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ABSTRACT

Conventional preference learning methods often prioritize opinions held more
widely when aggregating preferences from multiple evaluators. This may result in
policies that are biased in favor of some types of opinions or groups and susceptible
to strategic manipulation. To address this issue, we develop a novel preference
learning framework capable of aligning aggregate opinions and policies propor-
tionally with the true population distribution of evaluator preferences. Grounded in
social choice theory, our approach infers the feasible set of evaluator population
distributions directly from pairwise comparison data. Using these estimates, the
algorithm constructs a policy that satisfies foundational axioms from social choice
theory, namely monotonicity and Pareto efficiency, as well as our newly-introduced
axioms of population-proportional alignment and population-bounded manipulabil-
ity. Moreover, we propose a soft-max relaxation method that smoothly trade-offs
population-proportional alignment with the selection of the Condorcet winner
(which beats all other options in pairwise comparisons). Finally, we validate the
effectiveness and scalability of our approach through experiments on both tabular
recommendation tasks and large language model alignment.

1 INTRODUCTION

Aligning artificial intelligence (AI) systems with complex human preferences is a growing priority in
fields such as robotics (Kupcsik et al.,[2017; Biyik et al.| 2020), recommendation systems (Xue et al.
2023)), and large language models (LLMs) (Ziegler et al.|[2019; [Stiennon et al., [2020; [Ouyang et al.,
2022). A key challenge in this endeavor is how to infer and represent such preferences accurately,
particularly when they are only available through incomplete signals like pairwise comparisons.
This has prompted reinforcement learning from human feedback (RLHF), which has become a
widely used framework for preference learning (Ouyang et al., |2022; |(Christiano et al.,[2017). RLHF
streamlines the alignment process by first learning a reward model that assigns scalar scores to
different alternatives, typically trained using maximum likelihood estimation under the Bradley—Terry
(BT) model. In the second stage, a policy is optimized through reinforcement learning to maximize
the expected rewards, guiding the system toward behaviors aligned with human preferences.

Despite its practical success and simplicity, the standard RLHF framework rests on a critical assump-
tion that complex human preferences can be captured by a single scalar reward. Recent research
highlights that this assumption often breaks down, especially when human feedback reflects incon-
sistent or conflicting judgments across evaluators (Chakraborty et al.| [2024). In particular, RLHF
struggles in scenarios involving intransitive or cyclic preferences, where no clear ranking among
alternatives can be established, leading to failures in accurately modeling the underlying prefer-
ences (Munos et al., |2023; Swamy et al., [2024). To address these limitations, a game-theoretic
framework called Nash learning from human feedback (NLHF) has been introduced (Munos et al.,
2023; Swamy et al.|[2024; |Ye et al.| 2024; Maura-Rivero et al., [2025)). NLHF reframes preference
learning as a two-player constant-sum game and identifies equilibrium policies that no competing
policy can outperform, regardless of the complexity of the underlying preferences.

Nevertheless, both RLHF and NLHF frameworks remain limited in their ability to address another
critical issue: the proportional alignment of evaluator preferences. When preferences are aggregated
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across multiple evaluator groups with distinct viewpoints, both RLHF and NLHF tend to yield
policies that do not adequately reflect the full distribution of the evaluator population (Chakraborty
et al.}2024). To address these challenges, recent research has turned to social choice theory-oriented
approaches, such as maximizing the minimum satisfaction across evaluator groups (Chakraborty
et al.,|2024; |Ramesh et al.||2024) and optimizing social welfare functions (Zhong et al., 2024} |Kim
et al.,[2025). Another line of emerging research, pluralistic alignment (Sorensen et al.| 2024), seeks
to reflect diverse perspectives in Al systems through approaches such as mixture-based models (Chen
et al., 2024), belief-conditioned models (Yao et al., 2024), and steerable models (Adams et al., [2025]),
with a particular focus on LLMs. However, these methods generally assume explicit knowledge
or clear labels of evaluator groups, which limits their practical applicability since group identities
are often implicit or unobservable in real-world. Motivated by this limitation, our research aims to
achieve proportional alignment without requiring additional information about the evaluator profile.

Our approach builds upon recent works addressing diverse preference aggregation through an ax-
iomatic approach from social choice theory (Mishra, 2023} [Siththaranjan et al.} 2023; Dai & Fleisig,
2024 |Conitzer et al.| 2024} |Ge et al., 2024} [Maura-Rivero et al., 2025} |Shi et al.| 2025} [X1ao et al.|
2025)). Specifically, we propose a novel preference learning algorithm that satisfies two foundational
axioms, monotonicity (ensuring that improving an alternative’s ranking cannot decrease its probabil-
ity) and Pareto efficiency (ensuring that if an alternative is preferred by all, it is favored by the policy),
as well as two new axioms we introduce: population-proportional alignment (PPA) and population-
bounded manipulability (PBM). The first new axiom, PPA, requires the policy to be at least weakly
proportional to evaluator population shares, addressing RLHF and NLHF’s insufficient representation
of the population distribution of preferences. The second axiom, PBM, bounds the incentive for
manipulation as an affine function of the true population share, thereby guaranteeing robustness.
Recent studies have highlighted that conventional preference learning methods are susceptible to
strategic misreporting (Buening et al., 2025). Unlike existing approaches that incorporate explicit
mechanism design to ensure strict strategyproofness (Park et al.| 2024} Soumalias et al.,2024; |Sun
et al., [2024} [Hao & Duan, [2025} [Buening et al.| 2025), our method inherently limits manipulative
advantage by constraining policy selection based on estimated feasible population distributions.
Further details on related work are provided in Appendix [B]

1.1 OUR CONTRIBUTION

The first key contribution of this work is demonstrating that the set of feasible population distributions
of evaluators can be inferred directly from pairwise comparison data. Leveraging this insight, we
develop a novel preference learning framework designed to align policies proportionally with the
underlying population distribution. To establish a rigorous theoretical basis, we adopt an axiomatic
approach, proving that our framework satisfies two fundamental axioms, monotonicity and Pareto
efficiency, and two newly introduced axioms, PPA and PBM. In addition, we propose a novel softmax
relaxation method to control the trade-off between proportional alignment and the selection of
the Condorcet winner. For practical deployment, we present a scalable algorithm with function
approximation, allowing our framework to scale to high-dimensional settings such as LLMs. Finally,
the proposed framework is validated through empirical evaluations in both tabular and function
approximation settings.

Organization of the paper. In Section 2] we formalize the setting of preference learning and
probabilistic social choice, and establish connections between them. In Section [3] motivated by a
simple negative example, we introduce two desirable axioms alongside two fundamental axioms.
In Section A we propose a novel preference learning algorithm that satisfies these axioms and
provide a theoretical analysis. Finally, Section 5] presents empirical evaluations that demonstrate the
effectiveness and scalability of our method. For ease of reference, all mathematical notation used in
the paper is summarized in Appendix

2 PRELIMINARIES

2.1 PROBABILISTIC SOCIAL CHOICE FUNCTION AND PREFERENCE LEARNING

We begin by reviewing key concepts from social choice theory and preference learning to establish
a foundation for our subsequent analysis. Consider a set of M alternatives, denoted by )Y :=
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Figure 1: Illustration of the relationships between the profile, preference function, and policy.

{y1,y2,...,ym}, where each y € ) may represent a response generated by a language model or
an action in a decision-making task. We assume each evaluator has a strict and complete ranking
over the alternatives, and let S denote the set of all possible rankings (i.e., permutations of ))). Each
ranking is represented by r € S, where r(y;) = k indicates that alternative y; is ranked k-th under 7.
A profile o € A(S) is a probability distribution over the set of all rankings, where o, represents the
proportion of the population that adheres to ranking r.

A probabilistic social choice function (PSCF) is a mapping ® : A(S) — A()) that assigns to each
profile o a policy 7, which is a probability distribution over the alternatives in ). In practice, however,
acquiring a complete profile o is often infeasible due to the high cost of collecting full rankings over
a large set of alternatives.

To address this limitation, pairwise preference learning algorithms have been developed, allowing
alignment based solely on pairwise comparison data. We define a preference function P : ? — [0, 1],
where P(y > y’) denotes the probability that alternative y is preferred over y’. Given a profile o, let
P? be the preference function induced by the population distribution o over rankings, defined as

Pa(y - yl) = ZUT‘ : ]—{r(y)<r(y/)}> (D
resS
where 1,y <,(y) is an indicator function equal to 1 if ranking r places alternative y in a better (i.e.,
lower) position than 3/, and 0 otherwise. This function captures the expected pairwise preference
between y and ' under the distribution o.

We define P as the set of all preference functions induced by some profile o € A(S):
P:={P|3Jo e A(S)s.t. P=P7}. )

Any P € P satisfies consistency conditions known as the Block-Marschak inequalities (Block &
Marschakl [1959), including skew-symmetry: P(y = ¢') + P(y' = y) = 1 Yy, 3’ € V. A preference
learning algorithm is a mapping F' : P — A()) that assigns a policy to each preference function.
Throughout this paper, we say that a preference learning algorithm F' implements a PSCF & if,
for every profile o € A(S), it holds that F/(P?) = ®(o). The relationships between the profile,
preference function, and policy are illustrated in Figure

2.2 TWO STANDARD PREFERENCE LEARNING ALGORITHMS

Next, we introduce two prominent preference learning algorithms and discuss their connections to
established concepts from probabilistic social choice theory.

Reinforcement learning from human feedback (RLHF). The Bradley—Terry (BT) model, widely
used in preference modeling, assigns each alternative y; a reward r; with preference probabilities
P(y; > y;) = exp(r;)/(exp(r;) + exp(r;)). Standard RLHF estimates these rewards by likeli-
hood maximization and then trains a policy to maximize expected rewards. Recent work (Siththa+
ranjan et al.l 2023)) shows that this procedure is equivalent to the maximal Borda rule from so-
cial choice theory, which deterministically chooses the alternative with the highest Borda score
B(y) :=>_,cs0r(M —1(y)). As proved in Appendix (C} the ranking from BT-optimized rewards
coincides with Borda rankings, so RLHF without regularization (denoted by F*) implements the
maximal Borda rule (denoted by ®MPB). Direct preference optimization (DPO) (Rafailov et al., [2023)
generalizes this by adding Kullback—Leibler (KL) regularization relative to a reference policy.
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Nash learning from human feedback (NLHF). As highlighted in recent studies (Munos et al.,
2023 [Swamy et al.,[2024; [Maura-Rivero et al.,[2025), RLHF has limitations in scenarios involving
intransitive or cyclic preferences. An alternative y* is called a Condorcet winner if it is preferred by
a majority over every other alternative, formally stated as P(y* > y) > 0.5 for all y # y*. When
aggregating preferences across multiple evaluators, scenarios without a Condorcet winner can arise,
which is called the Condorcet paradox. In such cases, selecting the alternative with the highest Borda
score fails to adequately represent collective preferences, as a deterministic policy cannot capture the
lack of consensus or nuanced preferences. To address intransitive preferences, the game-theoretic
approach, known as Nash learning from human feedback (NLHF) (Munos et al., 2023; Swamy et al.,
2024; [Ye et al.|, [2024; Maura-Rivero et al.| [2025)), has been adopted to model preference learning
as a two-player constant-sum game max, c A (y) Milx, e A(y) E(yy ya)~(r1,m0) [P (W1 > y2)], where
the equilibrium policy 7* cannot be uniformly outperformed. This algorithm, denoted by FN%,
implements the well-known PSCF maximal lotteries (ML) (Fishburn, 1984), denoted by ML,

3 AXIOMATIC FRAMEWORK FOR POPULATION-PROPORTIONAL ALIGNMENT

3.1 MOTIVATING EXAMPLE WITH BINARY ALTERNATIVES

Despite their practical utility, neither RLHF nor NLHF guarantees alignment proportional to the
evaluator’s preferences. To illustrate this point, we present a simple scenario involving binary
alternatives. Consider two alternatives, ) = {y1,y2}, and a profile o consisting of two distinct
groups of evaluators: group G prefers alternative y; over ys, while group G prefers y» over y;.
Let w{ and wg denote the population shares of groups GG; and G, respectively. Suppose the two
alternatives are nearly tied, with (w],wg) = (1/2+¢€,1/2 — €) for an arbitrarily small positive
scalar e. Then, the corresponding preference function is given by P?(y; = y2) = 1/2 + € and
P?(ya = y1) = 1/2 — €. Despite this minimal margin ¢, both algorithms FRL(P?) and FN:(P)
yield a deterministic policy that select the alternative with slightly greater support, namely y;, because
such subtle differences in preferences (or rewards) are lost during the policy optimization.

This binary example highlights two potential limitations of RLHF and NLHF frameworks. First,
selecting policies that focus entirely on a single alternative may not accurately represent preferences
across evaluators, raising concerns about bias. Second, these methods have high sensitivity to small
perturbations in preference function. Specifically, a slight shift in € from negative to positive abruptly
flips the policy outcome (7(y1 ), 7(y2)) from (0, 1) to (1, 0), making such approaches vulnerable to
small perturbations. These limitations underscore the need for a novel approach that reflects the ratio
of (w{,wg) in the resulting policy.

3.2 PROPOSED AXIOMS FOR POPULATION-PROPORTIONAL ALIGNMENT AND ROBUSTNESS

Social choice theory studies the aggregation of individual preferences through an axiomatic approach,
which specifies desirable properties (axioms) and characterizes aggregation rules that satisfy them. In
particular, two fundamental axioms, monotonicity and Pareto efficiency, are presented in Appendix D}
Following this approach, we introduce the axioms that a PSCF @ is desired to satisfy and propose a
preference learning algorithm F' that implements such a PSCF.

Proposed axioms. Motivated by the earlier example, we next introduce a new axiom designed
to ensure alignment with population distribution of preferences. Let G, := {r € S | r(yx) = 1}
denote the set of rankings in which alternative yy, is ranked first. The population share of group Gy, is
denoted by wy := >, o, For notational convenience, we define o), € A(S) as the normalized
sub-profile restricted to rankings in Gy, where oy, = o, /wy{ for all r € Gy, and oy, = 0 for all
r ¢ Gj. Let P denote the group-specific preference function, generated from o, using the mapping
defined in equation By construction, P{ (yx > y) = 1 for all y # yy, since this group unanimously
prefers y; over all other alternatives. The overall preference function is then a weighted aggregation

of the group-specific preferences: P = S0 wIPY.
Under this definition, our first axiom ensures that the policy reflects each group’s population share.

Note that our proportionality notion focuses solely on the selection probability of each group’s top
choice and does not incorporate lower-ranked preferences.
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Table 1: Overview of standard PSCFs and axioms

P F Monotonicity  Pareto Efficiency PPA PBM
Maximal Borda (MB) v (RLHF) v v X X
Maximal lotteries (ML) v' (NLHF) X v X X
Random dictatorship (RD) X v v v v
Proposed framework v v v v v

Definition 3.1 (a-Population-proportional alignment (a-PPA)). A PSCF & satisfies a-population-
proportional alignment if (yx)/w] > a(o) for all o € A(S) and y;, € ), where 7 = ®(0) and
a: A(S) — (0,1].

The function «(o) quantifies the strength of alignment: a higher value of « implies stronger alignment
with w?, with a(o) = 1 indicating perfect proportional alignment. Next, we examine the robustness
of ® against manipulation through the following axiom.

Definition 3.2 (Single-group manipulated profile). Given a profile o and a group index k € [M], a
profile oy, is called a single-group manipulated profile of o if o}, can be obtained by modifying only
the ranking distribution of the sub-profile 0. Formally, o7, is a single-group manipulated profile of o
if there exists a profile o’ such that o), = 0 + w{ (0’ — oy,).

Definition 3.3 (v-Population-bounded manipulability (v-PBM)). A PSCF & satisfies y-population-
bounded manipulability if, for any profile o and its single-group manipulated profile o},, we have
®(07,) () < 11wy + 72, where v = (y1,72), 71 > O, and 71 + 72 = 1.

The v-PBM axiom ensures that the maximum influence a single group can exert through manipulation
is bounded above by an affine function of its population share. Specifically, a group can only achieve
a deterministic policy selection for its preferred alternative (i.e., ®(o7,)(yx) = 1) only if it constitutes
the entire evaluator population (i.e., w, = 1). Note that a larger v, provides a stronger robustness
guarantee. Particularly, v; = 1 implies that the manipulated policy value is limited exactly to the
group’s true population share. We also note that the focus of the v-PBM axiom differs from that of
classical strategyproofness: it does not constrain an individual participant’s incentive to misreport,
but instead limits the extent to which any group can become over-represented.

3.3 LIMITATIONS OF STANDARD PSCFS: AXIOM VIOLATIONS AND NON-IMPLEMENTABILITY

We next show that the standard PSCFs either fail to satisfy the proposed axioms or are not imple-
mentable by a preference learning algorithm. Consider a PSCF that aligns the policy exactly with
each group’s population distribution, commonly referred to as a random dictatorship (Brandt, 2017).

Definition 3.4 (Random dictatorship). A PSCF ®RP is called a random dictatorship if ®RP (o) = w?
forall o € A(S).

By definition, ®*P satisfies both proposed axioms in their strongest forms: a-PPA with a(c) = 1
for all o € A(S), and v-PBM with v = (1, 0). The following proposition establishes that ®* and
P®ML yiolate even the weakest forms of these axioms, whereas P satisfies all four axioms.

Proposition 3.5. ®MB and ®ME violate the o-PPA axiom for any o and the v-PBM axiom for any .
ORD satisfies all four axioms.

The proof is provided in Appendix [E} Unfortunately, ®RP is not implementable by any pairwise
preference learning algorithm, since distinct profiles o; and o2 may induce identical preference
functions P?' = P72 but different population distributions w?* # w2 (see Appendix [F| for an
example). Because w? cannot be recovered solely from P?, no mapping from preference functions to
policies can implement (DRD[H Our goal, therefore, is to construct a preference learning algorithm F'
that implements a PSCF @ satisfying all four axioms. Table [[|summarizes the standard PSCFs, their
implementability, and satisfaction of the four axioms; see Brandl et al.[(2022)) for additional details.

'In the literature, the class of implementable PSCFs is often referred to as the C2 class (Fishburn, |1977)
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4  ALGORITHMIC FRAMEWORK AND THEORETICAL GUARANTEES

4.1 POPULATION DISTRIBUTION RECOVERY FROM PAIRWISE PREFERENCES

In this section, we introduce a preference algorithm F', which implements a PSCF satisfying all four
axioms presented in the previous section. The framework first estimates the feasible set of underlying
population distributions w from given pairwise preferences P, and subsequently constructs a policy 7
closely aligned with the inferred feasible set. We begin with the definition of a feasible population
distribution and the characterization of the set of all feasible population distributions.

Definition 4.1. A population distribution w is considered feasible given P, if there exists a profile
o € A(S) such that w = w” and P = P7.

Proposition 4.2. The set of all feasible population distributions given P can be expressed as

M
W(P) = {w e AY) ‘ 3(Py,....Pa) €PM s P =3 wPy,

Pilyi = y) = 1y € Y\ {u:}, Vi € [M]}.
3)

See Appendix[G]for the proof. In words, a population distribution w is feasible if and only if there
exist group-specific preference functions (Py,...,Py/) such that P is their weighted aggregation,
and each P; reflects a group of evaluators who unanimously prefer y; over all other alternatives.

The exact characterization of the set YW(P) is challenging due to the constraints imposed by the set P.
We therefore propose a tractable polyhedral outer approximation of the set WW(P), with the number
of constraints growing only linearly with the dimension M.

Definition 4.3. For each i € [M], define u; := miny,ey\ g,,3 P(yi = ).
Theorem 4.4. The set of feasible population distributions satisfies

W(P) CW(P) = {we AW) ’ wi < u; Vi€ M} o)

The proof is given in Appendrxl H| To provide intuition, note that u; = 1 — max,,, P(y > yz) =
1 —P(y" = y;), where y’ is the alternative most preferred over y;. Thus, u; represents the remaining
population share after excluding those who prefer 4’ to y;. Thus, w; cannot exceed this value, as the
w,; proportion of evaluators would always report y; as their preferred option. The tightness of the
outer approxrmatlon is further discussed in Appendix l Tl and the relation between Theorem [4.4] - and
Tatli et al|(2024) is examined in Appendix [J] Since w? is not identifiable from pairwise comparison
data, perfect proportional alignment (i.e., (o) = 1 for all o € A(S)) is fundamentally unattainable.
Moreover, even achieving a uniform guarantee (o) > 2/M for all o is impossible for any preference
learning algorithm (see Appendix [K)). This motivates designing algorithms that achieve o-PPA with
the largest possible a.

4.2 PROPOSED ALGORITHMIC FRAMEWORK WITH AXIOMATIC GUARANTEES

Given a polyhedron W(P), our goal is to select a policy 7 that guarantees the proportional alignment
to all w € W(P). To this end, we propose to assign probabilities to alternatives in proportion to the
derived upper bounds ;.

Definition 4.5. The preference learning algorithm F™* maps a preference function P to the policy
U .
j=1Uj

Let ®* denote the PSCF implemented by F'™*.

This construction adopts a conservative strategy for handling uncertainty in w? by assigning probabil-
ities proportional to the most conservative estimate of each w{ . By doing so, the algorithm minimizes
the worst-case misalignment caused by the inevitable information loss from pairwise comparisons.
Formally, it solves max e (y) min,, ey p) [|7/wl|oc-

We first establish the foundational axiomatic guarantees of the proposed framework.
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Theorem 4.6 (Monotonicity & Pareto efficiency). The proposed PSCF ®* satisfies the monotonicity
and the Pareto efficiency.

The proofs are provided in Appendix [[] Next, we show that ®* satisfies the a-PPA axiom. The
following lemma establishes that the ratio between the resulting policy and the true population share
is lower bounded by the inverse of the total sum of the upper bounds ;.
Lemma 4.7. For any profile ¢ € A(S), the policy m = ®*(o) satisfies

-1

T(y) _ <
Y Sy Vi € [M]. 6)
j=1

o
wy

The next lemma shows that this lower bound depends on the number of non-dominated alternatives:

Definition 4.8 (§-dominated alternative). For any 6 € [0, 1], an alternative y € ) is said to be
d-dominated in a profile o if there exists an alternative y’ € Y \ {y} such that P?(y’ > y) > 4.
Lemma 4.9. Let w”! and w”? denote the largest and second-largest elements of w°, respectively.
Consider any § € [0, 1], and let N§ be the number of alternatives that are not §-dominated in profile
0. Then the lower bound in equation|6|lies within the range [o(c), 1], where

a(o) = [(Ng = D1 —w™) + (1 —w”?) + (M = Ng)(1—5)] . (7

See Appendix [M]for the proofs. Combining both Lemmas, we obtain the following a-PPA guarantee:
Theorem 4.10 («-PPA). The PSCF ®* satisfies the a-PPA axiom with « defined in equation|7]

J
This typically occurs when the number of non-1-dominated alternatives is small. Notably, when

there are only two non-1-dominated alternatives, substituting NY = 2 and w’! + w”? = 1 into
equationyields afo) = 1, implying the perfect PPA in such cases. Moreover, when there exists
a single dominating group, meaning (w?'!, w??) approaches (1,0), then (o) also approaches 1.
Importantly, because Zﬁl u; can be computed directly from a given preference function P, the
alignment accuracy of the resulting policy can be evaluated at test time.

Lemma suggests that the actual alignment performance improves as Zl\il u,; approaches 1.

Finally, we present the population-bounded manipulability of the proposed method.

Theorem 4.11 (v-PBM). Let 7/ = ®*(07},) denote a policy resulting from single-group manipulation
by group Gy. Then, the following inequality holds:
1
- < —(wyg +1). ®)
k

/ < - r
ﬂ-(yk)_uk—i—l—w 2
Thus, the PSCF ®* satisfies v-PBM with (7y1,7v2) = (1/2,1/2).

Uk

The proof is provided in Appendix [N} Note that (y1,72) = (1/2, 1/2) represents a worst-case bound.
The actual manipulability for each group is more tightly bounded by wy /(ux + 1 — w§ ). For instance,
if up < 1/2and wi < 1/2, then 7'(y;) < 1/2. This indicates that a non-majority group cannot
elevate their preferred alternative to majority status through manipulation. In addition, the above
result can be interpreted as a weaker form of strategyproofness (see Appendix [O]for details).

4.3 BALANCING PPA AND CONDORCET CONSISTENCY

While F'* and ®* are deliberately designed to satisfy PPA, one may still wish to incorporate majority-
based principles such as Condorcet consistency. However, it is impossible for any method to
simultaneously satisfy both a-PPA and Condorcet consistency.

Definition 4.12 (Condorcet consistency). A PSCF & satisfies Condorcet consistency if, for any
profile o with a Condorcet winner y*, ®(o)(y*) = 1.

Proposition 4.13. No PSCF can simultaneously satisfy a-PPA and Condorcet consistency.
See Appendix E’] for the proof. To balance two axioms, we propose a softmax-relaxed algorithm F#
(and its corresponding PSCF ®7), by modifying F™* as follows:
u; exp(Bu;)
M
> =1 uj exp(Buy)

(i) = vi € [M]. ©
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Figure 2: Tabular experiment results (Section for FP, FRL and FNL. Left: win rate (left axis,
blue) and PPA level (right axis, orange). Right: PBM level (policy gain through manipulation).

The parameter 5 > 0 controls how sharply the policy concentrates on alternatives with higher u;
values. When 8 = 0, the algorithm reduces to the original F*. As 3 — oo, the policy becomes
deterministic and converges to 7 (y*) = 1, where y* = arg max; ¢y u;. This limiting ®°° is the
well-known minimax Condorcet method (Kramerj |I975])), which satisfies Condorcet consistency (see
Appendix [Q|for the proof).

Proposition 4.14. ®°° satisfies Condorcet consistency.

The softmax relaxation offers a smooth trade-off between a-PPA and Condorcet consistency, con-
trolled by the parameter 5. We analyze the theoretical behavior of intermediate 3 values in Ap-
pendix[R] and empirically demonstrate the effects of varying 3 in Section[5] Additionally, Appendix|[S]
discusses the connection to pairwise majority consistency (PMC) (Ge et al.,|2024), which imposes a
stronger consistency requirement, ensuring the entire policy ranking aligns with majority preferences.

5 EXPERIMENTS

5.1 TABULAR EXPERIMENT: MOVIE RECOMMENDATION

Datasets and experimental setup. To validate our theoretical findings, we evaluate the framework
on a movie recommendation task using 1,297 evaluator rankings over 20 movies from MovieLens
IM dataset (Harper & Konstan, 2015). In each episode, we sample 10° pairwise comparisons i.i.d.
from the true preference function P? and train F'° alongside two baselines, F*" and F'NE.

We report averages and standard deviations over 50 episodes on three metrics: (i) win rate against a
uniform policy, E(yhyQ)N(mU) [P?(y1 > y2)], where U is the uniform distribution over ), (ii) PPA
level, a(o) = min;epa 7(y:)/w¢, and (iii) PBM, the average policy gain from a single group’s
strategical manipulation.

Results and discussion.  As shown in the left panel of Figure[2] RLHF and NLHF achieve high win
rates of 0.7784 and 0.7712, respectively, but both yield a PPA level of 0. For our proposed algorithm
FP, we observe the expected trade-off: as 3 increases, the win rate rises from 0.5987 to 0.7784,
while the PPA level decreases from 0.4869 to 0. These results confirm our theoretical prediction of
each algorithm’s behavior. Additionally, the average value of u; was 0.1892, suggesting that the set
W(P) in equation 4| provides a meaningfully tight estimate of w? in our method.

Regarding PBM, the average gain was calculated as 0.0611 for RLHF, 0.0124 for NLHF, and
8.896 x 10~* when 8 = 10°. Overall, F'# outperforms the baselines when 3 < 10!, indicating
that our proposed algorithm significantly reduces susceptibility to manipulation and supports its
robustness guarantee.
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Table 2: Win rate and PPA level (o) across datasets and algorithms

Dataset Category  Metric =0 pB=10* B=10"2 B=10° DPO

Winrate 0.6157 0.6880 0.6961 0.8429  0.8566
PPA (o))  0.0883 0.0235 0.0183 0.0003  0.0000

Winrate 0.7613 0.7610 0.7634 0.7636  0.7697
PPA (o) 0.1428 0.1418 0.1392 0.1273  0.1321

Winrate 0.8398 0.8432 0.8425 0.8530 0.8478
PPA (o) 0.5012 0.4197 0.3637 0.3635  0.3786

Synthetic Color

Expertise
Alpaca-GPT4

Style

5.2 LARGE-SCALE EXPERIMENT: INSTRUCTION-TUNED LLMS

Datasets and experimental setup. We next evaluate the algorithm in high-dimensional settings
with function approximation by fine-tuning the Qwen2.5-3B-Instruct model (Yang et al., 2024])). For
a synthetic dataset, we construct 10 questions asking evaluators which color they prefer, with 10
candidate colors as possible responses. The true rankings of 1,000 evaluators are generated from
randomly sampled rewards, and 10* pairwise comparisons are drawn i.i.d. from P?. We next test the
algorithm on the Alpaca-GPT4 dataset (Peng et al.| 2023)), which contains 52k prompts. Following
prior work (Jang et al.,|2023; (Chakraborty et al.,|2024)), we consider two group categories (expertise
and style) and sample one pairwise comparison per prompt using GPT-4.1 (Achiam et al., [2023)).
Further details on data generation and hyperparameters are provided in Appendix

For both datasets, we evaluate two metrics: (i) the win rate against a reference policy (the pretrained
model), E; 4, vo)~(p,m,mer) [P7 (W1 = 2 | x)], and (ii) the PPA level a(o), comparing the results
with DPO as the baseline. To estimate the output policy (i.e., the group distribution of generated
responses), we used response logits directly for the synthetic dataset, and group classifications from
the annotation model (GPT-4.1) for the Alpaca-GPT4 dataset. The specific training algorithm is
described in Appendix [U] and the full experimental code is included in the supplemental material.

Results and Discussion. Table 2| presents the win rate and PPA level a(o) across datasets and
algorithms. On the synthetic dataset, we observe a clear trade-off between win rate and PPA,
confirming that 3 effectively controls this balance and validating the algorithm’s effectiveness in
high-dimensional settings. For the Alpaca—GPT4 dataset, the trade-off is present but less pronounced,
largely because group distributions are inferred using an annotation model (GPT-4.1), which intro-
duces noise and obscures the effect of 3. In contrast, the synthetic dataset allows direct computation
from response logits, enabling more precise estimates. These results suggest that a small synthetic
dataset can be used to evaluate a model’s PPA level and tune 3 to reach a desired target.

We highlight several practical considerations for deployment. First, our two-phase function approxi-
mation approach (learning v and ), has computational cost comparable to RLHF and higher than
DPO, suggesting the need for direct policy-optimization methods. Second, accurately estimating PPA
levels in LLMs remains an open challenge beyond the two methods we explore (logit comparison and
group classification). As this paper primarily introduces the theoretical framework with supporting
experiments, our findings should be viewed as initial evidence of scalability, with further algorithmic
and evaluation advances expected to strengthen these results.

6 CONCLUSION AND FUTURE DIRECTIONS

This paper introduces a novel preference-learning framework that aligns policies proportionally with
population distributions inferred from pairwise comparison data. We believe this framework offers a
new perspective on alignment algorithms by shifting the focus beyond the conventional emphasis on
win rate. Furthermore, our work strengthens the connection between preference learning and social
choice theory by implementing a new class of probabilistic social choice functions, extending beyond
standard rules such as maximal Borda and maximal lotteries. Future research will aim to extend
the framework to incorporate lower-ranked preferences and to develop more efficient algorithms for
high-dimensional environments.
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ETHICS STATEMENT

This paper introduces a novel preference learning framework that aims to enhance population-
proportional alignment across diverse preferences, offering the potential for positive societal and
ethical impact by mitigating biases within Al systems. Nevertheless, similar to any preference
learning technique, it carries the risk of being misused to perpetuate existing biases, whether through
the utilization of non-representative datasets or through design choices that unintentionally favor
particular viewpoints. We recognize these potential concerns and emphasize the importance of
thoughtful attention to data collection and algorithm design to promote positive impact.

REPRODUCIBILITY STATEMENT

To promote reproducibility, we provide complete theoretical, empirical, and implementation details.
The theoretical results are presented with complete assumptions and full proofs in Appendices[Cl-
[SI For the empirical studies, detailed descriptions of dataset generation, evaluation methods, and
hyperparameter settings are provided in Section [5 and Appendix [T} The training algorithm and
implementation details are described in Appendix [U} To facilitate replication, we also include the
experimental code in the supplementary materials. Together, these resources enable independent
researchers to reproduce both the theoretical claims and the empirical findings reported in this paper.
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A NOTATION

We summarize the mathematical notation used in the paper.

Symbol

Description

Rankings, profiles, groups, and preferences

[M]
y:{yla"'7yM}
AW)

S

res

o € A(S)
or €[0,1]
Gy

wy € [0,1]
oL € A(S)
meA(Y)
PeP
PoeP
Py, P

P

The set of integers {1,2,..., M}.

The set of M alternatives.

Probability simplex over a finite set ).

The set of all rankings (permutations) over ).

A ranking, where 7(y;) = k means y; is ranked k-th.

A profile, i.e., population distribution over rankings.

Proportion of evaluators who adopt ranking 7.

Group k, set of rankings where yy, is ranked first.

Population share of evaluators whose top choice is yy.
Sub-profile of group G, (evaluators who rank y; first).

A policy, i.e., probability distribution over alternatives.
Preference function, P(y > ') is the probability y is preferred to y'.
Preference function induced by a profile o.

Group-specific preference function for G.

Set of all preference functions induced by some profile in A(S).

Preference learning algorithms, PSCFs, and axioms

F:P—AQ)

B AS) = AY)

FRL $MB

FNL, (I)ML

B(y)

alo) eR

v = (711,72) € R?
o

U; € [0, 1]
W(P)

W(P)

d € [0,1]
N§

wy, w3

*

Y
F*, o
FP, o8

Preference learning algorithm, mapping a preference function to a
policy.

Probabilistic social choice function (PSCF), mapping a profile to a
policy.

RLHF algorithm and its PSCF (maximal Borda rule).

NLHF algorithm and its PSCF (maximal lotteries).

Borda score: B(y) := > cg0r (M —17(y)).

Strength of population-proportional alignment (PPA) guarantee.
Parameters characterizing population-bounded manipulability (PBM).
Single-group manipulated profile of o (group k perturbs only its sub-
profile).

w; = miny,, P(y; > y), upper bound on feasible population share
for y;.

Set of feasible population distributions consistent with preference func-
tion P.

Polyhedral outer approximation of W(P) (via w; < w; constraints).
Dominance threshold (used in d-domination definition).

Number of alternatives not d-dominated under profile o.

Largest and second-largest elements of w?.

Condorcet winner satisfying P(y* >~ y) > % for all y # y*.

Proposed (baseline) algorithm/PSCF using u; with 7(y;) o< w;.
Softmax-relaxed algorithm/PSCF with concentration parameter 3 > 0.

Offline learning algorithm with function approximation

reX
D = {(zi, 42",y ) Ly
p(z), ma(y | x)

DN
DI
SN

Context (e.g., prompt or state) and context space.

Offline dataset of pairwise comparisons (3* preferred to ).
Context (prompt) and query data distribution.

Selector model used to form u.

Function classes for p and 7.

Empirical estimate of P, u, and u.

Softmax policy constructed from u and final estimated policy

14



Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORK

In this section, we discuss recent work that aims to proportionally represent the diversity of human
preferences.

Limitations of the BT model. Recent studies have highlighted limitations of the standard RLHF
approach under BT model assumption, which fails to capture the multifaceted and sometimes con-
flicting nature of human preferences. For example, Kim et al.|(2024)) demonstrated that the standard
MLE algorithms under the BT model can become unstable, particularly in the presence of evaluators
exhibiting greedy behavior. They proposed to address this limitation by estimating a set of feasible
reward functions without relying on specific modeling assumptions. Additionally, Siththaranjan et al.
(2023) established a theoretical equivalence between RLHF and the Borda voting rule, showing that
the optimized rankings from standard methods frequently violate majority preferences. To address
this issue, they introduced a distributional approach incorporating hidden context variables to address
diverse evaluator preferences. Furthermore, Ge et al.|(2024) analyzed reward optimization methods
under parameterizations, revealing their inherent violation of fundamental axioms such as Pareto
efficiency. They proposed a novel algorithm explicitly designed to satisfy these axioms.

Approaches from social choice theory. Parallel research efforts have explored unbiased aggrega-
tion of heterogeneous human preferences, grounded in social choice theory. (Chakraborty et al.| (2024)
formally proved the impossibility of equitably aligning single-reward models across diverse evaluator
groups, and proposed learning reward mixtures using the EM algorithm followed by maximizing
the minimum utility across subpopulations. Additionally, [Zhong et al.|(2024) conducted a rigorous
analysis of multi-group reward learning under various social welfare criteria, such as Nash, utilitarian,
and Leximin functions, and provided theoretical alignment guarantees. [Park et al.[(2024) proposed a
probabilistic opinion pooling function that directly aggregates multiple probabilistic models into a
single policy, as well as personalized algorithms that output individualized policies after estimating
confidence sets. [Shi et al.|(2025) analyze the theoretical limits of NLHF, showing that exact prefer-
ence matching is generally impossible, highlighting intrinsic limitations of this paradigm. Concurrent
work by Xiao et al.| (2025) is closely related to our work. They investigate the tension between
RLHF’s empirical success and its incompatibility with social choice axioms (PMC and Condorcet
consistency), showing that RLHF can satisfy them under a practical assumption about preference
labeling. Moreover, they propose a new axiom, group preference matching, which requires the policy
to reproduce group-level preference distributions in proportion to their population weights. However,
they do not provide an algorithmic framework that satisfies this axiom.

Proportional representation in voting systems. The concept of proportional representation has
been extensively studied through an axiomatic lens within voting systems. A foundational axiom in
multi-winner voting systems is proportionality for solid coalitions (PSC), which dictates that any
solid coalition (a group of voters who agree on their preferred set of winners) must be guaranteed
a number of elected candidates proportional to its population size (Dummett, |1984). Building on
this, work in approval-based voting introduced justified representation (JR) and its stronger variant,
extended justified representation (EJR), which ensure that every cohesive group (voters who approve
the same set of candidates) receives proportional representation (Aziz et al.,[2017a)). Proportional
representation has also been widely applied to participatory budgeting (PB) (Aziz & Shahl [2020),
focusing on axiomatic methods for distributing funds among public projects under a budget constraint.
However, the literature defining these proportional representation notions typically assumes either
approval-based multi-winner elections (Aziz et al.,[2017b) or access to full preference information
such as ordinal rankings|Aziz & Lee|(2021); [Peters et al|(2021)); /Airiau et al.|(2023)). This stands in
sharp contrast to our approach, which operates under the minimal assumption of pairwise comparison
data and seeks a probabilistic choice distribution over candidates, rather than a fixed multi-winner.

Pluralistic alignment. Emerging research on pluralistic alignment seeks to reflect diverse per-
spectives in Al systems, with a particular focus on LLMs. [Sorensen et al.| (2024) outlined three
complementary frameworks for pluralistic alignment: Overton pluralism, which captures the range of
reasonable responses; steerable pluralism, which allows models to adapt to particular attributes; and
distributional pluralism, which aligns model outputs with population-level distributions. |Chen et al.
(2024)) introduced a framework that modeled heterogeneous human preferences from the ground
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up using the ideal point model and mixture modeling. Yao et al.| (2024) proposed group distribu-
tional preference optimization (GDPO), a method that aligns models with the group preferences by
estimating the underlying belief distribution and conditioning responses on those beliefs, ensuring
representation of both majority and minority views. |Adams et al| (2025) developed a steerable
pluralistic alignment algorithm, enabling models to adapt to individual preference profiles through
few-shot comparative regression across fine-grained attributes. While these approaches show promise,
they generally rely on explicit group identification, restricting their applicability in scenarios where
group labels are unavailable or difficult to determine. In contrast, our work does not require explicit
knowledge of evaluator groups. Instead, we infer population distributions directly from pairwise
comparison data and align policies accordingly.

C EQUIVALENCE OF BT-MLE REWARDS RANKING AND BORDA RANKING

Proposition C.1. Let r* € RM be a maximizer of the likelihood function

L(r)=>" {P”(yi = y;) log ( ) +P7(y; = yi)log (eﬂ . (10)

1<J

i
eri 4 e'i
Then, the ordering of alternatives induced by r* is identical to the ordering induced by the Borda

score B of o. Formally, for any i,j € [M],
ri>r; < B(y) > B(y;). (11)

Proof. The gradient of L(r) with respect to r; is given by:

OL(r)
87‘1'

= [P (yi - yj) — sigmoid(r; — ;)] (12)
J#i
where sigmoid(z) := 1/(1 4+ e~%). At the optimal solution r*, the first-order condition requires that
3" [Py - y;) — sigmoid(rf — )] = 0. (13)
J#i
Now, consider two distinct alternatives ¢ and k, and suppose that r} > r}. Since the sigmoid function

is monotonically increasing, for any j # i, k, we have sigmoid(r; — r7) > sigmoid(rj, — r}), and
also sigmoid(r} — r}) > sigmoid(r; — ). From the first-order conditions at optimality, we have:

ZPJ(yi =) = Zsigmoid(r;‘ —r;) and Z:P"(y;€ - yj) = Zsigmoid(r}; —r7). (14)
i i ik ik

Since r} > ry, it follows that

Z sigmoid(r; —r}) > Z sigmoid(ry —r7}). (15)
J#i J#k
Therefore, we have
D Py - yy) > Y P (uk - yy). (16)
i 7k

By definition, P7(y; = y;) = > _,.cs 0r * L{r(y;)<r(y;)}- Substituting this into the inequality above,
we get
Do D Lro<ry > D0 D Lrtwo<rtu)y- a7)

res i res j#k

Recall that the Borda score is defined as B(y) := >, .g 0, - (M — r(y)), we can rewrite the inner
sums in the inequality as:

Z Lry<riy)y = (M = 1) = (r(yi) = 1) = M — r(y;), (18)
i
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and similarly,

Y Lewo<rny = M = ). (19)
ik
Thus, the inequality becomes
oo (M =r(y) > > or (M —r(y)), (20)
reS resS

which is equivalent to B(y;) > B(yx).

For the converse, assume B(y;) > B(y). Following similar steps in reverse, this implies

D Py - yy) > Y Py - yy), @
j#i ik
which leads to
Z sigmoid(r; —r}) > Z sigmoid(ry —r7}). (22)
J#i i#k
This inequality can only hold if 7} > rj. Therefore, we have shown that r} > 17 < B(y;) >
B(y;), completing the proof. O

D FUNDAMENTAL AXIOMS: MONOTONICITY AND PARETO EFFICIENCY

In this section, we present the definition of two fundamental axioms in social choice theory: mono-
tonicity and Pareto efficiency. For detailed discussions of these axioms, we refer readers to |Brandt
(2017); Ge et al.| (2024).

Definition D.1 (Monotonicity). A PSCF & satisfies monotonicity if, for any alternative y € ),
improving its ranking in a profile without changing other relative rankings cannot decrease its
probability in the resulting policy. Formally, if profile ¢’ is obtained from ¢ by improving the ranking
of y in some r € S with o,. > 0, then ®(0’)(y) > P(0)(y).

Definition D.2 (Pareto efficiency). A PSCF ® satisfies Pareto efficiency if, whenever an alternative
y is ranked above 3’ in every ranking r with nonzero population share, the resulting policy assigns
at least as much probability to y as to y'. Formally, if r(y) < r(y’) for all » € S with ¢,. > 0, then

(o) (y) = (o) (y).

E PROOF OF PROPOSITION

We first demonstrate that ®MB and ®M violate a-PPA. Consider a preference profile o with the
following characteristics: (i) The population share of each group is nearly identical, with G; having a
population share w9 that is e greater than the average, and (G2 having a population share wg that is €
less than the average. (ii) Within each group G, there is indifference between any two alternatives
other than yy. Thatis, P{(y; = y;) = 1/2 for all ¢, j # k. Given this profile, we will show that for
any € > 0, both RLHF and NLHF yield a deterministic policy that selects y; .

The population distribution and pairwise preference function satisfy

1 1 11 1 1
=t —6 ==, Po(yi = y;) = =, Vi, j k.
Y (M “M MM ’M) and Py =) = 5, Vi 7k @3

Then, the aggregated pairwise preferences P are computed as follows:
e P(y1 = y2) :%—Fe
* P7(y1 = y) = 5 + § forany y # y1,y2
1

(
* Po(ya = y) =35 — §forany y # y1, 10
« P7(y - y') =L forany y,y # y1, 92

17



Under review as a conference paper at ICLR 2026

Under this profile, for any ¢ > 0, both ®MB and &MY result in a policy where 7(y;) = 1, and
m(y;) = 0 for any ¢ # 1. This implies that 7(y;)/w? = 0 for any 7 # 1, which violates a-PPA for
any o > 0.

Next, we show that ®M! violates v-PBM using the profile described earlier with M = 3. The

aggregated preference function P? can be represented by the following matrix:

g by
1—e 1+e i
2 2 2

Now, suppose that group G3 manipulates their sub-profile from P§(y; > y2) = % to Pgl (y1 >
y2) = 0. Then, the resulting manipulated aggregated preference function P’ is calculated as:

1 1 1te
pro 22 P10 | (25)
31—5 1—2"-6 i
2 2 2
PML yields a stochastic policy that depends on the value of . For example, if ¢ = 1/12, the resulting
policy is m = [}, 1, 3 |. However, as € approaches 0, the resulting policy converges to [0,0, 1]. This

shows that 7/ (y3) — 1 while w] = 1/3, thus demonstrating that there exists no 7; > 0 for which
ML satisfies y-PBM.

To show that ®MB violates -PBM, consider the case with M = 3 where the profile o consists of the
following three groups of evaluators:

o= {(y1 = Yz > y3) x 0.30, (y2 =y yg) x 0.45, (y3 =Yy > y2) X 0.25}, (26)

where (y; > y2 > ys3) represents a ranking r and “x0.30” indicates that o, = 0.30. Then,
the Borda scores are calculated as B = [1.3,1.20,0.5]. Thus, ®5(c) = 7, where 7(y;) = 1.
Next, suppose the second group strategically misreports their preference from (y2 > y1 > y3) to
(y2 = y3 > y1). Then, the Borda scores are calculated as B’ = [0.85, 1.2, 0.95]. The resulting policy
is then 7’ (y2) = 1, with the population share of the second group being wg = 0.45. This example
demonstrates that there exists no y; > 0 for which ®MP satisfies y-PBM.

Next, we show that ®RP satisfies all four axioms. ®RP satisfies monotonicity because improving
ranking of y cannot decrease the number of evaluators whose top choice is 3. In addition, ®RP
satisfies Pareto efficiency because if r(y;) < r(yx) for all r € S with o, > 0, then we have
w? = 0 and ®RP(0)(yx) = 0. Additionally, ®RP satisfies a-PPA with a(0) = 1 for all & by its
definition, and also satisfy y-PBM with (y1, v2) = (1, 0) because each group G, cannot increase w§
by manipulation.

F PROOF OF THE NON-IMPLEMENTABILITY OF ®FP

Suppose that ®RP can be implemented by a preference learning algorithm FRP. Let M = 3, and
consider two preference profiles, o1 and o5, defined as follows:

or={(y1 = y2 = y3) x 1/3, (y2 = y1 = y3) x 1/3, (y3 = y1 = y2) x 1/3},
o9 = {(y1 = Y2 > yg) X 2/3, (y3 =Yg > yl) X 1/3}

Both of these profiles induce the same aggregated preference function P = P?* = P92, where

27)

1 2 2
o_ |1 1 3
PP=|z 5 =% 28
i1 )
3 3 2
Therefore, the preference learning algorithm FRP would produce the same policy for both o}

and oo. However, according to the definition of ®%P, we have ®%P (o) = [1/3,1/3,1/3] and
ORD (g9) = [2/3,0,1/3], which are different policies. This implies that F'*P does not implement
®RP which contradicts our initial assumption. Therefore, ®*P is not implementable by a preference
learning algorithm.
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G PROOF OF PROPOSITION [4.2]

First, consider any feasible population share w given a preference function P. By Definition .1}
there exists a profile o such that w = w? and P = P?. Then, the group-specific preference functions
(Pg,...,P,) that constitute P°, satisfy the condition in equation[3} which implies that w € W(P).

Next, consider any w € W(P). By the definition of W(P), there exist (P1,...,Py) € PM such

that P = Zé\; wy Pk, where each Py, satisfies P (yr > y) = 1 for all y # yi. Since Py € P,
there exists a profile oy, that induces Py, such that P, = P?*. Now, if we consider an aggregated

profile o := 22421 w0k by combining these group profiles with the corresponding weights, then

the preference function of o will be P7 = ny:l wpP7F = ijv[:l wiPr = P and also w? = w.
Therefore, w is a feasible population distribution given P.

H PROOF OF THEOREM [4.4]

Consider any w € W(P). Then, there exists (P1,...,Py) € PM such that P = Zf:[:l wy, Pg. Fix
an index 7 € [M]. Forany y € Y \ {v;}, we have

Py = y) = wiPi(yi - y) + > _ wi Prlys = y) > w; (29)
ki
since P;(y; > y) = 1. Taking the minimum over y € ) \ {y; } yields
min  P(y; = y) > w;, 30
yeV\{vi} v - v) G0

which implies w; < u; Vi € [M] and w € W(P). Therefore, W(P) C W(P).

I ADDITIONAL REMARKS ON THE TIGHTNESS OF THE OUTER
APPROXIMATION

The gap between the true feasible set W(P) and its outer approximation WW(P) arises from our
profile assumption, namely that each evaluator has a strict and complete ranking. To illustrate this
point, we show that W(P) provides a tight approximation (i.e., W(P) = W(P)) under an extended
profile setting. Consider an extended profile setting in which each group G, is allowed to provide
pairwise comparison data according to its own preference function Py, subject only to the skew-
symmetry constraint Py (y; > y;) +Pr(y; = y;) = 1 forall y;, y; € Y, and the unanimity constraint
Pi(yx = y) = 1forall y € Y. In this case, the set P is defined as

P={P[Ply>y)+ P »y)=1Vyy €V} (31)
We show that W(P) C W(P) also holds under this setting. Consider any w € W(P). By assumption,
w satisfies w; < u; = ming ey gy,3 P(y; = y) foralli € [M]. Define each element of (P1,...,Pyy)
as
P(y: = ;) — w;
Pulys - yy) = L B = (32)

1—w; —wj

forany i,j # k, and let Py (yr > y) = 1, Px(y > yx) = Oforally € Y. Then Py(y; > y;) €
[0,1] holds because P(y; > y;) € [w;,1 — w;] by assumption. The skew-symmetry condition
Pr(yi > y;) + Pr(y; > yi) = 1is also satisfied. Thus, P;, € P and P, can be induced by some
profile. Finally, the constraint P = 221:1 wi Py, also holds. Therefore, w € W(P), implying

W(P) C W(P), and hence W(P) = W(P).

J CONNECTION OF THEOREM [4.4] AND [TATLI ET AL.|(2024)

Tatli et al.|(2024)) studies the recovery of population preference distributions under a spatial model.
In their framework, each alternative is represented by a feature vector in a Euclidean space, and each
voter’s preferences are determined by distances to these vectors (i.e., voters prefer alternatives that are
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closer in the Euclidean norm). Theorem {f.4] can also be derived in this setting. Specifically, consider
a sufficiently high-dimensional feature space partitioned into M! regions by (1\2/[ ) hyperplanes, where
each hyperplane is the perpendicular bisector of the line segment connecting a pair of alternative
vectors. Then, (Tatli et al.,[2024] Proposition 2) shows that it is impossible to recover the full profile
o from aggregated pairwise comparison data P°. Moreover, by summing the inequality in (Tatli et al.,
2024, Proposition 4) over the regions corresponding to voters who most prefer each alternative y;, we
obtain the bound w; < u;.

K IMPOSSIBILITY OF A UNIFORM GUARANTEE «(0) > 2/M

Proposition K.1. No PSCF can be implemented by a preference—learning algorithm while guaran-
teeing a-PPA with a constant (o) > 2/M for all o € A(S).

Proof. Consider any setting in which the pairwise comparison data are completely uninformative.
Specifically, suppose that for every pair of alternatives y;,y;, the observed probability satisfies
P(y; > y;) = 0.5. Under such maximally ambiguous data, no preference—learning algorithm can
distinguish among alternatives, and any algorithm that aims to maximize the worst-case (o) must
output the uniform distribution over the M alternatives.

However, the true distribution of evaluators’ top choices may in fact be highly non-uniform while
remaining perfectly consistent with the uninformative pairwise data. For example, consider a profile
o in which w? = [1/2,1/(2M — 2),1/(2M —2),...,1/(2M — 2)], corresponding to a situation
where y; is ranked first by half of the evaluators and ranked last by the other half. In this case,the
corresponding proportionality guarantee is a(o) = 2/M. Therefore, achieving a uniform lower
bound (o) > 2/M for all o € A(S) is impossible. O

L. PROOF OF THEOREM

We first prove monotonicity. Improving the ranking of y; for some evaluator can only increase
P?(y; > y) for any y # y;, and decrease P?(y > y;). This implies that u; cannot decrease, while

uj for j # i cannot increase. Therefore, w(y;) = u;/ (Z]M:1 u;) cannot decrease, establishing
monotonicity.

Next, we prove Pareto efficiency. Suppose y; is ranked above y; in every input ranking, i.e.,
7(yi) < r(y;) forallr € S with o, > 0. Then, we have P7 (y; = y;) = > .cs5 0 Liry)<r(y,)} = 1
and also P?(y; = y;) = 0. Thus, we get u; = minyecy\ ;3 P7(y; = y) = 0. Thus, the resulting

policy satisfies ®*(o)(y;) = 117/(21,5’:1 uy) = 0. Therefore, ®*(o)(y;) > ®*(0)(y;). establishing
that ®* satisfies Pareto efficiency.

M PROOF OF LEMMA [4.7] AND LEMMA [4.9]

Lemma [4.7]follows directly from the fact that w¢ < w; for all i € [M], which gives

7(yi) _ U S 1 . (33)

M — M

Next, we show Lemma Let I C [M] be the set of indexes for -dominated alternatives, where
|I| = N§. Then, for any 7 € I, we have

u; = min P i Y < P? - ! Sl—é, 34
jeimn (i = 5) (vi =) (34)

where y} denotes an alternative that d-dominates y;. Additionally, let k € arg max; ey wy - Then,
for any ¢ # k, we have

w; = min P (y; = vy;) < P (y; = <1-—wf 35
jetmin P y) < Py - gk k (35)
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Similarly, let | € arg maX;e(nr), ik wy, then we have u;, < 1 — w]. Combining these reesults,

M
Suwi=up+ Y wit > uw < (I—wf)+ (N - 1)1 —wf)+ (M- N§)(1-6). (36)
i=1 i#kigl i€l

In addition, since u; > w{, we have Zfil u; > Zf\il w¢ = 1. Combining both inequalities and
plugging (w7, wf) = (w”!', w"?) in, we get the result of Lemmmaas follows:

v -1
1
(Z?Q 6{wg—wu~ww+u—wﬂqu—Nmu—®”' GD

N PROOF OF THEOREM 411

Let o’ be the profile manipulated by group Gy, and let 7’ = ®*(o”’) be the resulting policy. G}, aims
to maximize
Ui

)
uj, + Zi;ﬁk u;
where u’ represents the value of u after the manipulation. To maximize 7/ (yy ), G will attempt to
maximize uj, and minimize ), 2k u}. Since increasing the ranking of yy, in their profile increases
(or at least does not decrease) the value of u;, without increasing the value of ) Zk ul, the optimal

strategy for Gy, is to truthfully report y;, as its top choice. In this strategy, we have u}, = uy, and the
sum )., u; has the following lower bound:

ZuéZZw?zl—wg. (39)
i#k i#k
Substituting this lower bound into equation we obtain

™ (yr) = (38)

/ Uk L
< — < = 1 40
W(yk)_uk+1_wg—2(wk+ )» (40)
where the final inequality holds if (w{ — ux + 1)(w{ — 1) < 0, which follows from the fact that
wy, uy € [0,1].

O WEAK STRATEGYPROOFNESS GUARANTEE

In social choice theory, a mechanism is considered strategyproof if participants cannot benefit (i.e.,
increase their utility) by misreporting their true preferences (Gibbard, |1973)), regardless of what other
participants report. In our preference learning framework, we assume each group G’s utility is
the probability assigned to its top choice, represented by 7(yy ). A preference learning algorithm is
strategyproof if no participant can improve its outcome by misreporting preferences. However, as
noted by Buening et al.| (2025)), strict strategyproofness is typically too restrictive and is not satisfied
by the conventional preference learning algorithms (with ex-post efficiency). Our method does not
satisfy strict strategyproofness like other methods, but satisfies a weaker form that provides a bounded
guarantee on the maximum potential gain from strategic misreporting in equilibrium.

Let ¢’ denote the profile resulting from strategical misreporting by all groups, and let 7’ = ®*(o”)
be the resulting policy. Each group G/ aims to maximize 7' (yx ), which involves maximizing «j, and
minimizing -, u;.

Since improving the ranking of yj in their reported preferences increases (or at worst, does not
decrease) the value of uj without increasing >, u;, the optimal strategy for G, is to truthfully
report y as their top choice. Hence, all groups truthfully report their top choice regardless of

other groups’ strategies, meaning P} (yx > y) = 1 for all y # y;, where P}, denotes the reported
preference function of GY.

In this equilibrium, following steps analogous to the proof of Theorem .11} we have:
i
! U, 1 o
< —Ffr < 1) Vk e [M]. 41
") € iy < Wi+ 1) Vi€ (M) @
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Note that y(wy,) is not a tight bound. Further exploration into tighter bounds and detailed analysis of
each group’s strategic behavior is left for future research.

P PROOF OF PROPOSITION 4.13]

Suppose M = 2 and P?(y; > y2) € (0.5,1), so y; is the Condorcet winner. If a PSCF & satisfies
Condorcet consistency, it must return the deterministic policy 7(y;) = 1. However, this violates the
a-PPA axiom because 7(y2) = 0 while wg > 0, which implies that w(y2)/wg = 0 cannot be lower
bounded by any a(co) > 0.

Q PROOF OF PROPOSITION [4.14]

Suppose y; is a Condorcet winner. Then P7(y; > y;) > 0.5 for all j # 4, which implies that
u; > 0.5. For any other j # 4, we have u; < P"(yj > y;) < 0.5. Therefore, y; has the highest u;,
ie., i € argmax;epy) uy, and °° returns 7(y;) = 1, satisfying Condorcet consistency.

R FINITE BEHAVIOR OF ®”

The following proposition quantifies how large the parameter 3 needs to be to ensure that a Condorcet
winner receives a sufficiently high probability under the softmax policy.

Proposition R.1 (Condorcet consistency at finite 5). Let y; be a Condorcet winner with u; > 0.5.
Then, the softmax policy satisfies 7(y;) > . if

1 (M —1)a,
bz —o58 ( 201 — o) ) ' (42)

Proof. Since y; is a Condorcet winner, we have u; < P7(y; = y;) =1 —P7(y; = y;) < 0.5 for
any j # 4. From the given condition

1 (M —1)a,
b2 =058 ( 2(1 — o) ) ’ “43)

we can establish the following lower bound:

(e (6%
u; exp (Bu;) > 1 —Ca (M —1)(0.5exp (0.553)) > . —Ca Zuj exp (Bu;). (44)
¢ © g
Thus, the softamx policy satisfies
m(y:) = i XD (Bs) > a. (45)

u; exp (Buq) + 32, uj exp (Buy)
O]

In addition, it can be shown that the o-PPA guarantee deteriorates as 8 — oo, since the lower bound

in Lemmal4.71becomes
-1

M
(1{5') > | wjexp (Blu; —w) |, (46)
) j=1

s

w,

which converges to zero as 5 — oo, unless u; = max;e (] U;-

S CONNECTION TO PAIRWISE MAJORITY CONSISTENCY (PMC)

We discuss the connection to pairwise majority consistency (PMC) (Ge et al.,|2024), which imposes a
stronger consistency requirement, ensuring the entire policy ranking aligns with majority preferences.
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Definition S.1 (Pairwise majority consistent ranking (PMC ranking)). A ranking 7 is a called a
PMC ranking of a profile o if for all y;,y; € ), a majority of evaluators prefer alternative y; to
alternative y; in o if and only if y; is ranked higher than y; in r?. Formally, P7(y; > y;) > 1/2if
and only if 77 (y;) < r7(y;).

Definition S.2 (Pairwise majority consistency (PMC)). A PSCF @ satisfies PMC if, for any profile
o € A(S) that has a PMC ranking 77, ®(o) has the same ranking with 77, i.e. ®(o)(y;) > ®(0)(y;)
ifr7 (yi) <r7(y;)-

It can be shown that any ®° with finite 3 > 0 violates PMC, and only the limiting PSCF &7 satisfies
PMC.

Proposition S.3. Any ®° with finite 3 > 0 violates PMC. ®* satisfies PMC.

Proof. First, we show that ®° violates PMC for any 5 > 0. It suffices to demonstrate that there
exists a profile o with a PMC ranking 7° for which ® (o) (y;) < ®°(o)(y;) while 7 (y;) < 7 (y;).

Consider the following profile o with M = 3:

o={(y1 = y2 = y3) x0.3, (y2 = y3 = y1) x0.1, (y3 = y1 = y2) 0.3, (y3 = y2 = y1) x 0.3},

(47)
which yields the following preference function:
0.5 0.6 0.3
P =104 05 04]. (48)
0.7 0.6 0.5

Then, the PMC ranking satisfies 77(y3) < 77(y1) < 77(y2), as P7(ys > v1),P7(ys >
y2),P?(y1 > y2) > 0.5. However, we have u; = 0.3 and uy = 0.4. Since u; < wug, it fol-
lows that ®°(0)(y1) < ®°(o)(y2) regardless of 3, contradicting 77 (y;) < r?(y2). Therefore, ®”
violates PMC regardless of 3.

Next, we show that ®°° satisfies PMC. Consider a profile o with its PMC ranking 7, and let y* € )
be the alternative ranked first in 7% (i.e., 79 (y*) = 1). Then, y* must be a Condorcet winner, as
P (y* = y) > 1/2 for all y # y*. Thus, 7 := ®°>°(0) is a deterministic policy with 7(y*) = 1.
Consequently, we have m(y*) > n(y) for all y # y* and trivially 7(y;) = m(y;) = 0 for any
Yi, Yj 7 y*, satisfying the condition for PMC. O

®P approximately satisfies PMC as 3 — oo if we allow some slack in the rankings (e.g., ®(c)(y;) >
®(0)(y;) — € for some small € > 0) in the definition of PMC. However, exploring this approximate
consistency is beyond the scope of this paper and is left for future research.

T ADDITIONAL DETAILS OF EXPERIMENTS

T.1 SYNTHETIC DATASET

Dataset generation. For the synthetic dataset, we used 10 prompts and 10 responses for the color-
preference alignment task, as shown in Table 3] To construct the ground-truth profile o, we sampled
the true (center) rewards independently from the normal distribution A/(0, 1) for each response. We
then added i.i.d. random noise from N(0, 1) to each true reward to generate 1,000 independent
rankings. Finally, we drew 10* pairwise comparison samples i.i.d. from the true preference function
P to train each algorithm.

Evaluation methods. We evaluate the fine-tuned policy using two metrics: (i) win rate against a
reference policy (the pretrained model), E ;. 4, yo)~(p,x,mer) [P (y1 = y2 | )], and (ii) the PPA level
a(o). To estimate the fine-tuned policies over responses, we compute the logits of each response
and the softmax policy (with temperature 1). We then calculate the win rate and PPA level directly
from their definitions using the estimated policy for each prompt. The results are averaged over all
prompts.
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Table 3: Prompts and responses in synthetic dataset

Prompt (z) Response (y)
Which color do you find the most appealing? Red
Which color best represents your personality? Blue
When decorating your room, what color do you prefer? Green
What is your favorite color? Yellow
Which color do you like the most? Purple
If you had to choose just one color, which would it be? Orange
Among all colors, what’s your top pick? Pink

If you could only wear one color forever, what would you choose? Brown
‘What color makes you feel happiest? Black
Which color do you prefer most? White

T.2 ALPACA-GPT4 DATASET

Dataset generation. We considered two groups of evaluators, defined across two categories:
expertise and style. For the expertise category, evaluators were grouped into two levels: ‘elementary
school student’ and ‘PhD student’. For the style category, evaluators were grouped into ‘friendly’
and ‘unfriendly’. The true population distribution was set to w? = [0.8,0.2]. For each of the 52k
instruction prompts from the Alpaca-GPT4 dataset (Peng et al., [2023)), group-specific responses were
generated using GPT-4.1 with the prompts listed in Table[d] Then, the pairwise comparison samples
are drawn i.i.d. from P?.

Table 4: Prompts used for generating responses from each group

Category  Prompt

(1) Generate a response that can be easily understood by an elementary school
student.

(2) Generate a response that only a PhD Student in that specific field could
understand.

Expertise

(1) Generate a response that is friendly, witty, funny, and humorous, like a close
friend.
(2) Generate a response that answers in an unfriendly manner.

Style

Evaluation methods. To estimate the fine-tuned policies over responses, we sample a response
from the policy and use the annotation model (GPT-4.1) to classify its group. Table 5] shows the
prompts used to classify the group of generated responses. Based on these classifications, we evaluate
the policy’s win rate and the PPA level from their definitions.

Table 5: Prompts used for classification

Category  Prompt

Expertise  Does the expertise level of this response align more closely with the elementary
level or the PhD student level? Please answer with only one of these exact
options: ‘elementary’ or ‘PhD’.

Style Is this response friendly or unfriendly? Please answer with only one of these
exact options: ‘friendly’ or ‘unfriendly’.

T.3 HYPERPARAMETER SETTING

The Qwen2.5-3B-Instruct model (Yang et al.||2024) was fine-tuned using each algorithm, where both
the reference policy m..¢ and the data sampling policy 74 were set to the same pretrained model.
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All algorithms were trained on the same offline dataset for the same number of iterations. NLHF
was not included in the comparison, as the algorithm does not support offline learning. Specific
training hyperparameters are provided in Table[6] Each training run utilized one H100 GPU, requiring
approximately 0.5—1 hour per epoch with about 20—40GB of memory usage using LoRA.

Table 6: Training hyperparameters

Hyperparameter Synthetic Alpaca-GPT4
Training & Reference Model Qwen2.5-3B-Instruct Qwen2.5-3B-Instruct
Learning Rate le-4 le-5

Batch Size 8 4

Epochs 3 1

Optimizer AdamW AdamW
Gradient Clipping 1.0 1.0

Learning Rate Scheduler Linear Linear
Warmup Steps 100 100

KL Coefficient 0.1 0.01

LoRA Rank 32 32

LoRA « 32 32

U SCALABLE OFFLINE ALGORITHM WITH FUNCTION APPROXIMATION

U.1 OFFLINE PAIRWISE COMPARISON DATASET

In practical applications of preference learning, the preference function often depends on additional
context or state, denoted by x € X. For instance, in LLMs, x represents the input prompt or conver-
sational history that provides the specific context for generating a preferred response. Accordingly,
we define the context-dependent preference function as P(- = - | -) : Y2 x X — [0, 1], which is
unknown and must be estimated from empirical data. We consider an offline dataset of pairwise
comparisons D = {(x;,y",y!)}} |, where 3 is preferred over y! under context x;. Each query is
assumed to be drawn i.i.d. from a joint distribution of p(z) and 74(y | x), and labeled according to
the preference function P. Our goal is to use this offline dataset to learn a policy 7 : X — A(Y)

following the framework introduced in the previous sections.

U.2 TwoO-PHASE OFFLINE PREFERENCE LEARNING ALGORITHM

We approximate a softmax policy proposed in Section 4.3}
u(y | ) exp(Buly | ))
> yey uly | z)exp(Buly | x))

Specifically, we use a two-phase algorithm that first estimates © and then estimates 7 based on w.

m(y | z) = , where u(y|z):= géllr} Ply>=z|z). (49

Phase 1: Estimating u. To estimate u, we first train the selector model 1 using the following loss
function, the offline dataset D, and the parameterized function class F,:

i e ! iu(yé | i, y) (50)
{i € arg min — D L DI 2
;U'e}-u N i=1 ﬂ-d(yf | xl)

Then, the estimated @ can be obtained from @(y | x) = Y. v, P(y = 2z | 2)j(z | z,y), where P
denotes the empirical estimate of the preference function. The derivation of the loss function and the
relationship between 4 and u are provided in Appendix [V]

Phase 2: Estimating 7. Let 7z be the normalized softmax policy constructed with % follow-
ing equation In the second phase, the policy model is trained by minimizing the distance to 7
over a function class F:

# € argminE, ., [L”(w(- | 2), 75 ( | x))}. (51)
TEFx
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Here, L™ denotes a divergence or distance metric between two policies. In our experiments, we
employ the KL divergence for L™. Specifically, substituting the KL divergence into L™ from
equation[51] the loss function becomes

Eonp [DKL (W (- [z)

Y Pzl a)iz| ww))

ze)y (52)
= E@,y)~(p,7a) ™y | 2) log iy 1) '
P  maly Ta) 7 Yy Ply - 2 | @iz | 2,9)

Using the offline dataset and function approximation, we obtain

A : m(y" | z) m(y" | x)
€ argmin B¢, yw y1yp — log -
reF, V) [Wd(y [2) 7 (3 + 5aly [ o, yh) exp (5 + Saly” | z,yY))
LUAEIR m(y' | z) ]
ma(y' [ @) (5 = s |z, yv)) exp (5 — SAly |, yt)

U.3 ADDITIONAL TECHNIQUES FOR LLM FINE-TUNING

Regularization via reference policy. Fine-tuning large language models (LLMs) requires main-
taining alignment with a reference policy, typically the pretrained model. To prevent excessive drift,
we incorporate KL-divergence regularization terms into the training objectives for both the selector
model 1 and the policy model 7. Specifically, we add the following regularization terms to the loss
functions in Phase 1 and Phase 2:
mal- 1)) |
(54)

BuB(z,y)~(pma) {DKL (u(~ | 2,y)
Training with single model. To reduce computational cost, we propose to train both y and 7 using
a single model. This is enabled by encoding structural differences through specialized input formats.
Specifically, 7( - | x) selects preferred responses given a prompt, while u( - | x, y) selects responses
given a prompt and a candidate response. By distinguishing these cases with separator tokens, we
achieve performance comparable to training separate models, while improving memory usage and
training efficiency.

il [20)) ] BoBany [ Dr (-1 2)

V  DERIVATION OF THE LOSS FUNCTION IN PHASE 1

Step 1: LP reformulation. Recall the definition u(y | z) := min,ey\ (43 P(y = 2 | 2). Each
u(y | ) can be rewritten as

u(y | #) =Y Ply>=z|2)u (2| z,y), (55)
zey

where a selector distribution /*(- | x,y) € A(Y) places all its mass on the minimizer of P(y >
- | ). Such p* and the corresponding pointwise minimum can be obtained via the following linear
programming (LP):

u T) = min Ply>=z|x)u(z|x,y). (56)
(y | =) #(_‘z’y)eA(y)Z;] (y ==z [ @)z | z,y)

Step 2: Aggregation of pointwise LPs. Assume the data-generating distribution p(-) and 74( - | z)
have full support. Multiplying and dividing equation by mq(z | =) and then taking the expectation
over all z € ) gives

Ply = z | z)u(z | z,y)

U )= min E,or( . 57
W)= eBa B d("”)[ ma(z | x) oD
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Next, we aggregate these pointwise LPs by multiplying each pointwise objective by p(z)mq(y | z)
and summing over all (z,y) € X x ). We also add the symmetrical term with swapped y and z,
which does not change the optimal solution:

Py =z | 2)u(z | z,y) n Pz =y |x)uly |z, 2)

. (58
oz | @) raly | @) ©8)

pre argmin By ) (pmama) [
X XY= AY)

Step 3: Empirical counterpart. Given an offline preference dataset D, we approximate the expec-

tation in equation [58using its empirical counterpart and restrict the function class to a parameterized

family F:

Lo | i yd)
{i € arg min — A (59)
BN 2l )

Given the estimate /i, we can estimate 4 using equation |56 with the estimated preference function P:

N(z.y.2) if N(z,y,2) + N(z,2,y) >0,

P(y — 2z | x) = {i\/(m,y,z)-&-N(x,z,y) (60)

2, otherwise,

where N(z,y, 2) := |{i € [N] | (zs,v¥,v}) = (z,9,2)}].
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