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ABSTRACT

Semantic-level watermarking (SWM) for large language models (LLMs) en-
hances watermarking robustness against text modifications and paraphrasing at-
tacks by treating the sentence as the fundamental unit. However, existing methods
still lack strong theoretical guarantees of robustness, and reject-sampling–based
generation often introduces significant distribution distortions compared with un-
watermarked outputs. In this work, we introduce a new theoretical framework on
SWM through the concept of proxy functions (PFs) – functions that map sentences
to scalar values. Building on this framework, we propose PMARK, a simple yet
powerful SWM method that estimates the PF median for the next sentence dy-
namically through sampling while enforcing multiple PF constraints (which we
call channels) to strengthen watermark evidence. Equipped with solid theoretical
guarantees, PMARK achieves the desired distortion-free property and improves
the robustness against paraphrasing-style attacks. We also provide an empirically
optimized version that further removes the requirement for dynamical median es-
timation for better sampling efficiency. Experimental results show that PMARK
consistently outperforms existing SWM baselines in both text quality and robust-
ness, offering a more effective paradigm for detecting machine-generated text.
The source code is available at this URL.

1 INTRODUCTION

The rapid advancements of generative AI (GenAI) techniques (Achiam et al., 2023; Team et al.,
2025; Rombach et al., 2022; Liu et al., 2024; Brooks et al., 2024) have transformed content creation
across diverse fields (Mittal et al., 2024; Chen et al., 2025; Yang et al., 2024), raising significant con-
cerns regarding the traceability of AI-generated text and copyright protection (Zhao et al., 2024; Wu
et al., 2025). Watermarking (Kirchenbauer et al., 2023; Aaronson, 2023), which embeds distinctive
patterns into generated content, has emerged as a critical solution to these challenges.
Token-level watermarking schemes for text generation have been widely studied. The popular
Green-Red scheme (Kirchenbauer et al., 2023; Zhao et al., 2023a) biases token sampling toward
a “green” subset, enabling watermark detection via statistical tests on the frequency of green tokens.
However, Green-Red watermarking schemes are inherently biased (Hu et al., 2023), meaning that
they deviate from the original sampling distribution of LLMs and may degrade text quality (Hu
et al., 2023). Distortion-free methods such as Gumbel Watermarking (Aaronson, 2023) and PRC-
based schemes (Christ & Gunn, 2024) have also been explored, typically associated with crypto-
graphic techniques such as digital signatures (Rivest et al., 1978). Recently, some studies (Tsur
et al., 2025b;a) also discuss the best trade-off between detectability and text quality by maximizing
the likelihood of watermark detection while minimizing the distortion of generated text.
Unfortunately, token-level watermarks can be easily removed: an attacker can simply ask an un-
watermarked model to rephrase the generated text while preserving most of its semantic informa-
tion (Hou et al., 2023). To improve robustness against such attacks, semantic-level watermarking
(SWM) approaches like SemStamp (Hou et al., 2023; 2024) treat a semantically complete sentence
as the fundamental watermarking unit. These methods employ rejection sampling to ensure that gen-
erated sentences fall within a valid semantic region of the embedding space, analogous to the green
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Figure 1: Illustration of PMARK pipeline in 2D space, with robustness enhanced by multi-channel
constraints. Note that we use orthogonal pivots and distortion-free partition in practice.

list in Green-Red watermarking. Nonetheless, this split-and-reject paradigm inherits the distortion
drawback of Green-Red watermarking and also introduces additional weaknesses, such as sampling
failures when all candidate sentences fall in invalid regions (Zhao et al., 2024).
In this work, we propose a new semantic-level watermarking scheme named PMARK with the
distortion-free property. To achieve this goal, we first establish a solid framework for analyzing
SWM schemes based on a core concept called the proxy function (PF). Within this framework,
PMARK defines the PF of a sentence as the cosine similarity between its embedding and a pre-
defined random vector. The key idea behind PMARK is that, given knowledge of certain statistical
properties of the PF distribution, we can quantify the probability mass of the valid region and per-
form a sampling process with a strong theoretical guarantee of being distortion-free. We further
incorporate multiple channel constraints to enhance the density of watermarking evidence, as illus-
trated in Figure 1. Leveraging the fact that random vectors in high-dimensional spaces are almost
always orthogonal (Ruppert, 2004), we show that even when simply estimating the median PF as
zero, PMARK still achieves high text quality with an efficient sampling process.
Empirically, our evaluation demonstrates that while PMARK preserves high text quality (PPL
4.37–4.71), it achieves significantly better robustness against paraphrasing attacks using GPT Para-
phraser (OpenAI, 2022), with improvements of up to 14.8% and 44.6% over the prior best semantic-
level and token-level watermarking schemes, respectively. In terms of sampling efficiency, the online
version of PMARK requires only 20% of the resources (measured in token consumption) compared
to prior SOTA semantic-level watermarking schemes, while the offline version exhibits even lower
consumption, paving the way for real-world deployment of PMARK in practice.
Key contributions of this paper include:

❶ We propose a novel theoretical framework that unifies existing SWMs via the introduction
of the proxy function, providing solid analytical foundations for performance evaluation.

❷ We identify that sparse watermarking evidence in SWMs negatively impacts adversarial
robustness, and address this problem by introducing multiple channel constraints.

❸ We introduce an online version of PMARK that achieves high robustness and is theoretically
distortion free under mild prerequisites; we also present an offline version that reduces
computational cost while maintaining low distortion.

❹ We conduct comprehensive experiments across a variety of text watermarking tasks across
multiple datasets and backbones, validating the effectiveness and efficiency of our method.

2 PRELIMINARIES

In this section, we delve into the problem of Semantic-level Watermarking (SWM), which treats
semantically complete sentences as the fundamental unit. We begin by formalizing the problem and
defining key concepts, inspired by Hu et al. (2023). See Appendix B for detailed proofs.

Zero- and Multi-bit Watermarks. We write M(π) → y to denote the process of sampling a
response y from the model given an input prompt π. A watermark generation algorithm is denoted
as GenerationMk (π) → y, where k is the watermark generation key (Zhao et al., 2024). A detection
algorithm determines whether a given text y is watermarked, denoted as Detect(y) → {True,False}.
In this work, we focus on zero-bit watermarks, which embed a single detectable signal (e.g., True
or False) into text. In contrast, the concurrent SAEMark (Yu et al., 2025) investigates multi-bit
watermarking, which embeds a message m ∈ {0, 1}m into text (Lau et al., 2024). A detailed
discussion of concurrent studies and related work can be found in Appendix C.
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Problem Setup. Let Σ denote the vocabulary set of LLM. We define Σ∗ as the set of all semanti-
cally complete sentences, including the null sentence of length zero. For any s ∈ Σ∗, let s denote
its token sequence, s = [xs

1, . . . , x
s
|s|] = tokenize(s).

At each generation step, the probability of producing the next token xn+1 ∈ Σ given the current
context x1, . . . , xn is denoted by PM (xn+1 | x1, . . . , xn). The joint probability of generating a
sequence of m tokens xn+1, . . . , xn+m is expressed as:

PM (xn+1, . . . , xn+m | x1, . . . , xn) =

m∏
i=1

PM (xn+i | x1, . . . , xn, xn+1, . . . , xn+i−1). (1)

In the context of SWM, we focus on the probability distribution of the next sentence sn+1 ∈ Σ∗

given the preceding context s1, . . . , sn, denoted as:

PM (sn+1 | s1, . . . , sn) =
|s|∏
i=1

PM (xs
i | s1, . . . , sn, xs

1, . . . , x
s
i−1). (2)

Here PM (s) : Σ∗ → [0, 1] is a probability mass function over the countable set Σ∗.
For watermarking, we introduce a private key k drawn from a key space K, where k ∈ K is
randomly sampled from a prior distribution PK(k). The watermarked output of the LLM follows a
conditional distribution Pw

M (sn+1 | s1, . . . , sn; k), which depends on the preceding context and k.

Sampling-based Semantic-level Watermarking. Directly modeling PM (sn+1 | s1, . . . , sn) is
generally intractable since Σ∗ is infinite. A common approach adopted by SWM methods is to
sample a set of i.i.d. candidate sentences x1, . . . , xN ∼ PM (sn+1 | s1, . . . , sn), and then select a
candidate Y that carries watermark evidence, Yk = SWMk({x1, . . . , xN}). The distribution of the
watermarked output is then defined as the distribution of Y :

Yk ∼ Pw
M (sn+1 | s1, . . . , sn; k). (3)

Definition 1 (Single-sentence Distortion-Free). Given a context π = [s1, . . . , sn], we say that the
watermarked LLM distribution is single-sentence distortion-free relative to the original LLM PM if,
for all sn+1 ∈ Σ∗,

PM (sn+1 | π) =
∑
k∈K

PK(k) · Pw
M (sn+1 | π; k). (4)

This condition means that the marginal distribution of sn+1, when averaged over all possible water-
mark keys k, is identical to its unwatermarked distribution under the original model.

Definition 2 (Equivalence via Watermark Code Space). In most cases, PK(k) is designed to induce
uniform random sampling over a watermark code space E, where eK ∼ Uniform(E). Under this
construction, the right side of equation 4 can be equivalently rewritten as:∑

k∈K

PK(k) · Pw
M (sn+1 | π; k) =

∑
e∈E

P (eK = e) · Pw
M (sn+1 | π; e). (5)

Definition 3 (Probability Measure on Σ∗). Let (Σ∗,G, µM ) be a probability space, where G is a
σ-algebra over Σ∗, and µM is the probability measure induced by the model PM : Σ∗ → [0, 1]. For
any measurable subset A ⊆ Σ∗, the measure µM (A) is defined as

µM (A) =
∑
s∈A

PM (s).

3 REVISITING SEMANTIC-LEVEL WATERMARKING

3.1 PROXY FUNCTION

Section 2 discusses the sampling-based paradigm of SWM, which addresses the challenge of oper-
ating over the infinite set Σ∗. However, to enable rule-based selection among a candidate sentence
set x1, . . . , xN ∈ Σ∗, SWM methods require a concrete mapping from the sentence space to the real
numbers, since direct computation in the infinite textual space is generally intractable.

Proxy Function. To this end, we define a function F : Σ∗ → R, referred to as the proxy function,
which assigns a real-valued score to each semantically complete sentence. Let U denote the range
of the proxy function F . We define a partition of the range U as P(U) (see Definition 4). Each
element u ∈ U belongs to exactly one subset Ai ∈ P(U), denoted as Ai = Pu(U).
We also define the inverse mapping of F , denoted by F−1 : U → 2Σ

∗
, where 2Σ

∗
is the power set of

Σ∗. Each value u ∈ U thus maps to the set of sentences in Σ∗ that share the same proxy value under
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F , denoted as F−1(u). Furthermore, the watermark code space is denoted as E ∈ 2P(U), whose
element e is selected by the watermarking scheme according to a prior distribution eK ∼ PK(E)
induced by the key PK(k).

3.2 ANALYSIS OF THE BASELINE

Proxy Function of SemStamp. We first focus on a simplified generation process of SemStamp,
where the original margin constraint is removed for clarity. In SemStamp (Hou et al., 2023), the
proxy function is defined as:

F(s) = LSH(T (s)) = [LSH1(T (s))∥ · · · ∥LSHh(T (s))], (6)
where LSHi(v) = sign(ti · v) (Indyk & Motwani, 1998; Charikar, 2002), {ti | i = 1, . . . , h} ⊂ Rd

is a set of randomly initialized vectors, T is a text encoder with T (s) : Σ∗ → Rd, and [·] denotes the
transformation from binary representation to its corresponding decimal value. Given that the range
of F is U = {1, . . . , 2h}, the partition used in SemStamp is defined as P(U) = {{1}, . . . , {2h}}.

Sampling-then-selecting Process. We now reformulate the rejection-sampling process of Sem-
Stamp as a sampling-then-selecting process, without loss of generality:

• Given a context π, SemStamp samples N candidate sentences from the natural distribution:
W = {x1, . . . , xN}, xi ∼ P (s | π), i = 1, . . . , N .

• For a fixed green ratio γ such that γ|P(U)| ∈ N+, the watermark code space is defined as
E = {e ∈ 2P(U) | |e| = γ|P(U)|}. The watermark code eK is sampled uniformly at ran-
dom from eK ∼ Un(E), implying that each element of P(U) is selected with probability
γ. The green region of Σ∗ is then defined as G = {s ∈ Σ∗ | F(s) ∈

⋃
e}, while the set of

valid candidates is V = {xi | F(xi) ∈
⋃

e}. We assume that V is always non-empty.

• A watermarked sentence Y is then uniformly selected from V , where the distribution of
the watermarked output is Y ∼ Pw

M (s | π).

Distortionary Distribution of Watermarked Output. Fix a context π and let F : Σ∗ → U be
the proxy function with a finite range U of size M ≜ |U |. For ∀u ∈ U , define its natural mass:

q(u) ≜ µM

(
F−1(u)

)
=

∑
t∈F−1(u)

PM (t | π),
∑
u∈U

q(u) = 1. (7)

Fix a green ratio γ ∈ (0, 1) with g = γM ∈ N+. The code space consists of all size-m subsets S ⊆
U , each chosen uniformly at random. For any S ⊆ U , define the green mass q(S) ≜

∑
v∈S q(v).

Lemma 1 (Probability Scaling of Green Region). For any fixed green set S ⊆ U and any N ≥ 1,
the distribution of the output sentence Y is independent of N and equals the natural distribution
conditioned on F ∈ S. Specifically, for any s ∈ Σ∗ with u = F(s),

P (Y = s | π, S) =


PM (s | π)

q(S)
, u ∈ S,

0, u /∈ S.
(8)

Averaging over the uniformly random choice of green set S yields a closed-form expression:

Theorem 2 (Closed-form of Watermarked PMF). For any s ∈ Σ∗ with u = F(s) ∈ U ,

Pw
M (s | π) = PM (s | π) · 1(

M
g

) ∑
S⊆U

|S|=m,u∈S

1

q(S)
. (9)

where q(u) is defined in equation 7, and M, g, u, U,Σ∗,F ,F−1 are known quantities.

Corollary 2.1. Pw
M (s | π) is distortion-free if and only if q(u) = 1

M for all u ∈ U .

However, the condition in Corollary 2.1 is not guaranteed in SemStamp, whose embedding space is
randomly partitioned. Similar conclusions apply to other SWM methods such as k-SemStamp and
SimMark, with further analysis provided in Appendix D.1 and E.

3.3 SINGLE-CHANNEL DISTORTION-FREE SAMPLING

In this section, we present a toy example of a distortion-free sampling scheme for next-sentence
generation, serving as a foundation for subsequent sections.
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Proxy Function via Pivot Vector. Given a text encoder T : Σ∗ → Rd and a fixed pivot vector
v ∈ Rd, we define the proxy function as Fv(s) = ⟨v, T (s)⟩ = v·T (s)

∥v∥·∥T (s)∥ , which denotes the cosine
similarity between the pivot vector and the encoded sentence. The range of Fv is [−1, 1].

Median-based Sampling. Given a context π, we sample N i.i.d. candidate sentences from the
natural distribution: W = {x1, . . . , xN}, xi ∼ PM (s | π), where N is an even integer. The proxy
function Fv assigns each candidate a scalar score F = {fi = Fv(xi) | i = 1, . . . , N}. Let mv be
the median of F . We partition W into two equal-sized subsets:

Fupper = {xi | fi ≥ mv}, Flower = {xi | fi < mv}, (10)
with ties broken randomly to ensure balance.
Define the watermark code space as E = {Fupper, Flower}. A random seed k ∈ {0, 1} is sampled

uniformly, and the selected code is eK =

{
Fupper, if k = 1,

Flower, if k = 0.
The valid sentence set is V = eK , and the next sentence is sampled uniformly from V : Y ∼ Un(V ).
We denote the operation that selects the half-partition V from the whole set W based on random
seed k and proxy function Fv as V = D(W | k,Fv), |V | = |W |/2.

Theorem 3 (Distortion-free on a Single Channel). For any context π, sample N i.i.d. candidates
W = {x1, . . . , xN} from PM (· | π), and form half-sets e0, e1 by the median rule. Draw k ∼
Unif{0, 1} and then sample Y uniformly from ek. Then Pw

M (s | π) = PM (s | π).

Proof. For any xi ∈ W , we have

P (Y = xi | W ) =
∑

k∈{0,1}

P (k)P (Y = xi | W,k) = 1
2

(
2
N 1{xi ∈ e0}+ 2

N 1{xi ∈ e1}
)
= 1

N .

Averaging over the randomness of W yields

Pw
M (s | π) =

N∑
i=1

P (xi = s)P (Y = xi | W ) = PM (s | π),

which proves that the single-channel sampling method above is distortion-free.

4 PROPOSED METHOD

4.1 MULTI-CHANNEL CONSTRAINED GENERATION (ONLINE)

Single-Channel Robustness. While Section 3.3 introduces a simple distortion-free sampling strat-
egy for SWM, it remains vulnerable to paraphrasing attacks.

Theorem 4 (Semantic Robustness on Single Channel). Let s be a watermarked sentence and v ∈ Rd

the pivot vector. Suppose an attacker A : Σ∗ → Σ∗ modifies s such that 1− ⟨T (A(s)), T (s)⟩ ≤ d.
Then the probability that the watermark evidence of s is removed by such an attack is bounded by

Prm ≤ µM

(
s ∈ Σ∗

∣∣∣Fv(s) ∈ [mv −
√
2d,mv +

√
2d]

)
. (11)

The robustness of the entire watermarked text S = [s1, . . . , sn] depends on the specific detection
scheme, with a detailed analysis available in Giboulot & Furon (2024). Importantly, compared with
token-level baselines where each token contributes one bit of watermark evidence, the evidence
density of SWM in the single-channel setting is extremely sparse. This sparsity results in a signifi-
cant degradation in detectability under adversarial attacks. To address this limitation, we extend the
paradigm to incorporate multiple channel constraints.

Multi-Channel Sampling. Given a pre-defined set of b orthogonal vectors v1, · · · , vb, we refer to
each pivot as a channel. The proxy function defined on vi is Fvi(s) = ⟨vi, T (s)⟩, also denoted as Fi

for simplicity. Specifically, these pivots can be generated from the QR decomposition of a matrix.
Since this approach relies on dynamic median estimation, we refer to it as the online PMARK.

1. Given a context π, PMARK samples N candidate sentences from the natural distribution:
W = {x1, . . . , xN}, xi ∼ P (s | π), i = 1, . . . , N .

2. For i = 1 to b, update Vi = D(Vi−1 | ki,Fi), where V0 = W and ki ∼ Un({0, 1}).
3. A watermarked sentence Y is then uniformly sampled from Vb, so that the distribution of

the watermarked output is Y ∼ Pw
M (s | π).
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Algorithm 1:
PMARK Online Generation
Input : LLM M ; prompt s(0);

encoder T ; T ; b;
random seeds R = {r(t,j)};
sample budget N ;

Output: s(1), . . . , s(T )

1 Initialize b orthogonal pivots
v(1), . . . , v(b);

2 for t← 1 to T do
3 Sample W (t) = {x(1), . . . , x(N)}

with x(i) ∼ PM (s | s(0:t−1));
4 V (0) ←W (t);
5 for j ← 1 to b do
6 Fj(s) = ⟨v(j), T (s)⟩;
7 V (j) ←

D
(
V (j−1) | r(t,j),Fj

)
on

channel v(j);
8 end
9 Select s(t) ∼ Un

(
V (b)

)
;

10 end
11 return s(1), . . . , s(T );

Algorithm 2: PMARK Online Detection

Input : S = [s(0), . . . , s(T )]; M ; T ;v(1...b); R = {r(t,j)};
N ; α; threshold δ; Smooth Factor K

Output: True or False
1 Ng ← 0; Ntotal ← b · T ;
2 for t← 1 to T do
3 Resample W ′

t = {x(1), . . . , x(N)} with
x(i) ∼ PM (s | s(0:t−1));

4 for j ← 1 to b do
5 Define Fj(s) = ⟨v(j), T (s)⟩;

m̂(t,j) ← HDMedian
(
{Fj(x

(i))}Ni=1

)
;

6 x(t,j) ← Fj(s
(t));

7 if r(t,j) = 1 and x(t,j) > m̂(t,j) − δ then
8 c(t,j) ← 1
9 else if r(t,j) = 0 and x(t,j) < m̂(t,j) + δ then

10 c(t,j) ← 1
11 else
12 c(t,j) ← exp(−K|x(t,j) − m̂(t,j)|)
13 end
14 Ng ← Ng + c(t,j);
15 end
16 end

17 z ← |Ng − 0.5Ntotal|√
0.25Ntotal

; return ( z > zα );

Figure 2: PMARK Online Watermarking. Left: Multi-channel constrained generation; Right: De-
tection via soft-z-test.
Remark 1 (Multi-channel Distortion-free). It is straightforward to verify that such multi-channel
sampling is distortion-free, since for ∀xj ∈ Vi, P (xj ∈ Vi+1) =

1
2 and P (Y = x | x ∈ W ) = 1/N .

The complete process for generating watermarked texts is described in Algorithm 1. A theoretical
analysis outlining the advantages of multi-channel sampling is presented in Appendix B.

4.2 SOFT-z-TEST DETECTION (ONLINE)
We now introduce a robust detection scheme for text watermarked with the online PMARK.

1. Sentence Segmentation. The input text is segmented into sentences S = [s0, s1, . . . , sT ]
to enable subsequent processing.

2. Median Reconstruction via Sampling. For each sentence st (1 ≤ t ≤ T ), resample
W ′

t = {x1, . . . , xN} i.i.d. from PM (st | s0:t−1).
3. Online Median Estimation. For each pivot vector vj (1 ≤ j ≤ b), estimate the median

m′
(t,j) of the values Fj(W

′
t ) using the Harrell–Davis estimator (Harrell & Davis, 1982).

4. Smooth Counting of Watermark Evidence. To mitigate discrepancies between the medi-
ans estimated during generation and detection, we introduce a smooth counting mechanism
inspired by (Dabiriaghdam & Wang, 2025). Specifically, given a margin threshold δ > 0
and a smoothing factor K > 0, the watermark evidence contributed by st along axis vj is
defined as

c(t,j) =

{
1, if (r(t,j) = 1 ∧ Fj(st) > m′

(t,j) − δ) ∨ (r(t,j) = 0 ∧ Fj(st) < m′
(t,j) + δ),

e−K|Fj(st)−m′
(t,j)|, otherwise.

5. Robust Detection via Soft-z-Test. Finally, to determine whether the input text was gen-
erated by PMARK, we apply a soft-count-based z-test. The test statistic is computed as

z =
|∑T

t=1

∑b
j=1 c(t,j)−0.5bT |√
bT ·0.5·0.5 , where b · T is the total number of potential watermark bits

across channels.
The complete description of the online detection scheme is provided in Algorithm 2.

4.3 OFFLINE PARTITION WITH A PRIOR THRESHOLD

Concentration of Measure. In practice, we find the range of F is confined to a small interval
around zero, [−ϵ, ϵ] with ϵ ≤ 0.08 in most cases. This observation is consistent with Lemma 5:
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Lemma 5 (Orthogonality). Let x, y be random vectors drawn uniformly from the unit sphere
Sd−1 ⊂ Rd. Then the angle θ between them has density

pd(θ) =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
sind−2 θ (θ ∈ [0, π]). (12)

Moreover, we observe a concentration phenomenon whereby the median m remains close to zero.
Building on this intuition and supporting empirical results, we use zero as an effective prior for the
median in the offline PMARK. Experimental results in Section 5 demonstrate the effectiveness of
this approximation. A brief analysis of the theoretical impact of this prior assumption is included in
Appendix F.

Offline Watermarking with a Prior-Median Assumption. Accordingly, we adopt zero as the
prior median during both generation and detection, while maintaining the same watermarking rate γ
for the z-test. For a candidate sentence x, define the binary signal vector

Sig(x) =
[
[f1(x) > 0], . . . , [fb(x) > 0]

]
, (13)

and let r ∈ {0, 1}b denote the random channel seeds. The total watermark evidence contributed by
x is

E(x) =

b∑
j=1

(
Sig(x)(j) ∧ r(j)

)
. (14)

During generation, we select the sentence that maximizes this watermark evidence. This avoids the
computational overhead of repeated sampling and the need to access the original prompt during de-
tection by eliminating dynamical estimation, meaning that the offline detector will function without
querying generator. The complete algorithm is also provided in Appendix F.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
How does PMARK perform under various attacks? (RQ2) Can PMARK enable high-quality text
generation in practice? (RQ3) What is the computational cost of PMARK compared with other
SWM baselines? (RQ4) How sensitive is PMARK to its key components or parameters?

5.1 EXPERIMENT SETUP

Dataset and Baselines. Following previous work (Hou et al., 2023; Wang et al., 2025), we eval-
uate the performance of PMARK using 500 samples from the C4 (Raffel et al., 2020) and BOOK-
SUM (Kryściński et al., 2021) datasets separately, with OPT-1.3B (Zhang et al., 2022) and Mistral-
7B-v0.1 (Jiang et al., 2023) as backbone models. Our baselines are based on the official implemen-
tation of MarkLLM (Pan et al., 2024), including token-level watermarking methods KGW (Kirchen-
bauer et al., 2023), UPV (Liu et al., 2023a), MorphMark (Wang et al., 2025), SIR (Liu et al., 2023b),
EXP (Aaronson, 2023), EXPGumbel (Aaronson, 2023), SynthID (Dathathri et al., 2024), as well as
semantic-level baselines SemStamp (Hou et al., 2023), k-SemStamp (Hou et al., 2024), and Sim-
Mark (Dabiriaghdam & Wang, 2025). For the PMARK generation process, we set the number of
channels to 4 with a sample budget N = 64. The hyperparameters of the soft-z-test during detection
are set as K = 150 and δ = 0.001. More implementation details can be found in Appendix G.1.

Metrics. Following previous work, we use perplexity (PPL) to measure the quality of generated
text, computed using LLaMA-2-7B (Touvron et al., 2023). We also assess watermark effectiveness
in terms of detectability (TPR@1%, AUC) and robustness under sentence-level attacks (Paraphrase
Attack by Parrot (Sadasivan et al., 2023), GPT-3.5-turbo (OpenAI, 2022), and Back-Translation At-
tack by LLAMA-3.1-8B (Pan et al., 2024; Dubey et al., 2024)). Word-level attacks (Pan et al., 2024)
such as word deletion and synonym substitution at rates 0.05, 0.15, and 0.30 are also considered.
Refer to Appendix G.2 for a more detailed discussion of these attacks.

5.2 ROBUSTNESS AND TEXT QUALITY (RQ1 & RQ2)
To answer RQ1, we comprehensively compare PMARK with seven widely used token-level water-
marks and three semantic-level watermarks under various attacks. Table 1 presents comprehensive
results of watermarking methods under paraphrase attacks, with Pegasus (Pu et al., 2023), Par-
rot (Sadasivan et al., 2023), and GPT-3.5-turbo (OpenAI, 2022) as different paraphrasers. Figure
3 illustrates the trade-off between text quality and robustness under back-translation attacks, while
Figure 4 shows the results of various SWM methods under word-level attacks. We provide the
following observations (Obs.):
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Table 1: Overall results for baseline methods and PMARK on OPT-1.3B and Mistral-7B across the
BOOKSUM and C4 benchmarks. Doc-P denotes Paraphrase Attack, while Pegasus, Parrot, GPT are
different paraphrasers. For each attack, we report TP@FP=1%, TP@FP=5%, and AUC, followed
by the standard deviation of TP@FP=1% in light gray. Bold denotes the best result, and underlined
denotes the second-best.

Method
BOOKSUM C4

No Attack↑ Doc-P (Pegasus)↑ Doc-P (Parrot)↑ Doc-P (GPT)↑ No Attack↑ Doc-P (Pegasus)↑ Doc-P (Parrot)↑ Doc-P (GPT)↑
OPT-1.3B

EXP (2023) 98.8/99.0/99.3 4.2/14.6/52.5 5.4/16.0/55.2 4.4/13.4/53.0 99.0/99.6/99.8 54.6/68.2/86.9 42.4/59.6/84.6 21.2/37.2/73.3
EXPGumbel (2023) 99.4/99.4/99.4 12.4/20.2/50.6 12.4/20.0/52.2 13.0/23.2/54.4 98.6/98.6/99.3 75.2/84.6/91.8 74.6/81.0/92.8 55.6/66.0/86.0
KGW (2023) 100.0/100.0/100.0 1.4/4.6/56.8 1.4/5.9/55.7 0.6/4.2/54.6 100.0/100.0/100.0 89.3/97.0/99.2 76.2/91.4/98.1 51.4/78.5/95.0
SIR (2023b) 99.6/100.0/99.8 84.2/93.8/97.5 80.6/93.8/98.1 49.8/82.8/95.9 99.8/100.0/99.9 91.6/94.6/98.7 83.4/90.6/97.6 74.2/88.6/97.7
UPV (2023a) 100.0/100.0/100.0 90.0/95.6/98.7 89.2/98.2/99.3 73.6/91.0/98.0 100.0/100.0/100.0 90.6/95.4/98.3 78.7/88.4/97.4 80.9/91.3/98.2
SynthID (2024) 100.0/100.0/99.9 38.2/56.6/86.9 25.8/43.6/83.8 1.8/14.6/65.7 100.0/100.0/99.9 45.4/66.2/89.5 26.4/49.4/82.7 6.4/21.2/67.6
MorphMark (2025) 100.0/100.0/100.0 1.8/7.7/55.2 1.2/6.1/54.6 0.8/4.2/51.1 100.0/100.0/100.0 78.6/93.0/97.8 70.2/87.1/96.8 46.7/76.2/93.2
SemStamp (2023) 97.7/98.8/99.4 89.0/93.2/97.3 90.7/93.0/97.5 79.6/85.4/94.2 94.6/96.1/98.9 85.8/91.0/96.9 84.4/89.3/96.2 73.5/81.4/93.0
k-SemStamp (2024) 99.6/100.0/99.9 74.5/84.6/97.4 72.3/86.6/97.5 62.1/72.9/95.2 100.0/100.0/99.9 76.6/89.2/97.1 74.3/87.0/97.5 62.9/78.6/94.1
SimMark (2025) 88.2/94.0/98.8 23.4/42.8/84.6 29.0/45.6/87.3 22.0/40.4/83.6 77.6/94.2/98.5 11.6/35.8/82.9 13.6/39.2/84.5 16.0/44.8/86.5
Ours(Online) 99.8/99.8/99.9 97.4/99.0/99.8 96.8/99.0/99.8 95.4/99.0/99.6 100.0/100.0/99.9 96.2/99.6/99.8 97.2/99.0/99.8 97.8/99.6/99.8
Ours(Offline) 99.4/99.6/99.8 93.2/98.2/99.5 95.2/98.6/99.5 94.2/98.8/99.6 98.0/99.0/99.8 91.7/94.4/98.8 91.4/95.2/99.0 92.6/96.2/99.1

Mistral-7B
EXP (2023) 99.8/99.8/99.9 36.4/53.0/85.8 47.2/61.8/89.1 10.4/22.0/71.7 99.2/99.2/99.5 44.4/60.4/85.7 34.2/54.8/84.2 17.4/29.8/72.1
EXPGumbel (2023) 99.6/99.6/99.7 65.6/77.2/90.8 78.8/85.2/92.8 38.4/53.2/81.9 98.6/98.6/99.3 71.2/82.0/92.5 66.2/77.2/90.8 40.2/55.4/82.5
KGW (2023) 100.0/100.0/100.0 84.2/95.4/98.7 90.2/97.3/99.2 35.8/68.9/92.1 100.0/100.0/100.0 85.6/95.5/98.8 79.2/93.7/98.8 54.2/76.7/95.6
SIR (2023b) 100.0/100.0/99.9 85.0/92.6/98.0 80.8/92.0/98.2 41.2/71.4/93.6 100.0/100.0/99.9 87.6/93.4/98.1 83.2/89.6/97.8 63.4/80.8/96.4
UPV (2023a) 99.6/100.0/100.0 72.6/96.2/98.5 73.0/96.9/99.0 33.4/76.2/94.6 99.4/99.8/99.9 71.4/91.4/97.7 61.9/85.4/97.5 34.9/68.6/93.4
SynthID (2024) 100.0/100.0/100.0 30.2/49.2/83.5 28.2/48.4/85.5 3.0/13.0/65.0 99.8/99.8/99.8 47.0/56.0/87.6 31.4/41.4/80.7 7.4/17.2/68.2
MorphMark (2025) 99.8/100.0/100.0 68.2/88.9/97.2 77.4/93.3/98.4 24.6/52.8/87.7 98.6/100.0/100.0 74.8/89.4/97.5 70.0/86.4/97.4 35.2/59.7/91.4
SemStamp (2023) 97.7/98.4/99.5 88.1/92.8/97.8 92.4/95.2/98.1 76.0/83.0/94.5 92.5/95.8/98.3 80.9/87.9/95.9 77.9/86.3/95.7 69.2/80.0/92.4
k-SemStamp (2024) 99.0/99.0/99.7 45.5/64.1/92.4 53.9/70.3/94.8 43.5/61.9/91.6 100.0/100.0/99.9 49.2/68.4/93.2 54.8/71.6/93.7 43.9/61.2/89.2
SimMark (2025) 78.0/89.4/97.9 19.8/40.6/83.6 28.8/46.2/85.9 23.4/45.0/84.9 70.8/89.6/97.9 12.4/31.2/81.5 14.6/37.3/84.4 22.6/47.9/86.4
Ours(Online) 100.0/100.0/99.9 94.4/98.2/99.6 96.6/98.8/99.7 96.8/99.0/99.7 100.0/100.0/99.9 93.0/96.8/99.4 93.6/97.6/99.4 95.2/98.8/99.7
Ours(Offline) 99.4/100.0/99.9 91.4/97.4/99.3 94.6/97.8/99.6 94.4/98.6/99.6 99.7/99.8/99.9 90.8/95.8/99.1 91.3/95.8/99.3 92.0/95.2/99.3
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Figure 3: Results of Mistral-7B on the C4 dataset.
Smaller bubbles denote lower PPL.

Obs. ❶ PMARK demonstrates supe-
rior semantic robustness across differ-
ent backbones and benchmarks. As
shown in Table 1, PMARK exhibits
strong robustness to paraphrase attacks.
Specifically, the TP@FP1% of online
PMARK remains above 93.0% across dif-
ferent paraphrasers, substantially outper-
forming the baselines. For Mistral-7B,
the TP@FP1% on BOOKSUM and C4
after GPT paraphrasing reaches 96.8 and
95.2, exceeding the best SWM baseline
SemStamp by 20.8% and 26.0% and the
best TWM baseline SIR by 55.6% and
31.8%. The offline PMARK also shows strong robustness to paraphrase attacks, with TP@FP1%
remaining above 90.8%, consistently ranking second to the online PMARK. A similar conclusion
can be drawn from Figure 3, where both online and offline PMARK excel in TP@FP1% under back-
translation attack. Despite a few competitive baseline results, such as those achieved by KGW when
attacked by Pegasus, we argue that online PMark demonstrates near SOTA performance across a
variety of paraphrasers, while offline PMark offers highly competitive robustness against paraphrase
attacks.
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Figure 4: TP@FP1% under Word-D and Word-S attacks.

Obs. ❷ PMARK achieves supe-
rior text generation quality. As
shown in Figure 3, the online version
of PMARK attains the highest text
quality on the BOOKSUM bench-
mark, with perplexity lower than the
best baseline EXP (Aaronson, 2023)
by nearly 0.7 on Mistral-7B. Among
prior SWMs, k-SemStamp (Hou
et al., 2024) achieves the lowest PPL
(around 5.0) on BOOKSUM, yet it
still underperforms PMARK by a
clear margin. We observe similar trends on the C4 dataset: both the online and offline variants
of PMARK deliver the highest-quality watermarked text. Similarly, EXP and k-SemStamp remain
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the strongest token-level and semantic-level baselines, respectively. Additional results on robustness
and text quality are provided in Appendix H.1 and H.2.

Obs. ❸ Previous SWM methods are vulnerable to word-level attacks. We also evaluate
PMARK under word-level deletion and synonym-substitution attacks with Mistral-7B on BOOK-
SUM, as shown in Figure 4. Surprisingly, existing SWMs remain vulnerable to these token-level
attacks because their watermark evidence is relatively sparse. As a result, even the reversal of one-
bit watermark evidence can cause a large deviation in the z statistic. In our work, we address this
problem efficiently by applying multiple channel constraints to each sentence, rather than simply in-
creasing generation length. Consequently, our method achieves state-of-the-art robustness: in online
mode, TP@FP1% reaches 98.2% and 99.0% under 15% word deletion and synonym substitution,
respectively; in offline mode, the corresponding TP@FP1% values are 95.2% and 98.6%.

5.3 COMPUTATION CONSUMPTION (RQ3)

Table 2: TP@FP1% across different sample budgets and channel num-
bers in online/offline modes.

N /b b=1 b=2 b=3 b=4

N =8 81.0/85.0 97.0/47.0 98.0/83.0 -/-
N =16 84.0/93.0 100.0/90.0 100.0/96.0 100.0/93.0
N =32 97.0/99.0 100.0/98.0 100.0/98.0 100.0/98.0
N =64 99.0/95.0 100.0/98.0 100.0/99.0 100.0/100.0

Obs. ❹ Evidence den-
sity is critical for SWM
detectability. Table 2
confirms our understand-
ing of watermark evidence
and sampling efficiency
in SWM, evaluated with
OPT-1.3B on BOOK-
SUM. Specifically, online
PMARK exhibits a high
TP@FP% of 98% with an extremely limited sampling budget N = 8, supported by 3 channels. This
suggests that dense watermark evidence is necessary for reducing sampling budget. We also note
that offline PMARK requires a budget of 16 to achieve practical detectability, which we attribute to
the high risk of prior deviation caused by a limited budget. While Bayesian models can improve
accuracy in such probability estimation as shown in SynthID, we only present the naive results here
and leave related improvements for future work.

Table 3: Token efficiency of SWM methods. Ts denotes average token
consumption per sentence, while Tt denotes consumption per token.

Method k-Sem SimMark Sem Ours(On) Ours(Off)
Ts 246.9 186.7 1694.4 315.8 239.7
Tt 13.3 8.1 99.3 16.0 12.1

Obs. ❺ PMARK achieves
the remarkable trade-off
between token efficiency
and performance among
SWM methods. To fur-
ther verify the efficiency of
PMARK, we conducted additional experiments on token efficiency across existing SWM methods
at the same detectability level, as shown in Table 3. While SimMark achieves the lowest token con-
sumption during watermark generation, it performs poorly without well-tuned hyperparameters, as
shown in Table 1. Similarly, k-SemStamp requires fewer tokens than online PMARK, but its robust-
ness to paraphrasing is limited. In contrast, SemStamp exhibits the highest robustness to semantic
attacks among existing SWMs, but at the cost of an impractical 1694.4 tokens per sentence. As a
result, we argue that PMARK achieves the best trade-off among SWM methods: the offline mode
requires fewer tokens than k-SemStamp while maintaining competitive robustness, and the online
mode achieves the highest robustness with only 20% additional token consumption.

5.4 SENSITIVITY ANALYSIS (RQ4)
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Figure 5: Performance of Mistral-7B under different hyperparameter
settings (K = 150, 250,+∞ and δ = 0, 0.001).

Obs. ❻ Soft-z-test boosts
the detection accuracy
of online PMARK. We
present the parameter
sensitivity analysis of two
hyperparameters in Figure
5. Results of Doc-P(GPT)
are also included for
comparison. While the
soft-z-test yields a stable
improvement in robustness compared with the naive z-test (K = +∞, δ = 0), we find it is more
beneficial for online PMARK, where increases of 11.9% and 6.4% in attacked TP@FP1% are ob-
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served on BOOKSUM and C4, respectively. More results and cases can be found in Appendix H.4.

6 CONCLUSION

The semantics of the next sentence is an abstract and complex concept. To effectively estimate it
indirectly, a proxy function that maps sentences from textual space to a scalar value is often used,
either implicitly or explicitly. Building on this insight, we present a unified perspective on existing
SWMs and propose a novel distortion-free paradigm based on median estimation. Furthermore,
we identify that the vulnerability of current SWMs to adversarial attacks arises from the sparsity
of watermark evidence. To address this issue, we introduce multi-channel constraints to enhance
robustness. To the best of our knowledge, this is the first work to provide a unified theoretical
framework for SWMs, the first distortion-free SWM approach, and the first to highlight and realize
dense watermark evidence in SWM. Experimental results demonstrate that PMARK consistently
outperforms existing SWM baselines in both text quality and robustness, offering a more reliable
and effective paradigm for semantic-level watermarking.
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A USE OF LLMS

We used AI assistants for two purposes: (1) generating routine code and boilerplate functions, which
were subsequently reviewed and debugged by humans, and (2) performing grammatical review and
sentence-level editing of the manuscript. The research methodology, findings, and analysis were
independently proposed and conducted.

B DETAILED DEFINITION AND ADDITIONAL PROOFS

Lemma 6 (Countable). Let Σ be a finite tokenizer vocabulary, and let Σ⋆ denote the set of all
semantically complete sentences (including the null sentence) represented as finite token sequences
over Σ. Then Σ⋆ is countable.

Proof. Since Σ is finite, fix a bijection e : Σ → N≥1 (i.e. the index on the tokenizer). Let (pk)k≥1

be the increasing sequence of prime numbers. Define C : Σ<ω → N by

C(s) :=


1, s = ∅,
|s|∏
k=1

p
e(xk)+1
k , s = (x1, . . . , x|s|) ∈ Σ<ω.

(15)

If C(s) = C(t), the Fundamental Theorem of Arithmetic forces the exponent of each pk to coincide
on both sides. Hence |s| = |t| and e(xk) = e(yk) for all k, which implies xk = yk by bijectivity
of e, so s = t. Therefore Σ<ω injects into N and is countable. Since Σ⋆ ⊆ Σ<ω , it is countable as
well.

Definition 4 (Partition of a Set). Let U be a non-empty set. A partition P(U) of U is a collection of
non-empty, pairwise disjoint subsets of U whose union equals U . Formally,

P(U) = {A1, . . . , An}
such that:

• Ai ̸= ∅ for all i,
• Ai ∩Aj = ∅ for all i ̸= j,
•
⋃n

i=1 Ai = U .

Each element u ∈ U belongs to exactly one subset Ai ∈ P(U), which we denote as Pu(U) in the
main body.

Proof of Lemma 1. Here we suppose that q(S) > 0 in practice, meaning that reject-sampling will
always succeed when N is large enough.

Proof. Let F : Σ∗ → U be the proxy with finite range U , and fix a green set S ⊆ U . For u ∈ U ,

q(u) ≜
∑

t∈F−1(u)

PM (t | π), q(S) ≜
∑

F(t)∈S

PM (t | π). (16)

Hence

Pr(Y = s | π, S) =
∞∑
k=0

(
1− q(S)

)k
PM (s | π) = PM (s | π)

q(S)
for ∀F(s) ∈ S. (17)

Proof of Theorem 2. Here the watermark code space is E = {S | S ⊆ U, |S| =}, where
|U | = M , = γM and |E| =

(
M
)
.

Proof. Based on equation 5 we have

Pw
M (s | π) =

∑
eK∼Un(E)

P (Y = s | π, eK) P (eK) =
1(
M
g

) ∑
S∈E

P (Y = s | π, S). (18)

From Lemma 1,

P (Y = s | π, S) =


PM (s | π)

q(S)
, u ∈ S,

0, u /∈ S,
(19)
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therefore only sets S containing u = F(s) contribute:

Pw
M (s | π) = 1(

M
) ∑

S⊆E
u∈S

PM (s | π)
q(S)

= PM (s | π) · 1(
M
) ∑

S⊆U
|S|=, u∈S

1

q(S)
. (20)

which is exactly equation 9.

Proof of Corollary 2.1. Denote equation 9 as
Pw
M (s | π) = PM (s | π)A(u),

where
A(u) ≜

1(
M
) ∑

S⊆U
|S|=m,u∈S

1∑
v∈S q(v)

. (⋆)

So Pw
M (· | π) is distortion-free if and only if A(u) ≡ 1 for all u ∈ U .

Proof.
Sufficiency. If q(u) ≡ 1/M for all u, then for every S, q(S) =

∑
v∈S q(v) = g/M = γ. Also

Pr(u ∈ S) =
(M−1

g−1 )
(M)

= M = γ. Hence

A(u) =
M

· 1
γ
= 1,

which means Pw
M (s | π) = PM (s | π).

Necessity. Assume distortion-free, so A(u) = 1 for all u. Fix two indices u ̸= v. Write the
difference using (⋆). Denote T ⊆ U \ {u, v}, |T | = −1, as a set containing both u and v will be
neutralized in the difference, thus

A(u)−A(v) =
1(
M
) ∑

T⊆U\{u,v}
|T |=−1

(
1

q(u) +
∑

w∈T q(w)
− 1

q(v) +
∑

w∈T q(w)

)
.

Since f(x) = 1
x+a is a strictly decreasing function for any fixed a > 0, therefore

• If q(u) > q(v), then every term in the sum is negative and hence A(u) < A(v).
• If q(u) < q(v), then A(u) > A(v).

Distortion-free requires A(u) ≡ A(v), hence we must have q(u) = q(v). Since u, v were arbitrary,
all q(·) are equal, meaning that q(u) = 1

M for every u ∈ U .

Proof of Theorem 4. Let x⃗ = T (s)
∥T (s)∥ , x⃗′ = T (A(s))

∥T (A(s))∥ , and v⃗ = v
∥v∥ . Then the proxy is f =

⟨v⃗, x⃗⟩ ∈ [−1, 1] and f ′ = ⟨v⃗, x⃗′⟩ ∈ [−1, 1].

Proof. For unit vectors, ∥x⃗′ − x⃗∥2 = 2− 2⟨x⃗′, x⃗⟩ ≤ 2d, hence

|f ′ − f | = |⟨v⃗, x⃗′ − x⃗⟩| ≤ ∥v⃗∥∥x⃗′ − x⃗∥ ≤
√
2d.

A flip is possible only if the original score sits within the
√
2d band around the median:

|f −mv| ≤ |f ′ − f | ≤
√
2d =⇒ f ∈ [mv −

√
2d,mv +

√
2d].

Therefore,
Prm ≤ µM

(
s ∈ Σ∗

∣∣∣Fv(s) ∈ [mv −
√
2d,mv +

√
2d]

)
.

Proof of Lemma 5.

Proof. Without loss of generality, fix x = e1 = (1, 0, . . . , 0). Draw y uniformly on Sd−1. The angle
θ between x and y satisfies cos θ = x · y = g(y). For t ∈ (−1, 1), the set {y ∈ Sd−1 : g(y) = t} is
a (d− 2)-sphere of radius

√
1− t2. Its (d− 2)-dimensional surface area is

A(t) = A(Sd−2)(1− t2)
d−3
2 ,
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where A(·) denotes the surface area, A(Sk) =
2π(k+1)/2

Γ((k + 1)/2)
. Hence the probability that T ∈

[t, t+ dt] is proportional to that area times dt.

fT (t) =
A(Sd−2)

A(Sd−1)
(1− t2)

d−3
2 =

Γ
(
d
2

)
Γ
(
d−1
2

)√
π
(1− t2)

d−3
2 , t ∈ [−1, 1].

With t = cos θ, dt = − sin θdθ, and 1− t2 = sin2 θ. Therefore

pd(θ) = fT (cos θ) sin θ =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
sind−2 θ, θ ∈ [0, π].

Theorem 7 (Multi-channel Robustness). Let ϵ be an upper bound on p = µM (s ∈ Σ∗ | |Fvj
(s)−

mvj | ≤
√
2d) for all channels j, with proxy function independence across channels. Then:

E[z′] ≥ (1− 2ϵ)
√
bT , Var[z′] ≤ 4ϵ(1− ϵ), SNR ≥ (1− 2ϵ)

√
bT

2
√

ϵ(1− ϵ)

Proof. Attack removes evidence in each channel with probability ϵ:
E[c′(t,j)] = 1− ϵ, Var[c′(t,j)] = ϵ(1− ϵ)

Total evidence after attack:
E[N ′

g] = bT (1− ϵ), Var[N ′
g] = bT ϵ(1− ϵ)

Let X = N ′
g − 0.5bT :

E[X] = bT (0.5− ϵ), Var[X] = bT ϵ(1− ϵ)

By Jensen’s inequality for convex | · |:

E[z′] = E
[

|X|
0.5

√
bT

]
≥ |E[X]|

0.5
√
bT

= (1− 2ϵ)
√
bT

For variance bound, X approximately N(µX , σ2
X) with µX > 0:

Var[|X|] ≤ σ2
X

Var[z′] =
4

bT
Var[|X|] ≤ 4

bT
· σ2

X = 4ϵ(1− ϵ)

Signal-to-noise ratio:
SNR =

E[z′]√
Var[z′]

≥ (1− 2ϵ)
√
bT

2
√
ϵ(1− ϵ)

This theorem demonstrates that increasing the number of channels b improves robustness under
the same attack strength. The signal-to-noise ratio grows with

√
bT , showing that multi-channel

constraints enhance detectability. The approximation Var[|X|] ≤ σ2
X is reasonable when µX/σX =√

bT · 0.5−ϵ√
ϵ(1−ϵ)

is large, which occurs for typical experimental parameters (b = 4, T ≈ 10− 20, ϵ ≤
0.3), yielding µX/σX ≥ 2.8. This theoretical analysis complements the empirical results showing
PMARK’s superior robustness against various attacks.

C ADDITIONAL RELATED WORK

Text watermarking techniques for large language models can be broadly categorized into two main
paradigms: token-level methods and sentence-level methods.

C.1 TOKEN-LEVEL TEXT WATERMARKING

Token-level watermarking, the more traditional approach, embeds signals by manipulating the prob-
ability distribution of tokens during the decoding process. A foundational method in this category
partitions the vocabulary into “green” and “red” lists, boosting the probability of green-listed tokens
to create a detectable statistical bias (Kirchenbauer et al., 2023). Numerous subsequent works have
built upon this concept. For instance, some methods focus on enhancing security and text quality by
adaptively watermarking only high-entropy tokens (Liu & Bu, 2024; Lu et al., 2024), while others
dynamically adjust watermark strength to balance effectiveness and quality (Wang et al., 2025). To
improve robustness against spoofing attacks, researchers have explored contrastive representation
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learning to generate semantic-aware token lists (An et al., 2025). Other variations introduce sig-
nals in different domains, such as sinusoidal perturbations in the token probability vector to guard
against model distillation (Zhao et al., 2023b), or frequency-based signals detectable via STFT (Xu
et al., 2024b). There are also some token-level watermarking techniques (Giboulot & Furon, 2024;
Bahri et al., 2024) that introduce a scorer to select chunk candidates with better detectability, thereby
facilitating watermarks for black-box LLMs.
Multi-bit watermarking has also been a significant focus, with techniques employing error-
correction codes (Qu et al., 2025), probability balancing (Wang et al., 2023), and majority-bit-based
list construction (Xu et al., 2025) to embed more complex information. Furthermore, some ap-
proaches frame watermarking as a problem of hypothesis testing, optimizing detection accuracy by
coupling output tokens with pseudo-random generators (Huang et al., 2023). Despite their diversity
and ingenuity, a fundamental limitation shared by nearly all token-level methods is their vulnerabil-
ity to semantic-level attacks. Since the watermark is tied to specific token choices, paraphrasing or
other meaning-preserving modifications can easily disrupt or erase the embedded signal.

C.2 SENTENCE-LEVEL TEXT WATERMARKING

To address the vulnerability of token-level methods to paraphrasing, sentence-level watermarking
(SWM) has emerged as a more robust paradigm. These methods treat entire sentences as the funda-
mental unit for embedding information. A pioneering work in this area, SEMSTAMP (Hou et al.,
2023), partitions the semantic embedding space using locality-sensitive hashing and employs rejec-
tion sampling to ensure that generated sentences fall into a pre-defined “valid” semantic region. This
approach significantly enhances robustness against paraphrastic attacks.
Building on this idea, subsequent methods have explored various ways to define and select valid
semantic regions. For example, SimMark (Dabiriaghdam & Wang, 2025) uses sentence embed-
ding similarity, PersonaMark (Zhang et al., 2024) hashes sentence structures for personalization,
and CoheMark (Zhang et al., 2025) leverages fuzzy c-means clustering and inter-sentence cohesion.
Other approaches utilize advanced feature extractors such as sparse autoencoders (Yu et al., 2025)
or fine-tuned LLM-based paraphrasers (Xu et al., 2024a) to embed multi-bit watermarks. However,
a persistent challenge for most existing SWM techniques is their reliance on rejection sampling.
Although effective for ensuring semantic validity, this mechanism often introduces significant dis-
tortion to the original text distribution, degrades text quality, and risks sampling failure when no
valid candidates are found within a reasonable number of attempts. Furthermore, many of these
methods lack rigorous theoretical guarantees for their robustness and distortion properties, a critical
gap that our work aims to address.
Concurrent Work. A concurrent work is SAEMark (Yu et al., 2025), which introduces a concept
analogous to the proxy function used in our framework, referred to as a “feature extractor.” While
both approaches share some conceptual similarities, PMARK offers notable advantages in several
respects. (1) Task setting. SAEMark targets multi-bit watermarking that embeds additional infor-
mation into the generated text, whereas PMARK is designed for single-bit watermarking. (2) Text
quality. SAEMark selects sentences based on proximity to a target threshold, which may result in
distortion. (3) Robustness. SAEMark embeds watermark signals on a per-sentence basis, which
has been shown to be vulnerable to certain attacks in their original work, while PMARK leverages
multi-channel constraints to significantly improve resistance to such threats. (4) Flexibility. PMARK
allows for greater adaptability through customizable settings such as the pivot vector and the number
of channels, which are more difficult to implement effectively within the SAEMark framework.

D ADDITIONAL DISCUSSION

D.1 ROBUST RANDOM SEEDS FOR SEMANTIC-LEVEL WATERMARK

Random Seeds in SWMs. In previous SWM schemes such as SemStamp and k-SemStamp, the
random seed for sn is extracted from the proxy value of the previous sentence sn−1, as shown in
Appendix E. However, this approach may not be truly random, since consecutive sentences often
relate to the same topic (Nemecek et al., 2024). Moreover, SimMark (Dabiriaghdam & Wang,
2025) eliminates the use of a random seed entirely, relying instead on a fixed green region. These
approaches can reduce the randomness of the key k and thus break the assumption in 5. In this
work, we use pre-defined random seeds that are de facto bound to specific positions t. This partially
addresses the problem but leaves the challenge of achieving n-shot undetectability (Hu et al., 2023)
unresolved.
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Definition 5 (Sentence-level n-shot-undetectable). For a fixed context π, we say that a watermarked
LLM distribution is n-shot-undetectable compared to the original LLM if, for all s ∈ Σ⋆,

n∑
i=1

PM (s | π) =
∑
k∈K

P (K)

n∑
i=1

Pw
M (s | π; k).

Imagine a user asking the model the same question n times. An unwatermarked model or n-shot-
undetectable scheme would generate answers xi, i = 1, . . . , n i.i.d. from PM (s | π), while wa-
termarking schemes such as SemStamp would always generate answers based on the same k, since
the context is identical across queries. A stronger notion, n-sequence distortion-free, is proposed in
SynthID, which removes the requirement of identical contexts in Definition 5.
Definition 6 (Sentence-level n-sequence Distortion-free). For a sequence of n prompts π1, . . . ,πn

and a sequence of n responses y1, ..., yn ∈ Σ⋆, we say that a watermarked LLM distribution is
n-sequence distortion-free if, for all s ∈ Σ⋆,

n∑
i=1

PM (yi | πi) =
∑
k∈K

P (K)

n∑
i=1

Pw
M (yi | πi; k; (π1, y1), . . . , (πi−1, yi−1)).

In token-level watermarking methods such as Unbiased (Hu et al., 2023) and SynthID (Dathathri
et al., 2024), this is achieved by skipping previously seen contexts and directly outputting unwater-
marked tokens.
However, in semantic-level watermark this is difficult to implement. Using the proxy of the previ-
ous sentence like SemStamp reintroduces the problem of reduced randomness in K. Furthermore,
mixing SWM with token-level random seed generators may increase vulnerability to paraphrase at-
tacks. Therefore, we consider semantic-level dynamic random seed generation to be a challenging
open problem and leave it for future work. In this work, we directly adopt pre-defined random seeds
following Christ et al. (2024) to achieve single-shot distortion-freeness.

D.2 ROBUSTNESS TO CROSS-SENTENCE PARAPHRASING ATTACK

Context-aware semantic-robust Random Seeds. Based on the discussion in Appendix D.1, we
further explore the potential of pseudo-random, context-aware, yet semantically robust random seeds
within the PMARK framework. Specifically, we define b additional orthogonal vectors ζ1, . . . , ζb,
which are distinct from the pivot vectors v1, . . . , vb used during sampling.
The random seed r(t,i) for sentence st is then based on the signal from the last w sentence embed-
dings T (st−w:t−1):

r(t,i) = [⟨ζi, T (st−w:t−1)⟩ > 0] =

[
ζi · T (st−w:t−1)

∥ζi∥ · ∥T (st−w:t−1)∥
> 0

]
.

We leave the rigorous analysis of the distribution of these random seeds r(t,i) for future work.
However, this approach is intuitively more random than seeds directly adapted from the proxy value
of the last sentence, as employed by SemStamp and k-SemStamp.

Table 4: Results for baseline methods and PMARK on OPT-1.3B and Mistral-7B across the C4 and
BOOKSUM benchmarks, under extreme paragraph-level paraphrasing attacks by GPT-3.5-turbo.
For each dataset and model combination, we report TP@FP=1%, TP@FP=5%, and AUC from left
to right. Bold denotes the best result, and underlined denotes the second-best.

Method (C4, OPT-1.3B) (C4, Mistral-7B) (BOOKSUM, OPT-1.3B) (BOOKSUM, Mistral-7B)
KGW 34.20/68.84/90.51 37.82/65.17/91.62 2.81/5.64/55.25 42.85/70.95/90.88
UPV 59.20/78.98/95.68 10.62/46.42/89.03 81.56/88.66/97.86 35.41/60.83/90.51
SynthID 1.83/25.98/69.14 7.11/12.82/66.33 4.45/17.69/62.15 5.09/12.19/64.88
KSEMSTAMP 0.00/0.81/53.77 0.00/2.26/50.79 2.60/8.44/56.38 9.60/15.96/54.64
Ours(Online) 88.46/96.15/97.63 96.97/100.00/99.91 82.30/94.44/97.61 75.00/87.50/98.18
Ours(Offline) 75.00/95.83/98.26 41.67/63.95/91.64 70.83/82.11/96.33 77.45/95.65/98.39

In Table 4, we present the results of PMARK under paragraph-level paraphrasing attacks with w = 3,
an attack setting where most existing watermark methods are nearly powerless. The results demon-
strate the potential of PMARK under extreme cross-sentence paraphrasing attacks, where 1) Online
PMARK exhibits a remarkable TPR@FPR1% > 75% across different backbones and datasets; 2)
Offline PMARK maintains a highly competitive performance compared with baselines.
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Experiment Details. The prompt used to instruct gpt-3.5-turbo for paragraph-level paraphrasing
is as follows:

<system>
You are a helpful assistant to rewrite the text.
</system>
<user>
Please rewrite the following text, avoiding the use of
same words or phrases as the original text as much as possible.
You are able to merge sentences or change their order:
{whole_text}
</user>

<Original Watermarked text>
The troupe’s goal is to transform Passepartout into a clown-like
character. Passepartout’s story starts in the medieval town of
Qeynan. He is being held captive by a man named Laidrin. He is a
sorcerer who makes Passepartout into a clown-like character.
Passepartout’s story begins with a peasant, Fath, who has been
betrayed by the king’s men. Fath flees with his wife ...
<Is_watermarked: True>

<Detected Text after Attack>
The troupe aims to transform Passepartout into a clown-like figure.
The story begins in the medieval town of Qeynan, where Passepartout
is held captive by Laidrin, a sorcerer who casts a spell on him,
turning him into a clownish character. Meanwhile, a peasant named
Fath, betrayed by the king’s men, flees into the forest with ...
<Is_watermarked: True>

E ANALYSIS OF EXISTING SWM METHODS

In Section 2, we presented a brief analysis of existing SWM methods, whose core lies in the proxy
functions they employ.
SemStamp. Specifically, the proxy function of SemStamp can be defined as

FSemStamp = LSH(T (s)) =
[
LSH1(T (s)) ∥ · · · ∥ LSHn(T (s))

]
,

where LSHi(v) = sign(u⊤
i v) (Indyk & Motwani, 1998; Charikar, 2002), {ui}ni=1 ⊂ Rd is a set of

randomly initialized vectors, and E is a text encoder with T (s) ∈ Rd. The Green Region Gt for
each sentence position t is then defined as

Gt = U ′[: γ · 2d], U ′ = Shuffle(U ; rt), rt = q · F(st−1),

where Shuffle(U ; r) denotes shuffling the ordered list U with random seed r, and q is a large prime.
k-SemStamp. For k-SemStamp (Hou et al., 2023),

Fk-SemStamp = argmax
j

u⊤
j T (s)

∥uj∥ · ∥T (s)∥
,

where {uj} are cluster centers obtained via k-means clustering on the entire dataset. Similar to
SemStamp (Hou et al., 2023), the Green Region Gt is given by

Gt = U ′[: γ · 2d], U ′ = Shuffle(U ; rt), rt = q · F(st−1).

SimMark. For SimMark (Dabiriaghdam & Wang, 2025),

FSimMark(st) =
T (st−1)

⊤T (st)

∥T (st−1)∥ · ∥T (st)∥
,

where st−1 is the previous sentence. A fixed interval is then used as the Green Region. Under the
cosine similarity used above, Gt is always

Gt = [0.68, 0.76].

Such a pre-defined threshold carries a high risk that no valid candidate sentence has a proxy lying
within the Green Region. Moreover, these carefully tuned hyperparameters may perform poorly in
other settings, as shown in Table 1.
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F OFFLINE ALGORITHM

To describe the generation and detection process of the offline version of PMARK more precisely,
we illustrate it in pseudocode, as shown in Figure 6.

Theorem 8 (Distortion Bound of Offline PMark). Let pj = PM (Fvj (s) > 0 | π), |pj − 0.5| ≤ ϵ,
δTV = 1

2

∑
s∈Σ∗ |Pw

M (s | π)− PM (s | π)|. Then δTV ≤ ϵ for single-channel case.

Proof. For single-channel case:

Pw
M (s | π) =

{
PM (s | π) · 1

2p if Fv(s) > 0

PM (s | π) · 1
2(1−p) if Fv(s) < 0

Therefore,

δTV =
1

2

 ∑
s:Fv(s)>0

PM (s | π)
∣∣∣∣ 12p − 1

∣∣∣∣+ ∑
s:Fv(s)<0

PM (s | π)
∣∣∣∣ 1

2(1− p)
− 1

∣∣∣∣


=
1

2

[
p · |1− 2p|

2p
+ (1− p) · |1− 2p|

2(1− p)

]
=

1

2

[
|1− 2p|

2
+

|1− 2p|
2

]
=

|1− 2p|
2

(21)

Since |p− 0.5| ≤ ϵ, |1− 2p| ≤ 2ϵ, thus δTV ≤ ϵ.

For the multi-channel offline PMark, the generation process selects the sentence with the highest
watermark evidence score score(s) =

∑b
j=1 1Fvj

(s)>0 · rj . The distortion depends on the joint
distribution of the proxy function values across channels.
Assuming that the proxy functions are orthogonal and that the signs 1Fvj

(s)>0 are independent
across channels for a random sentence s, the score distribution can be analyzed. If pj = 0.5 for all
j, the selection is uniform, and distortion is zero. If |pj − 0.5| ≤ ϵ, the distortion can be bounded by
considering the probability that the score deviates from its expectation. Empirical results show that
the perplexity of offline PMark is close to that of the unwatermarked text, indicating that ϵ is small
in practice, and thus the distortion is negligible.

G IMPLEMENTATION DETAILS

G.1 BASELINES

MarkLLM. We use the official implementation of MarkLLM (Pan et al., 2024)1 to reproduce the
results of various token-level baselines, including KGW (Kirchenbauer et al., 2023), UPV (Liu
et al., 2023a), MorphMark (Wang et al., 2025), SIR (Liu et al., 2023b), EXP (Aaronson, 2023),
EXPGumbel (Aaronson, 2023), and SynthID (Dathathri et al., 2024). During generation, we set
max new tokens to 256, comparable to the generation length used by semantic-level methods.
The temperature and top p are fixed at 0.7 and 0.95, respectively, across all experiments to ensure
fair comparison. In addition, for baselines that depend on external networks (e.g., SIR (Liu et al.,
2023b) and UPV (Liu et al., 2023a)), we use the official weights provided by MarkLLM.
k-SemStamp. We adapt the official k-SemStamp implementation from MarkLLM to align it with
other semantic-level methods. Specifically, we set max new sentences to 12 (instead of a token
count), which is applied consistently across all semantic-level baselines. We set max trials to
the default value of 100 for SemStamp, k-SemStamp, and SimMark. For the embedding model, we
use the fine-tuned all-mpnet-base-v2 (Reimers & Gurevych, 2019)2 provided by Hou et al.
(2024). We also employ the k-means centroid weights3 released by Hou et al. (2024), trained on the
C4 (Raffel et al., 2020) and BookSum (Kryściński et al., 2021) datasets. For the backbone gener-
ation models OPT-1.3B (Zhang et al., 2022)4 and Mistral-7B-v0.1 (Jiang et al., 2023)5, we use the
original Hugging Face versions to ensure fair comparison with all other methods. All other hyper-
parameters are kept at their default settings in the k-SemStamp implementation of MarkLLM. For
all SWM experiments, we assume that sentence segmentation is consistent during both generation
and detection, such that we evaluate only the intrinsic capability of the SWM method.

1https://github.com/THU-BPM/MarkLLM
2https://huggingface.co/AbeHou/SemStamp-c4-sbert
3https://github.com/abehou/SemStamp
4https://huggingface.co/facebook/opt-1.3b
5https://huggingface.co/mistralai/Mistral-7B-v0.1
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SemStamp. For SemStamp (Hou et al., 2023), we use the authors’ official implementation, setting
temperature = 0.7, top p = 0.95, and max new sentences = 12 to match the other semantic-
level methods. We also use the fine-tuned embedding model and the original generation model to
ensure fair comparison.
SimMark. We use the official implementation of SimMark (Dabiriaghdam & Wang, 2025)6. We
adopt cosine distance with the recommended validity interval [0.68, 0.76]. Additionally, we use the
recommended embedding model instructor-large (Su et al., 2023)7 and the original gener-
ation models OPT-1.3B and Mistral-7B-v0.1 to maintain comparability with other methods. The
factor K is set to 250 for the soft-z test, following the original paper.
PMARK. During generation, we use the original all-mpnet-base-v2 embedding
model (Reimers & Gurevych, 2019)8 without fine-tuning. Pivot vectors are generated via QR de-
composition of a Gaussian random matrix (Trefethen & Bau, 2022) to ensure orthogonality. We
set temperature = 0.7, top p = 0.95, and max new sentences = 12, consistent with other
semantic-level methods. The sample budget is N = 64, and the number of channels is b = 4. For
detection, we set the numerical threshold δ = 0.001 and the smoothing factor K = 150.

G.2 ADVERSARIAL ATTACKS

Doc-P. We conduct paraphrase attacks following the official SemStamp implementation Hou et al.
(2023; 2024). Specifically, for the paraphrasers Pegasus (Pu et al., 2023)9 and Parrot (Sadasivan
et al., 2023)10, we adopt the bigram-style attack proposed by SemStamp Hou et al. (2023), which
selects paraphrases with minimal bigram overlap relative to the source. For the GPT (OpenAI, 2022)
paraphrasing attack, we use the prompt provided by MarkLLM (Pan et al., 2024). All attacks are
applied at the sentence level across all methods and settings to simulate real-world scenarios.
Doc-T. We implement the back-translation attack following MarkLLM. Specifically, we use Llama-
3.1-8B (Dubey et al., 2024)11 to translate watermarked English sentences into Spanish and then back
into English in an attempt to remove watermark evidence. However, as noted in Section 5.2, this
attack can be biased and unstable in some cases.
Word-D and Word-S. We implement word deletion (Word-D) and synonym substitution (Word-S)
attacks following the official MarkLLM implementation. We set the attack ratios to 5%, 15%, and
30% to evaluate the overall robustness of our method. Additional experimental results are reported
in Appendix H.

H SUPPLEMENTED EXPERIMENTAL RESULTS

H.1 ROBUSTNESS TO ADVERSARIAL ATTACKS

We evaluate the robustness of existing watermarking methods under various attacks, with results
shown in Table 5 and Table 6.

H.2 QUALITY OF WATERMARKED TEXT

Similar to Figure 3, we present additional results about the perplexity of existing methods across
different benchmarks and backbones in Figure 7, 8 and 9.

H.3 SENSITIVITY OF HYPERPARAMETER

We present additional hyperparameter analysis results for OPT-1.3B in Figure 10, where similar
conclusions can be deduced.

H.4 CASE STUDY

We illustrate various cases of SemStamp and PMARK across different backbones and datasets. Com-
pared with the baseline, PMARK demonstrates superior text quality and robustness, producing more
diverse sentences and retaining watermark evidence even after paraphrase attacks.

6https://github.com/DabiriAghdam/SimMark
7https://huggingface.co/hkunlp/instructor-large
8https://huggingface.co/sentence-transformers/all-mpnet-base-v2
9https://huggingface.co/tuner007/pegasus_paraphrase

10https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
11https://huggingface.co/meta-llama/Llama-3.1-8B
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Algorithm 3: PMARK Offline Generation

Input: M ; s(0); T ; T ; b; v(1), . . . , v(b); R = {r(t,j)};
N

Output: s(1), . . . , s(T )

for t← 1 to T do
for j ← 1 to b do
Fj(s)← ⟨v(j), T (s)⟩

end
umax ← −∞; B ← ∅ for i← 1 to N do

Sample x(i) ∼ PM (s | s(0:t−1))

Sig(x(i))←
[
Fj(x

(i)) > 0
]b
j=1

u(i) ←
∑b

j=1 Sig(x
(i))(j) if u(i) = b then

s(t) ← x(i)

continue
end
if u(i) > umax then

umax ← u(i); B ← {x(i)}
end
else if u(i) = umax then

B ← B ∪ {x(i)}
end

end
Select s(t) ∼ Un(B)

end
return s(1), . . . , s(T )

Algorithm 4: PMARK Offline Detec-
tion
Input: S = [s(0), . . . , s(T )]; T ; v(1...b);

R = {r(t,j)}; δ; K; α
Output: True or False
for j ← 1 to b do

Define Fj(s) = ⟨v(j), T (s)⟩
end
Ng ← 0; Ntotal ← b · T
for t← 1 to T do

for j ← 1 to b do
x(t,j) ← Fj(s

(t)); m(j) ← 0
if r(t,j) = 1 and
x(t,j) > m(j) − δ then

c(t,j) ← 1
else if r(t,j) = 0 and
x(t,j) < m(j) + δ then

c(t,j) ← 1
else

c(t,j) ←
exp

(
−K |x(t,j) −m(j)|

)
end
Ng ← Ng + c(t,j);

end
end

z ← |Ng − 0.5Ntotal|√
0.25Ntotal

; return (z > zα)

Figure 6: PMARK Offline Watermarking: Left: Generation using fixed prior median = 0; Right:
Detection using soft z-test.

Table 5: Overall results for baseline methods and PMARK on OPT-1.3B and Mistral-7B on BOOK-
SUM. Doc-T denotes back-translation attack by LLama-3.1-8B, while Word-D and Word-S are
word-level attacks under different ratios.

Method No Attack↑ Doc-P (Pegasus)↑ Doc-P (Parrot)↑ Doc-P (GPT)↑ Doc-T↑ Word-D(0.05)↑ Word-D(0.15)↑ Word-D(0.30)↑ Word-S(0.05)↑ Word-S(0.15)↑ Word-S(0.30)↑
OPT-1.3B

EXP (2023) 98.8/99.0/99.3 4.2/14.6/52.5 5.4/16.0/55.2 4.4/13.4/53.0 5.4/17.8/53.8 3.8/14.2/56.5 2.2/11.0/56.0 1.6/7.2/54.3 6.0/17.2/57.1 2.4/14.4/55.5 3.2/11.4/54.4
EXPGumbel (2023) 99.4/99.4/99.4 12.4/20.2/50.6 12.4/20.0/52.2 13.0/23.2/54.4 21.4/30.6/55.4 23.8/32.6/58.0 20.4/27.8/57.2 13.4/23.2/57.4 24.8/34.0/58.1 19.8/28.6/56.3 16.4/24.6/52.1
KGW (2023) 100.0/100.0/100.0 1.4/4.6/56.8 1.4/5.9/55.7 0.6/4.2/54.6 6.0/13.0/61.4 1.2/6.9/58.3 1.2/5.7/58.6 0.6/5.9/56.5 1.4/8.3/59.4 1.2/7.8/60.6 1.4/12.3/62.9
SIR (2023b) 99.6/100.0/99.8 84.2/93.8/97.5 80.6/93.8/98.1 49.8/82.8/95.9 77.4/89.8/95.6 96.2/98.8/99.6 86.0/93.4/96.9 65.2/78.6/89.5 98.6/100.0/99.8 92.2/98.4/99.5 69.8/88.6/95.7
UPV (2023a) 100.0/100.0/100.0 90.0/95.6/98.7 89.2/98.2/99.3 73.6/91.0/98.0 98.6/99.6/99.7 100.0/100.0/100.0 99.8/100.0/100.0 99.4/100.0/100.0 100.0/100.0/100.0 100.0/100.0/100.0 99.4/99.6/99.8
SynthID (2024) 100.0/100.0/99.9 38.2/56.6/86.9 25.8/43.6/83.8 1.8/14.6/65.7 96.0/97.0/99.2 99.2/100.0/99.9 95.4/98.0/99.5 56.0/77.4/94.5 99.6/100.0/99.9 95.6/98.8/99.6 54.8/76.0/94.5
MorphMark (2025) 100.0/100.0/100.0 1.8/7.7/55.2 1.2/6.1/54.6 0.8/4.2/51.1 5.0/13.3/60.0 1.8/7.3/57.9 1.2/7.2/56.7 1.2/7.5/57.0 2.0/9.2/58.7 3.4/10.5/60.0 1.0/8.2/61.6
SemStamp (2023) 97.7/98.8/99.4 89.0/93.2/97.3 90.7/93.0/97.5 79.6/85.4/94.2 87.8/92.8/97.7 97.6/98.2/99.3 89.4/94.4/98.4 67.5/80.8/95.1 97.7/98.6/99.5 93.2/96.8/99.1 78.1/86.6/96.4
KSEMSTAMP (2024) 99.6/100.0/99.9 74.5/84.6/97.4 72.3/86.6/97.5 62.1/72.9/95.2 72.3/84.2/97.2 93.8/97.0/99.6 64.7/76.8/96.3 29.1/44.3/86.7 99.2/99.8/99.9 81.8/90.6/98.5 44.1/59.3/92.5
SimMark (2025) 88.2/94.0/98.8 23.4/42.8/84.6 29.0/45.6/87.3 22.0/40.4/83.6 22.2/31.8/76.7 68.4/82.4/97.0 39.8/56.8/91.1 11.8/26.6/79.7 80.4/93.4/98.4 45.8/63.0/92.2 19.6/34.0/79.5
Ours(Online) 99.8/99.8/99.9 97.4/99.0/99.8 96.8/99.0/99.8 95.4/99.0/99.6 93.2/96.8/99.2 99.8/99.8/99.9 96.0/97.8/99.6 86.2/94.4/98.7 99.8/99.8/99.9 98.2/99.0/99.8 90.8/95.2/99.1
Ours(Offline) 99.4/99.6/99.8 93.2/98.2/99.5 95.2/98.6/99.5 94.2/98.8/99.6 96.4/98.8/99.6 98.6/99.4/99.8 98.0/99.0/99.7 86.7/96.0/99.0 99.4/99.6/99.9 98.4/99.4/99.8 87.0/96.6/99.4

Mistral-7B
EXP (2023) 99.8/99.8/99.9 36.4/53.0/85.8 47.2/61.8/89.1 10.4/22.0/71.7 93.6/95.4/97.7 98.4/98.8/99.4 95.6/97.4/99.2 76.8/86.6/96.6 98.6/98.6/99.5 97.2/98.2/99.1 82.2/92.0/97.6
EXPGumbel (2023) 99.6/99.6/99.7 65.6/77.2/90.8 78.8/85.2/92.8 38.4/53.2/81.9 95.6/96.4/98.0 98.6/99.4/99.4 98.2/98.6/99.3 95.2/98.0/99.1 98.6/99.2/99.5 98.2/98.4/99.2 95.0/97.4/99.1
KGW (2023) 100.0/100.0/100.0 84.2/95.4/98.7 90.2/97.3/99.2 35.8/68.9/92.1 93.0/96.8/98.8 100.0/100.0/100.0 99.8/100.0/100.0 99.0/99.7/99.8 100.0/100.0/100.0 100.0/100.0/100.0 99.6/99.9/99.9
SIR (2023b) 100.0/100.0/99.9 85.0/92.6/98.0 80.8/92.0/98.2 41.2/71.4/93.6 81.2/91.0/96.9 97.8/99.6/99.8 90.0/95.6/99.0 72.4/81.2/93.1 99.6/100.0/99.9 92.0/97.8/99.4 73.0/87.0/96.5
UPV (2023a) 99.6/100.0/100.0 72.6/96.2/98.5 73.0/96.9/99.0 33.4/76.2/94.6 92.4/97.9/99.5 99.8/100.0/100.0 99.6/100.0/100.0 98.6/99.8/99.9 99.8/100.0/100.0 99.6/100.0/100.0 98.8/99.8/99.9
SynthID (2024) 100.0/100.0/100.0 30.2/49.2/83.5 28.2/48.4/85.5 3.0/13.0/65.0 95.8/97.4/99.4 99.6/99.8/99.9 96.4/98.6/99.7 63.4/80.6/95.2 99.6/99.8/99.9 97.4/98.4/99.6 53.2/74.4/94.5
MorphMark (2025) 99.8/100.0/100.0 68.2/88.9/97.2 77.4/93.3/98.4 24.6/52.8/87.7 89.0/93.5/97.4 100.0/100.0/100.0 99.4/99.9/99.9 93.8/99.0/99.6 100.0/100.0/100.0 99.0/100.0/99.9 92.2/98.7/99.6
SemStamp (2023) 97.7/98.4/99.5 88.1/92.8/97.8 92.4/95.2/98.1 76.0/83.0/94.5 87.1/94.2/98.5 96.3/98.0/99.4 87.9/94.2/98.6 63.4/76.8/93.9 96.7/98.4/99.4 89.4/95.0/98.7 64.4/77.6/94.6
KSEMSTAMP (2024) 99.0/99.0/99.7 45.5/64.1/92.4 53.9/70.3/94.8 43.5/61.9/91.6 67.3/79.8/95.9 85.4/92.8/98.9 47.9/64.5/93.1 19.2/33.1/80.0 96.4/97.8/99.5 63.1/80.0/96.2 28.9/47.3/88.2
SimMark (2025) 78.0/89.4/97.9 19.8/40.6/83.6 28.8/46.2/85.9 23.4/45.0/84.9 21.0/35.0/74.3 54.6/77.0/95.2 27.6/49.2/88.4 16.4/32.6/78.7 70.6/84.6/97.1 40.4/61.2/91.3 17.4/32.6/78.9
Ours(Online) 100.0/100.0/99.9 94.4/98.2/99.6 96.6/98.8/99.7 96.8/99.0/99.7 94.4/97.4/99.5 99.6/99.8/99.9 98.2/100.0/99.9 82.9/93.2/98.7 100.0/100.0/99.9 99.0/100.0/99.9 93.6/97.8/99.5
Ours(Offline) 99.4/100.0/99.9 91.4/97.4/99.3 94.6/97.8/99.6 94.4/98.6/99.6 95.8/99.2/99.7 99.4/100.0/99.9 95.4/99.4/99.8 78.9/95.8/98.6 99.4/99.8/99.9 98.6/99.6/99.8 84.9/95.2/98.8

I BROADER IMPACTS AND LIMITATIONS

As a pioneering study on distortion-free and robust semantic-level watermarking, PMARK paves
the way for more secure and powerful solutions for copyright protection and content attribution in
the AI industry. However, several limitations remain. (1) For simplicity, we consider only fixed
random seeds in this work, although more flexible techniques such as sliding windows and pseudo-
random error-correcting codes could enhance adaptability. (2) While the sampling-based generation
paradigm avoids the sampling failures of prior methods and provides an indirect estimate of the next-
sentence distribution—thereby reducing distortion—the required sampling budget still needs to be
further reduced for practical deployment. (3) Current SWM methods, including PMARK, operate at
the sentence level, which depends on consistent sentence segmentation between the generation and
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Table 6: Overall results for baseline methods and PMARK on OPT-1.3B and Mistral-7B on C4.

Method No Attack↑ Doc-P (Pegasus)↑ Doc-P (Parrot)↑ Doc-P (GPT)↑ Doc-T↑ Word-D(0.05)↑ Word-D(0.15)↑ Word-D(0.30)↑ Word-S(0.05)↑ Word-S(0.15)↑ Word-S(0.30)↑
OPT-1.3B

EXP (2023) 99.0/99.6/99.8 54.6/68.2/86.9 42.4/59.6/84.6 21.2/37.2/73.3 90.6/93.8/96.9 98.0/98.2/99.5 96.0/97.8/99.2 72.0/85.6/95.8 98.4/98.8/99.6 96.8/98.2/99.5 80.4/89.4/96.9
EXPGumbel (2023) 98.6/98.6/99.3 75.2/84.6/91.8 74.6/81.0/92.8 55.6/66.0/86.0 94.2/95.6/97.4 97.2/98.0/99.0 97.2/97.8/98.8 95.0/95.8/98.1 97.8/98.2/99.1 96.8/97.4/98.7 94.0/95.4/98.2
KGW (2023) 100.0/100.0/100.0 89.3/97.0/99.2 76.2/91.4/98.1 51.4/78.5/95.0 90.5/94.6/97.8 100.0/100.0/100.0 100.0/100.0/100.0 99.5/100.0/100.0 100.0/100.0/100.0 100.0/100.0/100.0 98.5/99.8/99.9
SIR (2023b) 99.8/100.0/99.9 91.6/94.6/98.7 83.4/90.6/97.6 74.2/88.6/97.7 82.8/89.4/94.9 98.6/99.4/99.9 92.6/95.6/98.2 79.0/85.2/93.9 98.8/99.8/99.8 94.4/96.8/99.2 77.0/86.2/95.8
UPV (2023a) 100.0/100.0/100.0 90.6/95.4/98.3 78.7/88.4/97.4 80.9/91.3/98.2 98.2/98.8/99.5 100.0/100.0/100.0 100.0/100.0/100.0 99.4/99.8/99.9 100.0/100.0/100.0 100.0/100.0/100.0 99.9/100.0/99.9
SynthID (2024) 100.0/100.0/99.9 45.4/66.2/89.5 26.4/49.4/82.7 6.4/21.2/67.6 90.2/98.2/99.5 100.0/100.0/99.9 93.4/99.0/99.7 46.8/73.0/92.9 100.0/100.0/99.9 96.6/99.6/99.7 49.4/76.4/94.8
MorphMark (2025) 100.0/100.0/100.0 78.6/93.0/97.8 70.2/87.1/96.8 46.7/76.2/93.2 87.0/92.4/97.2 100.0/100.0/100.0 99.9/100.0/100.0 93.2/98.2/99.7 100.0/100.0/100.0 99.4/100.0/99.9 94.9/99.8/99.8
SemStamp (2023) 94.6/96.1/98.9 85.8/91.0/96.9 84.4/89.3/96.2 73.5/81.4/93.0 80.0/85.7/95.2 91.7/94.7/98.5 82.8/90.0/97.0 57.8/71.4/90.0 93.1/96.5/98.9 86.7/91.6/97.4 61.6/75.0/92.2
KSEMSTAMP (2024) 100.0/100.0/99.9 76.6/89.2/97.1 74.3/87.0/97.5 62.9/78.6/94.1 62.4/78.0/93.8 95.9/98.8/99.5 69.2/84.6/95.9 35.2/53.2/85.8 98.9/99.8/99.8 79.8/90.2/97.7 44.4/63.0/90.7
SimMark (2025) 77.6/94.2/98.5 11.6/35.8/82.9 13.6/39.2/84.5 16.0/44.8/86.5 11.0/26.8/75.3 52.2/83.4/96.6 27.4/57.0/90.7 8.8/27.4/81.4 66.6/88.2/97.5 30.0/60.0/91.4 9.8/28.2/77.7
Ours(Online) 100.0/100.0/99.9 96.2/99.6/99.8 97.2/99.0/99.8 97.8/99.6/99.8 95.2/98.0/99.5 99.2/99.8/99.9 97.2/98.4/99.7 85.6/94.2/98.7 100.0/100.0/99.9 98.4/99.6/99.9 87.6/96.0/99.2
Ours(Offline) 98.0/99.0/99.8 91.7/94.4/98.8 91.4/95.2/99.0 92.6/96.2/99.1 94.7/97.0/99.4 97.9/99.0/99.7 95.3/98.0/99.5 84.5/91.6/98.1 97.8/98.8/99.7 95.1/98.4/99.4 88.2/93.8/98.5

Mistral-7B
EXP (2023) 99.2/99.2/99.5 44.4/60.4/85.7 34.2/54.8/84.2 17.4/29.8/72.1 88.8/92.6/97.6 98.2/98.8/99.4 93.2/96.0/98.7 63.0/75.6/94.2 98.2/99.0/99.4 95.6/98.6/99.3 74.0/85.2/96.5
EXPGumbel (2023) 98.6/98.6/99.3 71.2/82.0/92.5 66.2/77.2/90.8 40.2/55.4/82.5 92.0/93.8/97.2 98.2/98.4/99.0 97.2/98.6/99.0 91.4/95.8/98.3 98.2/98.2/99.0 98.2/98.2/99.0 92.6/96.4/98.4
KGW (2023) 100.0/100.0/100.0 85.6/95.5/98.8 79.2/93.7/98.8 54.2/76.7/95.6 87.8/92.9/96.5 100.0/100.0/100.0 100.0/100.0/100.0 99.4/99.9/99.9 100.0/100.0/100.0 99.8/100.0/100.0 99.0/100.0/99.9
SIR (2023b) 100.0/100.0/99.9 87.6/93.4/98.1 83.2/89.6/97.8 63.4/80.8/96.4 84.6/91.0/97.2 98.8/99.4/99.9 95.2/97.8/99.4 79.4/86.6/95.8 99.2/99.6/99.9 94.8/98.6/99.4 74.8/86.0/96.8
UPV (2023a) 99.4/99.8/99.9 71.4/91.4/97.7 61.9/85.4/97.5 34.9/68.6/93.4 88.0/95.6/98.9 100.0/100.0/100.0 99.2/100.0/99.9 97.0/99.8/99.9 99.8/100.0/100.0 99.4/100.0/99.9 95.6/99.8/99.8
SynthID (2024) 99.8/99.8/99.8 47.0/56.0/87.6 31.4/41.4/80.7 7.4/17.2/68.2 89.0/92.8/98.6 99.2/99.8/99.8 94.4/97.6/99.5 57.2/70.4/93.5 99.4/99.8/99.8 96.2/98.2/99.5 51.8/71.4/95.0
MorphMark (2025) 98.6/100.0/100.0 74.8/89.4/97.5 70.0/86.4/97.4 35.2/59.7/91.4 80.4/89.4/96.5 99.4/100.0/100.0 98.0/99.8/99.9 91.0/97.8/99.6 99.0/99.8/99.9 99.0/100.0/99.9 92.6/98.4/99.7
SemStamp (2023) 92.5/95.8/98.3 80.9/87.9/95.9 77.9/86.3/95.7 69.2/80.0/92.4 70.1/82.5/94.6 89.3/93.6/97.8 82.0/88.8/96.3 53.0/68.1/90.8 92.3/94.9/98.2 82.1/88.9/96.8 57.8/73.9/91.5
KSEMSTAMP (2024) 100.0/100.0/99.9 49.2/68.4/93.2 54.8/71.6/93.7 43.9/61.2/89.2 59.6/75.8/94.6 89.7/95.6/99.2 53.7/73.2/94.2 20.8/40.6/81.8 97.2/99.4/99.7 66.2/81.8/96.5 31.0/48.0/86.6
SimMark (2025) 70.8/89.6/97.9 12.4/31.2/81.5 14.6/37.3/84.4 22.6/47.9/86.4 12.0/22.9/67.9 50.8/76.8/95.8 27.0/51.9/89.2 13.8/31.6/80.7 64.6/85.3/97.2 28.6/54.7/90.5 10.8/25.6/74.1
Ours(Online) 100.0/100.0/99.9 93.0/96.8/99.4 93.6/97.6/99.4 95.2/98.8/99.7 93.6/97.2/99.2 100.0/100.0/99.9 98.2/99.4/99.7 85.8/93.0/98.6 100.0/100.0/99.9 98.6/100.0/99.9 89.4/96.4/99.4
Ours(Offline) 99.7/99.8/99.9 90.8/95.8/99.1 91.3/95.8/99.3 92.0/95.2/99.3 94.0/97.2/99.5 99.2/99.8/99.9 95.2/98.4/99.7 84.1/93.6/98.9 99.6/99.8/99.9 97.1/98.6/99.7 87.1/94.6/98.6
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Figure 7: Mistral-7B PPL on BOOKSUM.

detection processes. Future research should explore more advanced SWM methods that eliminate
this reliance and embed watermark evidence directly into the semantics of text, potentially enabling
more sophisticated capabilities such as detecting whether specific ideas originate from LLMs.
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Figure 8: OPT-1.3B PPL on BOOKSUM.
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Figure 9: OPT-1.3B PPL on C4.
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Figure 10: Performance comparison of OPT-1.3B under different hyperparameter settings.
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(a) SemStamp without attack. (b) Offline PMARK without attack. (c) Online PMARK without attack.

(d) SemStamp paraphrased by GPT.(e) Online PMARK paraphrased by
GPT.

(f) Offline PMARK paraphrased by
GPT.

Figure 11: Cases from Mistral-7B on BOOKSUM dataset. •, •, • and • indicate valid watermark
evidence is detected with the transparetness denoting evidence strength, while • indicates that no
valid evidence detected in this channel.

(a) SemStamp without attack. (b) Offline PMARK without attack. (c) Online PMARK without attack.

(d) SemStamp paraphrased by GPT.(e) Online PMARK paraphrased by
GPT.

(f) Offline PMARK paraphrased by
GPT.

Figure 12: Cases from Mistral-7B on C4 dataset.
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(a) SemStamp without attack. (b) Offline PMARK without attack. (c) Online PMARK without attack.

(d) SemStamp paraphrased
by GPT.

(e) Online PMARK paraphrased by
GPT.

(f) Offline PMARK paraphrased by
GPT.

Figure 13: Cases from OPT-1.3B on BOOKSUM dataset.

(a) SemStamp without attack. (b) Offline PMARK without attack. (c) Online PMARK without attack.

(d) SemStamp paraphrased by GPT.(e) Online PMARK paraphrased by
GPT.

(f) Offline PMARK paraphrased by
GPT.

Figure 14: Cases from OPT-1.3B on C4 dataset.
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