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Abstract

Motivated by the success of unsupervised neu-001
ral machine translation (UNMT), we intro-002
duce an unsupervised sign language transla-003
tion and generation network (USLNet), which004
learns from abundant single-modality (text005
and video) data without parallel sign language006
data. USLNet comprises two main compo-007
nents: single-modality reconstruction modules008
(text and video) that rebuild the input from its009
noisy version in the same modality and cross-010
modality back-translation modules (text-video-011
text and video-text-video) that reconstruct the012
input from its noisy version in the different013
modality using back-translation procedure. Un-014
like the single-modality back-translation proce-015
dure in text-based UNMT, USLNet faces the016
cross-modality discrepancy in feature represen-017
tation, in which the length and the feature di-018
mension mismatch between text and video se-019
quences. We propose a sliding window method020
to address the issues of aligning variable-length021
text with video sequences. To our knowledge,022
USLNet is the first unsupervised sign language023
translation and generation model capable of024
generating both natural language text and sign025
language video in a unified manner. Experimen-026
tal results on the BBC-Oxford Sign Language027
dataset (BOBSL) and Open-Domain American028
Sign Language dataset (OpenASL) reveal that029
USLNet achieves competitive results compared030
to supervised baseline models, indicating its031
effectiveness in sign language translation and032
generation.033

1 Introduction034

Sign language translation and generation (SLTG)035

have emerged as essential tasks in facilitating com-036

munication between the deaf and hearing communi-037

ties (Angelova et al., 2022a). Sign language trans-038

lation involves the conversion of sign language039

videos into natural language, while sign language040

generation involves the generation of sign language041

videos from natural language.042

Sign language translation and generation have 043

achieved great progress in recent years. However, 044

training an SLTG model requires a large parallel 045

video-text corpus, which is known to be ineffec- 046

tive when the training data is insufficient (Müller 047

et al., 2022a). Furthermore, manual and profes- 048

sional sign language annotations are expensive and 049

time-consuming. Inspired by the successes of un- 050

supervised machine translation (UNMT) (Artetxe 051

et al., 2018; Lample et al.) and unsupervised image- 052

to-image translation (Liu et al., 2017), we propose 053

an unsupervised model for SLTG that does not rely 054

on any parallel video-text corpus. 055

In this work, we propose an unsupervised SLTG 056

network (USLNet), which learns from abundant 057

single-modal (text and video) data without requir- 058

ing any parallel sign language data. Similar to 059

UNMT, USLNet consists of the following com- 060

ponents: the text reconstruction module (§2.1) 061

and the sign video reconstruction module (§2.2) 062

that rebuild the input from its noisy version in the 063

same modality, and cross-modality back-translation 064

modules (§2.3) that reconstruct the input from its 065

noisy version in the different modality using a back- 066

translation procedure. 067

Unlike the single-modal back-translation in text- 068

based UNMT, USLNet faces the challenge of cross- 069

modal discrepancy. Sign and spoken languages 070

exhibit distinct characteristics in terms of modal- 071

ity, structure, and expression. Sign language re- 072

lies on visual gestures, facial expressions, and 073

body movements to convey meaning, while spo- 074

ken language depends on sequences of phonemes, 075

words, and grammar rules (Chen et al., 2022). The 076

cross-modal discrepancy in feature representation 077

presents unique challenges for USLNet. 078

To address the cross-modal discrepancy in fea- 079

ture representation, a common practice is to use a 080

linear projection to map the representations from 081

the single-modal representation to a shared multi- 082

modal embedding space (Radford et al., 2021). 083
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This approach effectively bridges the gap between084

different feature representations, facilitating seam-085

less integration of information and enhancing the086

overall performance of models in handling cross-087

modal translation tasks. In this work, we propose088

a sliding window method to address the issues of089

aligning the text with video sequences.090

To the best of our knowledge, USLNet is the091

first unsupervised SLTG model capable of generat-092

ing both text and sign language video in a unified093

manner. Experimental results on the BBC-Oxford094

Sign Language dataset (BOBSL) (Albanie et al.,095

2021) and Open-Domain American Sign Language096

dataset (OpenASL) (Shi et al., 2022) reveal that097

USLNet achieves competitive results compared to098

the supervised baseline model (Sincan et al., 2023;099

Shi et al., 2022) indicating its effectiveness in sign100

language translation and generation.101

Our contributions are summarized below:102

1. USLNet is the first unsupervised model for103

sign language translation and generation, ad-104

dressing the challenges of scarce high-quality105

parallel sign language resources.106

2. USLNet serves as a comprehensive and ver-107

satile model capable of performing both sign108

language translation and generation tasks effi-109

ciently in a unified manner.110

3. USLNet demonstrates competitive perfor-111

mance compared to the previous supervised112

method on the BOBSL and OpenASL dataset.113

2 Methodology114

The proposed framework in this study consists of115

four primary components: a text encoder, a text116

decoder, a video encoder, and a video decoder. As117

illustrated in Figure 2, the USLNet framework en-118

compasses four modules: a text reconstruction119

module (gray line in Figure 2), a sign video recon-120

struction module (blue line in Figure 2), a text-121

video-text back-translation (T2V2T-BT) mod-122

ule which initially translates input text into pseudo123

video (red line in Figure 2) and subsequently back-124

translates pseudo video into text (yellow line in Fig-125

ure 2), and a video-text-video back-translation126

(V2T2V-BT) module which firstly translates input127

video into pseudo text (yellow line in Figure 2) and128

then back-translates pseudo text into video (red line129

in Figure 2). The latter two modules are consid-130

ered cross-modality back-translation modules due131

to their utilization of the back-translation proce- 132

dure. In this section, we will first describe each 133

module and then introduce the training procedure. 134

Task Definition We formally define the setting 135

of unsupervised sign language translation and gen- 136

eration. Specifically, we aim to develop a USLNet 137

that can effectively perform both sign language 138

translation and generation tasks, utilizing the avail- 139

able text corpus T = {ti}Mi=1, and sign language 140

video corpus V = {vj}Nj=1, where M and N are 141

the sizes of the text and video corpus, respectively. 142

2.1 Text Reconstruction Module 143

As shown in Figure 2, the text reconstruction 144

module uses text encoder and text decoder to 145

reconstruct the original text from its corrupted 146

version. Following the implementation by Song 147

et al. (2019), we employ masked sequence-to- 148

sequence learning to implement the text recon- 149

struction. Specifically, given an input text t = 150

(t1, . . . , tn) with n words, we randomly mask out 151

a sentence fragment tu:v where 0 < u < v < n in 152

the input text to construct the prediction sequence. 153

The text encoder ENC-TEXT is utilized to encode 154

the masked sequence t\u:v, and the text decoder 155

DEC-TEXT is employed to predict the missing parts 156

tu:v. The log-likelihood serves as the optimization 157

objective function: 158

Ltext =
1

|T |
∑
t∈T

logP (tu:v|t\u:v) (1) 159

This task facilitates the model’s learning of the 160

underlying text structure and semantics while en- 161

hancing its capacity to manage noisy or incomplete 162

inputs. 163
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Figure 1: A figure describing sign video reconstruction
module. This module is responsible for reconstructing
the original video from the downsampled discrete latent
representations of raw video data. In the quantization
stage, the module transforms the video embeddings into
discrete video tokens using a codebook. These video
tokens are then input into GPT to generate the next
visual token.
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Figure 2: The overall framework of the proposed USLNet. The gray line denotes the text reconstruction procedure.
The blue line denotes the video reconstruction procedure . The yellow line denotes the sign language translation
procedure which translates video into the corresponding text. The red line denotes the sign language generation
procedure which translates text into the corresponding video.

2.2 Sign Video Reconstruction Module164

Shown in Figure 1, the sign video reconstruc-165

tion module reconstructs the original video from166

the downsampled discrete latent representations167

of raw video data. In this work, we adopt the168

VideoGPT (Yan et al., 2021) architecture to build169

the sign video reconstruction module. VideoGPT170

consists of two sequential stages, i.e., quantization171

and video sequence generation.172

Quantization VideoGPT employs 3D convolu-173

tions and transposed convolutions along with axial174

attention for the autoencoder in VQ-VAE, learn-175

ing a downsampled set of discrete latent from raw176

pixels of the video frames.177

Specifically in the quantization stage, given an178

input video v = (v1, . . . ,vn) with n pixels, the179

video encoder encodes the input v into video em-180

beddings Ev = (Ev1 , . . . ,Evn), then Ev are dis-181

cretized by performing a nearest neighbors lookup182

in a codebook of embeddings C = {ei}Ni=1, as183

shown in Eq.(2). Next, Ev can be represented as184

discrete encodings Eq
v which consists of the nearest185

embedding indexs in codebook, shown in Eq.(3).186

Finally, video decoder learns to reconstruct the in-187

put v from the quantized encodings.188

Evi
= ek, where k = argminj ∥Evi

− ej∥2 (2)189

190

191

Ev → Eq
v = (k1, . . . ,kn),192

where ki = argminj ∥Evi − ej∥2 (3)193

The similarity between Evi
and ej serves as the 194

optimization objective function: 195

Lcodebook =
1

|C|
∑
ej∈C

∥Evi − ej∥2 (4) 196

Video Sequence Generation After quantiza- 197

tion stage, the discrete video encodings Eq
v = 198

(k1, . . . ,kn) are feed into the GPT decoder, and 199

generate the next video "word" kn+1. The sim- 200

ilarity between autoregressively generated video 201

vrecon and the original input video v serves as the 202

optimization object function: 203

Lvideo =
1

|V|
∑
v∈V

∥vrecon − v∥2 (5) 204

2.3 Cross-modality Back-Translation Module 205

The cross-modality back-translation module con- 206

sists of two tasks: text-video-text back-translation 207

(T2V2T-BT) and video-text-video back-translation 208

(V2T2V-BT). In contrast to conventional back- 209

translation (Sennrich et al., 2016), which utilizes 210

the same modality, cross-modal back-translation 211

encounters the challenge of addressing discrepan- 212

cies between different modalities (Ye et al., 2023b). 213

Inspired by the recent work Visual-Language Map- 214

per (Chen et al., 2022), we propose the implemen- 215

tation of a sliding window aligner to facilitate the 216

mapping of cross-modal representations. 217

Sliding Window Aligner The sliding window 218

aligner is proposed to address the discrepancies be- 219

tween text and video modal representations. Specif- 220
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Figure 3: Left: A figure describing slide window aligner at step one. Right: Visualization of the probability
distribution (Gaussian distribution) that satisfies the weight coefficients of words in different positions. At step one,
we compute the first token "a" of pseudo video "sequence" by slide window aligner.

ically, two primary distinctions between text and221

video representation sequences are hidden dimen-222

sions and sequence length differences. Considering223

these differences, the aligner consists of two com-224

ponents: length mapper ML and dimension map-225

per MD. Considering different back-translation di-226

rections (V2T2V and T2V2T), dimension mappers227

include text-to-video mapper MD
T→V and video-228

to-text mapper MD
V→T.229

Given the text encoder output Et, the text de-230

coder input Dt, the codebook reconstructed video231

embedding Ev and video GPT input Dv, the fea-232

ture dimension transformation procedure are as233

follows:234

Dv = ML(MD
T→V(Et)) (6)235

Dt = ML(MD
V→T(Ev)) (7)236

Aiming to solve the length discrepancy, we de-237

sign length mapper ML method, which uses the238

sliding window method. According to Sutton-239

Spence and Woll (1999), signing is particularly240

influenced by English word order when the signers241

sign while translating from a text. In the context242

of British Sign Language, presenters may adhere243

to a more English-like word order. Drawing upon244

this linguistic understanding, we propose a method245

wherein the source sequence is partitioned into dis-246

tinct windows, allowing each word in the target247

sequence to align more closely with its correspond-248

ing source window.249

Taking text-to-video for example, supposed that250

input text sequence t = (t1, . . . , tm) with m words,251

video sequence v = (v1, . . . ,vn) with n frames252

and m > n, the sliding window method, Length253

Mapper ML which can be described as follows:254

vi =
n∑

i=1

αiti (8)255

[
α1 . . . αn

]
= softmax

([
β1 . . . βn

])
(9) 256

257
258

βi ∈


(p(µ+ σ), p(µ)], i ∈ Wc

(p(µ+ 2σ), p(µ+ σ)], i ∈ Wa

(p(µ+ 3σ), p(µ+ 2σ)], i ∈ Wo


(10)

259

Show Eq.(8), every video word accept all text 260

words’ information. However, each word in the 261

target sequence aligns more closely with its cor- 262

responding window. For example, the beginning 263

video frames conveys more information about 264

the first some text words. Specifically, weight 265

coefficient [α1, α2, . . . , αn] comes from X = 266

[β1, β2, . . . , βn]. X follows a Gaussian distribu- 267

tion N(µ, σ2). The value of βi depends on where 268

token i is and is divided into three probability in- 269

tervals (p(·), p(·)], shown in Eq.(10). Wc,Wa,Wo 270

represent distinct positional intervals, namely the 271

current window, adjacent window, and other posi- 272

tions. The value of token βi exhibits an upward 273

trend as its proximity to the current window in- 274

creases. In the case where token i falls within the 275

bounds of the current window Wc, the weight coef- 276

ficient is assigned to the highest intervals. 277

For example, supposed text has 6 words 278

t = (t1, . . . , t6) and video has 4 frames v = 279

(va,vb,vc,vd). The window size can be com- 280

puted as ⌈6/4⌉ = 2. As Figure 3 has shown, 281

when generating the first video token va, it incorpo- 282

rates information from all text tokens while placing 283

the highest weight coefficient β1 on the first few 284

text words Wc. Meanwhile, the value of token βi 285

exhibits a declining trend as its proximity to the 286

current window diminishes (β1 > β2 > β3). 287

We introduce dimension mapper MD to ad- 288

dress the differences in hidden dimensions of dif- 289

ferent modalities. For example, MD
T→V(Et) trans- 290

poses text embeddings’ hidden dimensions into 291
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Figure 4: A figure describing the procedure of cross-modality back-translation. The left sub-figure depicts the Text-
Video-Text Back-Translation (T2V2T-BT) procedure, while the right sub-figure showcases the Video-Text-Video
Back-Translation (V2T2V-BT) procedure. Each sub-figure provides a step-by-step description of the respective
back-translation process. The numbers assigned next to the arrows indicate the sequential order of the steps. For
instance, "2" signifies that the step is the second step in the procedure.

video embeddings’ hidden dimensions, facilitating292

the integration and alignment of textual and visual293

information for improved multimodal tasks.294

Cross-Modality Back-Translation The T2V2T-295

BT translates a given text sequence into a sign296

video, followed by translating the generated sign297

video back into text, shown in Figure 4. The objec-298

tive of T2V2T-BT is to ensure consistency between299

the generated text and the original text while accu-300

rately translating the video back into the original301

text. This task assists the model in capturing the302

semantic and visual correspondence between text303

and video modalities and comprehending the input304

data’s underlying structure and temporal dynamics.305

The similarity between back-translated text tBT306

and the original input text t serves as the optimiza-307

tion object function:308

LT2V2T =
1

|T |
∑
t∈T

∥tBT − t∥2 (11)309

Similarly, the V2T2V-BT task requires the310

model to translate a given video into its correspond-311

ing text description, and then translate the gener-312

ated text back into a video, using the original video313

as a reference, shown in Figure 4. The similarity314

between back-translated video vBT and the origi-315

nal input video v serves as the optimization object316

function:317

LV2T2V =
1

|V|
∑
v∈V

∥vBT − v∥2 (12)318

Overall, the cross-modality back-translation319

module of our proposed USLNet aims to improve320

the model’s ability to translate between text and321

video modalities in an unsupervised manner, by 322

learning a consistent and meaningful mapping be- 323

tween the two modalities. 324

2.4 Unsupervised Joint Training 325

The training objective of USLNet combines the 326

aforementioned loss terms, enabling joint opti- 327

mization of the text and video networks. The 328

losses Ltext and Lvideo encourage the generator 329

network to reconstruct the input from its noisy ver- 330

sion within the same modality, while the losses 331

LT2V 2T and LV 2T2V encourage USLNet to recon- 332

struct the input from its noisy version across dif- 333

ferent modalities. This joint training approach em- 334

powers USLNet to not only exhibit strong single- 335

modality generation capabilities in text and video 336

but also acquire cross-modality mapping abilities. 337
338

Loverall = α1Ltext + α2Lcodebook + α3Lvideo+ 339

α4LT2V2T + α5LV2T2V (13) 340

3 Experiment 341

Dataset We conduct a comprehensive evaluation 342

of our approach using two distinct large-scale sign 343

language translation datasets. BBC-Oxford British 344

Sign Language Dataset (BOBSL) (Albanie et al., 345

2021) is the largest existing video collection of 346

British sign language (BSL). It comprises 1,004K, 347

20K, and 168K samples in the train, dev, and test 348

sets, respectively. The vocabulary size amounts 349

to 78K, with an out-of-vocabulary (OOV) size of 350

4.8K in the test set. The second dataset we uti- 351

lize is OpenASL (Shi et al., 2022), an expansive 352

American Sign Language (ASL) - English dataset 353

collected from various online video platforms. Ope- 354

nASL boasts an impressive collection of 288 hours 355
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of ASL videos across multiple domains, featuring356

over 200 signers.357

Metric The evaluation of USLNet comprises358

sign language translation (SLT) and sign language359

generation (SLG). For SLT task, we adopt the360

BLEU (Papineni et al., 2002) as the evaluation361

metric for the sign language translation. For362

SLG, we follow UNMT (Lample et al.) to utilize363

back-translation BLEU to assess the performance.364

Specifically, we back-translate the generated sign365

language video and use the input text as the refer-366

ence to compute the BLEU score. Additionally„ we367

adopt Frechet Video Distance (FVD) (Unterthiner368

et al., 2019) scores to evaluate the quality of gener-369

ated video.370

Model USLNet integrates the MASS architec-371

ture (Song et al., 2019) as the foundational back-372

bone for the text model, while the video model373

backbone is built upon VideoGPT (Yan et al., 2021).374

For the text model, we set the encoder and decoder375

layers to 6, and the hidden dimension to 1024. As376

for the video model, we build the VideoGPT with377

8 layers and 6 heads,with a hidden dimension of378

576. For the codebook, we set it with 2048 codes,379

wherein each code represents a feature tensor with380

a 256-dimensional. The training process comprises381

two stages: pre-training and unsupervised training.382

Firstly, we perform continued pre-training using383

the pre-trained MASS model (Song et al., 2019) on384

the text portion of the dataset. Then, we train the385

VideoGPT model (Yan et al., 2021) on the sign386

language video component of the dataset. Finally,387

we utilize the pre-trained MASS and VideoGPT388

models to initialize the USLNet and conduct un-389

supervised joint training, as described in Section390

2.4. We train the whole network with a learning391

rate of 1e-3. Moreover, we use greedy decoding in392

evaluation procedure.393

4 Results and Discussion394

4.1 Main Result395

Sign Language Translation In Table 1, we396

present a comparative analysis between our ap-397

proach and state-of-the-art methods for SLT on398

the BOBSL and OpenASL dataset.399

For unsupervised-based methods, given the fact400

that USLNet is the first unsupervised SLT method401

and BOBSL and openasl has no complete sentence-402

level gloss annotations datasets (Albanie et al.,403

2021; Shi et al., 2022; Lin et al., 2023), USLNet404

w/o, joint training is used to be unsupervised base- 405

line. We observe an approximate improvement 406

of 0.1 BLEU-4 on the BOBSL test set and 1.2 407

BLEU-4 on the OpenASL dataset. More results 408

and analysis can be seen in Appendix A.1. 409

To ensure a fair evaluation of USLNet’s effec- 410

tiveness, we also present results for USLNet (S) , 411

which represents USLNet in supervised settings, 412

and USLNet (U+S) , where USLNet undergoes 413

unsupervised training followed by supervised fine- 414

tuning. We compare USLNet’s performance in su- 415

pervised settings against previous state-of-the-art 416

methods. Remarkably, it is observed that USLNet 417

attains new state-of-the-art (SOTA) performance 418

on the BOBSL dataset, while also exhibiting com- 419

petitive results on the OpenASL dataset. Impor- 420

tantly, USLNet (U+S) outperforms both USLNet 421

and USLNet (S) in both the BOBSL and OpenASL 422

datasets, underscoring the effectiveness of unsuper- 423

vised training in enhancing the representation of 424

the SLT system. 425

Sign Language Generation Since there are no 426

existing results for sign language generation on the 427

BOBSL dataset, we compare the use of unsuper- 428

vised joint training in USLNet. As shown in Table 429

2, the unsupervised joint training in USLNet yields 430

improvements in terms of back-translation BLEU 431

and FVD scores, demonstrating the effectiveness 432

of USLNet. More visual results can be seen in 433

Appendix A.6. 434

source video frames

reconstructed video frames

sign language generated video frames

Figure 5: Case study of USLNet on BOBSL for sign
language generation task. Examples are from test set.

4.2 Analysis 435

In this section, we aim to gain a deeper understand- 436

ing of the improvements achieved by USLNet. To 437

achieve this, we evaluate the effectiveness of the 438

proposed novel sliding window aligner from two 439

perspectives: order consistency and slider compari- 440

son. 441
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Method
BOBSL OpenASL

Dev Test Dev Test
B@1↑ B@1↑ B@4↑ B@1↑ B@1↑ B@4↑

Supervised Approach
Transformer (Albanie et al., 2021) – 12.78 1.00 – – –

Context-Transformer (Sincan et al., 2023) 18.80 17.71 1.27 – – –
Conv-GRU (Shi et al., 2022) – – – 16.72 16.11 4.58
Transformer (Shi et al., 2022) – – – 20.10 20.92 6.72

USLNet (S) 19.60 15.50 1.00 15.40 16.90 4.30
USLNet (U+S) 24.60 27.00 1.40 19.30 20.90 6.30

Unsupervised Approach
USLNet w/o. joint training 1.40 1.50 0.00 1.60 1.30 0.00
USLNet w. joint training 17.30 21.30 0.10 14.50 12.40 1.20

Table 1: Sign language translation performance in terms of BLEU on BOBSL and OpenASL test set. B@1 and B@4
denotes BLEU-1 and BLEU-4, respectively. S represents supervised settings; U+S represents firstly unsupervised
training and then supervised fine-tuning.

Method
BOBSL OpenASL

Dev Test Dev Test
B@1↑ FVD ↓ B@1↑ B@4 ↑ FVD ↓ B@1↑ FVD ↓ B@1↑ B@4 ↑ FVD ↓

USLNet-P 0.50 892.8 0.70 0.00 872.7 1.50 886.4 1.30 0.00 890.2
USLNet 20.90 402.8 22.70 0.20 389.2 19.40 400.2 21.30 7.20 390.5

Table 2: Sign language generation performance in terms of back-translation BLEU and Frechet Video Distance
(FVD) on BOBSL and OpenASL dataset. B@1 and B@4 denotes BLEU-1 and BLEU-4, respectively. USLNet-P is
the comparison baseline, representing USLNet w/o. joint training. USLNet represenents USLNet w. joint training.

Order Validation Video and glosses are mono-442

tonically aligned. We hypothesis that video and443

text are roughly aligned. To verify this, we must444

first obtain the golden sign order. Because Ope-445

nASL don’t have gloss annotation in train set (Shi446

et al., 2022), we only verify it in BOBSL. Moreover,447

BOBSL does not have human-evaluated sentence-448

level glosses annotations, we utilized the automatic449

gloss annotation released in (Momeni et al., 2022).450

This gloss annotation consists of word-level an-451

notations, presented as [video name, global time,452

gloss, source, confidence]. We converted them into453

sentence-level annotations and assessed the con-454

sistency between the gloss (sign) and text orders.455

From Table 3, we can see the hypothesis that video456

and text are roughly aligned in BOBSL dataset.457

Different Alignment Networks To further ex-458

plore the advantages of the proposed sliding win-459

dow aligner (soft connection) , we have designed460

two comparison aligner networks, altering only the461

length mapper component ML. The first network462

is pooling, where the text sequence is padded to463

Proportion

Strictly Consistency 0.83
Consistency with two gloss in disorder 0.87
Consistency with three gloss in disorder 0.91

Table 3: Validation between sign(gloss) and text order
consistency for BOBSL.

a fixed length and a linear network maps it to the 464

video sequence length. The second network is the 465

sliding window aligner with a hard connection, also 466

utilizing a sliding window mechanism. However, 467

αi in Eq(8) is non-zero only if tokens are in the cur- 468

rent window, indicating that it conveys information 469

exclusively from tokens in the current window. As 470

demonstrated in Table 4, our method achieves the 471

best performance. Moreover, different alignment 472

networks for SLG can be seen in Appendix A.2. 473

Comparison between BOBSL and WMT 474

USLNet’s performance on the BOBSL dataset is 475

inadequate, similar to the performance observed on 476
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Method Dev Test
B@1↑ B@1↑ B@4↑

Pooling 10.70 12.00 0.00
Sliding Window Aligner 15.50 17.10 0.00
(hard connection)
Sliding Window Aligner 17.30 21.30 0.10
(soft connection)

Table 4: Sign language translation results of USLNet
with different cross-modality mappers on BOBSL. B@1
and B@4 denotes BLEU-1 and BLEU-4, respectively.

the WMT SLT task dataset where the state-of-the-477

art results showed low performance with a BLEU-4478

score of 0.56 (Müller et al., 2022b). Our investi-479

gation revealed that the BOBSL dataset presents480

comparable difficulties to the WMT dataset. No-481

tably, the BOBSL dataset possesses a substantially482

larger vocabulary of 72,000 words, compared to483

the WMT dataset’s vocabulary of 22,000 words.484

4.3 Ablation Study485

We conduct our ablation studies on the BOBSL486

dataset, evaluating the SLT BLEU-1 score on the487

development set.488

Adjust Data Distribution The transformation of489

un-parallel video and text data into parallel video490

and text data, employed in an unsupervised man-491

ner, has been demonstrated to significantly improve492

SLT (+5.60 BLEU-1 score).493

Explore Different Freezing Strategy Inspired494

by Zhang et al., we we compare various freezing495

strategies by evaluating their impact on the per-496

formance of SLT.Our experimental results demon-497

strate that freezing video encoder can improve SLT498

effects (+2.10 BLEU-1 score).499

5 Related Work500

Sign Language Translation SLT involves trans-501

lating sign language videos into text (Camgoz502

et al., 2018). Previous SLT methods can be catego-503

rized into two groups: those focusing on enhancing504

visual encoder representation (Yin et al., 2021;505

Zhou et al., 2021b; Yin and Read, 2020; Kan et al.,506

2022), and those aiming to improve text decoder507

quality (Camgoz et al., 2020; Chen et al., 2022;508

Ye et al., 2023b; Angelova et al., 2022b; He et al.,509

2022a, 2023; Ye et al., 2023a; Zhou et al., 2021a).510

For large-scale SLT datasets like BOBSL and ope-511

nASL, Albanie et al. (2021) utilizes a standard512

ID System SLT B@1↑

1 Baseline 3.20
1.1 1+more text data 9.60

Explore Multi-Task Learning
2.1 1.1+ remove

text reconstruction at training 5.40
2.2 1.1+ remove

video reconstruction at training 8.30
2.3 1.1+remove cross-modality

Back-Translation at training 0.70
Adjust Data Distribution

3 1.1+ 1M parallel video and text
for unsupervised training 15.20

Explore Different Freezing Strategy
4.1 3+ freeze video decoder 10.80
4.2 3+ freeze text encoder 12.20
4.3 3+ freeze text decoder 12.60
4.1 3+ freeze video encoder 17.30

Table 5: Ablation study of USLNet on sign language
translation (SLT) on the BOBSL dev set.

transformer model, while Sincan et al. (2023) pro- 513

poses a context-based approach to enhance quality. 514

Additionally, Shi et al. (2022) incorporates pre- 515

training and local feature modeling for capturing 516

sign language features. To the best of our knowl- 517

edge, our work represents the first exploration of 518

unsupervised methods in the SLT domain. 519

Sign Language Generation Sign language gen- 520

eration focuses on generating highly reliable sign 521

language videos (Bragg et al., 2019; Cox et al., 522

2002). Previous research predominantly relied on 523

high-quality parallel sign language video and text 524

corpora (Glauert et al., 2006a; Cox et al., 2002; 525

Inan et al., 2022). In our work, we aim to explore 526

an unsupervised approach (Lample et al.; Artetxe 527

et al., 2018; He et al., 2022b) that leverages unla- 528

beled data for training the first SLG model. 529

6 Conclusion 530

In this paper, we present an unsupervised sign 531

language translation and generation network, 532

USLNet. USLNet is the first bi-directional (transla- 533

tion/generation) sign language approach trained in 534

unsupervised manner. Experimental results on the 535

large-scale sign dataset such as BOBSL and Ope- 536

nASL reveal that USLNet achieves competitive 537

performance compared to the supervised approach. 538
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7 Limitations539

Our USLNet for unsupervised sign language trans-540

lation and generation has the following limitations:541

• Performance on sign language translation542

and generation: As the pioneering unsuper-543

vised Sign Language Translation and Gener-544

ation (SLTG) model, we acknowledge that545

USLNet’s performance is not flawless and fur-546

ther advancements are needed, particularly in547

the realm of large-scale sign language. We548

recognize the significance of ongoing break-549

throughs required to enhance USLNet’s capa-550

bilities in this domain.551

• Model Structure: USLNet has been designed552

with the objective of exploring a unified model553

that is capable of both sign language transla-554

tion and generation. To achieve this, USLNet555

adopts a twin tower model, comprising sepa-556

rate components for text and video processing.557

Additionally, to treat videos as sequences, we558

have incorporated a video quantization model.559

These factors contribute to the complexity of560

the USLNet model, which necessitates sub-561

stantial resources for training.562
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A APPENDIX845

A.1 QULITATIVE RESULTS AND846

FAILURE ANALYSIS847

Overall the results in Table 1 are seemingly poor848

in BOBSL dataset. We dig deep into ’why’ the849

results are poor and to work towards building an850

understanding for "how" they can be improved sig-851

nificantly.852

Regarding the "Why" Aspect We conduct a853

thorough analysis of the results, identifying the854

areas in which our approach performs well and855

those that require further improvement.856

Initially, we conduct thorough case study includ-857

ing good cases, bad cases and comparision case858

between USLNet (unsupervised setting ) and Al-859

banie et al. (2021) which is one supervised model.860

From digging into our results in Table 6 , we find861

that we can do relatively better in Main ingredients862

(eg: bus, I, anything), but always fail in other de-863

tail, such as proper noun (eg: Ma Effanga), and864

complex sentence (which is that).865

Furthermore, we present a comparative analysis866

between USLNet in the unsupervised setting and867

the approach proposed by Albanie et al. (2021).868

From the Table 6 , we observe that our outcomes869

are competitive with those of supervised methods.870

Furthermore, in certain instances, we can achieve871

more accurate output (for example, particularly in872

specific cases).873

Regarding the "How" Aspect We propose a874

two-fold approach. Firstly, we suggest allowing875

unsupervised learning to serve as a representation876

learning stage. From the Table 1, we can use877

unspervised training way can provide one good878

representation and is significant for improve super-879

vised translation method, resulting in a substan-880

tial increase in the BLEU-4 score from 1.0 to 1.4.881

Secondly, we recommend enhancing USLNet by882

focusing on improvements in both the pre-training883

and aligner components.884

USLNet can be divided into two primary com-885

ponents: the pre-training module (comprising886

the text pre-training module and the video pre-887

training module) and the mapper part (slide window888

aligner). Consequently, the paths to success can be889

categorized into two aspects. The first aspect in-890

volves pre-training, where we can adapt our method891

using multi-modal models, such as videoLLama892

(Zhang et al., 2023). The second aspect focuses893

on designing an effective mapper (Saunders et al., 894

2020b,a). 895

A.2 DIFFERENT ALIGNMENT 896

NETWORKS 897

The effects of different alignment networks for sign 898

language generation are in Table 7. Our method 899

outperforms all other approaches, demonstrating 900

the remarkable effectiveness of USLNet in achiev- 901

ing superior performance. 902

A.3 ADDITIONAL RELATED WORK 903

Text-to-Video Aligner Text-to-video aligners in 904

sign language domain can be broadly classified into 905

two main categories. The first category involves 906

the use of animated avatars to generate sign lan- 907

guage, relying on a predefined text-sign dictionary 908

that converts text phrases into sign pose sequences 909

(Glauert et al., 2006b; Karpouzis et al., 2007; Mc- 910

Donald et al., 2016). The second category encom- 911

passes deep learning approaches applied to text- 912

video mapping. Saunders et al. (2020b,a) adapt 913

the transformer architecture to the text-video do- 914

main and employ a linear embedding layer to map 915

the visual embedding into the corresponding space. 916

Unlike these methods, which can only decode pose 917

images, our Unsupervised Sequence Learning Net- 918

work (USLNet) is capable of generating videos. 919

We address the length and dimension mismatch 920

issues by utilizing a simple sliding window aligner. 921

In various domains, there have been other pro- 922

posed text-to-video aligners. For instance, Taylor 923

et al. (2012) presented a method that focuses on au- 924

tomatic redubbing of videos. Their approach lever- 925

ages the many-to-many mapping between phoneme 926

sequences and lip movements, which is modeled 927

as dynamic visemes. The Text2Video approach 928

Zhang et al. (2022) employs a phoneme-to-pose 929

dictionary to generate key poses and high-quality 930

videos from phoneme-poses. This phoneme-pose 931

dictionary can be considered as a token-token map- 932

per. Similarly, USLNet adopts the practice of quan- 933

tization and extracting discrete video tokens, a 934

widely recognized technique commonly employed 935

in the audio domain, as demonstrated in studies 936

such as (Hsu et al., 2021; Wang et al., 2023; Bor- 937

sos et al., 2023). Consequently, the sliding win- 938

dow aligner also serves as a token-token aligner. 939

However, unlike the Text2Video method, which 940

performs a lookup action to obtain target tokens, 941

our approach decodes the target token using all 942

source tokens. 943
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Golden Text: It’s quite a journey especially if I get the bus.
USLNet: It’s especially long if I get the bus.
Golden Text: It’s hell of a difference yeah.
USLNet: It’s different completely.
Golden Text: Oh, Ma Effanga is going to be green.
USLNet: It’s not going to be green.
Golden Text: They started challenging the sultan in a very important aspect,

which is that he is not Muslim enough.
USLNet: This is a very important aspect.
Golden Text: It’s quite a journey especially if I get the bus.
USLNet: It’s especially long if I get the bus.
Albanie et al. (2021): How long have you been in the bus now.
Golden Text: It’s hell of a difference yeah.
USLNet: It’s different completely.
Albanie et al. (2021): It was like trying to be different to the world.

Table 6: A case study of USLNet on the BOBSL dataset is presented, featuring six examples taken from the test set.
The first and second examples highlight the successful decoding achieved by USLNet, demonstrating its efficacy
in these instances. On the other hand, the third and fourth cases reveal the limitations of USLNet, showcasing
areas where improvements are needed. Finally, the last two cases demonstrate the competitive performance of our
unsupervised model when compared to the supervised model, further validating the effectiveness of USLNet in sign
language translation.

Method Dev Test
B@1 ↑ B@1 ↑ B@4↑

Pooling 7.00 6.60 0.00
Sliding Window Aligner 11.70 11.70 0.00
(hard connection)
Sliding Window Aligner 20.90 22.70 0.20
(soft connection)

Table 7: Sign language generation results in terms of
back-translation BLEU of USLNet with different cross-
modality mappers on BOBSL. B@1 and B@4 denotes
BLEU-1 and BLEU-4, respectively.

Dual Learning He et al. (2016) propose dual944

learning to reduce the requirement on labeled945

data aiming to train English-to-French and French-946

to-English translators. It regards that French-to-947

English translation is the dual task to English-to-948

French translation. Thus, it designs to set up a949

dual-learning game which two agents , each of950

whom only understands one language and can eval-951

uate how likely the translated are natural sentences952

in targeted language and to what to extent the re-953

constructed are consistent with the original. More-954

over, researchers exploit the duality between two955

tasks in training (Xia et al., 2017b) and inference 956

(Xia et al., 2017a) stage , so as to achieve better 957

performance. Dual learning algorithms have been 958

proposed for different tasks, such as translation (He 959

et al., 2016), sentence analysis (Xia et al., 2018), 960

image-image translation (Yi et al., 2017), image 961

segmentation (Luo et al., 2017). USLNet extend 962

dual learning to sign language realm and design 963

dual cross-modality back-translation to learn sign 964

language translation and generation tasks in one 965

unified way. 966

A.4 ADDITIONAL ANALYSIS 967

MASS Text Pre-Training Method Outperform 968

than MLM Method In this study, we con- 969

duct a comparative analysis of various text pre- 970

training methods to assess their impact on sign 971

language translation task shown in Table 8. Specif- 972

ically, we focus on comparing the performance 973

of the masked language modeling (MLM) (Ken- 974

ton and Toutanova, 2019) method and the recently 975

proposed masked sequence-to-sequence (MASS) 976

(Song et al., 2019). Our findings reveal that the 977

MASS method outperforms the MLM method 978

(+1.00 BLEU-1 score) in terms of enhancing the 979

model’s ability to capture semantic relationships 980
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and improve the overall quality of the learned rep-981

resentations.982

ID System SLT B@1↑

1 Baseline 3.20
1.1 1+more text data 9.60

Adjust Data Distribution
2 1.1+ 1M parallel video and text

for unsupervised training 15.20
Explore Different Text Pretraining Method

3.1 2+ MLM text pretrain method 15.20
3.2 2+ MASS text pretrain 16.20

Table 8: Additional Ablation study of USLNet on sign
language translation (SLT) on the BOBSL dev set. B@1
denotes BLEU-1.

A.5 DISCUSSION ABOUT Albanie et al.983

(2021).984

In terms of model architecture, both Albanie985

2021 and USLNet employ a standard transformer986

encoder-decoder structure. In the Albanie method,987

the encoder and decoder comprise two attention988

layers, each with two heads. Conversely, USLNet989

adopts a large model architecture, setting the en-990

coder and decoder layers to six. Regarding method-991

ology, Albanie 2021 utilizes a supervised approach992

for learning sign language translation. In contrast,993

USLNet employs an unsupervised method, leverag-994

ing an abundant text corpus to learn text generation995

capabilities and employing video-text-video back-996

translation to acquire cross-modality skills. Con-997

cerning model output, Albanie 2021 has released998

several qualitative examples. We have compared999

these with the results from USLNet, which demon-1000

strate that USLNet achieves competitive outcomes1001

in comparison to the supervised method.1002

A.6 QUALITATIVE VISUAL RESULTS 1003

source video frames

reconstructed video frames

sign language generated video frames

Figure 6: Case study of USLNet on BOBSL for sign
language generation task. Examples are from test set.

source video frames

reconstructed video frames

sign language generated video frames

Figure 7: Case study of USLNet on BOBSL for sign
language generation task. Examples are from test set.
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