=1}^M w_k P_k = P$ and also $w^\sigma = w$.
983 Therefore, w is a feasible population distribution given P .
984985 **H PROOF OF THEOREM 4.4**
986987 Consider any $w \in \mathcal{W}(P)$. Then, there exists $(P_1, \dots, P_M) \in \mathcal{P}^M$ such that $P = \sum_{k=1}^M w_k P_k$. Fix
988 an index $i \in [M]$. For any $y \in \mathcal{Y} \setminus \{y_i\}$, we have
989

990
$$P(y_i \succ y) = w_i P_i(y_i \succ y) + \sum_{k \neq i} w_k P_k(y_i \succ y) \geq w_i \quad (29)$$

991

992 since $P_i(y_i \succ y) = 1$. Taking the minimum over $y \in \mathcal{Y} \setminus \{y_i\}$ yields
993

994
$$\min_{y \in \mathcal{Y} \setminus \{y_i\}} P(y_i \succ y) \geq w_i, \quad (30)$$

995

996 which implies $w_i \leq u_i \forall i \in [M]$ and $w \in \overline{\mathcal{W}}(P)$. Therefore, $\mathcal{W}(P) \subseteq \overline{\mathcal{W}}(P)$.
997998 **I ADDITIONAL REMARKS ON THE TIGHTNESS OF THE OUTER
999 APPROXIMATION**
10001001 The gap between the true feasible set $\mathcal{W}(P)$ and its outer approximation $\overline{\mathcal{W}}(P)$ arises from our
1002 profile assumption, namely that each evaluator has a strict and complete ranking. To illustrate this
1003 point, we show that $\overline{\mathcal{W}}(P)$ provides a tight approximation (i.e., $\mathcal{W}(P) = \overline{\mathcal{W}}(P)$) under an extended
1004 profile setting. Consider an extended profile setting in which each group G_k is allowed to provide
1005 pairwise comparison data according to its own preference function P_k , subject only to the skew-
1006 symmetry constraint $P_k(y_i \succ y_j) + P_k(y_j \succ y_i) = 1$ for all $y_i, y_j \in \mathcal{Y}$, and the unanimity constraint
1007 $P_k(y_k \succ y) = 1$ for all $y \in \mathcal{Y}$. In this case, the set \mathcal{P} is defined as
1008

1009
$$\mathcal{P} := \{P \mid P(y \succ y') + P(y' \succ y) = 1 \forall y, y' \in \mathcal{Y}\}. \quad (31)$$

1010 We show that $\overline{\mathcal{W}}(P) \subseteq \mathcal{W}(P)$ also holds under this setting. Consider any $w \in \overline{\mathcal{W}}(P)$. By assumption,
1011 w satisfies $w_i \leq u_i = \min_{y \in \mathcal{Y} \setminus \{y_i\}} P(y_i \succ y)$ for all $i \in [M]$. Define each element of (P_1, \dots, P_M)
1012 as
1013

1014
$$P_k(y_i \succ y_j) = \frac{P(y_i \succ y_j) - w_i}{1 - w_i - w_j} \quad (32)$$

1015

1016 for any $i, j \neq k$, and let $P_k(y_k \succ y) = 1$, $P_k(y \succ y_k) = 0$ for all $y \in \mathcal{Y}$. Then $P_k(y_i \succ y_j) \in$
1017 $[0, 1]$ holds because $P(y_i \succ y_j) \in [w_i, 1 - w_j]$ by assumption. The skew-symmetry condition
1018 $P_k(y_i \succ y_j) + P_k(y_j \succ y_i) = 1$ is also satisfied. Thus, $P_k \in \mathcal{P}$ and P_k can be induced by some
1019 profile. Finally, the constraint $P = \sum_{k=1}^M w_k P_k$ also holds. Therefore, $w \in \mathcal{W}(P)$, implying
1020 $\overline{\mathcal{W}}(P) \subseteq \mathcal{W}(P)$, and hence $\mathcal{W}(P) = \overline{\mathcal{W}}(P)$.
10211022 **J CONNECTION OF THEOREM 4.4 AND TATLI ET AL. (2024)**
10231024 Tatli et al. (2024) studies the recovery of population preference distributions under a spatial model.
1025 In their framework, each alternative is represented by a feature vector in a Euclidean space, and each
1026 voter's preferences are determined by distances to these vectors (i.e., voters prefer alternatives that are

closer in the Euclidean norm). Theorem 4.4 can also be derived in this setting. Specifically, consider a sufficiently high-dimensional feature space partitioned into $M!$ regions by $\binom{M}{2}$ hyperplanes, where each hyperplane is the perpendicular bisector of the line segment connecting a pair of alternative vectors. Then, (Tatli et al., 2024, Proposition 2) shows that it is impossible to recover the full profile σ from aggregated pairwise comparison data P^σ . Moreover, by summing the inequality in (Tatli et al., 2024, Proposition 4) over the regions corresponding to voters who most prefer each alternative y_i , we obtain the bound $w_i \leq u_i$.

K IMPOSSIBILITY OF A UNIFORM GUARANTEE $\alpha(\sigma) > 2/M$

Proposition K.1. *No PSCF can be implemented by a preference–learning algorithm while guaranteeing α -PPA with a constant $\alpha(\sigma) > 2/M$ for all $\sigma \in \Delta(\mathcal{S})$.*

Proof. Consider any setting in which the pairwise comparison data are completely uninformative. Specifically, suppose that for every pair of alternatives y_i, y_j , the observed probability satisfies $P(y_i \succ y_j) = 0.5$. Under such maximally ambiguous data, no preference–learning algorithm can distinguish among alternatives, and any algorithm that aims to maximize the worst-case $\alpha(\sigma)$ must output the uniform distribution over the M alternatives.

However, the true distribution of evaluators’ top choices may in fact be highly non-uniform while remaining perfectly consistent with the uninformative pairwise data. For example, consider a profile σ in which $w^\sigma = [1/2, 1/(2M-2), 1/(2M-2), \dots, 1/(2M-2)]$, corresponding to a situation where y_1 is ranked first by half of the evaluators and ranked last by the other half. In this case, the corresponding proportionality guarantee is $\alpha(\sigma) = 2/M$. Therefore, achieving a uniform lower bound $\alpha(\sigma) > 2/M$ for all $\sigma \in \Delta(\mathcal{S})$ is impossible. \square

L PROOF OF THEOREM 4.6

We first prove monotonicity. Improving the ranking of y_i for some evaluator can only increase $P^\sigma(y_i \succ y)$ for any $y \neq y_i$, and decrease $P^\sigma(y \succ y_i)$. This implies that u_i cannot decrease, while u_j for $j \neq i$ cannot increase. Therefore, $\pi(y_i) = u_i / (\sum_{j=1}^M u_j)$ cannot decrease, establishing monotonicity.

Next, we prove Pareto efficiency. Suppose y_i is ranked above y_j in every input ranking, i.e., $r(y_i) < r(y_j)$ for all $r \in \mathcal{S}$ with $\sigma_r > 0$. Then, we have $P^\sigma(y_i \succ y_j) = \sum_{r \in \mathcal{S}} \sigma_r \cdot \mathbf{1}_{\{r(y_i) < r(y_j)\}} = 1$ and also $P^\sigma(y_j \succ y_i) = 0$. Thus, we get $u_j = \min_{y \in \mathcal{Y} \setminus \{y_i\}} P^\sigma(y_j \succ y) = 0$. Thus, the resulting policy satisfies $\Phi^*(\sigma)(y_j) = u_j / (\sum_{k=1}^M u_k) = 0$. Therefore, $\Phi^*(\sigma)(y_i) \geq \Phi^*(\sigma)(y_j)$, establishing that Φ^* satisfies Pareto efficiency.

M PROOF OF LEMMA 4.7 AND LEMMA 4.9

Lemma 4.7 follows directly from the fact that $w_i^\sigma \leq u_i$ for all $i \in [M]$, which gives

$$\frac{\pi(y_i)}{w_i^\sigma} = \frac{u_i}{w_i^\sigma \sum_{j=1}^M u_j} \geq \frac{1}{\sum_{j=1}^M u_j}. \quad (33)$$

Next, we show Lemma 4.9. Let $I \subseteq [M]$ be the set of indexes for δ -dominated alternatives, where $|I| = N_\delta^\sigma$. Then, for any $i \in I$, we have

$$u_i = \min_{j \in [M] \setminus \{i\}} P^\sigma(y_i \succ y_j) \leq P^\sigma(y_i \succ y') \leq 1 - \delta, \quad (34)$$

where y'_i denotes an alternative that δ -dominates y_i . Additionally, let $k \in \arg \max_{i \in [M]} w_i^\sigma$. Then, for any $i \neq k$, we have

$$u_i = \min_{j \in [M] \setminus \{i\}} P^\sigma(y_i \succ y_j) \leq P^\sigma(y_i \succ y_k) \leq 1 - w_k^\sigma \quad (35)$$

1080 Similarly, let $l \in \arg \max_{i \in [M], i \neq k} w_i^\sigma$, then we have $u_k \leq 1 - w_l^\sigma$. Combining these results,

$$1082 \sum_{i=1}^M u_i = u_k + \sum_{i \neq k, i \notin I} u_i + \sum_{i \in I} u_i \leq (1 - w_l^\sigma) + (N_\delta^\sigma - 1)(1 - w_k^\sigma) + (M - N_\delta^\sigma)(1 - \delta). \quad (36)$$

1085 In addition, since $u_i \geq w_i^\sigma$, we have $\sum_{i=1}^M u_i \geq \sum_{i=1}^M w_i^\sigma = 1$. Combining both inequalities and
1086 plugging $(w_k^\sigma, w_l^\sigma) = (w^{\sigma,1}, w^{\sigma,2})$ in, we get the result of Lemma 4.9 as follows:

$$1088 \left(\sum_{i=1}^M u_i \right)^{-1} \in \left[\frac{1}{(N_\delta^\sigma - 1)(1 - w^{\sigma,1}) + (1 - w^{\sigma,2}) + (M - N_\delta^\sigma)(1 - \delta)}, 1 \right]. \quad (37)$$

N PROOF OF THEOREM 4.11

1093 Let σ' be the profile manipulated by group G_k , and let $\pi' = \Phi^*(\sigma')$ be the resulting policy. G_k aims
1094 to maximize

$$1096 \pi'(y_k) = \frac{u'_k}{u'_k + \sum_{i \neq k} u'_i}, \quad (38)$$

1097 where u' represents the value of u after the manipulation. To maximize $\pi'(y_k)$, G_k will attempt to
1098 maximize u'_k and minimize $\sum_{i \neq k} u'_i$. Since increasing the ranking of y_k in their profile increases
1099 (or at least does not decrease) the value of u'_k without increasing the value of $\sum_{i \neq k} u'_i$, the optimal
1100 strategy for G_k is to truthfully report y_k as its top choice. In this strategy, we have $u'_k = u_k$ and the
1101 sum $\sum_{i \neq k} u'_i$ has the following lower bound:

$$1103 \sum_{i \neq k} u'_i \geq \sum_{i \neq k} w_i^\sigma = 1 - w_k^\sigma. \quad (39)$$

1105 Substituting this lower bound into equation 38, we obtain

$$1107 \pi'(y_k) \leq \frac{u_k}{u_k + 1 - w_k^\sigma} \leq \frac{1}{2}(w_k^\sigma + 1), \quad (40)$$

1109 where the final inequality holds if $(w_k^\sigma - u_k + 1)(w_k^\sigma - 1) \leq 0$, which follows from the fact that
1110 $w_k^\sigma, u_k \in [0, 1]$.

O WEAK STRATEGYPROOFNESS GUARANTEE

1114 In social choice theory, a mechanism is considered strategyproof if participants cannot benefit (i.e.,
1115 increase their utility) by misreporting their true preferences (Gibbard, 1973), regardless of what other
1116 participants report. In our preference learning framework, we assume each group G_k 's utility is
1117 the probability assigned to its top choice, represented by $\pi(y_k)$. A preference learning algorithm is
1118 strategyproof if no participant can improve its outcome by misreporting preferences. However, as
1119 noted by Buning et al. (2025), strict strategyproofness is typically too restrictive and is not satisfied
1120 by the conventional preference learning algorithms (with ex-post efficiency). Our method does not
1121 satisfy strict strategyproofness like other methods, but satisfies a weaker form that provides a bounded
1122 guarantee on the maximum potential gain from strategic misreporting in equilibrium.

1123 Let σ' denote the profile resulting from strategic misreporting by all groups, and let $\pi' = \Phi^*(\sigma')$
1124 be the resulting policy. Each group G_k aims to maximize $\pi'(y_k)$, which involves maximizing u'_k and
1125 minimizing $\sum_{i \neq k} u'_i$.

1126 Since improving the ranking of y_k in their reported preferences increases (or at worst, does not
1127 decrease) the value of u'_k without increasing $\sum_{i \neq k} u'_i$, the optimal strategy for G_k is to truthfully
1128 report y_k as their top choice. Hence, all groups truthfully report their top choice regardless of
1129 other groups' strategies, meaning $P'_k(y_k \succ y) = 1$ for all $y \neq y_k$, where P'_k denotes the reported
1130 preference function of G_k .

1131 In this equilibrium, following steps analogous to the proof of Theorem 4.11, we have:

$$1133 \pi'(y_k) \leq \frac{u'_k}{u'_k + 1 - w_k^\sigma} \leq \frac{1}{2}(w_k^\sigma + 1) \quad \forall k \in [M]. \quad (41)$$

1134 Note that $\gamma(w_k^\sigma)$ is not a tight bound. Further exploration into tighter bounds and detailed analysis of
 1135 each group's strategic behavior is left for future research.
 1136

1137 P PROOF OF PROPOSITION 4.13

1139 Suppose $M = 2$ and $P^\sigma(y_1 \succ y_2) \in (0.5, 1)$, so y_1 is the Condorcet winner. If a PSCF Φ satisfies
 1140 Condorcet consistency, it must return the deterministic policy $\pi(y_1) = 1$. However, this violates the
 1141 α -PPA axiom because $\pi(y_2) = 0$ while $w_2^\sigma > 0$, which implies that $\pi(y_2)/w_2^\sigma = 0$ cannot be lower
 1142 bounded by any $\alpha(\sigma) > 0$.
 1143

1144 Q PROOF OF PROPOSITION 4.14

1145 Suppose y_i is a Condorcet winner. Then $P^\sigma(y_i \succ y_j) > 0.5$ for all $j \neq i$, which implies that
 1146 $u_i > 0.5$. For any other $j \neq i$, we have $u_j \leq P^\sigma(y_j \succ y_i) < 0.5$. Therefore, y_i has the highest u_i ,
 1147 i.e., $i \in \arg \max_{j \in [M]} u_j$, and Φ^∞ returns $\pi(y_i) = 1$, satisfying Condorcet consistency.
 1148

1149 R FINITE BEHAVIOR OF Φ^β

1150 The following proposition quantifies how large the parameter β needs to be to ensure that a Condorcet
 1151 winner receives a sufficiently high probability under the softmax policy.
 1152

1153 **Proposition R.1** (Condorcet consistency at finite β). *Let y_i be a Condorcet winner with $u_i > 0.5$.
 1154 Then, the softmax policy satisfies $\pi(y_i) \geq \alpha_c$ if*

$$1155 \beta \geq \frac{1}{u_i - 0.5} \log \left(\frac{(M-1)\alpha_c}{2(1-\alpha_c)} \right). \quad (42)$$

1156 *Proof.* Since y_i is a Condorcet winner, we have $u_j \leq P^\sigma(y_j \succ y_i) = 1 - P^\sigma(y_i \succ y_j) < 0.5$ for
 1157 any $j \neq i$. From the given condition

$$1158 \beta \geq \frac{1}{u_i - 0.5} \log \left(\frac{(M-1)\alpha_c}{2(1-\alpha_c)} \right), \quad (43)$$

1159 we can establish the following lower bound:
 1160

$$1161 u_i \exp(\beta u_i) \geq \frac{\alpha_c}{1 - \alpha_c} (M-1)(0.5 \exp(0.5\beta)) \geq \frac{\alpha_c}{1 - \alpha_c} \sum_{j \neq i} u_j \exp(\beta u_j). \quad (44)$$

1162 Thus, the softmax policy satisfies
 1163

$$1164 \pi(y_i) = \frac{u_i \exp(\beta u_i)}{u_i \exp(\beta u_i) + \sum_{j \neq i} u_j \exp(\beta u_j)} \geq \alpha_c. \quad (45)$$

1165 \square

1166 In addition, it can be shown that the α -PPA guarantee deteriorates as $\beta \rightarrow \infty$, since the lower bound
 1167 in Lemma 4.7 becomes

$$1168 \frac{\pi(y_i)}{w_i^\sigma} \geq \left(\sum_{j=1}^M u_j \exp(\beta(u_j - u_i)) \right)^{-1}, \quad (46)$$

1169 which converges to zero as $\beta \rightarrow \infty$, unless $u_i = \max_{j \in [M]} u_j$.
 1170

1171 S CONNECTION TO PAIRWISE MAJORITY CONSISTENCY (PMC)

1172 We discuss the connection to pairwise majority consistency (PMC) (Ge et al., 2024), which imposes a
 1173 stronger consistency requirement, ensuring the entire policy ranking aligns with majority preferences.
 1174

1188
 1189 **Definition S.1** (Pairwise majority consistent ranking (PMC ranking)). A ranking r^σ is called a
 1190 *PMC ranking* of a profile σ if for all $y_i, y_j \in \mathcal{Y}$, a majority of evaluators prefer alternative y_i to
 1191 alternative y_j in σ if and only if y_i is ranked higher than y_j in r^σ . Formally, $P^\sigma(y_i \succ y_j) > 1/2$ if
 1192 and only if $r^\sigma(y_i) < r^\sigma(y_j)$.

1193 **Definition S.2** (Pairwise majority consistency (PMC)). A PSCF Φ satisfies PMC if, for any profile
 1194 $\sigma \in \Delta(\mathcal{S})$ that has a PMC ranking r^σ , $\Phi(\sigma)$ has the same ranking with r^σ , i.e. $\Phi(\sigma)(y_i) \geq \Phi(\sigma)(y_j)$
 1195 if $r^\sigma(y_i) < r^\sigma(y_j)$.

1196 It can be shown that any Φ^β with finite $\beta \geq 0$ violates PMC, and only the limiting PSCF Φ^β satisfies
 1197 PMC.

1198 **Proposition S.3.** Any Φ^β with finite $\beta \geq 0$ violates PMC. Φ^∞ satisfies PMC.

1200 *Proof.* First, we show that Φ^β violates PMC for any $\beta \geq 0$. It suffices to demonstrate that there
 1201 exists a profile σ with a PMC ranking r^σ for which $\Phi^\beta(\sigma)(y_i) < \Phi^\beta(\sigma)(y_j)$ while $r^\sigma(y_i) < r^\sigma(y_j)$.

1203 Consider the following profile σ with $M = 3$:

1205
$$\sigma = \{(y_1 \succ y_2 \succ y_3) \times 0.3, (y_2 \succ y_3 \succ y_1) \times 0.1, (y_3 \succ y_1 \succ y_2) \times 0.3, (y_3 \succ y_2 \succ y_1) \times 0.3\}, \quad (47)$$

1207 which yields the following preference function:

1208
$$P^\sigma = \begin{bmatrix} 0.5 & 0.6 & 0.3 \\ 0.4 & 0.5 & 0.4 \\ 0.7 & 0.6 & 0.5 \end{bmatrix}. \quad (48)$$

1211 Then, the PMC ranking satisfies $r^\sigma(y_3) < r^\sigma(y_1) < r^\sigma(y_2)$, as $P^\sigma(y_3 \succ y_1), P^\sigma(y_3 \succ y_2), P^\sigma(y_1 \succ y_2) > 0.5$. However, we have $u_1 = 0.3$ and $u_2 = 0.4$. Since $u_1 < u_2$, it follows that $\Phi^\beta(\sigma)(y_1) < \Phi^\beta(\sigma)(y_2)$ regardless of β , contradicting $r^\sigma(y_1) < r^\sigma(y_2)$. Therefore, Φ^β violates PMC regardless of β .

1216 Next, we show that Φ^∞ satisfies PMC. Consider a profile σ with its PMC ranking r^σ , and let $y^* \in \mathcal{Y}$
 1217 be the alternative ranked first in r^σ (i.e., $r^\sigma(y^*) = 1$). Then, y^* must be a Condorcet winner, as
 1218 $P^\sigma(y^* \succ y) > 1/2$ for all $y \neq y^*$. Thus, $\pi := \Phi^\infty(\sigma)$ is a deterministic policy with $\pi(y^*) = 1$.
 1219 Consequently, we have $\pi(y^*) > \pi(y)$ for all $y \neq y^*$ and trivially $\pi(y_i) = \pi(y_j) = 0$ for any
 1220 $y_i, y_j \neq y^*$, satisfying the condition for PMC. \square

1221 Φ^β approximately satisfies PMC as $\beta \rightarrow \infty$ if we allow some slack in the rankings (e.g., $\Phi(\sigma)(y_i) \geq$
 1222 $\Phi(\sigma)(y_j) - \epsilon$ for some small $\epsilon > 0$) in the definition of PMC. However, exploring this approximate
 1223 consistency is beyond the scope of this paper and is left for future research.

1226 T ADDITIONAL DETAILS OF EXPERIMENTS

1228 T.1 SYNTHETIC DATASET

1230 **Dataset generation.** For the synthetic dataset, we used 10 prompts and 10 responses for the color
 1231 preference alignment task, as shown in Table 3. To construct the ground-truth profile σ , we sampled
 1232 the true (center) rewards independently from the normal distribution $\mathcal{N}(0, 1)$ for each response. We
 1233 then added i.i.d. random noise from $\mathcal{N}(0, 1)$ to each true reward to generate 1,000 independent
 1234 rankings. Finally, we drew 10^4 pairwise comparison samples i.i.d. from the true preference function
 1235 P^σ to train each algorithm.

1236 **Evaluation methods.** We evaluate the fine-tuned policy using two metrics: (i) win rate against a
 1237 reference policy (the pretrained model), $\mathbb{E}_{(x, y_1, y_2) \sim (\rho, \pi, \pi_{\text{ref}})}[P^\sigma(y_1 \succ y_2 \mid x)]$, and (ii) the PPA level
 1238 $\alpha(\sigma)$. To estimate the fine-tuned policies over responses, we compute the logits of each response
 1239 and the softmax policy (with temperature 1). We then calculate the win rate and PPA level directly
 1240 from their definitions using the estimated policy for each prompt. The results are averaged over all
 1241 prompts.

1242 Table 3: Prompts and responses in synthetic dataset
1243

Prompt (x)	Response (y)
Which color do you find the most appealing?	Red
Which color best represents your personality?	Blue
When decorating your room, what color do you prefer?	Green
What is your favorite color?	Yellow
Which color do you like the most?	Purple
If you had to choose just one color, which would it be?	Orange
Among all colors, what's your top pick?	Pink
If you could only wear one color forever, what would you choose?	Brown
What color makes you feel happiest?	Black
Which color do you prefer most?	White

1255
1256 T.2 ALPACA-GPT4 DATASET
1257

1258 **Dataset generation.** We considered two groups of evaluators, defined across two categories:
1259 expertise and style. For the expertise category, evaluators were grouped into two levels: ‘elementary
1260 school student’ and ‘PhD student’. For the style category, evaluators were grouped into ‘friendly’
1261 and ‘unfriendly’. The true population distribution was set to $w^\sigma = [0.8, 0.2]$. For each of the 52k
1262 instruction prompts from the Alpaca-GPT4 dataset (Peng et al., 2023), group-specific responses were
1263 generated using GPT-4.1 with the prompts listed in Table 4. Then, the pairwise comparison samples
1264 are drawn i.i.d. from P^σ .

1265 Table 4: Prompts used for generating responses from each group
1266

Category	Prompt
Expertise	(1) Generate a response that can be easily understood by an elementary school student.
	(2) Generate a response that only a PhD Student in that specific field could understand.
Style	(1) Generate a response that is friendly, witty, funny, and humorous, like a close friend.
	(2) Generate a response that answers in an unfriendly manner.

1277 **Evaluation methods.** To estimate the fine-tuned policies over responses, we sample a response
1278 from the policy and use the annotation model (GPT-4.1) to classify its group. Table 5 shows the
1279 prompts used to classify the group of generated responses. Based on these classifications, we evaluate
1280 the policy’s win rate and the PPA level from their definitions.

1282 Table 5: Prompts used for classification
1283

Category	Prompt
Expertise	Does the expertise level of this response align more closely with the elementary level or the PhD student level? Please answer with only one of these exact options: ‘elementary’ or ‘PhD’.
Style	Is this response friendly or unfriendly? Please answer with only one of these exact options: ‘friendly’ or ‘unfriendly’.

1292 T.3 HYPERPARAMETER SETTING
1293

1294 The Qwen2.5-3B-Instruct model (Yang et al., 2024) was fine-tuned using each algorithm, where both
1295 the reference policy π_{ref} and the data sampling policy π_d were set to the same pretrained model.

1296 All algorithms were trained on the same offline dataset for the same number of iterations. NLHF
 1297 was not included in the comparison, as the algorithm does not support offline learning. Specific
 1298 training hyperparameters are provided in Table 6. Each training run utilized one H100 GPU, requiring
 1299 approximately 0.5–1 hour per epoch with about 20–40GB of memory usage using LoRA.
 1300

1301 Table 6: Training hyperparameters
 1302

1303 Hyperparameter	1304 Synthetic	1305 Alpaca-GPT4
1304 Training & Reference Model	1305 Qwen2.5-3B-Instruct	1306 Qwen2.5-3B-Instruct
1305 Learning Rate	1306 1e-4	1307 1e-5
1306 Batch Size	1307 8	1308 4
1307 Epochs	1308 3	1309 1
1308 Optimizer	1309 AdamW	1310 AdamW
1309 Gradient Clipping	1310 1.0	1311 1.0
1310 Learning Rate Scheduler	1311 Linear	1312 Linear
1311 Warmup Steps	1312 100	1313 100
1312 KL Coefficient	1313 0.1	1314 0.01
1313 LoRA Rank	1314 32	1315 32
1314 LoRA α	1315 32	1316 32

1315
 1316

U SCALABLE OFFLINE ALGORITHM WITH FUNCTION APPROXIMATION

 13171318

U.1 OFFLINE PAIRWISE COMPARISON DATASET

 1319

1320 In practical applications of preference learning, the preference function often depends on additional
 1321 context or state, denoted by $x \in \mathcal{X}$. For instance, in LLMs, x represents the input prompt or conversational
 1322 history that provides the specific context for generating a preferred response. Accordingly,
 1323 we define the context-dependent preference function as $P(\cdot \succ \cdot \mid \cdot) : \mathcal{Y}^2 \times \mathcal{X} \rightarrow [0, 1]$, which is
 1324 unknown and must be estimated from empirical data. We consider an offline dataset of pairwise
 1325 comparisons $\mathcal{D} = \{(x_i, y_i^w, y_i^l)\}_{i=1}^N$, where y_i^w is preferred over y_i^l under context x_i . Each query is
 1326 assumed to be drawn i.i.d. from a joint distribution of $\rho(x)$ and $\pi_d(y \mid x)$, and labeled according to
 1327 the preference function P . Our goal is to use this offline dataset to learn a policy $\pi : \mathcal{X} \mapsto \Delta(\mathcal{Y})$
 1328 following the framework introduced in the previous sections.
 1329

1330

U.2 TWO-PHASE OFFLINE PREFERENCE LEARNING ALGORITHM

 1331

We approximate a softmax policy proposed in Section 4.3:

$$\pi(y \mid x) := \frac{u(y \mid x) \exp(\beta u(y \mid x))}{\sum_{y \in \mathcal{Y}} u(y \mid x) \exp(\beta u(y \mid x))}, \quad \text{where } u(y \mid x) := \min_{z \in \mathcal{Y}} P(y \succ z \mid x). \quad (49)$$

1335 Specifically, we use a two-phase algorithm that first estimates u and then estimates π based on u .
 1336

Phase 1: Estimating u . To estimate u , we first train the selector model μ using the following loss
 1337 function, the offline dataset \mathcal{D} , and the parameterized function class \mathcal{F}_μ :

$$\hat{\mu} \in \arg \min_{\mu \in \mathcal{F}_\mu} \frac{1}{N} \sum_{i=1}^N \frac{\mu(y_i^l \mid x_i, y_i^w)}{\pi_d(y_i^l \mid x_i)}. \quad (50)$$

1342 Then, the estimated \hat{u} can be obtained from $\hat{u}(y \mid x) = \sum_{z \in \mathcal{Y}} \hat{P}(y \succ z \mid x) \hat{\mu}(z \mid x, y)$, where \hat{P}
 1343 denotes the empirical estimate of the preference function. The derivation of the loss function and the
 1344 relationship between μ and u are provided in Appendix V.
 1345

Phase 2: Estimating π . Let $\hat{\pi}_\beta$ be the normalized softmax policy constructed with \hat{u} following
 1346 equation 49. In the second phase, the policy model is trained by minimizing the distance to $\hat{\pi}_\beta$
 1347 over a function class \mathcal{F}_π :

$$\hat{\pi} \in \arg \min_{\pi \in \mathcal{F}_\pi} \mathbb{E}_{x \sim \rho} \left[L^\pi(\pi(\cdot \mid x), \hat{\pi}_\beta(\cdot \mid x)) \right]. \quad (51)$$

1350 Here, L^π denotes a divergence or distance metric between two policies. In our experiments, we
 1351 employ the KL divergence for L^π . Specifically, substituting the KL divergence into L^π from
 1352 equation 51, the loss function becomes
 1353

$$\begin{aligned} 1354 \mathbb{E}_{x \sim \rho} & \left[D_{\text{KL}} \left(\pi(\cdot | x) \middle\| \sum_{z \in \mathcal{Y}} \hat{P}(z | x) \hat{\mu}(z | x, \cdot) \right) \right] \\ 1355 & = \mathbb{E}_{(x, y) \sim (\rho, \pi_d)} \left[\frac{\pi(y | x)}{\pi_d(y | x)} \log \frac{\pi(y | x)}{\sum_{z \in \mathcal{Y}} \hat{P}(y | z | x) \hat{\mu}(z | x, y)} \right]. \end{aligned} \quad (52)$$

1356 Using the offline dataset and function approximation, we obtain
 1357

$$\begin{aligned} 1358 \hat{\pi} & \in \arg \min_{\pi \in \mathcal{F}_\pi} \mathbb{E}_{(x, y^w, y^l) \sim D} \left[\frac{\pi(y^w | x)}{\pi_d(y^w | x)} \log \frac{\pi(y^w | x)}{(\frac{1}{2} + \frac{1}{2} \hat{\mu}(y^w | x, y^l)) \exp(\frac{\beta}{2} + \frac{\beta}{2} \hat{\mu}(y^w | x, y^l))} \right. \\ 1359 & \quad \left. + \frac{\pi(y^l | x)}{\pi_d(y^l | x)} \log \frac{\pi(y^l | x)}{(\frac{1}{2} - \frac{1}{2} \hat{\mu}(y^l | x, y^w)) \exp(\frac{\beta}{2} - \frac{\beta}{2} \hat{\mu}(y^w | x, y^l))} \right]. \end{aligned} \quad (53)$$

1360 1361 U.3 ADDITIONAL TECHNIQUES FOR LLM FINE-TUNING

1362 **Regularization via reference policy.** Fine-tuning large language models (LLMs) requires main-
 1363 taining alignment with a reference policy, typically the pretrained model. To prevent excessive drift,
 1364 we incorporate KL-divergence regularization terms into the training objectives for both the selector
 1365 model μ and the policy model π . Specifically, we add the following regularization terms to the loss
 1366 functions in Phase 1 and Phase 2:

$$\beta_\mu \mathbb{E}_{(x, y) \sim (\rho, \pi_d)} \left[D_{\text{KL}} \left(\mu(\cdot | x, y) \middle\| \pi_{\text{ref}}(\cdot | x, y) \right) \right], \quad \beta_\pi \mathbb{E}_{x \sim \rho} \left[D_{\text{KL}} \left(\pi(\cdot | x) \middle\| \pi_{\text{ref}}(\cdot | x) \right) \right] \quad (54)$$

1367 **Training with single model.** To reduce computational cost, we propose to train both μ and π using
 1368 a single model. This is enabled by encoding structural differences through specialized input formats.
 1369 Specifically, $\pi(\cdot | x)$ selects preferred responses given a prompt, while $\mu(\cdot | x, y)$ selects responses
 1370 given a prompt and a candidate response. By distinguishing these cases with separator tokens, we
 1371 achieve performance comparable to training separate models, while improving memory usage and
 1372 training efficiency.

1373 V DERIVATION OF THE LOSS FUNCTION IN PHASE 1

1374 **Step 1: LP reformulation.** Recall the definition $u(y | x) := \min_{z \in \mathcal{Y} \setminus \{y\}} P(y \succ z | x)$. Each
 1375 $u(y | x)$ can be rewritten as

$$1376 u(y | x) = \sum_{z \in \mathcal{Y}} P(y \succ z | x) \mu^*(z | x, y), \quad (55)$$

1377 where a *selector distribution* $\mu^*(\cdot | x, y) \in \Delta(\mathcal{Y})$ places all its mass on the minimizer of $P(y \succ$
 1378 $\cdot | x)$. Such μ^* and the corresponding pointwise minimum can be obtained via the following linear
 1379 programming (LP):

$$1380 u(y | x) = \min_{\mu(\cdot | x, y) \in \Delta(\mathcal{Y})} \sum_{z \in \mathcal{Y}} P(y \succ z | x) \mu(z | x, y). \quad (56)$$

1381 **Step 2: Aggregation of pointwise LPs.** Assume the data-generating distribution $\rho(\cdot)$ and $\pi_d(\cdot | x)$
 1382 have full support. Multiplying and dividing equation 56 by $\pi_d(z | x)$ and then taking the expectation
 1383 over all $z \in \mathcal{Y}$ gives

$$1384 u(y | x) = \min_{\mu(\cdot | x, y) \in \Delta(\mathcal{Y})} \mathbb{E}_{z \sim \pi_d(\cdot | x)} \left[\frac{P(y \succ z | x) \mu(z | x, y)}{\pi_d(z | x)} \right]. \quad (57)$$

1404
 1405 Next, we aggregate these pointwise LPs by multiplying each pointwise objective by $\rho(x)\pi_d(y | x)$
 1406 and summing over all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. We also add the symmetrical term with swapped y and z ,
 1407 which does not change the optimal solution:

$$1408 \mu^* \in \arg \min_{\mu: \mathcal{X} \times \mathcal{Y} \mapsto \Delta(\mathcal{Y})} \mathbb{E}_{(x, y, z) \sim (\rho, \pi_d, \pi_d)} \left[\frac{P(y \succ z | x) \mu(z | x, y)}{\pi_d(z | x)} + \frac{P(z \succ y | x) \mu(y | x, z)}{\pi_d(y | x)} \right]. \quad (58)$$

1409
 1410 **Step 3: Empirical counterpart.** Given an offline preference dataset \mathcal{D} , we approximate the expectation
 1411 in equation 58 using its empirical counterpart and restrict the function class to a parameterized
 1412 family \mathcal{F}_μ :

$$1413 \hat{\mu} \in \arg \min_{\mu \in \mathcal{F}_\mu} \frac{1}{N} \sum_{i=1}^N \frac{\mu(y_i^l | x_i, y_i^w)}{\pi_d(y_i^l | x_i)}. \quad (59)$$

1414 Given the estimate $\hat{\mu}$, we can estimate \hat{u} using equation 56 with the estimated preference function \hat{P} :

$$1415 \hat{P}(y \succ z | x) := \begin{cases} \frac{N(x, y, z)}{N(x, y, z) + N(x, z, y)} & \text{if } N(x, y, z) + N(x, z, y) > 0, \\ 1/2, & \text{otherwise,} \end{cases} \quad (60)$$

1416 where $N(x, y, z) := |\{i \in [N] \mid (x_i, y_i^w, y_i^l) = (x, y, z)\}|$.

1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457