Under review as a conference paper at ICLR 2026

ENHANCED CAUSAL DISCOVERY FOR AUTOCORRE-
LATED TIME SERIES VIA ADAPTIVE MOMENTARY CON-
DITIONAL INDEPENDENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Discovering causal relationships from time series data is essential for understanding
complex dynamical systems across a range of domains. However, strong autocor-
relation often limits the detection power of existing algorithms and increases the
risk of false positives. Moreover, when both lagged and contemporaneous links are
considered, existing algorithms are prone to generating false positives in lagged
link detection due to indirect causal effects induced by contemporaneous mediators.
To address these challenges, the Adaptive Momentary Conditional Independence
(aMCI) method is introduced to mitigate the masking effects of autocorrelation
and maintain control over false discovery rates. The aMCI adaptively modifies
the conditioning set while aggregating conclusions from multiple conditional inde-
pendence tests. In addition, a multi-phase algorithm is proposed to robustly learn
the causal graph by effectively applying the aMCI. The algorithm is designed to
be hyperparameter-insensitive, order-independent, and provably consistent under
oracle conditions. Extensive evaluations on simulated and benchmark datasets
demonstrate that the proposed algorithm substantially improves the accuracy of
causal discovery from time series, especially in detecting lagged links.

1 INTRODUCTION

Multivariate time series exist widely in various domains such as earth science, neuroscience, and
economics. Discovering causal relationships within these multivariate time series—encompassing
both contemporaneous and lagged effects—is crucial for understanding the underlying mechanisms
driving these systems. Accurate causal structures enable researchers to better comprehend system
dynamics, build more precise prediction models, and estimate causal effects more reliably within the
potential outcome framework.

While significant advances have been made in causal discovery methods for time series data, a
persistent challenge remains: effectively handling autocorrelation (Nogueira et al., [2022; |Gong et al.}
2024)). Autocorrelation, the correlation of a variable with its past values, is a common characteristic
of time series data that can significantly impact the performance of causal discovery algorithms. In
particular, strong autocorrelation can obscure true causal relationships, leading to both false negatives
(missed causal links) and false positives (spurious causal links) (Runge et al.,[2019)).

Existing approaches for causal discovery from time series data broadly fall into four categories:
constraint-based, score-based, structural causal model-based, and Granger causality-based algorithms.
Optimization-based algorithms like NOTEARS (Zheng et al., [2018) and its nonlinear extension
NTS-NOTEARS (Sun et al.,|2023) formulate directed acyclic graph (DAG) learning as continuous
optimization problems. These methods have shown promising results but may require careful
hyperparameter tuning, which can present challenges in some practical applications. Alternatively,
constraint-based algorithms such as PCMCI (Runge et al.l|2019) and PCMCI+ (Runge, [2020) utilize
conditional independence tests to learn causal graphs from time series. PCMCI+ incorporates
contemporaneous links discovery while effectively controlling false positive rates. However, its
detection power for lagged links tends to decrease as autocorrelation increases. Bagged-PCMCI+
(Debeire et al.,[2024) addresses uncertainty estimation through bagging techniques, though at the
expense of greatly increased computational requirements. Structural causal model-based and Granger
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causality-based algorithms are not discussed in detail here due to differences in their causal graph
outputs, with comprehensive explanations provided in the Appendix [A.2}

To address these challenges, a novel method called Adaptive Momentary Conditional Independence
(aMC(]) is proposed. Conditional independence testing forms the backbone of decision-making in
the constraint-based causal discovery algorithms, and thus enhancing its efficiency can substantially
influence overall performance. The aMCI achieves this goal by dynamically modifying the condition-
ing set according to the causal structure of variables. Different strategies are applied to lagged and
contemporaneous links, with a structured decision procedure guiding the choice of an appropriate
conditioning set for each conditional independence test. Building on this foundation, the paper
introduces the Enhanced Causal Discovery via aMCI (ECD-aMCI) algorithm specifically designed to
fully leverage the capabilities of aMCI. Conventional causal discovery algorithms typically start from
a fully connected graph, which can limit aMCI’s effectiveness in the initial stages. To overcome this
limitation, ECD-aMCI employs a progressive refinement strategy: first establishing initial lagged
parent estimates, then refining these estimates using aMCI, before finally discovering the complete
causal skeleton. This sequential approach allows aMCI to operate with increasingly accurate struc-
tural information, substantially improving detection power for true causal links in autocorrelated
systems while maintaining robust control over false positive rates.

The contributions of this paper are summarized as follows.

* The development of aMCI, a new method that strategically modifies conditioning sets in
time series data to overcome the masking effects of autocorrelation.

* A multi-phase algorithm ECD-aMCI is proposed to fully leverages the capabilities of aMCI
through progressive refinement of causal structures. The proposed algorithm provides a
hyperparameter-insensitive, order-independent, proven consistency framework to learn both
lagged and contemporaneous links.

* This paper offers a novel perspective, emphasizing that for constraint-based algorithms,
theoretically equivalent design choices under ideal conditions may yield different results in
practice, necessitating a preference for choices better suited to the data.

The remainder of this paper is organized as follows. Section [2]introduces the fundamental concepts
of d-separation in causal graphs and the PCMCI algorithm. Section [3|describes the aMCI method and
the ECD-aMCI algorithm in detail. Section 4] provides a comprehensive evaluation of the ECD-aMCI
algorithm through both simulated and benchmark datasets. Finally, Section [5] concludes with a
summary of our contributions. The code implementation of the proposed algorithm is available in the
Supplementary Material.

2 PRELIMINARIES

2.1 D-SEPARATION AND COMPLETED PARTIALLY DIRECTED ACYCLIC GRAPH

A directed acyclic graph (DAG) (Pearl, 2009) encodes a set of conditional independence relations
through the criterion of d-separation. Given three disjoint subsets of nodes X, Y, and Z in a DAG G,
we say that X is d-separated from Y given Z (denoted X 1L Y | Z) if all paths from any node in X
to any node in Y are blocked by Z according to the following rules: (1) A non-collider path segment
A— B —C,A+ B— C,or A<« B <« C isblocked if the middle node B € Z; (2) A collider
path segment A — B <— C'is blocked unless B € Z or some descendant of B is in Z. D-separation
provides a graphical criterion to determine whether two variables are conditionally independent given
a set of other variables. It forms the theoretical basis for constraint-based causal discovery algorithms.

Completed Partially Directed Acyclic Graph (CPDAG) (Spirtes et al.l 2002) represents a Markov
equivalence class of DAGs by displaying directed edges where causal direction is consistent across
all equivalent graphs, and undirected edges where direction cannot be uniquely determined from
observational data alone.

2.2 THE PCMCI ALGORITHM

PCMCl is a constraint-based causal discovery algorithm specifically designed for high-dimensional
time series data. It extends the PC algorithm by addressing temporal dependencies and controlling
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for autocorrelation. The PCMCI algorithm consists of two main steps: (1) PC; step: A preliminary
skeleton is constructed by iteratively removing links based on a set of conditional independence tests,
using a gradually increasing conditioning set. (2) MCI step: The resulting links are then subjected to
a stricter conditional independence test, called the Multivariate Conditional Independence (MCI) test,
which conditions on both parents of the target and source variables to better control false positives.

The Multivariate Conditional Independence (MCI) test is designed to evaluate the conditional in-
dependence between two time series variables X; ;- and X;;, while accounting for temporal
dependencies. Specifically, it tests

where P(-) denotes the estimated parent set of a variable. This choice of conditioning set, including
both source and target parents, helps to mitigate the effects of autocorrelation and confounding from
nearby variables.

3 METHOD

This section describes the proposed causal discovery algorithm for time series through three parts.
First, Section illustrates the intuitive insights of aMCI. Section introduces the Adaptive
Momentary Conditional Independence (aMCI) method to improve detection power by refining the
conditioning sets used in tests. Finally, Section [3.3] presents a multi-phase algorithm to effectively
leverage the aMCI method. Theoretical properties for the algorithm are provided in Section3.4]

3.1 INTUITIVE INSIGHTS OF AMCI

For intuitive understanding of aMCI, consider a bivariate time series {X;}en +» wWhere X; =
(X1, X2,)'. This time series is generated according to the following structural causal model:

Xip=aXi4-1+e€1,

(D
Xor=aXot 1 +cXi -1+ ey,

where a represents the strength of autocorrelation, c represents the strength of the causal link
Xi1-1 — Xo4, and €1 4, €2, are independent noise terms. The corresponding full causal graph is
depicted in Figure[TA.

According to the MCI defined in Section determlmng whether the link X; ;1 — Xy exists
involves testing whether X7 ;1 1 Xo, [ B~ (X;,,-1) U B~ (X2,) holds, where B~ (X1 t—1) =
{X1,—2} and B~ (Xy,) = {X2 t—1} in model . Although from the d-separation perspective,
conditioning on X ;_» should not affect the conditional dependence between X; ;1 and Xy,
simulations reveal that replacing B~ (X1 ;—1) with B, ;(X1+-1) = {Xi1+-3} (i.e., substituting
Xy 1—o with X ;_3) significantly improves the detection power for the link X ;1 — X5 ;.

This phenomenon can be explained through equations (2)-(3). Equations (2) and (3) can be derived
straightforwardly from model (T). The distinction between equations (2) and (3) lies in the substitution
of X1 ;_ in equations (Z)) with X; ;_3 and &1 4.

Xig—1=aX1 -2+ €1,4-1 »
—_——

conditioning  randomness

@
Xor=aXos 1+ caXy_o+cer—1 +eat,
conditioning randomness
2
Xii—1=a"X1—3+aci—2+ €141,
—_—
conditioning randomness (3)

2
Xoy=aXoi 1 +ca"Xyy_3+caci 2 +cerp—1 + €24,

conditioning randomness

In equations , the randomness of X1 ;1 | X2, X2:—1 depends on the error €; ;_1, while
the randomness of Xo; | X7 42, X2 ;1 depends on ceq,,_1 + £2,;. Thus, the conditional inde-
pendence test X5 ;1 1L X5 ; |X1,t_2, X5 1 relies on detecting the correlation between €1 ;1 and
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c€1,t—1 + €2,¢. In contrast, in equations , the randomness of X; ;1 | X1,—3, X2 ;1 depends on
ag1,1—2+€1,1—1, while the randomness of X5 ; | X1,,—3, X2,,—1 depends on cae y—a+ce1,4—1+€2.
Therefore, the conditional independence test X7 ;1 1L X5 ; | X1,4-3, X 2,41 relies on detecting the
correlation between acy ;2 + €1,+—1 and cag s—2 + c€1,+—1 + €2,+. Notably, the randomness in
Equations @) both contain the common components €1 ,;_o and £ ;1 with amplifying coefficients.
This structure produces a stronger correlation than the single shared term €1 ;—1 in Equations (]Z[),
thereby enhancing the statistical power for detecting the causal link. This analytical process is visually
illustrated in Figures [T[C and [ID.

However, this substitution is not always beneficial. In FigureE]B, X1 t—2 acts as a confounder for both
X1 -1 and X ;. Failing to condition on this confounder could lead to false positive detection of the
link X4 ;1 — Xo 4. This highlights the need for an adaptive method that adjusts the conditioning
set based on the specific causal structure, such as conditioning on X ;_» when it is a confounder
(Figure E]B) but conditioning on an alternative variable (e.g., X1 ;—3) when it is not (Figure |I|A).
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Figure 1: (A) Causal graph corresponding to the model . (B) Alternative causal graph with X ;_»
as a confounder. (C) Causal signal loss when conditioning on X ;o and X ;—; under causal graph
A. (D) Causal signal enhancement when conditioning on X ;3 and X5 ;1 under causal graph A.

3.2 ADAPTIVE MOMENTARY CONDITIONAL INDEPENDENCE

As established in Section [3.1] original methods such as MCI, while effective in controlling false
positives, may exhibit reduced detection power when applied to time series with strong autocorrelation.
The core issue identified is that conditioning on highly correlated immediate predecessors of source
variable X ;_; (e.g., X; ;—2 when testing X;,_1 1 X;, | X, ,_2) can obscure the signal of the
direct link, even though it does not block the path according to d-separation. To address this challenge,
this paper proposes the aMCI method that dynamically modifies the conditioning set based on the
temporal structure of the variables in conditioning set. The key innovation of aMCI lies in its strategic
handling of immediate predecessors—replacing them with earlier variables when they might obscure
causal signals rather than control for confounding.

Using the time series data X and a chosen conditional independence test, the operation of aMCI can
be formally represented as the mapping:

aMCI : (X, 7, Xj4,S8, B~ (Xis—1), B7(X;1)) — (p-value, I, Sug),

where X; ;. and X, are the specific variables under investigation for conditional independence
(representing a potential cause and effect, respectively, with lag 7 > 0); S is the initial set of
conditioning variables provided to aMCI; B~ (+) represents the estimated set of lagged parents for
a given variable; S, is the final, adaptively determined, conditioning set generated by the aMCI
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based on S; and [ is the test statistic value associated with this p-value. The aMCI handles different
scenarios based on the temporal relationship between X; ;_, and X ;.

Case 1 (Lagged Links (7 > 0)) The aMCI checks whether X; ;__j, appears in both parent sets
B~ (Xi—r) and B~ (X;,), where X; 4+, € B (X;—-) and k € {1,... Ty} If so, the
original conditioning set is maintained. Otherwise, X; y_,_y, is substituted with X; ;__j,_1 in the
conditioning set to avoid obscuring causal signals.

A signal-to-noise ratio (SNR)-based explanation is provided for why testing X;;_» 1L X, |
Xi t—r—k—1 can be preferable to testing X, ;- 1 X;, | X;,—r— when X, ,_,_j is not a con-
founder and the true causal structure is:

Xiperk = Xip—r = X4

Let the information contained in X; ; be denoted as (X +), and the information flow from X ;_,
to X;; be denoted as I(X; 41—+ — X;.). In testing for independence between X, ,_, and Xt
I(X; -+ — X, ) represents the useful signal, while the remaining information in (X ;) is treated

as noise. A stronger signal implies a more detectable causal effect and reduces the risk of false
negatives.

When conditioning on X;;_,_j, the signal in X, is correspondingly reduced and becomes
I(Xip—r = Xj¢) = I(Xi4—7— = Xit—r — Xj+). The corresponding SNR is:

I(Xi,tf‘r — Xj,t) - I(Xi,tfrfk — Xit—r — Xj,t)
I(Xj0) = I(Xip—r = Xjt) = I(Xijpmret = Xig—r — Xj4)]

SNRx,, =

From basic mathematical analysis, SN R , is a decreasing function of 1 (Xipmrek = Xit—r —
X,.+). When replacing X; ;—,_p with X; -1, wehave I (X; 751 = Xs1—r = Xj1) <
I(Xit—r— = Xit—r = X ), assuming X; s r_j_1 transmits less information through the causal
chain (Assumption A4 in Section . This reduction thus improves SN R X0 As a result, the
conditioning set used in aMCI is more likely to lead to correct decisions and fewer false negatives.

Case 2 (Contemporaneous Links (7 = 0)) The aMCI employs a more nuanced strategy depend-
ing on whether X, ;_j, and X}, are confounders of (X, X;+), where X; 1, € B~ (Xiy) or
Xji—k € B~ (Xj) ke{l,..., Tma}. (1) If both are confounders, the standard conditioning set is
maintained. (2) If only one is a confounder, the non-confounder immediate predecessor is replaced
with its earlier lag. (3) If neither is a confounder, three possible conditioning sets are evaluated
(substituting either immediate predecessor or using the standard set) and the one yielding the smallest
p-value is selected.

It is important to observe that the handling of lagged links follows directly from the intuition provided
in Section [3.1] However, the handling of contemporaneous links requires a more sophisticated
approach. This complexity arises because the aMCI methodology involves adjusting the conditioning
set of the source variable, yet for contemporaneous links (X ;, X; ;), temporal precedence cannot be
used to determine which variable serves as the source. Consequently, Case 2 explores three scenarios
based on the principle that confounders must be retained in the conditioning set. Specifically, in Case
2 (3), by considering test results from three different conditioning sets and selecting the one that yields
the smallest p-value, the method ensures that links previously undetectable due to autocorrelation
become readily identifiable. The pseudocode of aMCI is provided in Algorithm[I]of Appendix [A.3]

The primary challenge in implementing such an adaptive method arises because the true causal
structure, particularly the role of immediate predecessors, is typically unknown and must be inferred.
Conventional constraint-based discovery algorithms learn the structure iteratively, typically beginning
with a fully connected graph structure. It is difficult to apply such adaptive logic effectively in the
early stages when the necessary structural information is still uncertain. This challenge motivates the
multi-phase algorithm detailed in Section[3.3]

3.3 ENHANCED CAUSAL DISCOVERY ALGORITHM

Traditional causal discovery algorithms typically start from a fully connected graph and progressively
remove edges through conditional independence tests. However, the traditional procedure limits the
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effectiveness of aMCI in the initial stages, as in a fully connected graph, immediate predecessors are
necessarily treated as confounders. To fully leverage the capabilities of aMCI, this paper proposes
the ECD-aMCI algorithm that operates in three sequential phases.

The core innovation of the ECD-aMCI algorithm lies in its progressive refinement approach, which
enables more accurate estimation of causal structures in time series data with autocorrelation. The
algorithm consists of three phases: (1) initial estimation of lagged parent sets, (2) refinement of these
estimated sets using aMCI, and (3) discovery of the complete causal structure including both lagged
and contemporaneous links.

Phase 1: PC;-Based Initial Estimation. In the first phase, a simplified PC algorithm is employed
to obtain initial estimates of the lagged parent sets. This phase considers only lagged relationships
without accounting for contemporaneous effects, which may lead to false positives due to indirect
causal effects mediated by contemporaneous variables. Starting with a fully connected lagged
structure (up to maximum lag 7,.x), the algorithm iteratively tests the conditional independence
between each lagged variable X; ;- and target variable X ;, given progressively larger conditioning
sets S. The minimum test statistic values are stored and links that are conditionally independent
given any conditioning set are removed. The procedure continues until all possible conditioning sets
up to the available size (up to one) have been tested. The result is an initial estimate of lagged parent

sets B~ (X ;) for each variable X; ;.

Phase 2: Lagged Parent Sets Refinement via aMCI. Since the initial estimates may include false
positives due to contemporaneous mediator, the second phase refines these estimates using aMCI.
Starting with the initial estimates from Phase 1, the algorithm tests the conditional independence
of adjacent pairs (X;;—-, X, ;) for 7 > 0 using aMCI. The conditioning sets S are chosen from

contemporaneous adjacency set /l(X j.¢)» and the algorithm progressively increases the size of these
conditioning sets up to one. After each iteration, the lagged parent sets are updated based on the
current graph structure, which enables more accurate aMCI tests in subsequent iterations.

Phase 3: Complete Skeleton Discovery. The final phase builds on the refined lagged parent sets
of Phase 2 to discover the complete causal skeleton, including both lagged and contemporaneous
relationships. This phase ensures robust results regardless of the variable order by not immediately
updating B(X;) and A(X; ;) based on aMCI test results. Unlike conventional constraint-based
algorithms, this phase tests conditional independence for lagged links first and then contemporaneous
links, which minimizes the influence of not-yet-removed edges on the effectiveness of aMCI. For
lagged relationships, the algorithm tests and potentially removes links X; ;. — X ;. For contem-
poraneous relationships, it tests and potentially removes links X; ; <+ X ;. After each iteration, both
the lagged parent sets and contemporaneous adjacency sets are updated based on the current graph
structure.

By progressively refining estimates and leveraging the capabilities of aMCI, the three phases outlined
above enable more accurate identification of causal adjacencies in time series. The subsequent
orientation rules in the ECD-aMCI algorithm follow the Meek’s rules (Meek, |1995)) and build upon
the relevant work of Runge| (2020). The complete pseudocode of the ECD-aMCI algorithm is provided

in the Appendix[A.3]

3.4 THEORETICAL PROPERTIES

This section provides a theoretical analysis of the ECD-aMCI algorithm. First, necessary assumptions
for the analysis are introduced. Then, three key theoretical properties of ECD-aMCI are established:
consistency, order independence and enhanced accuracy. Detailed proofs of all theorems are provided

in the Appendix[A.4.2]

Assumptions The theoretical analysis relies on several standard assumptions in time series causal
discovery: (A1) Causal Sufficiency, (A2) Causal Markov Condition, (A3) Faithfulness, (A4) Temporal
Priority, and (AS5) Stationarity. These assumptions are commonly adopted in the causal discovery
literature (Spirtes et al.,[2001; Runge et al.,|2019;|Runge, 2020; Biswas & Shlizerman) [2022). Detailed
definitions of these assumptions are provided in the Appendix
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Theorem 1 (Consistency) Under the Assumptions (Al)-(AS5), if the conditional independence tests

are oracle, ECD-aMCI returns the correct CPDAG, i.e., G = Goppaa, where Gopp ag denotes the
CPDAG of the time series graph G.

Theorem 1 demonstrates that given oracle conditional independence information, the ECD-aMCI
algorithm guarantees correct identification of all links that can be identified based on conditional
independence information. The proof strategy involves first establishing that the proposed algorithm
correctly identifies the skeleton of the graph, and then verifying that the orientation rules correctly
identify directions. This establishes that ECD-aMCI achieves the same theoretical consistency
guarantees as other constraint-based causal discovery algorithms under ideal conditions.

Theorem 2 (Enhanced Accuracy) Under the Assumptions (Al)-(AS), applymg the aM CI method
yields a higher probablllly of learning the correct causal graph, i.e., P(g Geppag) > P(g =
Geppac), where G represents the causal graph estimated without applying the aM CI method.

Theorem 2 shows that the aMCI method improves the accuracy of causal graph recovery in au-
tocorrelated time series. The combination of Theorems 1 and 2 establishes that the ECD-aMCI
algorithm offers a novel perspective on selecting more powerful designs of constraint-based algo-
rithms among those that are theoretically equivalent under ideal conditions but exhibit different
practical performance. This perspective has the potential to extend to broader scenarios beyond time
series.

Since (Colombo & Maathuis|(2014) proposed the PC-stable algorithm, order independence has been
recognized as an essential property for causal discovery algorithms. The proposed algorithm avoids
the influence of variable ordering in all edge removal processes based on conditional independence
tests and in the orientation phase, naturally leading to Theorem 3.

Theorem 3 (Order Independence) Under the Assumptions (Al)-(AS5), the outcome of ECD-aMCI
is independent of the order of the variables.

4 EVALUATION

This section presents a comprehensive evaluation of the ECD-aMCI algorithm. First, several base-
line algorithms for comparison are introduced, followed by the evaluation metrics used to assess
performance. The data generation process for simulations is then described in detail. Results from
both simulated and benchmark datasets are analyzed to demonstrate the effectiveness of ECD-aMCI.
Finally, hyperparameter settings for all algorithms are discussed.

Baselines ECD-aMCI is compared with several recent causal discovery algorithms: PCMCI+,
Bagged-PCMCI+, and NTS-NOTEARS. The constraint-based methods (PCMCI+, Bagged-PCMCl+,
and ECD-aMCI) can be directly compared as they are all implemented with ParCorr (Hotelling, |1953)
test for linear cases and GPDC (Rungel 2018)) test for nonlinear cases. In contrast, NTS-NOTEARS is
a continuous optimization-based algorithm whose hyperparameter weight threshold Wi, -esp, does not
have common choices like the confidence level « in constraint-based algorithms (e.g., @ = 0.01). The
weight threshold W55, s adjusted through grid search to ensure that its F-score is maximized.

Evaluation Metrics To thoroughly assess the performance of causal discovery methods, four
important metrics are employed that evaluate different aspects of algorithms. The F}-score, which
balances precision and recall, is measured seperately for lagged cross-adjacencies (i # j) and all
adjacencies, with higher values indicating better performance. The Structural Hamming Distance
(SHD) is measured to quantify the overall structural difference between the learned and true causal
graphs. SHD counts the number of edge additions, deletions, and reversals needed to transform one
graph into another, with lower values indicating better performance. The average runtimes were
evaluated on Intel Xeon Platinum 8260L CPU at 2.30GHz. To remove the influence of patterns in
marginal variance that might affect results, all metrics were computed on standardized data (Reisach
et al., 2021). Additional metrics including F'-scores for contemporaneous and autodependency
adjacencies are provided in the Appendix[A.3]

Simulated Data Generation Following Runge et al.|(2019) and Runge| (2020), autocorrelated
time series with both contemporaneous and lagged causal dependencies are generated. The data is
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Figure 2: Mean metrics over 300 datasets for each linear setting.

generated from an additive model where each variable is influenced by its own past value, the past
and contemporaneous values of its causal parents, and random noise. Specifically, the following
model is used:

Tmax d  Tmax
Xjo = 055raifi(Xjumr) DD Sijircijirfi(Xinor) + €1, “4)
T=1 =1 1=1
where X, represents the value of variable j at time ¢, j € {1,...,d}, d is the dimension of time

series. The autocorrelation coefficients a; are uniformly drawn from [max(0, ¢ — 0.2), a], where
a controls the autocorrelation strength. The noise term ¢ ; follows an i.i.d. standard Gaussian
distribution. The coefficient ¢; ; -, which represents the strength of the link X; ;. — X, is drawn
uniformly from [0.15, 0.25] to ensure the stationarity of the time series. The coefficient ¢; ; - is a
binary variable indicating the existence of the link X; ;_, — X ;. For each model, 2.5 - d cross-links
between variables are randomly selected. 40% of the links are set to be contemporaneous (7 = 0),
and the remaining links have time lags 7 uniformly drawn from {1, ..., T }, Where true maximum
time lag Ty is set to 5. The functional dependencies f; ;(x) are either linear functions or nonlinear
functions tanh(x). Each simulated dataset is generated with different randomly sampled parameters
and a different ground truth causal graph. Only stationary models are considered to ensure the validity
of the causal discovery task.

Results The simulation experiments systematically evaluate performance across three key parame-
ters: autocorrelation strength (a), sample size (77), and dimension of the time series (d). As shown
in Fig[2] for each parameter setting, ECD-aMCI consistently outperforms the baseline algorithms
across all evaluation metrics. In the first column, as the autocorrelation strength increases from 0.5
to 0.9, ECD-aMCI maintains superior F1-scores for lagged and all adjacencies while keeping the
SHD lower than competing methods. The advantage becomes more pronounced as autocorrelation
strengthens. The second column demonstrates that ECD-aMCI achieves better performance even with
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limited sample sizes. The third column illustrates that ECD-aMCI scales effectively with increasing
dimensionality, maintaining high F1-scores and low SHD as the dimension increases from 10 to 40.
Regarding computational efficiency, the runtime comparison in the bottom row shows that ECD-aMCI
achieves this superior performance with reasonable computational cost. These metrics in Figure[Z]
are computed based on 300 independently generated datasets. Detailed numerical results including
means and standard deviations, as well as results from nonlinear function settings, are provided in the

Appendix [A.5.7]

Benchmark Data The functional Magnetic Resonance Imaging (fMRI) benchmark from NetSim
contains rich, realistic simulated time-series for modeling brain networks (Smith et al., 2011)). This
nonlinear benchmark dataset has been widely used to evaluate time series causal discovery algorithms
due to its diverse range of underlying networks that closely mimic challenges in neuroimaging
analysis. As demonstrated in Table [[} ECD-aMCI achieves higher F1-scores and lower SHD on
this dataset compared to all baseline methods, confirming its effectiveness and practical value for
neuroscientific applications. Due to the prohibitively high computational cost of the Bagged-PCMCI+
algorithm when processing non-linear datasets, this algorithm is excluded from consideration in the
analysis of fMRI datasets.

Table 1: Performance comparison on 50 fMRI datasets with 200 observations each.

Method d=5 d=10

F1-score,; SHD F1-score,y SHD
ECD-aMCI 0.908 & 0.075 5.940 & 1.737 0.843 +0.048 17.840 &= 2.129
NTS-NOTEARS 0.672 £0.056 11.040 +2.218 0.646 £+ 0.039 28.060 =+ 3.706
PCMCI+ 0.871 £0.081 6.560 + 1.651  0.809 4+ 0.059 19.280 + 2.307

Hyperparameters ECD-aMCI has two hyperparameters. The first is the confidence level « for
hypothesis testing, which should be set as low as possible while maintaining sufficient detection
power. In all experiments presented in this paper, a = 0.01 is used for all constraint-based methods
(ECD-aMCI, PCMCI+, and Bagged-PCMCI+). The second hyperparameter is the maximum time lag
Tmax» Which in all experiments is set to the true maximum time lag. In practical applications, Tyax
can be initially chosen based on estimated autocorrelation coefficients, typically selecting a slightly
larger value, and then iteratively reduced based on the estimated causal graph. Simulation results in
Table @]indicate that the proposed method exhibits robustness to the choice of 7;,,x. NTS-NOTEARS
has six hyperparameters, with the weight threshold Wy.sh being sensitive to the strength of causal
links. Therefore, the Wipesn is determined by maximizing the F1-score, while other hyperparameters
are set to the optimal values reported in the original paper (Sun et al.| 2023). See the Appendix [A.5]
for detailed hyperparameter settings for all methods.

Table 2: Robustness of the ECD-aMCI to hyperparameter Tiqx.

Tmax = O Tmax = 6 Tmax = 7 Tmax = 8 Tmax = 9 Tmax = 10
Fy-score,; 0.917 £+ 0.037 0.910 £ 0.038 0.905 £ 0.040 0.902 + 0.042 0.900 + 0.041 0.897 £ 0.042
SHD 8.903 £3.169 9.280 4 3.289 9.657 £ 3.451 9.953 +3.492 10.173 £ 3.600 10.423 + 3.568

5 CONCLUSION

This paper addresses key challenges in causal discovery for autocorrelated time series by introducing
the aMCI method and the ECD-aMCI algorithm. The proposed algorithm dynamically adapts
conditioning sets to mitigate masking effects of strong autocorrelation while maintaining control
over false discovery rates. Theoretical analysis establishes consistency, order independence, and
enhanced accuracy properties. Extensive evaluations on both simulated and benchmark datasets
demonstrate significant improvements in detection power for causal links, especially lagged links.
The algorithm exhibits robust performance across varying autocorrelation strengths, sample sizes,
and dimensionalities without requiring careful hyperparameter tuning.
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REPRODUCIBILITY STATEMENT

The code to faithfully reproduce the results is provided in the Supplementary Material, and the model
parameters and algorithm hyperparameters required for reproducing the results are included in the

Appendix [A.5]
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A APPENDIX
A.1 NOTATIONS
Table 3] summarizes the key mathematical notations used throughout the Appendix.

A.2 BASELINE SELECTION CRITERIA

Causal discovery algorithms are typically categorized into four categories: constraint-based (CB),
score-based (SB), structural causal model (SCM)-based, and Granger causality (GC)-based algorithms.
The goal of the proposed algorithm is to learn causal graphs from observational time series that include
both lagged (Window) and contemporaneous links. As shown in Table |4} algorithms that share this
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Table 3: Summary of mathematical notations

Notation Description

P(X;4) True parent set of X;, in G

B~ (X,4) Estimated lagged parent set of X ;
B~ (X;+) True lagged parent set of X ¢

A(Xit) Estimated contemporaneous adjacency set of X;
A(X;¢) True contemporaneous adjacency set of X ¢

aMCI(+) Adaptive Momentary Conditional Independence method
1 Conditional independence relation

*—% Generic link (directed — or undirected o —o)

X — X Conflicting link orientation

d-separation ~ Graph-theoretic conditional independence criterion

objective include PCMCI+ (Rungel [2020), PCMCI+Bagged (Debeire et al., 2024), DYNOTEARS
Pamfil et al.| (2020), NTS-NOTEARS (Sun et al., |2023), and VAR-LiNGAM (Hyvirinen et al.,
2010). Among these, PCMCI+, PCMCI+Bagged, and NTS-NOTEARS are selected as baselines.
DYNOTEARS and VAR-LINGAM were not included because PCMCI+ has been demonstrated to
outperform VAR-LINGAM in its original paper, and NTS-NOTEARS has been shown to outperform
DYNOTEARS in comparative studies.

Table 4: Summary of causal discovery algorithms for time series

Category Method Window Contemporaneous
CB PCMCI+ Y Y
CB Bagged-PCMCI+ Y Y
SB NTS-NOTEARS Y Y
SB DYNOTEARS Y Y
SCM VAR-LINGAM Y Y
SCM TiMINo (Peters et al., [2013) N Y
SCM NBCB (Assaad et al.|, 2021) N Y
SCM NCDH (Whu et al., [2022)) N N
GC ACD (Lowe et al.| 2022 N N
GC CR-VAE (L1 et al.l [2023) N Y

A.3 PSEUDOCODES OF THE ECD-AMCI ALGORITHM

Section [A.3] provides the complete set of pseudocodes for the aMCI method and the ECD-aMCI
algorithm. Algorithm [I]presents the detailed procedures of the aMCI method. Algorithm [2]describes
the PC; algorithm (Phase 1) in detail. Algorithm [3|describes the procedures of refining lagged parent
sets via aMCI method (Phase 2). Algorithm[d]introduces the skeleton discovery procedure for both
lagged and contemporaneous links (Phase 3). Algorithms are the pseudo-codes for the collider
phase and the orientation phase.

12
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Algorithm 1 The aMCI method

Require: Data X which is d-dimensional time series of length T, condition variable set S, con-

ditional independence test CI(X; ;—,, X;+,S) which returns p-value and test statistic value I,
estimated lagged parent sets B~ (X; ;—,) and B~ (X ), confidence level o

1: if 7 > 0 then . .
2 if Xi’t,Tfl e B~ (Xi,tfr) NnB~ (Xj’t) then
3 (p-value, I) +— CI(X; -7, X+, SU B~ (Xi—r) U B~ (X;4)
4 Sud —~ SUB™ (Xiy_) UB™(X;,)
5: else A
6 B;d(Xi,tfr) < Substitute Xi,tfrfl in B~ (Xi,tf-r) with Xi’t,T,Q
7 (p-value, I) < CI(X; 1 v, Xj1,SUB,(Xi 1 ») UB™ (X))
8: Sad +~—SuU B;d(Xi’tf-,—) U B_(Xj’t)
9: end if
10: else if 7 = O then
11: if both X, ;_; and X ;_; are confounders of (Xt X,+) then
12: (p-value, I) + CT(X; 4, X;4,SUB™(Xi1) UB~(X;1))
13: Sud — SUB™(Xi ) UB~(X,4)
14: elseif X, ; 1 or X;,_ is confounder of (X;;, X; ) then
15: if X; ;1 is confounder of (X;;, X, ;) then
16: B, ,(X;.) ¢ Substitute X, in B~(X;,) with X ;o
17: (p-value, I) < CT(X; 4, X4, SUB™(X;1) UB,,(Xj4))
18: Spa +— S U Bi (Xi,t) U B;d(Xj7t)
19: else if X ;_; is confounder of (X, ;, X ;) then
20: Ba_d(Xivt) < Substitute Xi,t—l in Bi (Xi,t) with Xi’t_g
21; (p-value, I) < CT(Xi ¢, X;4,SUB,,(Xi0) UB™(Xj4))
22: Spa +— S U Ba_d(Xivt) U Bi (Xj7t)
23: end if
24: else if Neither of X; ,_; and X ,_; is confounder of (X, ;, X; ) then
25: B, ,(Xi.) < Substitute X, ; 1 in B~ (X; ;) with X, ; »
26: (p-valuey, I) < CI(Xi, X4, S U B, (Xit) UB™ (X))
27: Sad,l +~—SuU B;d(Xi,t) U B_ (Xj’t)
28: B, ,(X;.;) + Substitute X, 1 in B~ (X, ;) with X;; o
29: (p-valuey, Ir) + CI(Xi s, X, SUB™(X;1) UB, (X))
30: Sad,g +~—SuU B_ (Xi,t) U Bgd(Xj,t)
31: (p-values, I3) + CT(Xi s, X, SUB™(X;1) UB™(X;4))
32: Sad,S +~—SuU 37 (Xi,t) U Bi (Xj7t)
33: (p-value, I, Spq) < (p-valuey«, I+, Spax+) Where k* = argmin p-valuey
ke{1,2,3
34: end if . }
35: end if

36: return (p-value, I, Soq) for arbitrary (X;1—r, X+, S)

13
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Algorithm 2 Phase 1: PC-Based Initial Estimation of Lagged Parent Sets

Require: Time series dataset X := {X; | t € {1,...,T}}, maximum lag Ty,x, confidence level o,
conditional independence test C1(X; ;— -, X;+,S) which returns p-value and test statistic value
1.
1: forall jin {1,...,d} do _
2:  Initialize lagged parent set B~ (X ;) + (X7_,,..., X}

t-—nmx) and min test statistic values
Imin(Xi,t—'ra Xj,t) < oo for all Xi,t—r € B~ (Xj,t)-

3: Letp < 0.
4: whilep < landany X, , € B~ (X4 satisfies \5’_ (X)) \{Xii—-}| > pdo
5: for all X, , in B~(X;,) satisfying |B~(X; ;) \ {X;+_~}| > pdo
6: S = first p variables in B~ (X, ;) \ {Xi+_-}. > Select conditioning set of size p
7: (p-value, I) <~ CI(X;1—7,X;1,S)
8: Imin(Xi,t—Ta Xj,t) = min(I; Inin (Xi,t—'ry Xj t))
9: if p-value > « then
10: Mark X ¢ for removal from B~ (Xjt)-
11: end if
12: end for A A
13: Remove non-significant entries from B~ (X ;) and sort remaining entries in B~ (X ¢)
by Lnin (X 1—7, X;,+) from largest to smallest.
14: Letp < p+ 1.
15: end while
16: end for
17: return B~ (X;,) forall j € {1,...,d} > The estimated lagged parent sets

Algorithm 3 Phase 2: Refined Lagged Parent Skeleton via aMCI

Require: Time series dataset X, maximum lag 7.k, confidence level «, aMCI criterion
aMCI(X;1—7,X;:,S,B7(Xi—7), B~ (Xj,)) which returns p-value, test statistic valuel and
adaptive conditioning set S,q, estimated lagged parent sets B~ (X ;) for all j in {1,...,d},

confidence level o
1: Initialize graph G with fully connected lagged links (up to 7,.x) and contemporaneous links
2: Initialize contemporaneous adjacency sets A(X; ;) « { Xy | k € {1,...,d},k # 7} for all
je{l,...,d}.
3:p<+0
4: while p < 1 and any adjacent pair (X; ;—,, X, ;) for 0 < 7 < Ty in G satisfies \A(Xl-yt,T) \
{Xjeh| > por[A(X;4) \ {Xi¢—r}] > pdo
5 for all adjacent pairs (X, ;— -, X ;) for 0 < 7 < Ty satisfying the condition in Line 5 do
6: for all possible subsets S C A(X; ;) with |S| = p do
7.
8

(p-value, I, Sug) + aMCT(Xiy—7, X4, S, B~ (Xit—r), B~ (X;4))
if p-value > « then

9: Delete link X; ;- — X ; in Q for 7 > 0 from Q
10: Store S,q as seperating set of (X; ;—r, X; ;)
11: end if
12: end for
13: end for

14: Update B~ (X ;) for j in {1,...,d} based on estimated G
15: p—p+1

16: end while

17: return B~ (X;,) forall j € {1,...,d}

14
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Algorithm 4 Phase 3: Complete Skeleton Discovery

Require: Time series dataset X, maximum lag 7y, confidence level o, aMCI method

aMCI(Xi,t_T,XM,S,B’ (Xiyt_T),lé’* (X,,+)) which returns p-value, test statistic value [
and adaptive conditioning set S, estimated lagged parent sets 5~ (X, ;) forall jin {1,...,d},
confidence level o

. Initialize graph G with fully connected lagged links (up to 7.x) and contemporaneous links

: Initialize contemporaneous adjacency sets A(X; ;) < {Xx. | k € {1,...,d}, k # j} for all

jed{l,....d}.
. Imitialize 1., (X +—-, X ) < oo for all links in G
:p+0

25:
26:

: while any adjacent pair (X; ;—-, X, ;) for 0 < 7 < Ty in G satisfies |A(Xi7t,7.) \{X,:} >p
or [A(X;) \ {Xit—-}| = pdo

for all adjacent pairs (X, ;— -, X ;) for 0 < 7 < Ty satisfying the condition in Line 5 do
for all possible subsets S C A(X; ;) with |S| = p do
(p-value, I, Sug) + aMCT(Xiy—7, X0, S, B~ (Xit—r), B~ (X;4))
if p-value > « then
Delete link X; ;- — X ; in Q for 7 > 0 from Q
Store S, as seperating set of (X; ;—r, X; ;)
end if
end for
end for .
Update B(X ;) for jin {1,...,d} based on estimated G
for all adjacent pairs (X ;, X ;) satisfying the condition in Line 5 do
for all possible subsets S C A(X; ;) \ {X,} with |S| = p do
(p-value, I, Sug) + aMCI(X; 4, X4, S, B~ (Xis), B~ (X))
if p-value > « then
Delete link X; ; <+ X ; from G
Store S,q as seperating set of (X; ;, X, ¢)
end if
end for
end for .
Update A(X¢) for jin {1,...,d} based on estimated §
p—p+1

27: end while A
28: return Graph G, Separating sets of all nonadjacent pairs.

Algorithm 5 Detailed collider phase with conservative rules

Require: C; and separating sets from Algorithm |4} time series dataset X, confidence level «,

CI(X,Y,Z),B~(X;,) forall jin {1,...,d}.

1: for all unshielded triples X; ;_» — Xps0—0 X (T > 0)or X;0—0 Xy 0—0X,, (T =0)

in G where (Xit—r, X; ) are not adjacent do

2: Define contemporaneous adjacencies /\(Xj’t) —{Xit #X;, € Xy : X;p0—0Xin Q}
3. forallS C A(X,,)\{Xi: -} andforall S C A(X; )\{X;.} (if 7 = 0) do

4: (p-value, I, S) < CI(Xi4—r, Xju, SUB™(X;4) UB™ (Xip—r)\{Xist—r})

5: Store subset S with p-value > « as separating subset

6: end for

7: if no separating subsets are found then

8: Mark triple as ambiguous

9: else
10: Compute fraction ny, of separating subsets that contain X}, ¢, orient triple as collider if

ny, = 0, leave unoriented if ny = 1, and mark as ambiguous if 0 < ng < 1

11: end if )
12: Mark links in G with conflicting orientations as x — X
13: end for

14: return G, seperating set, ambiguous triples, conflicting links
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Algorithm 6 Detailed rule orientation phase

Require: G, ambiguous triples, conflicting links
1: while any unambiguous triples suitable for rules R1-R3 are remaining do
2: Apply rule R1 (orient unshielded triples that are not colliders):

3: for all unambiguous triples X; ;_, — X, o—o X ; where (X, ;—., X; ;) are not adjacent
do
4: Orientas X;;_» — Xp s — Xj¢
5: end for
6: Mark links with conflicting orientations as x — X
7: Apply rule R2 (avoid cycles):
8: for all unambiguous triples X, ; — X — X, with X; ; 0o—0 X, do
9: Orientas X; ; — X ¢
10: end for
11: Mark links with conflicting orientations as x — X
12: Apply rule R3 (orient unshielded triples that are not colliders and avoid cycles):
13: for all pairs of unambiguous triples X; ; o—o X}, ; — X, and X; ; o—0 X; ; — X ; where
(Xk,t, X1,1) are not adjacent and X; , o—o X ; do
14: Orientas X;; — X ¢
15: end for
16: Mark links with conflicting orientations as x — x

17: end while
18: return G, conflicting links

A.4 THEORETICAL ANALYSIS

A.4.1 DEFINITION OF ASSUMPTIONS

The theoretical analysis relies on several standard assumptions in causal discovery: (Al) Causal
Sufficiency, (A2) Causal Markov Condition, (A3) Faithfulness, (A4) Temporal Priority, and (AS5)
Stationarity. These assumptions are commonly adopted in the causal discovery literature (Spirtes
et al.,[2001; Runge et al.l2019; Runge, [2020; |Biswas & Shlizerman, [2022)).

Assumption A1 (Causal Sufficiency) All common causes of any pair of observed variables in the
system are also observed.

Assumption A2 (Causal Markov Condition) Each variable in the causal graph is conditionally
independent of its non-descendants given its direct parents. Formally, if G is a directed acyclic graph
(DAG) representing the causal structure, and P is the joint probability distribution of the variables,
then P factorizes according to G as:

d
P(X1,Xs,...,Xq) = HP(Xilp(Xi))7

i=1

where P(X;) denotes the parent set of X; in G.

Assumption A3 (Faithfulness) All conditional independence relationships in the probability distri-
bution are entailed by the causal graph structure via the d-separation criterion. Thatis, X 1 Y | Z
if and only if X and Y are d-separated by Z in the causal graph. This assumption rules out pre-
cise parameter cancellations that could create conditional independencies not implied by the causal
structure.

Assumption A4 (Temporal Priority) A cause precedes its effect in time, or at the very least, occurs
simultaneously. Furthermore, as the time lag increases, the autoregressive influence of a process on
its own future values progressively diminishes.

Assumption A5 (Stationarity) The causal structure among variables and the population of time
series do not change over time. This assumption allows us to learn a window causal graph from time
series, where edges represent consistent causal links across all time points.

16



Under review as a conference paper at ICLR 2026

A.4.2 PROOFS OF THEORETICAL PROPERTIES

Theorem 4 (Consistency) Under the Assumptions (Al)-(A5), if the conditional independence tests

are oracle, ECD-aMCI returns the correct CPDAG, i.e., G = Goppag, where Gopp ac denotes the
CPDAG of the time series graph G.

Proof The proof of consistency comprises three primary steps: initially demonstrating that Algo-
rithms return a superset of the lagged parent set B~ (Xj,¢), then establishing that Algorithm
accurately recovers the skeleton of the causal graph, and finally establishing that all unshielded triples
that are colliders are correctly identified.

Step 1: Superset Property of Estimated Lagged Parents. Since Algorithm[2is adopted from Algorithm
1 in [Runge, (2020), the estimated lagged parent set B~ (X ;) satisfies the condition B~ (X, ;) C
B~ (X,.+) based on Lemma S1 in Runge| (2020). Given oracle conditional independence tests, we
assert that the outcome of the aMCI method is equivalent to that of MCI. Without loss of generality,
we only need to prove that if X; ;_,_; is not a confounder, then replacing X; ;1 with X; ;. _»
does not affect the conditional independence conclusion—that is, testing X; ,—r 1L X, | X; 7o
instead of X, ;—» 1L X, | X;.—,—1 still yields the same result. Under the Causal Sufficiency
and Faithfulness assumptions, X 1L Y | Z if and only if X is d-separated from Y given Z. Under
the Temporal Priority Assumption, X; ;_-_1 cannot be a collider. Therefore, if X;;_,_; is also
not a confounder, then according to the definition of d-separation in Section [} replacing X; ;-1
with X; ;_-_o does not affect the d-separation between X; ;- and X ;. Thatis, X;;_ 1 X;; |
Xit—r—1 ifand only if X;, , 1 X, | X,;;—-—2. Since the two conditional independence
statements are equivalent and the tests are assumed to be oracle, the outcome of the aMCI method is
equivalent to that of MCI. Consequently, Algorithm [3|does not update the originally estimated lagged
parents at p = 0. In the p = 1 phase, Algorithm [3| will remove parents of one contemporaneous
parent of X; ; that are not parents of X ; directly. Therefore, the refined estimated lagged parent set
remains a superset of the true lagged parent set B~ (X ;).

Step 2: Correctness of the Skeleton Discovery. In this step, G* =G*is proved under Assumptions
(A1)-(A5), where G* represents the skeleton of the causal graph. To establish this equality, it
is sufficient to demonstrate that for any arbitrary X; ;_, X+, the following statements hold: (1)
Xiperrx X1 G = Xip—rx—= X5 ¢ GFand Q) Xy rx—= X ¢ G* = X ro—* X1 & G*,
where x—x denotes both types of skeleton links (directed links — and undirected links o — o) for
simplicity.

(1) Algorithm 2 eliminates a link X ;_, x—x X ; from _C';* if and only if X;;_» 1L X, | Sud
for some subset S C /l(X N) during the iterative conditional independence tests, where S, 4

is the third outcome of the aMCI. Here, A(X ;) denotes the contemporaneous adjacencies.
By the principle of Faithfulness, this conditional independence directly implies that X; ;.
and X ; are d-seperated by S in the true causal graph, thus X, ;_» x—* X, ¢ G*.

(2) According to the conclusion of Step 1, B~ (Xi—r) U B~ (X;.¢) \ Xit—r does not contain
descendants. Thus, the Causal Markov Condition yields (X; ;—-, B~ (Xi—r)U B~ (X0 \
Xit—-) 1L X; ¢ | P(X,+). Applying the weak union property of conditional independence,
we derive X, ;. 1L X;, | P(X;,) U (B‘(Xi,t_T) U [;,_(Xj,t) \ X;:—-). Note that
Xit—r ¢ P(X,4)since X; 4 x—* X, ¢ G*, for the case where 7 = 0, we assume X, ;
is not a descendant of X; ; (as the alternate case would be covered by exchanging X ; and
Xj,t)~
Now it suffices to prove that the conditioning set P(X; ;) U (B~ (X,;;—-) U B~ (X;,) \
X;,+—-) must be tested in Algorithm 4] Algorithm [4]systematically tests X; ¢ 1L X ; |
SUB™ (X, 1—7)UB~ (X)) \ X; - across all subsets S C A(X} ;). The contrapositive of
Step 2 (1) confirms that the estimated contemporaneous adjacencies consistently include the
true contemporaneous adjacencies as a subset, i.e., A(X; ;) C A(X). Furthermore, Step
1 also confirms that B~ (Xj,+) encompasses all lagged parents of X ;, i.e., B~ (Xj+) C
B~ (X,,+). Consequently, during the iteration process, there exists a subset S such that
SUB™(Xit—7) UB™(Xj) \ Xin—r = P(X;0) U (B~ (Xi—7) UB™(X;0) \ Xiyr).
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Algorithm ] will detect X; ;. 1L X;; | P(X;0) U (B~ (Xie—r) UB™(X;4) \ Xir—r) and
subsequently remove X; ;_, x—* X ; from Q*

Step 3: The proof that all unshielded triples that are colliders are correctly identified involves two
aspects: (1) If unshielded triples are oriented as colliders in Algorithm 5] then these triples are truly
colliders (establishing the correctness of the collider orientation phase), and (2) All unshielded triples
that are colliders can be correctly identified. Based on the established correctness of the skeleton
discovery in Step 2 and the reliability of oracle conditional independence tests, the triples that are
oriented as colliders in Line 10 of Algorithm E] are correct. Therefore, it remains to show that all
unshielded triples that are colliders are correctly identified.

Considering a generic triple X ¢, x—x Xy 1, *—% X ;,, we can fix t; = ¢ by stationarity. Time
order constraints and stationarity properties allow us to reduce the analysis to two specific cases:
Xit—r =& Xpro—0 X, (form > 0)or X;, 0—0 X, 0—0X;, (for 7 = 0) in G where
X;+—rand X, are not adjacent. Since X}, ; is contemporaneous with X ;, only contemporaneous
components of separating sets are relevant for the collider orientation phase. Given the correctness
of the skeleton discovery and the fact that (X, ,—,, X, ) are not adjacent, there exists a subset
S such that X;; . 1 X;; | SU BA’_(XM,T) U B‘(Xj,t) \ {X;¢—-}. Furthermore, by the
Faithfulness assumption and the definition of d-separation, X}, ; cannot belong to any set S for which
Xitr 1L X4 | SUB (Xiy—r) UB (Xj4) \ {Xit_}. This implies that all unshielded triples
that are colliders can be correctly identified according to the rules of the Algorithm [3].

Theorem 5 (Enhanced Accuracy) Under the Assumptions (Al)-(A5), applying the aM CI method
yields a higher probability of learning the correct causal graph, i.e., P(G = Goppag) > P(G =
Geppaa), where G represents the causal graph estimated without applying the aMCI method.

Proof Let A be any alternative causal discovery algorithm not employing the aMCI method. P (é =
Gerpag) > P(G = Geppag) is proved through two steps.
Step 1: When algorithm A correctly identifies the completed partially directed acyclic graph Geppag,

the ECD-aMCI algorithm implements specific modifications to enhance causal discovery. For
lagged links (7 > 0), ECD-aMCI modifies the conditioning sets S specifically in cases where
Xit—ro1 ¢ B- (Xig—r)N B_(Xj,t). For contemporaneous links (7 = 0), the adaptive MCI (aMCI)
component substitutes conditioning variables with more appropriate ones when the original variables
are identified as non-confounders, based on the refined lagged parent set B~ (Xi.) and B~ (Xjt)-

Due to the consistency properties of the ECD-aMCI algorithm, this approach preserves all necessary
confounders in the conditioning set S while systematically removing immediate predecessors that are

non-confounders. This selective conditioning strategy ensures that the estimated graph G accurately
converges to Geppag- Consequently, we can establish that {G = Geppag} C {,C'; = GCPpAG |-

Step 2: Considering the model (2) in paper with strong autocorrelation. For the causal link X; ;1 —
X+, standard algorithms A (e.g., PCMCI+) tests X; ;1 1L X, ; | {X; -2, X;+—1}. As discussed
in Section 3.1 in paper, this test almost relies on detecting the correlation between €; ;1 and ¢; ¢,
which are independent. In contrast, ECD-aMCI algorithm substitutes X; ;o with X; ;_3 by applying
the aMCI method, which transforms the test to one that relies on detecting the correlation between
{€i4—1,€i4—2} and {€+,€;+—1,€;1—2}, which exhibit dependency due to the shared terms. This
strategic adaptation enables correct detection of the causal link X; ;_; — X} ; in scenarios where

algorithm A fails. This demonstrates that there exist datasets for which G = Geppag but G 2% GCPDAG-

Combining these results, we have:

P(G = Geppac) =P(G = Geppac, G = Gerpac) + P(G = Geppac, G # Geppac)
=P(G = Gerpac) + P(G = Geppac, G # Geppac),

where the second term is strictly positive based on the datasets mentioned in the last paragraph. This
directly yields:

P(G = Gerpac) > P(G = Gerpac)s
completing the proof of Theorem 2.
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Theorem 6 (Order Independence) Under the Assumptions (Al)-(AS5), the outcome of ECD-aMCI
is independent of the order of the variables.

Proof The proof of the order-independence consists of three main steps: first demonstrating that the
aMCI method is order-independent, then proving that the estimation of refined lagged parent sets
and complete skeleton is order-independent, and finally establishing the order-independence of the
orientation process.

Step 1: Order-independence of the aMCI method. The aMCI method, by definition, operates as a
mapping function that takes inputs (X; ;—,, X+, S, B~ (Xit—r), B~ (Xj,¢+)) and produces outcomes
determined solely by these inputs. Since the outcomes are completely determined by the input values
rather than the order in which variables are processed, the application of the aMCI method preserves
the order-independence property of any algorithm that incorporates it.

Step 2: Order-independence of parent set estimation and skeleton discovery. The processes described
in Algorithms 2}f4] maintain order-independence by adopting the idea of PC-stable. In Algorithms [2}j4]
edge removals are executed only after completing each iteration over conditioning sets of cardinality
p. As established in Step 1, the integration of the aMCI method does not compromise this property,
thereby ensuring that the estimation of refined lagged parent sets and the discovery of the complete
skeleton remain order-independent.

Step 3: Order-independence of orientation phases. The orientation process maintains order-
independence through careful management of potential conflicts. Following the methodology
established in |Runge| (2020), the collider identification phase (Algorithm E]) and the rule-based
orientation phase (Algorithm[6)) preserve order-independence by implementing two key strategies:
(1) ambiguity marking for triples with inconsistent separating sets, and (2) consistent marking of
conflicting link orientations using the notation x — x.

A.5 ADDITIONAL EVALUATION RESULTS AND HYPERPARAMETER SETTINGS

A.5.1 DETAILED RESULTS AND HYPERPARAMETERS OF LINEAR SETTINGS (FIGURE2))

First, the Tables [S|{I6] present the mean and standard error of all metrics from Figure 2 in the
main paper. Then, all hyperparameters required for the experiments in Figure 2 are provided. The
simulation experiments systematically evaluate performance across three parameters: autocorrelation
strength (a), sample size (T), and dimension of the time series (d).

Results: According to the standard errors presented in Tables [5{16] the ECD-aMCI algorithm
demonstrates the smallest standard errors for F1-scorejaggeq, F1-score,; and SHD across most settings,
indicating robust performance and significantly superior results compared to baseline algorithms.

Table 5: F1-scorejyggeq Comparison (a variation)

Method a

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 0.775 £ 0.106 0.848 & 0.077 0.873 4+ 0.072 0.884 + 0.067 0.886 + 0.064
PCMCI+ 0.519 £0.156 0.695 +0.118 0.807 4+ 0.086 0.848 + 0.073 0.867 £ 0.066

Bagged-PCMCI+ 0.456 £+ 0.148 0.586 £ 0.121 0.672 £ 0.101 0.679 £ 0.098 0.671 £ 0.091
NTS-NOTEARS 0.240 £ 0.150 0.493 £0.194 0.708 £ 0.097 0.799 £ 0.074 0.837 £ 0.071

Table 6: F1-score,; Comparison (a variation)

Method a4

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 0.875 £+ 0.054 0.917 & 0.037 0.928 4 0.035 0.932 + 0.034 0.931 + 0.033
PCMCI+ 0.785 £ 0.066 0.857 4= 0.046 0.900 4= 0.037 0.916 + 0.034 0.922 + 0.033

Bagged-PCMCI+ 0.724 4+ 0.069 0.779 £ 0.054 0.810 % 0.048 0.808 £ 0.050 0.798 + 0.050
NTS-NOTEARS 0.355 £0.122 0.564 £ 0.160 0.753 £ 0.059 0.850 £ 0.043 0.883 + 0.042
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Table 7: SHD Comparison (a variation)

a

Method

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 11.603 =4.102 8.903 +3.169 8.643 +3.107 9.410 £ 3.121 10.547 + 3.126
PCMCI+ 16.673 +4.559 12.570 £ 3.393 10.560 4 3.039 10.543 4 2.958 11.207 £ 2.997

Bagged-PCMCI+ 22203 +4.877 18.997 £4.030 17.947 +4.004 18.977 £ 4.247 20.717 + 4.186
NTS-NOTEARS 67.903 4 16.787 38.937 £ 10.174 22.957 £ 5.424 14.623 +4.004 11.793 + 3.583

Table 8: Runtime (s) Comparison (a variation)

a

Method

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 3568 £21.64 21.15+£1293 1880+ 13.11 12.30+4.22 11.53 £ 3.60
PCMCI+ 20.92 + 13.96 10.80 + 5.61 9.71 + 6.63 6.66 + 2.28 4.34 + 0.97

Bagged-PCMCI+ 439.70 &+ 120.31 359.30 & 89.56 339.73 £ 89.41 330.18 & 75.78 314.70 £ 74.63

NTS-NOTEARS 13.76 + 9.98 1559 £ 1142 13.13 +£5.02 14.15 + 4.80 14.43 £5.52
Table 9: F1-scorejaggeq Comparison (T variation)
Method T
250 500 750 1000
ECD-aMCI 0.592 + 0.134 0.848 £ 0.077 0.920 + 0.055 0.945 + 0.046
PCMCI+ 0.459 4+ 0.135 0.695 £0.118 0.796 + 0.106 0.844 =+ 0.080
Bagged-PCMCI+ 0.374 + 0.131 0.586 + 0.121 0.705 + 0.113 0.760 + 0.093
NTS-NOTEARS 0.426 + 0.191 0.493 £0.194 0.531 + 0.158 0.537 4+ 0.164
Table 10: F1-score,; Comparison (T variation)
Method T
250 500 750 1000
ECD-aMCI 0.781 + 0.058 0.917 + 0.037 0.954 + 0.027 0.967 + 0.024
PCMCI+ 0.709 4 0.060 0.857 £ 0.046 0.909 + 0.043 0.932 £ 0.032
Bagged-PCMCI+ 0.647 + 0.062 0.779 + 0.054 0.844 + 0.051 0.874 + 0.043
NTS-NOTEARS 0.522 +0.173 0.564 +0.160 0.607 + 0.135 0.610 4+ 0.142
Table 11: SHD Comparison (T variation)
Method T
250 500 750 1000
ECD-aMCI 19.317 + 3.854 8.903 + 3.169 5.267 + 2.631 3.783 + 2.330
PCMCI+ 23.360 £ 3.556 12.570 £3.393 8.123 £3.421 5.857 £2.586

Bagged-PCMCI+ 28.003 = 4.234
NTS-NOTEARS  39.940 -+ 7.682

18.997 +4.030 14.283 £4.167 11.780 + 3.603
38.937 £ 10.174 39.063 +7.767 37.303 £+ 6.749

Table 12: Runtime (s) Comparison (T variation)

Method T

250 500 750 1000
ECD-aMCI 9.790 £2.842  21.154 4 12.929 16.803 4 5.779 17.980 4+ 7.912
PCMCI+ 3.375 + 0.887 10.797 £ 5.614 8.548 + 2.449 10.487 + 3.330

Bagged-PCMCI+ 235.378 £ 51.948 359.303 &+ 89.555 512.583 £ 113.982 589.065 £ 137.459

NTS-NOTEARS  10.321 £ 3.378

15.589 + 11.417

22.436 £ 15.596 18.564 £ 4.539
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Table 13: Fl1-scorejaggea Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 0.945 & 0.046 0.935 4 0.031 0.917 + 0.028 0.897 + 0.027
PCMCI+ 0.844 £ 0.080 0.833 +0.101 0.807 +0.108 0.785 + 0.115

Bagged-PCMCI+ 0.760 + 0.093 0.739 £ 0.095 0.700 £ 0.095 0.669 + 0.097
NTS-NOTEARS 0.537 £ 0.164 0.486 £ 0.176 0.423 + 0.189 0.388 £ 0.198

Table 14: Fl-score,; Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 0.967 + 0.024 0.957 + 0.018 0.944 + 0.016 0.931 + 0.018
PCMCI+ 0.932 +£0.032 0.924 £+ 0.042 0.909 + 0.047 0.897 + 0.050

Bagged-PCMCI+ 0.874 £ 0.043 0.839 £ 0.044 0.805 = 0.042 0.776 £ 0.043
NTS-NOTEARS 0.610 +0.142 0.563 £ 0.161 0.510 = 0.184 0.480 £+ 0.189

Table 15: SHD Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 3.783 +£2.330 9.077 + 3.445 15.963 +-4.585  26.157 + 7.028
PCMCI+ 5.857 £2.586 12.957 +6.062 21.823 +10.238 32.750 & 14.379

Bagged-PCMCI+ 11.780 + 3.603 29.827 £6.990 53.683 £9.811  82.400 £ 12.798
NTS-NOTEARS 37.303 £ 6.749 79.283 + 11.669 126.643 £ 13.792 170.520 &+ 17.492

Table 16: Runtime (s) Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 17.980 + 7.912 68.724 4+ 18.949 160.456 + 66.461 337.322 + 183.383
PCMCI+ 10.487 + 3.330 38.660 + 13.031 85.480 + 32.818 176.178 + 102.563

Bagged-PCMCI+ 589.065 £ 137.459 2571.851 4 699.392 6732.931 &+ 2098.731 13243.336 £ 3738.661
NTS-NOTEARS  18.564 £ 4.539 99.162 £ 53.911 384.579 £ 188.730 795.130 £ 407.888

Hyperparameters All hyperparameters required for the experiments in Figure 2 are provided in
the following.

* ECD-aMCIL, PCMCI+: Confidence level o = 0.01, maximum time lag 7,,x = 5, condi-
tion independence test C'I = ParCorr.

* Bagged-PCMCI+: Confidence level o = 0.01, maximum time lag 7,,x = 5, condition
independence test C'I = ParCorr, boot samples Byaggea = 50.

* NTS-NOTEARS: ); = 0.01 for T € {250,500}, A; = 0.001 for T € {750,1250},
A2 = 0.05, K = 5, m = d, the number of hidden layers = 1.

A.5.2 DETAILED RESULTS AND HYPERPARAMETERS OF NONLINEAR SETTINGS (FIGURE3)
This section presents the parameter settings and detailed results of simulation experiments under

nonlinear settings. Subsequently, all hyperparameters required for the experiments in nonlinear
settings are provided.
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Parameter setting: The datasets in nonlinear settings are generated from the same model as in
linear settings:

d Tmax

Xjt=a; X1+ Z Z 8ijrCijrfi(Xit—r) + €5t (%)

i=1 =1

The coefficient c; ; -, which represents the strength of the link X; ;. — X ;, is drawn uniformly
from [0.15,0.25]. For each simulated dataset, 3 - d cross-links between variables are randomly
selected. 50% of the links are set to be contemporaneous (7 = 0), and the remaining links have
time lags 7 uniformly drawn from {1, ..., Ty }, where true maximum time lag 7y is set to 3. The
functional dependencies f; ;(x) = tanh(z).

Results: As shown in Figure 3] ECD-aMCI consistently outperforms the baseline algorithms
across most evaluation metrics. In the first column, as the autocorrelation strength increases from
0.5 to 0.9, ECD-aMCI maintains superior F1-scores, with improvements of approximately 5-10%
over competing algorithms, while keeping the SHD consistently lower. Although the performance
advantage is modest at lower sample size, the second column reveals that the superiority of the
ECD-aMCT algorithm becomes increasingly pronounced as the sample size grows. The third column
illustrates that ECD-aMCI exhibits stable performance with increasing dimensionality, maintaining
relatively consistent F1-scores even as the number of variables increases. The bottom row illustrates
that constraint-based algorithms (including ECD-aMCI) require longer computational time than
optimization-based algorithms in nonlinear settings, primarily due to the computational intensity
of nonparametric conditional independence tests. Future research could explore more efficient
conditional independence test to reduce computational runtime. These simulation results demonstrate
that the ECD-aMCI algorithm offers substantial advantages over competing algorithms, particularly
in settings with sufficient sample size. Note that Bagged-PCMCI+ is not included in the nonlinear
setting comparisons due to its prohibitively high computational and memory requirements.
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Figure 3: Mean metrics over 50 datasets for each nonlinear linear setting.
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According to the standard errors presented in Tables the ECD-aMCI algorithm demonstrates
the smallest standard error for F1-scorejaggeq, F1-scorey and SHD across most settings.

Table 17: F1-scorejygged Comparison (auto variation)

a

Method

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 0.737 & 0.101 0.752 4+ 0.107 0.778 + 0.093 0.794 + 0.079 0.816 = 0.077
PCMCI+ 0.685 £ 0.117 0.713 £0.103 0.738 £ 0.101 0.763 = 0.097 0.784 + 0.092

NTS-NOTEARS 0.718 +0.103 0.745 £ 0.091 0.766 + 0.084 0.789 £ 0.078 0.809 + 0.081

Table 18: Fl-score,; Comparison (a variation)

a

Method

0.9 0.8 0.7 0.6 0.5
ECD-aMCI 0.850 £ 0.037 0.857 & 0.039 0.868 + 0.036 0.870 + 0.032 0.869 & 0.035
PCMCI+ 0.806 & 0.045 0.825 4+ 0.040 0.837 4+ 0.038 0.847 + 0.034 0.849 & 0.035

NTS-NOTEARS 0.812 4+ 0.046 0.834 £ 0.041 0.854 +0.041 0.863 £ 0.039 0.872 £ 0.040

Table 19: SHD Comparison (a variation)

a

Method

09 0.8 0.7 0.6 0.5
ECD-aMCI 20.920 + 3.123 20.600 + 3.280 20.280 £+ 2.892 20.640 + 2.544 21.120 £ 2.903
PCMCI+ 24.320 + 3.552 23.300 £ 3.132 22.760 + 3.178 22.300 & 2.744 22.440 + 2.815

NTS-NOTEARS 24.540 + 4.679 22.400 £ 3.863 20.560 £ 4.253 19.400 £ 3.950 18.660 + 4.246

Table 20: Runtime (s) Comparison (a variation)

a

Method
0.9 0.8 0.7 0.6 0.5
ECD-aMCI 4423.80 4= 696.92 4467.35 + 876.32 4733.17 4 823.10 3692.25 £ 836.55 4046.83 + 1067.61
PCMCI+ 1649.92 £ 388.47 1811.52 + 414.25 1951.26 4 465.31 1550.20 + 356.56 1515.32 4 424.96
NTS-NOTEARS  8.52 £+ 1.05 8.40 + 1.41 9.06 + 1.26 6.08 + 0.51 10.27 + 2.06
Table 21: F1-scorejygeeq Comparison (T variation)
Method T
250 500 750 1000
ECD-aMCI 0.425 £ 0.141 0.752 4+ 0.107 0.890 + 0.063 0.944 + 0.045
PCMCI+ 0.387 +0.137 0.713 = 0.103 0.839 + 0.083 0.899 + 0.046

NTS-NOTEARS 0.566 + 0.094 0.745 +0.091 0.824 + 0.074 0.841 + 0.060

Table 22: F1-score,; Comparison (T variation)

Method T

250 500 750 1000
ECD-aMCI 0.660 + 0.052 0.857 = 0.039 0.938 - 0.027 0.966 - 0.022
PCMCI+ 0.610 + 0.051 0.825 = 0.040 0.911 & 0.030 0.948 + 0.024

NTS-NOTEARS 0.716 + 0.051 0.834 £ 0.041 0.883 &£ 0.034 0.900 £ 0.031
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Table 23: SHD Comparison (T variation)

Method T

250 500 750 1000
ECD-aMCI 34.440 4+ 3.226 20.600 & 3.280 13.240 & 3.734 9.460 & 3.390
PCMCI+ 37.060 4+ 2.760 23.300 4= 3.132 15.420 +3.909 11.220 £ 3.324

NTS-NOTEARS 32.060 + 4.688 22.400 4 3.863 17.900 4 4.239 16.200 + 3.980

Table 24: Runtime (s) Comparison (T variation)

Method T
250 500 750 1000
ECD-aMCI 238.83 +31.69 4467.35 4+ 876.32 10259.70 £+ 2007.56 23890.22 + 3613.27
PCMCI+ 53.76 £9.85 1811.52 +414.25 4985.80 + 1353.46 14973.02 £+ 3799.10
NTS-NOTEARS  5.60 + 0.35 8.40 + 1.41 7.31 + 0.75 8.28 + 0.74
Table 25: F1-scorej,ggea Comparison (d variation)
Method d
10 20 30 40
ECD-aMCI 0.752 + 0.107 0.782 + 0.057 0.755 + 0.043 0.733 + 0.047
PCMCI+ 0.713 £0.103 0.757 £0.068 0.731 £ 0.051 0.730 £ 0.048

NTS-NOTEARS 0.745 +0.091 0.741 £ 0.072 0.727 £ 0.046 0.729 £ 0.050

Table 26: F1-score,; Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 0.857 £ 0.039 0.860 + 0.026 0.852 + 0.021 0.832 + 0.024
PCMCI+ 0.825 4+ 0.040 0.834 4+ 0.030 0.827 +0.021 0.816 + 0.023

NTS-NOTEARS 0.834 +0.041 0.818 £0.036 0.818 £ 0.020 0.813 4 0.026

Table 27: SHD Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 20.600 + 3.280 42.400 + 5.223 66.040 = 6.579 95.880 + 9.024
PCMCI+ 23.300 + 3.132 46.500 &= 5.442 71.980 £+ 5.941 100.840 4+ 7.630

NTS-NOTEARS 22.400 &+ 3.863 45.240 £ 6.445 66.900 + 6.655 92.540 + 9.104

Table 28: Runtime (s) Comparison (d variation)

Method d

10 20 30 40
ECD-aMCI 4467.35 4+ 876.32 13977.40 £ 3313.75 26279.66 + 4543.04 43190.11 =+ 8954.29
PCMCI+ 1811.52 = 414.25 3949.59 4 1480.62 7322.64 + 1707.84 9831.77 & 2665.12
NTS-NOTEARS 8.40 + 1.41 29.66 + 3.47 192.25 + 84.32 473.98 + 173.88

Hyperparameters: All hyperparameters required for the experiments in Figure 1 are provided in
the following.

* ECD-aMCI, PCMCI+: Confidence level o = 0.01, maximum time lag 7,,x = 3, condi-
tion independence test CI = GPDC.
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* NTS-NOTEARS: \; = 0.01 for T € {250,500}, A; = 0.001 for T € {750, 1250},
Ao = 0.05, K = 3, m = d, the number of hidden layers = 1.

B THE USE OF LARGE LANGUAGE MODELS

Large language models were used in polishing the paper by correcting grammar and spelling errors.
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