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Abstract

Many physical processes can be expressed through partial differential equations (PDEs).
Real-world measurements of such processes are often collected at irregularly distributed
points in space, which can be effectively represented as graphs; however, there are cur-
rently only a few existing datasets. Our work aims to make advancements in the field
of PDE-modeling accessible to the temporal graph machine learning community, while
addressing the data scarcity problem, by creating and utilizing datasets based on PDEs.
In this work, we create and use synthetic datasets based on PDEs to support spatio-
temporal graph modeling in machine learning for different applications. More precisely,
we showcase three equations to model different types of disasters and hazards in the
fields of epidemiology, atmospheric particles, and tsunami waves. Further, we show how
such created datasets can be used by benchmarking several machine learning models on
the epidemiological dataset. Additionally, we show how pre-training on this dataset can
improve model performance on real-world epidemiological data. The presented methods
enable others to create datasets and benchmarks customized to individual requirements.
The source code for our methodology and the three created datasets can be found on
github.com/Jostarndt/Synthetic Datasets for Temporal Graphs.

Keywords: Graph, Spatio-Temporal, PDE, Epidemiology

©2025 Arndt, Isil, Detzel, Samek, Ma.

https://openreview.net/forum?id=EguDBMechn
https://github.com/Jostarndt/Synthetic_Datasets_for_Temporal_Graphs


Arndt, Isil, Detzel, Samek and Ma

1 Introduction

Partial differential equations (PDEs) describe numerous scientific processes, and many of
these processes are of spatio-temporal nature, for instance fluid dynamics, chemical dif-
fusion, financial mathematics, climate modeling, biomechanics, or seismology. Over the
past centuries, considerable research efforts have been dedicated to advancing mathemati-
cal modeling with PDEs. Although there exists a significant amount of work on PDEs and
their solutions (Evans, 2022), the practical implementation of a PDE solver remains a de-
manding task. Prominent ML research focuses on the study of PDEs itself, such as Raissi
et al. (2019); Li et al. (2021). To support this research, some public datasets for machine
learning (ML) on PDE-generate data already exists (Takamoto et al., 2022), although they
have some limitations that we will address later.

Graphs are a powerful tool for describing complex geometric structures in real-world
scenarios, such as surfaces, volumes, or sensor networks. Recently, there have been notable
developments in specifically spatio-temporal graph modeling within the field of machine
learning (Chen and Eldardiry, 2024). One big obstacle for benchmarking, comparing, and
for further developments, is the availability of spatio-temporal data. Only few datasets
for spatio-temporal graph machine learning can be found in literature, such as traffic data
from the California PeMS system (Li et al., 2018; Yu et al., 2018; Cini et al., 2023) in
different settings, or COVID-19 data Gao and Ribeiro (2022). For some benchmarking
applications Huang et al. (2023); Gastinger et al. (2024) offer different datasets of interest,
Rozemberczki et al. (2021) offers access to some datasets with varying size, scope and
quality. Although the existent datasets are valuable for specific tasks, they have limitations
in quality (high noise), scope (few samples), application (topic), accessibility (unpublished),
and adaptability (high individual pre-processing effort).

Thus, we identify a lack of larger high-quality datasets for different tasks. These limi-
tations hinder the development and comprehensive benchmarking of spatio-temporal graph
architectures for specific applications and diverse tasks. Therefore, large and more diverse
high-quality datasets that are freely accessible are crucial.

To overcome these limitations, synthetic data is a promising ressource. The utilization
of synthetic data allows the fast creation and adaption of datasets, while avoiding barri-
ers regarding privacy or data availability. Furthermore, synthetic data is less error-prone
regarding measurement flaws and easier to control, as all involved dynamics are known in
contrast to real-world data. Some examples of (partially) synthetic datasets that find ap-
plication in machine learning are extensively used weather datasets (Muñoz Sabater et al.,
2021), turbulence data (Li et al., 2008), PDE data (Takamoto et al., 2022) or ground motion
data (Lehmann et al., 2024).

This paper builds on the idea to utilize synthetic data and makes the significant develop-
ments from past PDE research accessible to the spatio-temporal graph learning community.
We outline a method for generating synthetic datasets based on PDEs, and provide three
spatio-temporal datasets ready to use, alongside with code. To this end, we solve three
exemplary PDEs related to different types of disaster, each describing the movement of
entities over space and time. We solve these PDEs on an irregular domain, and evaluate
them on irregularly distributed points on this domain, as this is the realistic scenario for the
presented applications. Subsequently, we form time-dependent graphs from the obtained
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values in combination with the underlying spatial structure, to which we grant researchers
direct access. To demonstrate the utility of our synthetic data, we lastly present a bench-
marking of prominent spatio-temporal prediction models on the epidemiological data. We
further underline the impact and importance of our synthetic data by successfully transfer-
ring knowledge onto real-world data.

Our key contributions can be summarized as follows:

• This paper presents three datasets, which constitute the first collection of PDE-based
spatio-temporal datasets specifically designed for graphs.

• Through the detailed publication of code along with our method, we strongly encour-
age other practitioners to adapt our method. To ensure flexibility regarding sampling
rate, domain (region), graph, dynamic, boundary condition, and PDE, we utilize the
finite element method (FEM). We facilitate other temporal graph ML researchers to
integrate PDE knowledge into their specific field and application.

• To our knowledge, our work provides the first numerical solution of this (or similar)
epidemiological PDE, connecting the well-known SIR-ODE with spatial diffusion.

• To our knowledge, the epidemiological dataset constitutes the largest high-quality
public epidemiological spatio-temporal graph dataset of this kind. This dataset al-
lows us to offer new reproducible benchmarking results and give other practitioners
the opportunity to develop enhanced models on our publicly available high-quality
datasets, generated through a controlled setting.

• First pre-training of epidemiological spatio-temporal graph models on synthetic data
and transfer-learning onto real-world data. This marks a significant step towards
foundational modeling. Performance increase of up to 45% in our experimental setup.

Our work differs from the aforementioned (Takamoto et al., 2022) not only through
the selected PDEs, but also by the fundamental technique, the FEM and adaptability.
Specifically, the FEM allows for complex domains with complex boundary conditions. Also,
our overall outcome is a temporal graph, not a grid. Further, we notably emphasize the
interchangeability of the (complex) domain, dynamics, or underlying equation throughout
our published code and method. Our work facilitates the adaption of our code for individual
needs and applications.

2 Temporal PDEs to Simulate Spatio-Temporal Movement

To simulate propagations through space and time through three exemplary PDEs, we first
generally outline the numerical approximation of the solution. In Section 3, we describe the
generations of the datasets more explicitly.

Overview of Our PDEs The first equation we employ is inspired by the structure
of real-world epidemiological data (e.g. COVID-19 incidences), which suggests the use of
spatio-temporal graph machine learning (Nguyen et al., 2023; Gao and Ribeiro, 2022). We
create a comparably large graph dataset containing long records of infectious data with
different epidemiological settings but consistent measurements over time, absence of noise,
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and unconstrained accessibility to all determining information. This or any similar epidemi-
ological PDE, based on the SIR-ODE (Kermack and McKendrick, 1991), has never been
solved numerically. Especially, there are no accessible simulations for other practitioners.
Furthermore, we want to enable epidemiological researchers, to use individual spatial do-
mains (e.g. country) by adapting our published code to specifically train and test models
on other geometries. Additionally, a broad collection of similar PDEs with slight adapta-
tions can easily extend the modeling by features such as vaccination status (Schlickeiser
and Kröger, 2021), exposed (He et al., 2020), or disease vectors (Collins and Duffy, 2022).
Naturally, similar adaptations can also be applied to the following two equations.

The second equation, an advection-diffusion (or convection-diffusion) equation, mod-
els the movement of particles (e.g. dust, nuclear fallout, smoke) or other quantities in the
atmosphere. The arrangement as a spatio-temporal graph as the underlying datatype is
canonical, as real-life measurements of those quantities with a sensor network likewise have
an irregular geometry. Besides a further benchmarking of temporal graphs, the creation of
such a dataset could be used to pre-train either risk-prediction models or to pre-train or
test specific parts of ML-based weather models such as ClimODE (Verma et al., 2024).

As a third PDE, we choose the wave equation, which is very common in physics and
describes, for example, water, sound, or electromagnetism. In our case, we model a tsunami
wave approaching some coastline, where an interesting task could be to predict the next
few steps of the wave.

General setting We solve the PDEs on (different) 2D-domains Ω ⊂ R2 for the three
proposed scenarios. The PDEs are time-dependent on an interval [0, T ], and their solutions
ν are of dimension d ∈ {1, 2}, depending on the equation. Generally, our PDEs have the
form ∂ν

∂t = F (ν,∇ν,∆ν) with some additional boundary conditions. F is some (general)
functional which will be specified later, ∆ the Laplace operator and ∇ the Gradient, both
only along the spatial dimensions.

The solution ν : [0, T ]×Ω → Rd will be evaluated on a set of points within the domain Ω.
These points mimic geographical regions and their administrative units, or any unevenly
distributed network of sensors. We equip this set of points with adjacencies and inverse
distances to create a spatio-temporal graph dataset.

Our method is applicable to an even broader class of PDEs than those described here
(e.g., for d > 2). It not only facilitates the exchange and extension of the domain or
parameters, but can also be seamlessly extended to PDEs for which the FEM is effective,
such as elasticity-, (Navier-)Stokes-, Euler-, Schrödinger-, and Burgers equations, for which
numerous implementations are available.

Numerical solution sketch In the following paragraphs, we describe the numerical
approximation of different time-dependent PDEs. This part can be skipped by a reader
looking for a spatio-temporal graph dataset but does not want to bother with the details
of its generation. However, to understand and adapt the published code and the data
generation process, a short sketch of the methods is inevitable to us and important to a
reader looking to expand our set of equations and parameters. Note, that although the
outlined methodology can be applied to countless processes and PDEs, the complexity of
the synthesized data is limited by the amount and complexity of given dynamics.
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We solve the equations iteratively in the time domain and solve the occurring PDE
for each time-step with the FEM, this order is called Rothe method. We therefore first
discretize alongside the temporal dimension with an Euler scheme, i.e. approximate the
time-derivative with a difference quotient. We use the Crank-Nicolson method, which is a
mixture of the implicit and explicit Euler scheme for time-stepping, which is known for good
stability and accuracy with still only moderate implementation complexity. With θ = 0.5
(Crank-Nicolson), a small temporal Euler stepsize h, and ν = ν(x, t) and ν+ = ν(x, t + h)
the approximation has the form

ν+ − ν

h
= θF (ν,∇ν,∆ν) + (1− θ)F (ν+,∇ν+,∆ν+). (1)

Since for the timestep t the solution ν is known, we thereby obtain a PDE that is not
time-dependent anymore. We solve this PDE for ν+ with the FEM, which is the most
flexible, reliable, and therefore standard numerical approach on PDEs. We only give a
sketch of the FEM here, as details can be found in numerical textbooks for PDEs. The
FEM discretizes the domain Ω into a mesh, on which a set of test functions ϕ as well as
trial functions ν̃ (approximation of the solution ν) are defined. Throughout this work, we
use first-order (linear) Lagrange Elements as test and trial functions. To obtain the so-
called weak formulation, we rearrange the PDE into an implicit and an explicit part, then
multiply it from the left with the test functions and integrate over the full domain. This
forms an inner product, which allows an underlying Sobolev space to have the structure of
a Hilbert space. We will not dive deeper into this, but use the notation of an inner product
⟨ϕ, ν⟩ =

∫
Ω ϕν dx for a better readability.

Replacing additionally ν, ν+ with the corresponding trial functions ν̃, ν̃+, we obtain the
formulation:

⟨ϕ, ν̃+⟩ − h(1− θ)⟨ϕ, F (ν̃+,∇ν̃+,∆ν̃+)⟩ = ⟨ϕ, ν̃⟩+ hθ⟨ϕ, F (ν̃,∇ν̃,∆ν̃)⟩.

The left-hand-side (implicit side) can be written as A(ν̃+), the right hand (explicit side) as
b. We then seek to solve A(ν̃+) = b for (the parameters of) ν̃+. Note, that technically ϕ is
a vector of test functions, but we wanted to keep the notation simple.

One often employed identity for compact ϕ is ⟨ϕ,∆ν⟩ = −⟨∇ϕ,∇ν⟩ due to integration by
parts, which we apply when Dirichlet or zero-flow Neumann boundary values are imposed.
Note that we omit plenty of information on which space this inner product is defined and
details of such transformations for the sake of simplicity, but again refer to any textbook
covering the FEM.

Further, we want to mention the most prominent downside of the FEM, which is its
poor scaling behavior for high-dimensional problems: the number of support points usually
increases exponentially with the dimensionality of the domain (curse of dimensionality).
Additionally the matrix A grows quadratically (but is extremely sparse) with the amount
of support points. However, fine meshes are generally advantageous for obtaining accu-
rate solutions. To address these computational challenges, various techniques have been
developed, including adaptive mesh refinement, algorithms for sparse matrices, matrix-free
solvers, and specialized computational tricks for individual PDEs. While these considera-
tions are essential, an in-depth discussion of them falls outside the scope of our paper, as
they are thoroughly addressed in textbooks and continue to be an active area of research.

5



Arndt, Isil, Detzel, Samek and Ma

2.1 SI-Diffusion Equation

To model the spatio-temporal spread of infectious diseases, we consider the following PDE
from Murray (2003)

∂S

∂t
= −rIS +D∆S,

∂I

∂t
= rIS − αI +D∆I,

(2)

where ∆ denotes the Laplace operator and the functions S(x, t), I(x, t) describe the densities
of the susceptible and infected population over space and time.

The functions α(x, t), r(x, t), and D(x, t) in the equation represent dynamics rising from
pathogens and the population. More precisely, r describes the transmission rate of the
disease, α describes the duration of the disease, and D describes the speed of the diffusion,
i.e. movement of the population. Note that by setting D = 0 one receives the underlying
SI compartment ODE, while setting r = α = 0 leads to two time-dependent heat equations.
Many adaptions of the underlying SI compartment ODE (He et al., 2020; Collins and Duffy,
2022) can easily be integrated into our framework.

As boundary condition, we chose mixed boundary conditions: usually, we impose zero-
flow Neumann boundary conditions. However, to start a wave of infections, we impose
small positive Dirichlet boundary conditions for a small part of the boundary for a limited
time. Since this PDE is a system of two equations, the weak formulation utilizes two test
functions ϕ1, ϕ2 from the same set of functions. The left-hand-side of the weak formulation,
named A above, here takes the form

A(S̃+, Ĩ+) = ⟨ϕ1, S̃+⟩+ (1− θ)hk⟨ϕ1, rS̃+Ĩ+⟩+ (1− θ)hk⟨∇ϕ1,+D∇S+⟩
+ ⟨ϕ2, Ĩ+⟩ − (1− θ)hk⟨ϕ2, rS̃+Ĩ+ − αĨ+⟩+ (1− θ)hk⟨∇ϕ2, D∇Ĩ+⟩

while the right-hand-side b is defined by the following

b = ⟨ϕ1, S̃⟩ − θhk⟨ϕ1, rS̃Ĩ⟩ − θhk⟨∇ϕ1,+D∇S̃⟩
+ ⟨ϕ2, Ĩ⟩+ θhk⟨ϕ2, rS̃Ĩ − αĨ⟩ − θhk⟨∇ϕ2, D∇Ĩ⟩.

Due to the product S̃+, Ĩ+, the equation A(S̃+, Ĩ+) = b depends nonlinearly on (the param-
eters of) the trial functions S̃+, Ĩ+. To solve this equation for (the parameters of) S̃+, Ĩ+,
the Newton method is a standard choice, which we used. The Newton method solves this
system iteratively, i.e. starts with S̃+,1, Ĩ+,1 and calculates S̃+,2, Ĩ+,2 until a convergence cri-
terion is reached. The updates δS , δI to S̃+,i, Ĩ+,i are calculated as the solution of the linear
system JA(S̃+,i, Ĩ+,i)δ = −A(S̃+,i, Ĩ+,i)+b, where JA is the Jacobian matrix of A(S̃+,i, Ĩ+,i).
The differentiation to set up JA is handled automatically.

2.2 Advection-Diffusion Equation

The Advection-diffusion equation takes the form

∂u

∂t
= −β · ∇u+ α∆u+ s, (3)
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with u = u(x, t) ∈ R being a measurement of the quantities density and the vector field
β = β(x, t) ∈ R2 being the velocity field of e.g. wind over our domain. The diffusion
coefficient α = α(x, t) controls the diffusive spread of u and s = s(x, t) is a source term,
with s+ = s(x, t+ h).

As boundary condition, we assume Dirichlet boundary conditions u|∂Ω = 0.

The explicit part, using integration by parts, takes the form:

b = ⟨ϕ, ũ⟩+ hθ⟨ϕ, β · ∇ũ⟩+ hθα⟨∇ϕ,∇ũ⟩ − hθ⟨ϕ, s⟩ − h(1− θ)⟨ϕ, s+⟩

and the implicit part

A(ũ+) = ⟨ϕ, ũ+⟩ − h(1− θ)⟨ϕ, β · ∇ũ+⟩ − h(1− θ)α⟨∇ϕ,∇ũ+⟩

that is linear in (the parameters of) ũ+, such that we can solve a linear system

Aũ+ = b.

2.3 Wave Equation

The wave equation is a prototype time-dependent PDE, in which we added a damping term
to damp simulated waves over time. The wave equation we will use takes the following form

∂2u

∂t2
+ b

∂u

∂t
= ∆u, u(x, 0) = 0. (4)

On the boundary of the domain we impose Robin boundary conditions αu + βη · ∇u = 0,
but with a local initial disturbance to start a wave that mimics an initial tsunami-wave.
Due to the second derivative in the time domain, the equation doesn’t suit our opening
definition, but can easily be extended into a suitable system of PDEs:

∂u

∂t
= v,

∂v

∂t
+ b

∂u

∂t
= ∆u.

By replacing the time-derivatives, using the trial functions ũ, ṽ in the first equation, we
obtain an implicit and explicit side again

(1− (1− θ)2h2∆+ h(1−Θ)b)ũ+ = (1 + (1−Θ)hb+ θ(1− θ)h2∆ũ+ hṽ

ṽ+ = h∆((1− θ)ũ+ + θũ) + bũ− bũ+ + ṽ+,

from which the weak formulation can be derived easily. We solve the first equation
(linear) for (the parameters of) ũ+, and receive (the parameters of) ṽ+ straightforward
from the second equation.1

1. The methodology we use here for an undamped (b = 0) wave equation, as
well as similar numerical code, can be found in this tutorial of the used library
https://www.dealii.org/current/doxygen/deal.II/step 23.html. We made only smaller adaptions
to the code.
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3 Dataset Creation

To compute the solutions of the three presented PDEs, we generate a mesh of the domain
Ω with the meshing software gmsh (Geuzaine and Remacle, 2009). The implementation of
the FEM is done with deal.ii (Arndt et al., 2023), which is written in C++ and abstracted
the full implementation around the FEM, but this can be done with any other FEM library.

As an underlying domain Ω for both the epidemiological PDE and the advection-
diffusion PDE, we use the shape of Germany. We evaluate the solutions ν(x, t) of the
PDEs (spatially) on a set of points that have the coordinates of administrative regions in
Germany: 400 NUTS-3 regions. To be more precise we will use the centers of the re-
gions: V = (xj)j=1,...,400 ⊂ Ω. The intuition is the reporting of COVID-19 cases in the
same spatial granularity. The FEM allows us the flexible evaluation of ν everywhere on
the domain. The temporal discretization with the Euler method allows the evaluation of
ν(x, t) on all time-points t = t0 + ih = ih (where h is the Euler stepsize as introduced
above), which we shortly refer to as timestep i. Thus, for each time-step i we can evaluate
ν(x, t) at every point xj and assign a feature vector to every such region, leading to a tensor
Xi ∈ R400×d. For every location xj this tensor contains an entry, which is the evaluation of
the PDE-solution, i.e. the entry of Xi at position j is ν(xj , ih) ∈ Rd. To equip this data
with geographical information, we create a set of edges E, containing the edge (xi, xj) (and
(xj , xi) since its undirected), iff the two regions xi, xj directly neighbour each other (are
adjacent). We further weight these edges with the inverse of the distances of the centers of
the regions in metres. More details on this can be found in the appendix A. We thus have
created a graph

G = ((V,E,Xi))i=1,...,N

with 400 = |V | nodes, 2088 = |E| edges and edge features. The mesh for the FEM com-
putation and the resulting graph can be seen in Figure 1. Note, that through the use of
the FEM our method is not limited to fixed graphs: since the values of Xi are created by
evaluating the solution ν(x, t) on the points of V , no changes to the PDE solver needs to
be made, to evaluate the solution on different locations every time-step, e.g. make V and
thus E time-dependent and create a graph ((Vi, Ei, Xi))i=1,...N . However, to correspond
to real world data, we chose a fix V . On our GitHub we provide further explanations on
how to increase and change the size of the graph V with minimal effort. Note that no re-
computation of ν(x, t) is needed to create larger graphs, and the evaluation of ν can easily
be parallelized, thus our method is suitable to create also very large graphs.
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Figure 1: The mesh on the domain for the SI-diffusion equation and the Advection-diffusion
equation (left). Independent of this mesh, we build a Graph using administrative regions
(NUTS-3 ), their adjacencies, and the distances of the centers (center). Note, that we
used the underlying geo-coordinates to plot this graph (center), while the later used and
constructed graph has no trivial unique representation (right).

For the wave equation, the domain Ω is an imaginary (similar to the German) coastline,
and the set of points on which we evaluate the solution of the wave equation are chosen
randomly. Their respective adjacencies are selected with a Delaunay triangulation, and
equipped with inverse distances to form a graph G with 325 = |V | nodes and 1858 = |E|
edges. The mesh and the resulting graph can be seen in Figure 2.

Figure 2: The mesh on the domain for the Wave Equation. On the same domain we generate
a set of 325 random points and generate a Delaunay triangulation.

SI-diffusion equation We set the parameter α = 0.22, the time-weighting parameter
Θ = 0.5 effectively resulting in a Crank-Nicolson scheme for accuracy and stability, the
Euler stepsize hk = 1 (we fixed this first and only then determined the time-dependent
dynamics), and a Newton stepsize η = 0.3 for stability and convergence. For other PDEs
and parameters other choices have to be determined, that cannot be discussed in the scope
of this paper, but are subject to the topic of numerical analysis. The underlying domain Ω
can be seen in Figure 1.

We generated 25 scenarios, each with a length of 364 time-steps, resembling an infection
scenario over approximately a year. The parameters were chosen heuristically according
to their epidemiological interpretation (e.g. disease length around 4.5 days). For every
simulation we varied the parameters r,D, they can be found in the supplementary material
in A and Table 3, leading to a dataset of shape [9100, 400, 2] for [time-steps, nodes, features]
in 5:27 hours (wall clock) of computation. Note, that two features exist due to 2 = d =
|{S, I}|.
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Figure 3: Plot of one scenario of an infection from the diffusion SI-Equation. The Infection
wave propagates over the nodes.

Advection-diffusion equation For the Advection-diffusion equation, we simulated 54
different parameters right after one another, each with a length of 80 time-steps. Through-
out the simulation, we keep α = −1 constant and also change β(x, t) only every 80 time-
steps. For the source term s(x, t) we define a small constant support Ωs(x,t) ⊂ Ω for s, such
that

s(x, t) =

{
S(t) x ∈ Ωs(x,t)

0 x /∈ Ωs(x,t)

where Ωs(x,t) is a rectangle within the domain. The choice of h, T, S(t), β(x, t),Ωs(x,t) and
further details can be found in the supplementary material A.2 Table 4, resulting in a
dataset of shape [4320, 400, 1], for [time-steps, nodes, features] in 0:22h. A spatio-temporal
visualization can be found in 4. All selected parameters for this PDE were chosen to generate
meaningful and interesting patterns in this visualization method with reasonable sampling
rates and frequencies for human eyes and possible ML algorithms.

Figure 4: Plot of some advection-field on the left side and an exemplary plot of the solution
of the advection-diffusion equation over 4 time-steps.

Wave equation For the wave equation, we simulated one consecutive simulation in which
we simulated two tsunami waves from different starting points with an initial amplitude of
1. We set T = 2700000 and h = 100000/64, resulting in a dataset of shape [1858, 325, 1], for
[time-steps, nodes, features] in 0:20h. These parameters were again chosen to have reason-
able sampling rates on this comparably large domain, and generate visuably confirmable
patterns. Details can be found in the appendix A.3.
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Figure 5: Plot of one scenario of an infection from the Wave-equation.

Real-world epidemiological datasets Additionally to the synthetic datasets we cre-
ated above, we want to compare the epidemiological dataset to real-world data. To do
we create three real world datasets: German COVID-19, German Influenza, and Brazilian
COVID-19. The numbers of infected people were taken from public sources. The German
numbers were connected with the graph G from the SI-diffusion equation, for the Brazilian
data we created a new graph G analogously by using geographic data of the regions. Details
can be found in the appendix, section A.4.

4 Application of Synthetic Data

To showcase the utility of our created datasets, we conduct several machine learning ex-
periments in this section. We first define several interesting (spatio-) temporal machine
learning architectures in section 4.1. In section 4.2 we define three different benchmarking
scenarios, to compare the performance of the previously defined machine learning models.
To demonstrate that the usage of our data exceeds pure theoretical studies, we addition-
ally perform experiments of transfer-learning from our synthetic data onto three real-world
datasets from epidemiology in section 4.3.

4.1 (Spatio-) Temporal Models

We want to test solely data-centric models and do not take any knowledge of the underlying
PDE into account, such as its structure or parameters, as done by machine learning-based
approaches to solve PDEs (Li et al., 2021; Raissi et al., 2019).

We test both temporal and spatio-temporal models. More specific details can be found in
the supplementary material B and the published material online. The presented examples
naturally do not take all possible models into account, but offer a good overview. In
particular models specialized for traffic data such as GraphWaveNet (Wu et al., 2019) or
STG-ODE (Fang et al., 2021) are not taken into account. Besides their specialization in
traffic data, they have another drawback as they only operate on a single predefined graph,
embedded in the architecture of the models. This makes transfer-learning or generalization
onto unseen graphs (or domains) impossible, which will be carried out in section 4.3.

Repetition The repetition model is a naive baseline that simply repeats the last given
value.

RNN Recurrent-Neural Networks based on GRUs (Cho et al., 2014) have proven to
be successful for sequence prediction. During training, teacher forcing is applied. During
validation forecasts are produced autoregressively.

TST Time Series Transformer (TST) is a Transformer-based (Vaswani et al., 2023)
architecture designed for temporal forecasting. It utilizes encoder and decoder layers to
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capture temporal dependencies, and a positional encoding depending purely on the time-
step. During training, teacher forcing is applied. During validation forecasts are produced
autoregressively.

MP-PDE Given that the underlying data is based on solutions of a PDE, we also test a
model based on a Message-Passing PDE-solver (MP-PDE) from Brandstetter et al. (2022),
but will not pass any information of the underlying PDE to our model. The model consists
of an encoder, a processor, and a decoder. The encoder creates node-wise embeddings
of the context data. The processor consists of an MP-GNN, operating on a single graph
with embedded features. The decoder is a 1D convolution applied node-wise, and a special
update rule, that propagates the last value through the next time-step.

RNN-GNN-Fusion Motivated by the PDE itself, we aimed to separate the time from
the space dimensions by building an RNN (analogously to the abovementioned model) to
encode the underlying ODE and an MP-GNN to emulate the diffusion. RNN and GNN
run parallel, their outputs are combined in a convex combination. During training, teacher-
forcing is applied. During validation forecasts are produced autoregressively. In the classi-
fication of Gao and Ribeiro (2022) this would be classified as time-and-graph.

GraphEncoding We recreated a model from a recent contribution from the field of ML-
based epidemiological forecasting (Nguyen et al., 2023). This model encodes the contextual
time-steps separately in a shared GNN. The encoded graphs are then propagated through
an LSTM (Hochreiter and Schmidhuber, 1997) network. To achieve a forecast for multiple
days, this network is applied autoregressively. In the classification of Gao and Ribeiro
(2022) this would be classified as graph-then-time.

4.2 Epidemiological Benchmarking

To benchmark the presented architectures from section 4.1, we define three tasks on the
synthetic epidemiological dataset, created from the SI Eq. 2, that are motivated by fore-
casting tasks with real-world data. While we wanted to present thorough experiments on
this dataset, results with a similar experimental setup, but on the other two datasets from
Eq. 3 and Eq. 4, can be found in the appendix D.1.

We will proceed with the epidemiological dataset which we split 76/12/12 along the
time axis into a train, test and validation dataset. The splits are multiples of four, since
4% of the dataset are exactly one wave/infectious scenario since we simulated 25 different
scenarios, and wanted to prevent data-leakage across scenarios and evaluate on full waves.
Further we omit any information about the Susceptible S, as this reflects real-world data.
On this data, we define the following tasks for machine learning models.

Forecasting on clean data The most straightforward task is a simple forecast of the
next n timesteps, based on the last m timesteps of inputs. We set m = n = 14. The input
data into the models therefore are 14 consecutive graphs, sharing the same adjacency, or
one graph with 14 node features: (V,E,Xi,..,i+13). The targets are simply Xi+14,..,i+27. As
a test- and training loss we use the RMSE over all samples, nodes in V , and forecasted
timesteps m.

Stability: Noise on test data Since usually there is heavy noise on real-world input
data, it is a highly relevant and interesting scenario to test the robustness of the tested
machine learning models. We adopt the experimental setting from the previous forecasting
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benchmarking, but add noise on the node features Xi,...,i+13 of the test dataset, but not
onto training data. This enables us to study some aspects of the models’ robustness in a
controlled setting. Further, this reflects real-world data, on which noise exists but is variable
due to changed measurements, or delayed reporting. We studied two different types of noise:

• We found the Gaussian noise with distribution N (0, 0.01) to be an interesting setting
for the normalized dataset. A plot of the noisy data can be found in the appendix C
Fig 9.

• We also studied noise which reflects the failure of sensors/reports and therefore the
occurrence of reported zeros instead of real values. Guided by this scenario, we replace
10% of the test data with zeros to further study the models’ robustness.

Denoising: noise on context data We seek to study the abilities of different models
to implicitly denoise input data, by both training and testing on noisy context data. We
use the same Gaussian noise and dropout noise as in the previous experiments.

We executed the benchmarking experiments each three times with different random
initializations and trained all models until convergence. Details on the setup and compu-
tational aspects can be found in supplementary material B or on our given GitHub. The
resulting RMSEs over all samples from the test datasets for the different tasks can be found
in Table 1. A visual display of the results can also be found in Fig 10, Fig 11 and Fig 12.

Table 1: Overview of Performance compared to different tasks. We take the RMSEs
over all samples and all forecasted time-steps from the validation dataset. The ± indicates
the standard deviation out of 3 training runs with random initialization respectively. We
scaled all values up by the factor 100 for readability.

Model Forecasting Stability Denoising

Gauss Dropout Gauss Dropout

Repetition 2.43± 0 2.82± 0 3.27± 0.01 2.82± 0 3.27± 0.01
MP-PDE 1.08± 0.04 2.04± 0.1 2.21± 0.1 1.34± 0.01 1.11± 0.09
RNN-GNN-Fusion 1.14± 0.16 1.30± 0.04 1.70± 0.1 1.28± 0.07 1.58± 0.16
RNN 1.77± 0.10 1.88± 0.1 2.84± 0.1 1.71± 0.16 3.2± 0.11
GraphEncoding 4.40± 1.03 4.47± 1.03 4.86± 0.84 5.67± 3.36 4.59± 0.28
TST 1.24± 0.13 2.45± 0.1 2.58± 0.1 2.37± 0.19 2.69± 0.04

The RNN-GNN Fusion model, as well as the MP-PDE, generally exhibits strong perfor-
mance, effectively leveraging the spatial aspect of the data. However, the performance of
GraphEncoding underscores that simply incorporating a GNN does not necessarily boost
performance. Therefore, meticulous benchmarking of different architectures on public
datasets like ours is critical for the advancement of spatio-temporal graph machine learning.

4.3 Transfer Learning to Real-World Data

While the benchmarking of different model architectures already provides valuable insights,
we aim to further illustrate the utility of synthetic data in developing foundational fore-
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casting models for epidemiology or pre-training models on tasks on which data is sparse.
We, therefore, seek to demonstrate whether pre-training on our provided synthetic data
can lead to improved performance on real-world tasks. To carry out this experiment we
train and evaluate the models from the previous section on three real-world epidemiological
datasets: (1) German COVID-19, (2) German Influenza, and (3) Brazilian COVID-19. The
prediction task is again a 14-day forecast based on 14 days of input. Simultaneously, we
pre-train the same models first on the synthetic dataset based on the SI-diffusion equation,
and only then shortly retrain (fine-tune) them on the respective real-world data. We then
compare the difference in performance. Note, that the Brazilian data requires an additional
knowledge transfer onto an unseen domain (i.e. Graph). Details on the real-world datasets
can be found in section A.4. The intuition behind this experiment is to test, whether the
epidemiological principles, known to humans and expressed in the form of PDEs (with only
few parameters), can be taught to machine learning models to generalize onto much more
complex real-world data. More general, this transfer-learning experiment tests if the knowl-
edge, encoded in the PDEs, can be used in data-driven applications through pre-training
and transfer learning.

The outcomes of the transfer-learning experiments were highly favorable for pre-training
on our dataset, underscoring the effectiveness and possible impact of our proposed method
of data synthetization on real-world data and problems. Even with the very limited param-
eter space of the epidemiological PDE, the models learned epidemiological principles and
rules expressed through the PDE, which led to improved performances in the real-world
scenario. This underlines the importance and potential to integrate knowledge from the
field of modeling with PDEs, to the field of temporal graph machine learning in general.
Further, this shows how our method addresses the data scarcity problem in this field and
potentially other fields. The results can be found in Table 2. A graphic representation,
containing the actual RMSEs and comparing the models against each other can be found
in the appendix, see fig. 13.

Table 2: Change in validation-loss of the models in the transfer-learning tasks in percent. A
negative number indicates improved performance through our method, i.e. by pre-training
on synthetic data as opposed to training solely on the actual data.

Model German COVID-19 German Influenza Brazilian COVID-19

MP-PDE −7.92% 6.96% −16.88%
RNN-GNN-Fusion −30.57% −19.04% −45.58%
RNN −11.34% −16.13% −42.61%
GraphEncoding −8.39% −6.91% −35.45%
TST −11.73% 4.48% −12.49%

mean −13.99% −6.13% −30.60%

Only two out of 15 experiments exhibited a slightly decreased performance, while 13
showed an increased performance, frequently to a significant extent. Especially on the
Brazilian COVID-19 dataset, some models showed an increase in performance up to 45%.
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Especially the previously already favorable RNN-GNN-Fusion model exhibits a significant
boost in performance across all datasets.

5 Access to code and data

The code and data can be found on github.com/Jostarndt/Synthetic Datasets for Temporal Graphs.

The code is published under the GNU LESSER GENERAL PUBLIC LICENSE v2.1. 2

The created datasets are published under the CC BY 4.0 license. 3 Both the code and data
will be stored on GitHub, which currently allows for indefinite hosting, ensuring long-term
availability as long as GitHub remains operational.

6 Conclusions

We demonstrated how time-dependent PDEs can be used to create synthetic data for ma-
chine learning on graphs. In particular, we have created and published three exemplary
datasets that can directly be used by other researchers for further research questions and
benchmarking. The described method and code enables researchers to create synthetic tem-
poral graph datasets for individual use cases to support the development of new machine
learning methods, in particular, for use cases where data is scarce.

We demonstrate through transfer-learning experiments that pre-training on our syn-
thetic datasets can lead to drastic improvements in real-world data performance. Despite
the underlying PDE being relatively limited in flexibility and parameters, these experiments
showed a significantly increased performance for some models in our experimental setup.
Additionally, as an application of our datasets, we have demonstrated a benchmarking of
various models, showcasing that rigorous testing of common architectures was a substantial
research gap due to a lack of sufficient data.

Our datasets enables others to build, test, and compare new models for three different
applications on large amounts high-quality data, stemming from a fully controllable simu-
lation. We believe this controllability is also advantageous in reducing human biases, since
such bias is more likely to stand-out through the compact and explicit representation of
PDEs compared to implicit biases in other data-collection processes. However, we want to
mention that theoretically our method could still transfer a bias from PDE-based modeling
to data-driven applications through a transfer learning task, potentially leading to biased
performance even after fine-tuning, although we consider this risk to be very limited.A
comparable epidemiological benchmarking with publicly accessible data is unknown to the
authors, and especially conducting such a benchmarking with a comparable amount of data
was not possible prior to our contribution. We also strongly encourage others to adapt the
code and methodology, such as geometry, parameters, scenarios, or PDEs. This not only
enables researchers to fulfill individual needs, but also enables others to explore the capacity
of machine learning models to simulate specific behaviors of PDEs.

In Summary this paper presents a method for generating individual PDE-based graph
datasets, offers three readily available synthetic datasets, provides a benchmarking, and
highlights significance through drastic improvements of performance on real-world data

2. www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
3. creativecommons.org/licenses/by/4.0/legalcode.en.
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in exemplary applications. This work lays the foundation for the development of further
datasets and research problems, inviting others to build upon our findings.

Limitations The adaptations of our code can become quite complex and more advanced
changes can require considerable coding effort and expertise. While exchanging the domain,
parameters, sampling rates, or graph structure can be done with little effort, extending or
even replacing the PDE can be a very demanding task, requiring a deeper in-depth un-
derstanding of the PDE, the FEM, and the employed FEM software. Also our method
is constrained to PDEs that can be solved through the FEM, which reaches its computa-
tional limits in high-dimensional problems quickly. While our epidemiological experiments
demonstrates significant success on real-world data, other applications may need a much
greater number of parameters to derive insights for machine learning models, which could
also be limited by computational aspects.
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Broader Impact Statement

Spatio-temporal machine learning models and PDEs have diverse applications, including
epidemiology, weather forecasting, traffic prediction, and more. Our contribution could be
used both for foundational research, as well as pre-training models in domains in which
data is sparse.

Our datasets and the creation method leverage PDEs, which are controllable and well-
structured. While our work has the potential to enhance data-driven methods for real-world
applications and contribute to foundational research, we believe the societal implications
are minimal. We aim for a significant improvement in prediction systems, and the authors
do not anticipate any negative societal impacts. Our PDEs explicitly do not discriminate
against different groups of society or individuals, thus we also see no potential of biased
assumptions.

Given the absence of identified drawbacks in our datasets and methodology, we primarily
see opportunities for other researchers to expand our datasets, further enhancing their detail
and the performance of our PDEs.
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Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
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Appendix A. Details on: Dataset Creation

The datasets were created with different parameters of the dynamics of the PDEs. We
described the key steps to numerically solve the presented equations in the main paper.
Further details on the selected parameters to extend section 3 might be valuable to under-
stand the published code and data or to develop more suitable models and will be presented
here. The following computations are executed on two AMD EPYC 7543 32-Core Proces-
sors.

The evaluation points to create the Graph G were created by finding the centers of the
German NUTS3 regions. Geographical data regarding the regions are publicly available.
4 The data was processed with the use of GeoPandas (Jordahl et al., 2020), shapely and
SciPy (Virtanen et al., 2020) by finding centers of each region, adjacent regions and their
distances. Some code regarding this can be found in a notebook on our GitHub under
/additional resources/point and mesh generation.ipynb. The underlying graph of the wave-
equation dataset was created with the same geometry files. The evaluation points were
chosen randomly, the adjacencies were created using a Delaunay triangulation.

A.1 SI-Diffusion Equation

The epidemiological dataset from the SI diffusion equation (2) was created by running 25
simulations, each with different parameters, with a length of 364 time-steps. The parameters
of the individual simulations can be found in Table 3.

4. mis.bkg.bund.de/trefferanzeige?docuuid=D38F5B40-9209-4DC0-82BC-57FB575D29D7, which is pub-
lished under the dl-de/by-2-0 license (https://www.govdata.de/dl-de/by-2-0 )
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Table 3: Experiment Ids and their respective parameters. The parameters r and
D of the published 25 simulations. ”Id.” denotes the experiment identifier. The omitted
experiment identifier corresponds to different initial values or boundary conditions and can
be found in the published code for further simulations. D was scaled in the table by the
factor 10−8 for simplicity of the notation.

Id. r D · 10−8

0 0.6 2
5 1 + (0.2sin(5e−6πx1)sin(5e−6πx2) 2
10 0.7 + (0.6sin(5e−6πx1)sin(5e−6πx2) 2
15 0.5 + (0.3sin(2e−6πx1)sin(5e−6πx2) 2
20 1.1 + (0.1sin(8e−6πx1)sin(5e−6πx2) 2

25 - 45 same as 0 - 20 (1 + 0.1 sin(5e−6πx1)sin(5e−6πx2))
50 - 70 same as 0 - 20 3
75 - 95 same as 0 - 20 0.8
100 - 120 same as 0 - 20 (1 + 0.2sin(5e−6πx1)sin(5e−6πx2))

The resulting simulations were concatenated to a single large dataset. The concatenation
is possible since Infected I in the individual converges to zero at the end of every individual
simulation. Although the concatenation is not smooth we consider the discontinuity as
negligible. A plot of the 25 different scenarios over time can be found in Figure 6.

Figure 6: The dataset generated from the SI-diffusion equation over time. There are 400
lines plotted, each representing the values of an individual node over time.
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Figure 7: The SI-diffusion dataset(top) compared against the real-world German Influenza
dataset(bottom). The step patterns in the Influenza dataset are presumably artefacts of
the data collection/management pipeline.

A.2 Advection-Diffusion equation

The dataset created from the advection-diffusion equation (3) consists of a single, connected,
but long simulation. We define 54 different but consecutive sets of dynamics of the equation,
each with a length of 80 time-steps. We set h = 109

8 , T = 54 · 1010.

The support Ωs(x,t), necessary to describe the source term s(x, t), is a rectangle [a ·
106, 1.01a · 106]× [b · 106, 1.01b · 106] on the domain.

The source term s(x, t) was specified in the main paper via S(t) which can be recov-
ered by scaling the temporal dimension S(t) = ŝ(t · 10−10) · 10−10 from Table 4 as scaled
characteristic function, i.e.

1I(t) =

{
1 t ∈ I

0 t /∈ I.
,

Where I ∈ R is some interval. Also, β(x, t), and a, b can be found in Table 4.
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Table 4: Parameters of the advection-diffusion equation The parameters of the sim-
ulation for the advection-diffusion equation.”Id.” represents 80 consecutive time-steps. The
factor 104 in the column defined β was used for simplicity of the notation. Note that in the
characteristic functions 1 also a modulus operation is used, such that after Experiment Id
6, the same dynamics as in 1 starts, i.e. the intervals were shifted to the right. Ids. 7-12
does not match first columns

Id. ŝ(t) Ωs β(x) · 104

1 −321[0,0.1] − 221[0.8,0.9] a = 3.45, b = 5.4 (−0.5, 0.5)

2 −271[1.3,1.4] same as 1 same as 1

3 −321[2.1,2.2] − 421[2.8,2.9] same as 1 same as 1

4 −281[3.3,3.4] same as 1 same as 1

5 −381[4.1,4.2] − 331[4.8,4.9] same as 1 same as 1

6 −301[5.3,5.4] same as 1 same as 1

7-12 same as 1-6 a = 3.6, b = 5.6 same as 1
13-18 same as 1-6 a = 3.45, b = 5.8 same as 1
19-36 same as 1-18 same as 1-18 (0.6, 55− x110

−6)
37-54 same as 1-18 same as 1-18 (0.5, 2.5x110

−6 − 1.375)

Similar to the source term s, we also initialize u once on the support Ωs(x,0) with

u =

{
1 x ∈ Ωs(x,0)

0 x /∈ Ωs(x,0).

A.3 Wave Equation

The wave equation (4) also consists of a single consecutive simulation. There are two waves
throughout the simulation, that start at the boundaries. The boundary conditions are
usuallyRobin boundary conditions αu + βη · ∇u = 0 three exceptions: first during the
interval 0 < t < 50000and on the boundary with x1 > 6200000, x0 < 3400000, second
during the interval 1000000 < t < 1100000, and on the boundary with x1 > 6200000, x0 >
3800000, and third during the interval 1800000 < t < 1900000, and on the boundary with
x1 > 6200000, 3500000 < x0 < 3600000.

On these intervals and regions, the Dirichlet boundary g are respectively a constant fac-
tor (0.8, 1, 0.9) for the wave’s amplitude, that can easily be adapted for further simulations.
we set b = 0.000005. The first wave can be seen in Figure 5.

A.4 Creation of Epidemiological Real-World Datasets

The three real-world datasets from section 3 are based from epidemiological data, which
can be found online.

24



Spatio-Temporal datasets on Graphs using PDEs

1. The Brazilian COVID-19 dataset has 27 nodes and 1093 time-steps spanning 2019-
2022 after concatenation and linear interpolation for daily resolution and is publicly
accessible. 5

2. German COVID-19 data can be found at github.com/robert-koch-institut/SARS-
CoV-2-Infektionen in Deutschland, with 1539 time-steps.

3. German Influenza dataset can be found at survstat.rki.de/ with our curation having
5256 time-steps.

All 3 datasets were smoothed with a 7-day moving average.

The graph describing the spatial connection of the NUTS3 regions in Germany was cre-
ated above. The Brazilian geospatial data used for constructing the graph connectivity as
described in section A can be accessed at https://www.ibge.gov.br/en/geosciences/territorial-
organization/territorial-meshes/18890-municipal-mesh.html.

A visualization can be found in Fig. 8.

(a) (b)

Figure 8: Left: Brazilian COVID dataset. Right: German COVID dataset. In both plots,
each curve represents a region, and the vertical red line indicates the training/evaluation
cutoff.

These datasets will additionally be released upon acceptance.

Appendix B. Details on: Applications of Synthetic Data

In our experiments for epidemiological applications from section 4, we trained and evaluated
the models on the data based on the SI-diffusion equation in 32-bit float representations.
The employed training epochs for the different tasks and models can be found in Table 5.

5. sisaps.saude.gov.br/painelsaps/atendimento

25

https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland
https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland
https://survstat.rki.de/
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-meshes/18890-municipal-mesh.html
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-meshes/18890-municipal-mesh.html
https://sisaps.saude.gov.br/painelsaps/atendimento


Arndt, Isil, Detzel, Samek and Ma

Table 5: Overview of Training Epochs and Computational Aspects for Different
Models. Number of parameters, their respective training times for the forecasting bench-
marking, and maximum training epochs for all experiments from section 4 for each model.
The exact training times and epochs depend on the specific training run due to random
initialization and early stopping.

Model # Params Train Time #Epochs

MP-PDE 623k 57m 30
RNN-GNN-Fusion 70k 2:29h 30

RNN 67k 1:16h 30
GraphEncoding 382k 3:42h 30

TST 344k 1:51h 50

The exact hyperparameters can be found in the implementation on GitHub in the re-
garding parameter files, exemplary under /ml/mp pde/mp pde.yml for the MP-PDE model.
The parameter files for other models can be found in their respective directories. The hy-
perparameters were chosen as optimal for each model experimentally. We trained all models
for each task with the Adam optimizer until convergence (early stopping).

Appendix C. Details on Epidemiological Benchmarking

A visualization of some data with Gaussian noise from the stability and denoising experi-
ments can be seen in Figure 9.

Figure 9: Illustration of the effect of additive noise sampled from the distribution N (0, 0.01)
from task 2 and task 4. On the left is the time series from a random graph node; on the right
is its respective noise-added time series. The plotted section is the first 1000 time-steps of
the training dataset.

A visual comparison of RMSEs for each time-step in the forecasting experiment for
different models can be seen in Fig 10
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Figure 10: The RMSE over all samples from the validation dataset. The less saturated
colors represent the standard deviation for different initializations.

A visual comparison of RMSEs for each time-step in the stability experiments for dif-
ferent models can be seen in Fig 11.

(a) Gaussian (b) Dropout

Figure 11: Plots of the RMSE of the presented models during the stability experiments
for each predicted time-step on the validation dataset. The models were trained on the
synthetic dataset, and evaluated on a synthetic dataset with: a) additive Gaussian noise,
b) dropout noise. The less saturated colors represent the standard deviation for different
initializations.

A visual comparison of RMSEs for each time-step in the denoising experiments for
different models can be seen in Fig 12.
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(a) Gaussian (b) Dropout

Figure 12: Plots of the RMSE of the presented models during the denoising experiments for
each predicted time-step on the validation dataset. The models were trained and evaluated
on the synthetic dataset. The models were trained to predict based on context data, with a)
additive Gaussian noise, b) dropout noise. The less saturated colors represent the standard
deviation for different initializations.

Appendix D. Details on Transfer Learning to Real-World Data

To have a better visual comparison between the predictive performances of the models and
the degree of their improvement in the transfer learning experiment, we created Fig. 13.

Figure 13: Plots of the RMSEs of the presented models during the transfer-learning exper-
iments. The arrows point from non-pre-trained to pre-trained models.

D.1 Additional Experiments

We repeated the Forecasting experiment from section 4, more specifically section 4.2 on
the two other created datasets, i.e. the Advection-diffusion dataset and the wave-equation
dataset.
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(a) Advection-diffusion equation dataset (b) Wave equation dataset

Figure 14: a) The RMSE for 7-timestep forecasts on the dataset generated by Advection-
Diffusion Equation. b) The RMSE for 7-timestep forecasts on the dataset generated by
Wave Equation.

Table 6: Performance Comparison Across Models for Different Datasets

Model Advection-Diffusion Equation Wave Equation

Repetition 0.0156± 0 0.0244± 0
MP-PDE 0.0115± 0.0001 0.0139± 0.0003
RNN-GNN-Fusion 0.0134± 0.0009 0.0213± 0.0013
RNN 0.0135± 0.0010 0.0234± 0.0008
GraphEncoding 0.0195± 0.0012 0.0383± 0.0101
TST 0.0117± 0.0006 0.0256± 0.0014
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Supplementary Material for DMLR (seperate PDF)

Appendix E. Our Datasheet

Our datasheet from Gebru et al. (2021) can be found below.

E.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

The Dataset was created to fill a research gap of large high-quality, flexible, easily
accessible temporal graph datasets. The first use-case in mind was benchmarking temporal
graph machine learning architectures from the field of epidemiology. We then wanted to
extend the datasets and showcase the flexibility of our method.

Who created the dataset (e.g., which team, research group) and on behalf
of which entity (e.g., company, institution, organization)?

All involved people are listed as authors of this paper. The authors are all employees of
Fraunhofer Heinrich Hertz Institute, Berlin, Germany.

Who funded the creation of the dataset? If there is an associated grant, please
provide the name of the grantor and the grant name and number.

This work was supported by the German Federal Ministry for Economic Affairs and
Climate Action (BMWK) as grant DAKI-FWS (01MK21009A).

Any other comments?

No.

E.2 Composition

What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes and edges)? Please provide a
description.

The instances represent measurement values of geographical administrative units (in
our case German NUTS3 regions) or a sensor network. Additionally, the published dataset
contains adjacencies and inverse distances of these points to form temporal graphs.

How many instances are there in total (of each type, if appropriate)? There
are three different datasets, the dataset based on the SI-diffusion equation and advection-
diffusion equation share the underlying graph, which has 400 nodes and 2088 adjacen-
cies. The dataset based on the wave equation consists of 325 nodes and 1858 adjacencies.
The dataset based on the SI-diffusion equation consists of 9100, the dataset based on the
advection-diffusion equation consists of 4320 time-steps and the dataset based on the wave
equation consists of 960 time-steps.

Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was validated/verified. If it is not representative
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of the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).

This is a synthetic dataset created from PDEs. The points on which we evaluated the
PDEs solution are part of the assumptions. Therefore this is not part of a larger dataset.
However, the dataset can be extended by additional points in the graph if necessary.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

Each value on the dataset (besides the adjacencies) represents a different measurement.
In the case of the SI-equation, the measurements describe an infectious density such as
cases per capita. The wave equation and advection-diffusion equation also represent some
measurement but are rather an abstract density or height, hence we do not give any unit
of measurement, as this is a synthetic dataset.

Is there a label or target associated with each instance? If so, please provide a
description.

This is regression data, consisting of temporal graphs. Each value in the dataset corre-
sponds to a value on a graph at a certain time and can be used as a target for regression.
Possible applications can be found in Section 4.

Is any information missing from individual instances? If so, please provide a de-
scription, explaining why this information is missing (e.g., because it was unavailable). This
does not include intentionally removed information, but might include, e.g., redacted text.

N/A as this is a synthetic dataset.

Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

Yes with the published adjacencies the relationships are made explicit.

Are there recommended data splits (e.g., training, development/validation,
testing)? If so, please provide a description of these splits, explaining the rationale behind
them.

No recommended data splits were given.

Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description.

There might be numerical errors in the synthetic datasets stemming from the process of
solving PDEs which we consider insignificant, as the FEM with known for its accuracy and
the employed spatial resolution was relatively high. In the dataset based on the SI-diffusion
equation there are 25 concatenated simulations, between these simulations there are also
small errors as the simulations only converge relatively slowly to zero but the following
simulations are initialized as zero.

Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist, and remain constant, over time;
b) are there official archival versions of the complete dataset (i.e., including the external
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resources as they existed at the time the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external resources that might apply to a
dataset consumer? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate.

The data is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor–patient confidentiality, data
that includes the content of individuals’ non-public communications)? If so,
please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, in-
sulting, threatening, or might otherwise cause anxiety? If so, please describe why.

No.

If the dataset does not relate to people, you may skip the remaining questions in this section.

E.3 Collection Process

How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for
age or language)? If the data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

The data was acquired by numerically solving PDEs.

What mechanisms or procedures were used to collect the data (e.g., hardware
apparatuses or sensors, manual human curation, software programs, software
APIs)? How were these mechanisms or procedures validated?

The data was collected using software and can be recreated by other users. During the
creation, a residual is given which can be seen as validation.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? The dataset
was not a sample from a larger dataset. However, it can be extended, as this is a synthetic
dataset by adapting the simulation process.

Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdwork-
ers paid)? All involved people are listed as authors of this paper and receive compensation
as they are employees of Fraunhofer Heinrich Hertz Institute. To list them here again: Jost
Arndt, Utku Isil, Michael Detzel, Wojciech Samek, and Jackie Ma.

Over what timeframe was the data collected? Does this timeframe match the cre-
ation timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the in-
stances was created.
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This is a synthetic dataset stemming from numerical solutions of PDEs, the timeframe
of their solution is irrelevant to their content. However, the simulations were run in 2024
but can be carried out again within a few hours.

Were any ethical review processes conducted (e.g., by an institutional review
board)? If so, please provide a description of these review processes, including the out-
comes, as well as a link or other access point to any supporting documentation.

No.

If the dataset does not relate to people, you may skip the remaining questions in this section.

E.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of miss- ing values)? If so, please provide a descrip-
tion. If not, you may skip the remaining questions in this section.

During the creation of the datasets, every time-step of the simulation resulted in a single
file. These files were concatenated to create a single file. Also to create the adjacencies
and distances between the points of evaluation, geographical data was processed once.
Additionally, no preprocessing, cleaning, or labeling was executed.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the “raw” data.

The individual files were not saved. The underlying geometries and files can be found
online.

Is the software that was used to preprocess/clean/label the data available? If
so, please provide a link or other access point.

The software to concatenate different CSV files or create adjacencies once was not re-
leased.

Any other comments? No.

E.5 Uses

Has the dataset been used for any tasks already? If so, please provide a descrip-
tion.

The epidemiological part of the dataset has been used in the exemplary tasks described
in Section 4, which previously has in parts been presented during an ICLR workshop (no
proceedings, dataset was not published). The others have not been used.

Is there a repository that links to any or all papers or systems that use the
dataset? If so, please provide a link or other access point.

No, this dataset is new.

What (other) tasks could the dataset be used for? The dataset could be used for
benchmarking, pretraining, experimenting with noise, experimenting with classification and
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many more tasks. However to extend the field of application to other PDEs, our method
has to be adapted.

Is there anything about the composition of the dataset or the way it was col-
lected and preprocessed/cleaned/labeled that might impact future uses? For
example, is there anything that a dataset consumer might need to know to avoid uses that
could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service
issues) or other risks or harms (e.g., legal risks, financial harms)? If so, please provide a
description. Is there anything a dataset consumer could do to mitigate these risks or harms?

This is a synthetic dataset, it is based on the assumptions of the PDE and its parameters.

Are there tasks for which the dataset should not be used? If so, please provide a
description.

No.

Any other comments? No.

E.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., com-
pany, institution, organization) on behalf of which the dataset was created? If
so, please provide a description.

This dataset will be made available to the public through this paper.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)?

The datasets are available as on GitHub.

When will the dataset be distributed? Right after the acceptance of this paper.

Will the dataset be distributed under a copyright or other intel- lectual property
(IP) license, and/or under applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other access point to, or otherwise reproduce,
any relevant licensing terms or ToU, as well as any fees associated with these restrictions.

The data is published under CC BY 4.0 license, the code it is synthesized under GNU
LESSER GENERAL PUBLIC LICENSE v2.1.

Have any third parties imposed IP-based or other restrictions on the data asso-
ciated with the instances? If so, please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any relevant licensing terms, as well as
any fees associated with these restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset or
to individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.

No.

Any other comments? No.
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E.7 Maintenance

Who will be supporting/hosting/maintaining the dataset? The dataset for now
is hosted on GitHub which is owned by the Microsoft Corporation.

How can the owner/curator/manager of the dataset be contacted (e.g., email
address)? Via email, which is also given on the cover page, and via GitHub.

Is there an erratum? If so, please provide a link or other access point.

There is no currently known erratum, besides insignificant numerical errata. If any are
discovered at a later point, updated versions of the dataset will be released available on the
same platforms.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to dataset consumers (e.g., mailing list, GitHub)?

There is no plan to regularly update the dataset. However, if flaws are discovered, or
additional PDEs are solved, the dataset might be expanded. As this is not planned we
cannot give any frequency of updates. The updates can be found on the same platforms as
the current datasets.

If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were the individuals in question told
that their data would be retained for a fixed period of time and then deleted)?
If so, please describe these limits and explain how they will be enforced.

N/A

Will older versions of the dataset continue to be supported/hosted/maintained?
If so, please describe how. If not, please describe how its obsolescence will be communicated
to dataset consumers.

The versioning of the datasets will be available on the platforms in their respective
versioning systems, e.g. on GitHub via the git version control. The descriptions can also
be found on the platforms

If others want to extend/augment/build on/contribute to the dataset, is there
a mechanism for them to do so? If so, please provide a description. Will these
contributions be validated/verified? If so, please describe how. If not, why not? Is there
a process for communicating/distributing these contributions to dataset consumers? If so,
please provide a description.

Contributions could be made via pull requests on GitHub and have to be reviewed
manually. Also, contributions can made manually via email.

Any other comments? No.

Appendix F. URL to our data and code

github.com/Jostarndt/Synthetic Datasets for Temporal Graphs
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Appendix G. Author Statement

I, the undersigned author, hereby confirm that I bear full responsibility for any violations of
rights, including copyright or intellectual property infringements, that may arise in connec-
tion with my submitted work. I affirm that I have obtained all necessary permissions and
licenses for any data, images, or materials included in this work. Additionally, I confirm
that I comply with the data license and acknowledge the terms under which the data is
shared and used.

Appendix H. Hosting plan:

Both code and data are published on GitHub which is owned by the Microsoft Corporation.
The code is published under the GNU LESSER GENERAL PUBLIC LICENSE v2.1.

The created datasets are published under the CC BY 4.0 license.
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