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Abstract
We discuss connections between robustness to
distribution shift and fairness through a causal
lens. These connections show that fairness can
be motivated entirely on the basis of achieving
better performance, and suggest that robustness-
motivated approaches can be used to enforce the
separation fairness criteria.

1. Introduction
When designing fair systems, practitioners face a number
of choices: among them are the choice of fairness criterion,
and how to implement it. A practitioner may choose be-
tween using an unconstrained model that maximizes over-
all performance, a model that makes predictions indepen-
dently of the sensitive groups (independence), or a model
that makes predictions independently of sensitive groups
given the ground truth label (separation) [see 2, Chapter 2].

Here, we show that the causal structure of a problem can
provide useful context when choosing and enforcing a fair-
ness criterion in a given application. We present this argu-
ment by making a connection to some recent insights on the
relevance of causal structure to robust machine learning.
In particular, we focus on an anti-causal prediction setting,
where the input to a classifier (e.g., an image) is assumed
to be generated as a function of the label and the sensi-
tive attribute (see Figure 1). In this context, we show that
the connection between fairness and robustness can provide
new motivations and methods for enforcing fairness criteria
in practice.

As we show, for specific causal structures, some fairness
criteria and distributional robustness criteria align. We dis-
cuss practical implications of this alignment for motivating
and enforcing fairness criteria in this setting. Specifically,
we focus on alignment between the separation fairness cri-
terion and risk invariance as a robustness criterion—that
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Figure 1. Causal DAG of the setting in this paper.

the predictive risk of a model remain invariant across a
family of distribution shifts. We show that: (1) The sep-
aration fairness criterion implies risk invariance across a
family of distribution shifts that respect the causal struc-
ture in figure 1. This provides new perspective on discus-
sions of fairness-performance tradeoffs when applying the
separation criterion in practice. (2) In practice, algorithms
designed to enforce risk invariance also enforce the sepa-
ration criterion, in some cases more effectively than algo-
rithms that attempt to directly incorporate the separation
criterion. (3) For contrast, we show a conflict between the
independence fairness criterion (often measured in terms of
equalized predictions between V groups, or demographic
parity) and the risk invariance property.

Related work is presented in the appendix.

2. Background and preliminaries
Our goal is to construct a predictor f(X) that predicts a
label Y (e.g., pneumonia) from an input X (e.g., chest X-
ray). In addition, we have a protected attribute V (e.g.,
patient sex) available only at training time. Throughout,
we will use capital letters to denote variables, and small
letters to denote their value. Our training data consist of
tuples D = {(xi, yi, vi)}ni=1 drawn from a source training
distribution Ps. We restrict our focus to the case where Y
and V are binary and f is a classifier. Specifically, we will
consider functions f of the form f = h(ϕ(x)), where ϕ is
a representation mapping and h is the final classifier.

In this context, a practitioner may be interested in ensur-
ing that the classifier f(X) treats individuals from different
groups fairly. We focus on two fairness criteria [2]. While
these criteria are typically defined with respect to the pre-
dicted class (i.e., Ŷ = 1{f(X) > δ} for some threshold δ)
we consider stronger fairness notions defined with respect
to the predicted probabilities f(X) [19]. This focuses the
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exposition on issues relating to the quality of f(X) inde-
pendently of the choice of δ. The first criterion, separa-
tion, requires that the distribution of predictions f(X) be
the same across groups V conditional on the label Y , i.e.,
f(X) ⊥⊥ V | Y . Separation is often evaluated in terms
of equalized odds (EO) [9], defined as EPs

[f(X) | V =
0, Y = y] = EPs

[f(X) | V = 1, Y = y] ∀y ∈ {0, 1}.
The second criterion, independence, requires that the distri-
bution of predictions be the same overall across groups V .
Independence is often evaluated in terms of demographic
parity (DP), defined as EPs

[f(X) | V = 0] = EPs
[f(X) |

V = 1]. Unlike EO which requires equality conditional on
Y , DP requires a marginal form of equality.

Assumptions. We assume that Ps follows an anti-causal
structure shown in Figure 1, in which the inputs X are gen-
erated by the labels (Y, V ). We assume that the labels Y
and V are correlated, but not causally related. We represent
this in Figure 1 with the dashed bidirectional arrow. We as-
sume that there is a sufficient statistic X∗ such that Y only
affects X through X∗, and X∗ can be fully recovered from
X via the function X∗ := e(X), for an unknown e(X).
Finally, we make an overlap assumption on the source dis-
tribution, Ps. Specifically we assume that the support of
Ps(V )Ps(Y ) is contained in the support of Ps(V, Y ). In-
tuitively, this assumption implies that we observe all com-
binations of Y and V during training time that will also
appear in any target test distribution. Absent such an as-
sumption, the behavior of f on unobserved combinations
is unlearnable using the observed data.

Robustness as Risk Invariance under Shifts in Depen-
dence. While fairness is often motivated by a principle of
non-discrimination, robustness is often motivated by gen-
eralization to out-of-distribution settings. Of particular in-
terest here are scenarios where a “shortcut” association be-
tween inputs and target label changes between training and
deployment time [6]. In this paper, we focus on a particular
notion of robustness called risk invariance. Following the
robustness literature, we assume that the model f is trained
on a source distribution Ps, and measure its predictive risk
on one or many target distributions Pt.

We write the generalization risk of a function f on a distri-
bution P as RP = EX,Y∼P [ℓ(f(X), Y )], where ℓ is a pre-
dictive loss (we define this as the logistic loss in arguments
that follow). We say that a model f is risk invariant across
a family of distributions P if its predictive risk is the same
for each target distribution Pt ∈ P , and use Frinv to denote
the family of all risk invariant predictors. Here, we con-
sider families of target distributions that can be generated
from Ps by interventions on the causal DAG in Figure 1.
Specifically, we consider interventions on the dependence
between Y and V that keep the marginal distribution of Y

constant. 1 Each distribution in this family can be obtained
by replacing the source conditional distribution Ps(V | Y )
with a target distribution Pt(V | Y ):

P = {Ps(X | X∗, V )Ps(X
∗ | Y )Ps(Y )Pt(V | Y )}, (1)

This family allows the marginal dependence between
Y and V to change arbitrarily. For our analy-
sis, one distribution contained in the set P will be
important: the distribution where Y ⊥⊥ V , i.e.,
P ◦ := Ps(X | X∗, V )Ps(X

∗ | Y )Ps(Y )P ◦(V ). We refer
to P ◦ as the ideal distribution. In the chest x-ray example,
P ◦ is the distribution where the base rates of pneumonia
are equal across sex groups.

The concept of risk invariance characterizes the stability
of a given predictor but it does not characterize its predic-
tive accuracy. For example, a predictor that returns the
same prediction for all values of X is risk invariant in
this family but is non-optimal for most non-trivial cases.
We define an optimal risk invariant predictor frinv as an
invariant predictor that also satisfies the property frinv ∈
argminf∈Frinv RPt

(f) ∀Pt ∈ P. Importantly, risk invari-
ant optimality is distinct from the in-distribution optimal-
ity, and one does not imply the other. Predictors that rely
on shortcuts (and are hence not invariant) will likely have
better in-distribution performance but worse out of distri-
bution performance and vice versa.

3. Fairness and robustness in anti-causal
settings

In this section, we show that risk invariance and separa-
tion are aligned in the anti-causal setting. This can provide
motivation for preferring separation over an unconstrained
model or a model that enforces independence, beyond stan-
dard non-discrimination rationales.

Often the most difficult choice in deciding to apply fair-
ness criteria to a classification problem is whether to con-
strain the model at all. Some of the oldest discussions in
applying fairness to machine learning center on tradeoffs
between parities enforced by fairness-constrained models
and overall predictive performance of unconstrained mod-
els [see, e.g., 4, 19]. Here, we revisit this discussion in our
anti-causal setting, and show that separation can be moti-
vated on purely performance-oriented grounds if the notion
of performance is expanded to include predictive risk under
distribution shifts. In addition, we show that the optimal
risk invariant predictor in this setting satisfies separation,
suggesting that algorithms that target the optimal risk in-

1Our arguments can generalize to include cases where the
marginal distribution of Y also changes, but would introduce
some notational overhead.
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variant predictor can be effective for learning models that
are fair according to the separation criterion.

Our discussion here revolves around two results. First, in
the anti-causal setting in Figure 1, separation implies risk
invariance. Secondly, the optimal risk invariant predictor
in this setting satisfies separation. We present these two
results formally next. All proofs are in the appendix.

Proposition 1. In the anti-causal setting shown in Fig-
ure 1, suppose that a a predictor f satisfies separation in
the training distribution, that is, f(X) ⊥⊥ Ps

V | Y . Then f
is risk-invariant with respect to the family of target distri-
butions P defined in (1).

Proposition 2. In the anti-causal setting shown in Fig-
ure 1, (a) the optimal risk invariant predictor with respect
to P has the form f∗(X) = E[Y | X∗], and (b), this pre-
dictor satisfies separation.

These results show that if model performance beyond the
training distribution Ps is important in an application, risk
invariance can provide a purely performance-oriented mo-
tivation for enforcing a separation criterion. This of-
fers a counterpoint to standard discussions of fairness-
performance tradeoffs, by highlighting the importance of
specifying the distribution (or distributions) on which fair-
ness and performance are defined. On one hand, in our set-
ting, the Bayes optimal in-distribution predictor, EPs [Y |
X], does not in general satisfy separation (this follows be-
cause X is not d-separated from V by Y , so E[Y | X]
is not independent of V given Y ). This implies that a
model satisfying separation can have lower-than-optimal
in-distribution accuracy. On the other hand, because Propo-
sition 1 shows that separation implies risk invariance, the
performance of a model that satisfies separation cannot de-
grade if the model is deployed in a causally consistent sce-
nario included in P . In fact, as Proposition 2 shows, the
best possible risk invariant model satisfies separation, im-
plying that there is no tradeoff between optimal invariant
performance and this fairness criterion.

Further, Proposition 2 suggests that, in our anti-causal set-
ting, criteria designed for targeting optimal risk invariant
predictors may be effective for learning classifiers that sat-
isfy separation. For example, consider the approach pro-
posed in Makar et al. [18] that targets the optimal risk in-
variant predictor by enforcing a criterion that we will call
ideal distribution independence (IDI). We say that a model
f satisfies IDI iff f(X) ⊥⊥ P◦V ; i.e., if its predictions f(X)
are independent of the sensitive attribute V under the ideal
distribution P ◦, where Y ⊥⊥ P◦V . While the IDI criterion
does not itself imply separation, Makar et al. [18] show that
enforcing IDI at training time can lead to more efficient re-
covery of the optimal risk invariant predictor, which does
satisfy separation. This suggests that enforcing risk invari-
ance in practice can also help to close fairness gaps. We

demonstrate this empirically in section 5.

By contrast, as proposition A3 in the appendix shows, there
is a conflict between the optimal risk invariant predictor
and independence. Hence, if downstream performance of a
model on shifted distributions is important, this result pro-
vides motivation against using independence as a fairness
criterion, because it implies a tradeoff with the best achiev-
able invariant risk.

4. Enforcing Separation
The discussion in section 3 implies that there are two ways
to enforce separation during training. First, it can be en-
forced directly by encouraging equality between represen-
tation distributions conditional on Y . Alternatively, it can
be enforced indirectly my minimizing predictive risk sub-
ject to the IDI criterion, by encouraging equality between
the marignal distributions of learned representations ϕ un-
der the ideal distribution P ◦. In this section, we discuss
these two implementation schemes.

We focus the discussion on approaches that rely on the
Maximum Mean Discrepancy (MMD) to enforce statisti-
cal dependencies since it is popular in fairness [21, 17, 16],
and robustness literature [18, 8]. The MMD defines a met-
ric on probability distributions, and is equal to zero iff the
two distributions are independent. Details about the MMD
are included in the appendix.

The strategy for directly enforcing separation penalizes dis-
crepancies in representation distributions conditional Y .
Such a strategy is translates to minimizing the follow-
ing loss: LC-MMD = minh,ϕ 1

n

∑n
i=1 ℓ(h(ϕ(xi)), yi) + α ·∑

y M̂MD
2
(Pϕ0,y

, Pϕ1,y
), where Pϕv,y

= P (ϕ(X)|V =
v, Y = y), α is a parameter picked through cross-

validation, M̂MD
2

is an estimate of MMD2. This strat-
egy has some practical limitations, especially when training
using mini-batches of data in stochastic gradient descent.
Within each batch, C-MMD requires first dividing the pop-
ulation based on Y then estimating the MMD within each
subgroup. This effectively reduces the sample size used for
MMD estimation, making the estimates more volatile and
less reliable, especially when batch sizes are small.

Meanwhile, a strategy for enforcing separation indirectly
through IDI makes use of a weighted marginal MMD
discrepancy (WM-MMD) [18]. WM-MMD requires a
marginal estimate of the MMD computed with respect
to P ◦ rather than the observed Ps. This strategy uses
reweighting to manipulate the observed data to create
a pseudo-sample from P ◦, using the following weights:
u(y, v) = Ps(Y=y)Ps(V=v)

Ps(Y=y,V=v) , such that for each example,
ui := u(yi, vi). The final loss to minimize for WM-
MMD is: LWM-MMD = minh,ϕ

∑n
i=1 uiℓ(h(ϕ(xi)), yi) +
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α · M̂MD
2
(Pϕu

0
, Pϕu

1
), where M̂MD

2
(Pϕu

0
, Pϕu

1
) is a

weighted estimate of the MMD. This strategy also has
practical challenges. While WM-MMD does not require
this data-slicing, if base rates are too skewed within groups,
the weights may be highly variable, and introduce volatility
into the regularization as is typical of weighted estimators
[5] Ultimately, the better strategy to employ to enforce sep-
aration depends on the context. For example, we find that
WM-MMD is far more stable in our experiments. For more
general use, we present a concrete heuristic to choose be-
tween the two methods in a given application.

5. Experiments
Following Jabbour et al. [12], we study the task of predict-
ing pneumonia (Y ) from chest x-rays (X) considering sex
to be a protected attribute (V ). We conduct this analysis on
CheXpert [11], which contains 224,316 chest x-rays, each
associated with the sex of the patient and labels encoding
presence or absence of pneumonia. At training time, we
sample the data such that the majority of female patients
have pneumonia whereas the majority of male patients do
not have pneumonia i.e., Ps(V = 1|Y = 1) = Ps(V =
0|Y = 0) = 0.9 to create a possible shortcut for naive
estimators. In addition to C-MMD, WM-MMD, we im-
plement a deep neural network (DNN) without any robust-
ness or fairness penalties, and M-MMD, which encourages
independence rather than separation. The objective for M-
MMD is similar to W-MMD with the distinction that it does
not re-weight the samples, i.e., it does not utilize ui. Details
about training and cross validation are in the appendix.

Results. We examine the extent to which different fairness
criteria (separation/independence) and their implementa-
tion align with robustness across distributions. To do so,
we generated 6 test distributions that are compatible with
the DAG in Figure 1, where the base rates of pneumonia
were systematically skewed between sex groups by selec-
tive sampling. We denote these test distributions Pt =
{P0.1, P0.3, P0.5, P0.7, P0.9, P0.95}, where Pµ is generated
such that Pt(V = 1 | Y = 1) = Pt(V = 0 | Y = 0) = µ
with Pt(Y = 1) held constant. We compute the area under
the receiver operating curve (AUROC) of each of the mod-
els on the 6 test sets. To estimate the uncertainty in perfor-
mance, we create 1000 bootstraps of the test set, and com-
pute the means and standard deviations of the AUROCs.

Figure 2 shows the results. The x−axis shows P (Y =
1 | V = 1) = P (Y = 0 | V = 0) at test time, while
the y−axis shows the corresponding mean AUROC. The
vertical dashed line shows the conditional probability at
training time. DNN achieves the best in-distribution perfor-
mance but its performance quickly deteriorates on test dis-
tributions dissimilar to the training distribution. C-MMD,
which enforces the EO criterion achieves better risk in-

variance, which conforms with Propositions 1. While C-
MMD should, in theory, achieve optimal risk invariant per-
formance, its performance changes across distributions sig-
naling that it has some dependence on sex, albeit less se-
vere than that of the DNN. We revisit this later. Mean-
while, M-MMD uses the shortcut to satisfy the fairness cri-
terion, which leads to encoding an opposite dependence on
sex and poor in-distribution performance, confirming that
there is no alignment between independence (enforced by
DP) and robustness (consistent with proposition A3). Fi-
nally, while WM-MMD achieves worse in-distribution per-
formance compared to DNN and C-MMD, it has has better
out of distribution performance for distributions most dis-
similar to the training distribution. This is consistent with
proposition 2. Indeed, WM-MMD achieves a maximum
EO violation equal to 0.02, compared to C-MMD’s 0.15.
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Figure 2. Test distribution on the x-axis, AUROC on the y-axis.
Dashed line shows training distribution. WM-MMD is the most
risk invariant sacrificing a little on in-distribution performance.
We now investigate the discrepancy in performance be-
tween WM-MMD and C-MMD: while in theory they both
target risk invariance, empirical performance suggests that
WM-MMD is more effective. This discrepancy can be ex-
plained, in part, by how well each optimized optimized
MMD criterion generalizes to test data. Figure 3 shows
the estimated MMD on the training, validation and testing
data broken down by the target label. Here the testing data
is sampled from the same distribution as the training data
to highlight estimation error rather than errors due to data
shift. The plot shows several important findings. First, the
estimated MMD at training time is a more reliable estimate
of the test-set MMD when weighted marginal MMD penal-
ties are used at training and validation time, signaling that
data slicing in C-MMD leads to unreliable estimates. Sec-
ond, the difference between the MMD among the group de-
fined by Y = 1 compared to the group defined by Y = 0 is
smaller when using WM-MMD. Smaller difference in the
MMD between the two groups is important to ensure that
the outcomes for both groups defined by the target label
do not vary based on the protected attribute. Usefully, this
analysis can be repeated in practice to choose between the
two penalties: the estimated MMD on the validation data is
a reliable proxy for the estimate’s generalizability. In prac-
tice, if there is a large discrepancy between the training and
validation C-MMD estimates, WM-MMD might be a better
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option and vice versa.
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Figure 3. Estimated conditional MMD on the training, validation
and testing data for WM-MMD and C-MMD. Estimates of the
MMD are more stable for the WM-MMD objective than C-MMD.

Conclusion. We showed that by taking into account the
causal structure of a prediction problem, we are able to
draw connections between robustness and fairness. These
connections provide performance-oriented motivation for
applying the separation criterion in an important class of
problems, and provides a new set of tools, borrowed from
the robustness literature, to enforce the criterion in practice.
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A. Related work
Robustness to distribution shift and fairness are closely related, and many lines of work have aimed to highlight for-
mal and empirical connections between them. For example, Sagawa et al. [23] explored applying distributionally robust
optimization to address worst-subgroup performance for under-represented groups. Adragna et al. [1] show that using
methods meant to induce robustness leads to “more fair” classifiers for internet comment toxicity. Along similar lines,
Pruksachatkun et al. [22] found that certified robustness approaches designed to ensure robustness of NLP methods against
word substitution attacks can be used to reduce violations to the equalized odds criterion.

A key perspective in our work is that many fairness-robustness relationships are mediated by causal structure. In this sense,
our work is most similar and complementary to Veitch et al. [24], in which the authors derive implications of counterfactual
invariance to certain input perturbations, and show that these implications depend strongly on the causal structure of the
problem at hand. Here, we focus on a narrower setting, with a greater focus on implications for fairness. Specifically, we
focus on direct connections between distributional criteria that are often used as metrics in practice, without the conceptual
overhead of defining counterfactuals with respect to sensitive attributes.

Our use of causal ideas is distinct from another body of work that defines fairness criteria directly in terms of a causal
model. These include definitions of fairness in terms of direct causal effects of sensitive attributes on outcomes [13, 20, 25],
or discrepancies between counterfactual outcomes [15, 3]. Instead, we focus on “oblivious” fairness criteria that are not
themselves a function of causal structure [9], but show that causal structure informs how they should be applied.

B. Proofs for section 3
Proposition A1. (Restated proposition 1)In the anti-causal setting shown in Figure 1, suppose that a a predictor f satisfies
separation in the training distribution, that is, f(X) ⊥⊥ PsV | Y . Then f is risk-invariant with respect to the family of
target distributions P defined in (1).

Proof. We show this by decomposing the risk of the model f on any target distribution Pt ∈ P in terms of the conditional
risk given V and Y . Within the family P , Pt(ℓ(f(X), Y ) | Y = y, V = v) is the same for all Pt ∈ P; thus, we can write
the risk conditional on Y and V independently of the target distribution. Let Rvy := EPt [ℓ(f(X), Y ) | V = v, Y = y] for
any Pt ∈ P . The overall risk on a target distribution Pt can be written as the weighted average of these subgroup risks

RPt =
∑

y∈{0,1}

Ps(Y = y) [Pt(V = 0 | Y = y)R0y + Pt(V = 1 | Y = y)R1y] . (2)

Now, the separation criterion states that f(X) ⊥⊥ V | Y , which implies ℓ(f(X), Y ) ⊥⊥ V | Y , which implies that
R0y = R1y for y ∈ {0, 1}. Thus, the terms in the summation (2) are the same regardless of the Pt(V = v | Y = y)
factors, and thus the risk is invariant for all Pt ∈ P .

Proposition A2. (Restated proposition 2). In the anti-causal setting shown in Figure 1, (a) the optimal risk invariant
predictor with respect to P has the form f∗(X) = E[Y | X∗], 2 and (b), this predictor satisfies separation.

Proof. Part (a) is shown as Proposition 1 in Makar et al. [18]. The key points of the proof are that (1) E[Y | X∗]
is representable by a function f∗(X) under the assumptions made in Section 2, under causal assumptions (namely, the
assumption that X∗ can be written as e(X); (2) under the uncorrelated distribution P ◦, E[Y | X∗] is Bayes optimal; and
(3) E[Y | X∗] is risk invariant. (2) and (3) imply that no other risk invariant predictor can have lower risk across P .

Part (b) follows from the fact that X∗ is d-separated from V conditional on Y in the DAG in Figure 1. Thus, E[Y | X∗] ⊥⊥
Pt
V | Y for all Pt ∈ P .

Remark 1. Veitch et al. [24] also provide a number of related results in their study of the implications of counterfactual
invariance in anti-causal settings. Counterfactual invariance requires that the predictions of a model be invariant across
label-preserving counterfactual versions of the input, such as the counterfactual that we would observe if the sensitive
attribute were different. Our findings concern a narrower case where there exists a sufficient statistic X∗, which Veitch
et al. [24] refer to this as the “purely spurious” case. In their findings, Veitch et al. [24] show that counterfactual invariance
implies the separation criterion generally in anticausal settings, and that the optimal counterfactually invariant predictor

2Note that EPt [Y | X∗] is the same for all Pt ∈ P , so we omit the distributional subscript on this expectation.
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in also minimax optimal in the purely spurious case. Here, our results speak more directly to the implications of fairness
criteria in the purely spurious setting, and, by focusing on the weaker risk invariance property, we make the connection
without the conceptual ambiguity of defining counterfactuals with respect to sensitive attributes [see, e.g. 14, for discussion
of this point].

The cost is that our results are restricted to an anti-causal setting where, in the terminology of Veitch et al. [24], the impact
of the sensitive attribute is “purely spurious”. However, by focusing on this narrower setting, we aim to make the core
insight that causal structure plays a key role in both the motivation and implementation of fairness criteria as concrete as
possible.

The following proposition formally characterizes the conflict between the optimal risk invariant predictor and indepen-
dence.

Proposition A3. Let f∗(X) = E[Y | e(X)] = E[Y | X∗] be the optimal risk invariant predictor with respect to P .
In addition, assume that E[f∗(X) | Y = y] is a non-trivial function of y, i.e., that the value of Y actually affects the
expectation of the sufficient statistic X∗. Then for any distribution Pt ̸= P ◦ in P , f∗(X) ̸⊥⊥ V and independence is not
satisfied.

Proof. Note that for each v, EPt
[f∗(X) | V = v] =

∑
y∈{0,1} E[f∗(X) | Y = y]Pt(Y = y | V = v). For any Pt where

Y ̸⊥⊥ V , the weights Pt(Y = y | V = v) in this summation will differ as a function of v. By assumption, the expectations
E[f∗(X) | Y = y] differ for different values of y, so changing their weights in the summation will change the sum. Thus,
for v ̸= v′, EPt

[f∗(X) | V = v] ̸= EPt
[f∗(X) | V = v′], which implies f∗(X) ̸⊥⊥ V .

C. Methods
The MMD defined as follows:

Definition 1. Let Z ∼ PZ , and Z ′ ∼ PZ′ , be two arbitrary variables. And let Ω be a class of functions ω : Z → R,
MMD(Ω, PZ , PZ′) = supω∈Ω

(
EPZ

ω(Z)− EPZ′ω(Z
′)
)
.

When Ω is set to be a general reproducing kernel Hilbert space (RKHS), the MMD defines a metric on probability distri-
butions, and is equal to zero if and only if PZ = PZ′ . We take Ω to be the RKHS. MMD-based regularization methods
enforce statistical independences at training time by penalizing discrepancies between distributions that would be equal
if the independence held. The MMD penalty can be applied to the final layer f or to the learned representation ϕ. Both
methods induce the required invariances. We follow the literature in imposing the penalty on the representation ϕ.

In all our experiments, we use the V-statistic estimator for the MMD presented in [7]. This estimator relies on the radial
basis function (RBF), which requires a bandwidth parameter γ picked through cross-validation.

D. Experiment details
Training details. We split the dataset into 70% examples used for training and validation, while the rest is held out for
testing. We use DensNet-121 [10], pretrained on ImageNet, and fine tuned for our specific task. We train all models using
a batch size of 64, and image sizes 256 × 256 for 50 epochs.

Cross-validation details. For the three MMD based models, we follow the two step cross-validation procedure outlined
in Makar et al. [18] to pick α and γ. For C-MMD, M-MMD and WM-MMD, we use cross validation to get the optimal
value for α and γ. For α, we pick from the values [1e3, 1e5, 1e7] and for γ, we pick from the values [10, 100, 1000]. For
the DNN, we pick the L2 penalty on the model weights from [0.0, 0.0001, 0.001].

Training each model takes roughly 2.5 hours using a Tesla T4 GPU. We train 30 models to generate the results presented
in the main paper for a total of roughly 75 hours of compute time.


