
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
Anonymous Author(s)

Abstract
Graph neural networks have been demonstrated as a powerful par-

adigm for effectively learning graph-structured data on the web
and mining content from it. Current leading graph models require

a large number of labeled samples for training, which unavoid-

ably leads to overfitting in few-shot scenarios. Recent research has

sought to alleviate this issue by simultaneously leveraging graph

learning and meta-learning paradigms. However, these graph meta-

learning models assume the availability of numerous meta-training

tasks to learn transferable meta-knowledge. Such assumption may

not be feasible in the real world due to the difficulty of constructing

tasks and the substantial costs involved. Therefore, we propose a

SiMple yet effectIve approach for graph few-shot Learning with

fEwer tasks, named SMILE. We introduce a dual-level mixup strat-

egy, encompassing both within-task and across-task mixup, to si-

multaneously enrich the available nodes and tasks in meta-learning.

Moreover, we explicitly leverage the prior information provided

by the node degrees in the graph to encode expressive node repre-

sentations. Theoretically, we demonstrate that SMILE can enhance

the model generalization ability. Empirically, SMILE consistently

outperforms other competitive models by a large margin across all

evaluated datasets with in-domain and cross-domain settings. Our

anonymous code can be found here.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies → Neural networks.

Keywords
Graph neural network, Few-shot learning, Node classification

ACM Reference Format:
Anonymous Author(s). 2018. Dual-level Mixup for Graph Few-shot Learning

with Fewer Tasks. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,

New York, NY, USA, 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
As a fundamental data structure, graphs can effectively model com-

plex relationships between objects and they are ubiquitous in the

real world. Graph neural networks (GNNs) have been widely em-

ployed as an effective tool for graph task analysis [12, 18, 22, 47, 56].

Prevailing GNN models are designed under the supervised learning

paradigm, which implies that they require abundant labeled data

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

5 10 15 20
Number of Meta-training Tasks

60

65

70

75

Ac
cu

ra
cy

 (%
)

GPN
G-Meta
Meta-GPS

(a) Amazon-Clothing

5 10 15 20
Number of Meta-training Tasks

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

GPN
G-Meta
Meta-GPS

(b) Cora-Full

Figure 1: Model performance varies with the number ofmeta-
training tasks across different datasets.

to achieve satisfactory classification performance [5, 43]. Given the

limited number of labeled nodes per class, known as few-shot cases

[25, 62], these models suffer from severe overfitting, leading to a

significant performance decline [15, 21].

Meta-learning has emerged as a viable option for effectively

learning from limited labeled data. Its core concept is to train on

tasks instead of instances as training units, aiming to capture the

differences between tasks to enhance the model generalizability

[14]. Several pioneering models [50, 65] have attempted to leverage

integrate GNNs and meta-learning techniques to address graph few-

shot learning problems. However, these graph meta-learning mod-

els all assume the existence of abundant accessible meta-training

tasks to extract generalizable meta-knowledge for rapid adapta-

tion to meta-testing tasks with only a few labeled instances. In

other words, their outstanding performance critically depends on

a wide range of meta-training tasks. For many real-world applica-

tions, due to the difficulty of task generation or data collection, we

may not be able to obtain an adequate number of meta-training

tasks [19, 43, 60]. For molecular property prediction, labeling newly

discovered chemical compounds requires extensive domain knowl-

edge and expensive wet-lab experiments [11]. Moreover, even after

annotation, the currently known chemical properties (i.e., classes)
are limited, encompassing only common molecular characteristics

such as polarity, solubility, and toxicity [26].

To further support our argument, we select three representa-

tive graph meta-learning models (i.e., GPN [5], G-Meta [15], and

Meta-GPS [25]) and evaluate their performance under varying num-

bers of meta-training tasks in Fig. 1. We distinctly observe that as

the number of available meta-training tasks decreases, the over-

all performance of all methods greatly deteriorates. Because they

tend to memorize meta-training tasks directly, which significantly

constrains their generalization ability to novel tasks in the meta-

testing stage [36]. This naturally raises a pressing question for us

in more realistic scenarios: How can we perform graph few-shot
learning in scenarios with fewer tasks to extract as much transferable
meta-knowledge as possible, thereby enhancing the model general-
ization performance? Regarding this, although some recent studies

[17, 42] have made some efforts on this issue, they primarily employ

1

https://anonymous.4open.science/r/SMILE-0F2F/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

intricate network architectures to endow models with favorable

characteristics, yet there is still room for improvement. We argue

that there are two serious issues for our focused scenarios, which

greatly hamper the model performance. On the one hand, there are
only limited support samples available for training within each

meta-training task, which complicates the accurate reflection of the

real data distribution. Therefore, it poses a challenge for the model

to effectively capture the data characteristics, severely affecting

its inductive bias capability [33]. On the other hand, when there

are only limited meta-training tasks available, the model tends to

directly fit the biased task distribution. This implies not only a short-

age of data for each task, but also a reduced number of available

tasks. The combined effect of these two factors increases the unnec-

essary oscillation during predictions outside the training examples,

leading to reduced generalization capability.

To address these issues mentioned above, we develop a SiMple

yet effectIve approach for graph few-shot Learning with fEwer
tasks, namely, SMILE. Specifically, given the graph data, we first

obtain discriminative node embeddings using our designed graph

encoder. In this process, we introduce node degrees as prior infor-

mation to fully utilize valuable information present in the existing

graph. Then, we introduce a dual-level mixup strategy that operates

on the obtained hidden node representations, consisting of both

within-task and across-task mixup. The former involves random

sampling of two instances from the same category within a task

and applies linear interpolation to generate new samples, thereby

enriching the data distribution. The latter requires computing class

prototypes in two randomly selected original meta-training tasks,

and then linearly interpolating class prototypes from different tasks

to generate new tasks, thereby densifying the task distribution.

These two employed strategies effectively mitigate the adverse ef-

fects caused by sample and task scarcity. Empirically, despite its

simplicity and the absence of sophisticated techniques, the proposed

approach demonstrates remarkable performance. Furthermore, we

provide a theoretical elucidation of the underlying mechanism of

our method, demonstrating its ability to constrict the upper bound

of generalization error and consequently achieve superior gener-

alization. In summary, our contributions can be summarized as

follows:

• We propose a simple yet effective approach, SMILE, which lever-

ages dual-level task mixup technique and incorporates the node

degrees prior information, for graph few-shot learning with fewer

tasks.

•We theoretically analyze the reasons why our approach works,

demonstrating its ability to enhance generalization performance

by regularizing model weights.

•We conduct extensive experiments on the several datasets, and

the results show that SMILE can considerably outperform other

competitive baselines by a large margin with in-domain and cross-

domain settings.

2 Related Work
Few-shot Learning. Few-shot learning aims to quickly adapt meta-

knowledge acquired from previous tasks to novel tasks with only a

small number of labeled samples, thereby enabling few-shot gen-

eralization of machine learning algorithms [6, 7, 14]. Typically,

there are three main strategies to solve few-shot learning. Some

methods [24, 29, 40, 41, 48] utilize prior knowledge to constrain

the hypothesis space at the model level, learning a reliable model

within the resulting smaller hypothesis space. A series of methods

[8–10, 34, 38] improve the search strategy at the algorithm level
by providing good initialization or guiding the search steps. An-

other line of works [13, 39, 57, 58, 66] augment tasks at the data
level to obtain precise empirical risk minimizers. For the few-shot

learning with limited tasks, there are various explorations in Eu-

clidean data, such as images and texts. For example, TAML [16]

and MR-MAML [61] directly apply regularization on the few-shot

learner to reduce their reliance on the number of tasks. Meta-aug

[36] and MetaMix [58] perform data augmentation on individual

tasks to enrich the data distribution. MLTI [60] and Meta-Inter [19]

directly generate source tasks to densify the task distribution. Our

approach differs from the aforementioned methods in that we simul-

taneously perform within-task and across-task interpolation, with

each strategy playing a crucial role. Meanwhile, we integrated task

prototypes into the mixup process and explicitly adopt those previ-

ously overlooked original tasks, resulting in superior performance,

which can be supported by the results in Appendices F.3 and F.4.

Moreover, previous methods are not applicable to graph-structured

data, whereas SMILE introduces a strategy that leverages the prior

information provided by the graph.

Graph Few-shot Learning. Inspired by the success of few-shot

learning in computer vision [2, 20, 45] and natural language pro-

cessing [1, 31, 49], few-shot learning on graphs has recently seen

significant development [25, 42, 50, 51, 59]. The core concept of

current mainstream methods is to develop complicated algorithms

to address the problem of few-shot learning on graphs. For instance,

Meta-GNN [65], G-Meta [15], and Meta-GPS [25] are all subjected

to specific modifications based on the MAML [6] algorithm, em-

ploying a bi-level optimization strategy to learn better parameter

initialization. While the above models yield fruitful results, their

reliance on substantial and diverse of meta-training tasks, coupled

with their high complexity, has impeded their further advancement.

Recently, TLP [43] and TEG [17] attempt to alleviate the limited

diversity in meta-training datasets by using graph contrastive learn-

ing and equivariant neural networks, respectively. With the aid of

sophisticated network designs, these methods have yielded promis-

ing results in graph few-shot scenarios. However, there is little

effort to address the graph few-shot learning problem from the

perspective of data augmentation.

3 Preliminary
Given a graph G = {V, E,Z,A}, V and E represent the sets of

nodes and edges, respectively. Z ∈ R𝑛×𝑑
is the feature matrix of

nodes and A ∈R𝑛×𝑛
is the corresponding adjacency matrix. Our

model adheres to the prevalent meta-learning training paradigm,

which involves training on sampled tasks. In this work, we mainly

focus on few-shot node classification, which is the most prevailing

and representative task in graph few-shot learning. Moreover, we

highlight that in our focused scenarios, the number of available

meta-training tasks sampled from an unknown task distribution

is extremely small compared to traditional experimental settings,

referred to as few-shot node classification with fewer tasks. Our goal
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

is to enable the model to effectively extract meta-knowledge even

from such limited tasks, which can generalize to novel tasks in the

meta-testing phase. For better understanding, we summarize the

main symbols of this work in Appendix A.

4 Method
In this section, we will detail our proposed SMILE, which consists

of two components: node representation learning and dual-level

mixup strategy. To facilitate better understanding, we present the

overall framework of the model in Fig. 2.

4.1 Node Representation Learning
Generally, the initial step involves encoding the nodes within the

graph into a latent space, thereby transforming them into low-

dimensional hidden vectors. GNNs have become the foremost choice

for node embedding due to its powerful representational capabilities

on graphs. It follows a message-passing mechanism, continuously

aggregating messages from neighboring nodes to iteratively update

the embedding of the target node. Guided by the simple philosophy,

we adopt the SGCmodel [55] to learn node embeddings. Specifically,

which can be defined as:

H= Ă · · · ĂZW
(0)

W
(1) · · ·W(ℓ−1) = Ă

ℓ
ZW

∗, (1)

where Ă = D̂
−1/2

ÂD̂
−1/2

is the symmetric normalized adjacency

matrix with added self-loops, i.e., Â=A+ I. D̂𝑖 =
∑

𝑗 Â𝑖, 𝑗 denotes the

corresponding degree matrix. W
∗
is the collapsing weight matrices.

After performing graph convolution operations, we can obtain the

node vectors H∈R𝑛×𝑑
that simultaneously encode node features

and topology structure.

Given that few-shot models are highly noise-sensitivity [63], it is

necessary to incorporate more prior knowledge to refine representa-

tions. Such prior knowledge is often reflected on node degree about

the node popularity and importance [35]. Therefore, we consider

explicitly incorporating it to evaluate each node. Specifically, we

first adopt another SGC to derive the interaction weights 𝜅 ∈R𝑛×1

for all nodes. Then, based on the node degree information, we ob-

tain the node centralities 𝛼 ∈R𝑛×1
to perform degree normalization

for adjusting 𝜅 . Finally, we acquire the refined node representations

X∈R𝑛×𝑑
using the adjusted scores 𝛽 ∈R𝑛×1

. The above procedures

can be formulated as follows:

𝜅= Ă
ℓ
ZW, 𝛼 = log({D̂𝑖 }𝑛𝑖=1

),
𝛽 =softmax(𝛿 (𝛼 ⊙ 𝜅)), X=𝛽 ⊙ H,

(2)

where W∈R𝑑×1
is the trainable parameters and 𝛿 (·) is the sigmoid

function. ⊙ denotes the element-wise product.

After completing the node representation learning, we introduce

the few-shot setting by defining some key notations. The meta-

training tasks D𝑜𝑟𝑔 = {T𝑡 }
T𝑜𝑟𝑔

𝑡=1
are sampled from a task distribution

𝑝 (T), where each task contains a support set S𝑡 = {(X𝑠
𝑡,𝑖
, Y𝑠

𝑡,𝑖
)}𝑛𝑠

𝑖=1

and a query set Q𝑡 = {(X𝑞

𝑡,𝑖
, Y

𝑞

𝑡,𝑖
)}𝑛𝑞

𝑖=1
, denoted as T𝑡 = {S𝑡 ,Q𝑡 }.

Here, X
∗
𝑡,𝑖

and Y
∗
𝑡,𝑖

∈Y𝑡𝑟𝑎 denote the node embeddings and its label,

where Y𝑡𝑟𝑎 denotes the set of base classes. For the meta-testing

task T𝑡𝑒𝑠 = {S𝑡𝑒𝑠 ,Q𝑡𝑒𝑠 }= {{(X𝑠
𝑡𝑒𝑠,𝑖

, Y𝑠
𝑡𝑒𝑠,𝑖

)}𝑛𝑠
𝑖=1
, {(X𝑞

𝑡𝑒𝑠,𝑖
, Y

𝑞

𝑡𝑒𝑠,𝑖
)}𝑛𝑞

𝑖=1
},

it is composed in the same way as the meta-training task T𝑡 , with
the only difference being that the node label belong to the novel

class setY𝑡𝑒𝑠 , which is disjoint fromY𝑡𝑟𝑎 , i.e.,Y𝑡𝑟𝑎∩Y𝑡𝑒𝑠 =∅. When

the support set S𝑡𝑒𝑠 consists of 𝑁 sampled classes, each with 𝐾

nodes, we refer to it as an 𝑁 -way𝐾-shot problem. The construction

of Q𝑡𝑒𝑠 is the same as S𝑡𝑒𝑠 , except that each class has 𝑀 nodes.

Typically, the model is first trained on the meta-training tasksD𝑜𝑟𝑔 .

During the meta-testing stage, the model is fine-tuned on S𝑡𝑒𝑠 and
then is evaluated the performance on Q𝑡𝑒𝑠 .

4.2 Dual-level Mixup Strategy
If we directly conduct few-shot learning on the refined representa-

tions, themodel’s performancewould be degraded due to overfitting

and constrained generalization. Therefore, we introduce a dual-level

mixup strategy, including within-task and across-task mixup, to

deal with this issue. Next, we will provide detailed descriptions of

each technique.

4.2.1 Within-task Mixup. Due to the exceedingly restricted num-

ber of sampled nodes in both the support set and query set for each

task during the meta-training phase, the efficiency of the meta-

training is considerably compromised. Hence, we propose using the

within-task mixup strategy to generate more samples for increasing

the diversity of the data. Concretely, for a given meta-training task

T𝑡 , we perform random sampling on the support set S𝑡 and query

set Q𝑡 , selecting two samples 𝑖 and 𝑗 from the same category 𝑘 for

linear interpolation to generate a new one 𝑟 . The above procedure

can be formulated as:

X
′𝑠
𝑡,𝑟 ;𝑘

=𝜆X
𝑠
𝑡,𝑖;𝑘

+(1−𝜆)X𝑠
𝑡, 𝑗 ;𝑘

, X
′𝑞
𝑡,𝑟 ;𝑘

=𝜆X
𝑞

𝑡,𝑖;𝑘
+(1−𝜆)X𝑞

𝑡,𝑗 ;𝑘
, (3)

where 𝜆 ∈ [0, 1] is sampled from the Beta distribution 𝐵𝑒𝑡𝑎(𝜂,𝛾)
specified by 𝜂 and 𝛾 .

Here, we do not perform label interpolation as the labels of the

two sampled nodes are the same, resulting in identical labels for the

generated node. There are two reasons for this. First, interpolating

samples from different categories wouldmake it difficult to compute

prototypes of the mixed labels while expanding the node label space

of the original task. Second, this would pose intricate troubles for

the subsequent across-task interpolation.

We iteratively apply Eq.3 to generate the additional support set

S′
𝑡 = {(X′𝑠

𝑡,𝑖
, Y𝑠

𝑡,𝑖
)}𝑛𝑠′

𝑖=1
and query set Q′

𝑡 = {(X
′𝑞
𝑡,𝑖
, Y

𝑞

𝑡,𝑖
)}𝑛𝑞′

𝑖=1
, which are

subsequently merged with the original corresponding sets to obtain

the augmented task T𝑡 (To avoid introducing extra symbols, we

consistently use T𝑡 to denote the task that undergoes within-task

mixup in the following sections.), i.e., T𝑡 = {S𝑡 ∪S′
𝑡 ,Q𝑡 ∪Q′

𝑡 }. The
number of nodes in the amplified support and query sets of the

augmented task T𝑡 are𝑚′=𝑛𝑠 +𝑛𝑠′ and𝑚=𝑛𝑞+𝑛𝑞′ , respectively.

4.2.2 Across-task Mixup. Solely conducting within-task mixup

does not address the issue of the limited number of tasks. Therefore,

we utilize across-task mixup to directly create new tasks, densify-

ing the task distribution. Specifically, in the first step, we randomly

select two tasks, T𝑖 and T𝑗 , from the given meta-training tasks

D𝑜𝑟𝑔 = {T𝑡 }
T𝑜𝑟𝑔

𝑡=1
. In the second step, we randomly sample a class 𝑘

from the support set S𝑖 of T𝑖 and a class 𝑘′ from the support set S𝑗

of T𝑗 , and then compute class-specified support prototypes. This

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Graph Encoder

Node Embedding H

Graph EvaluatorGraph Evaluator

Graph Input

Node Centrality Score Node Centrality Score Node Centrality Score

Dual-level Mixup

Refined Node

Representation X

Refined Node

Representation X

...

...

.
..

...

...

...

.
..

...

i

i

i

...

...

.
..

...

...

.
..

...

i

...

...

.
..

...

...

...

.
..

...

i
...

...

.
..

...

...

...

.
..

...

...

...

...

...

...
...

...

...

...

...

...

...

...
...

...

...

Within-task Mixup

Across-task Mixup

1

1Q

2

2Q

3

3Q

t

t
Q

aug

t

Node Representation Learning

1

N m

N m

N m

N m

N m

N m

N m

N m

N m

N m

Downstream

Task

Figure 2: The overall architecture of SMILE.

procedure can be expressed as:

C
𝑠
𝑖;𝑘

=
1

|S𝑖;𝑘 |
∑︁

(X𝑠
𝑖,𝜚

,Y𝑠
𝑖,𝜚

) ∈S𝑖

I
Y𝑖,𝜚=𝑘X

𝑠
𝑖,𝜚 ,

C
𝑠
𝑗 ;𝑘 ′ =

1

|S𝑗 ;𝑘 ′ |
∑︁

(X𝑠
𝑗,𝜚

,Y𝑠
𝑗,𝜚

) ∈S𝑗

I
Y𝑗,𝜚=𝑘

′X𝑠
𝑗,𝜚 ,

(4)

where I(·) is the indicator function that is 1 when Y𝑖,𝜚 =𝑘 , and 0

otherwise. Similarly, we can obtain query prototypes C
𝑞

𝑖;𝑘
for class

𝑘 and C
𝑞

𝑗 ;𝑘 ′ for class 𝑘
′
by applying Eq.4 to the query sets Q𝑖 of T𝑖

and Q 𝑗 of T𝑗 .
In the third step, we individually perform feature-level linear

interpolation on the support prototypes and query prototypes to

generate new samples. Considering that different tasks have dif-

ferent label spaces, we directly treat the label associated with the

interpolated data as a new class
˜𝑘 . We can formulate the above

process as:

X̃
𝑠

𝑡,𝜚 ;
˜𝑘
=𝜆C

𝑠
𝑖;𝑘

+(1−𝜆)C𝑠
𝑗 ;𝑘 ′ , Ỹ

𝑠

𝑡,𝜚 ;
˜𝑘
=Φ(Y𝑠

𝑖;𝑘
, Y𝑠

𝑗 ;𝑘 ′),

X̃
𝑞

𝑡,𝜚 ;
˜𝑘
=𝜆C

𝑞

𝑖;𝑘
+(1−𝜆)C𝑞

𝑗 ;𝑘 ′ , Ỹ
𝑞

𝑡,𝜚 ;
˜𝑘
=Φ(Y𝑞

𝑖;𝑘
, Y

𝑞

𝑗 ;𝑘 ′),
(5)

where Φ(·, ·) represents the label uniquely determined by the pair

(·, ·). We perform 𝑚′
iterations for the support data and 𝑚 it-

erations for the query data in Eq.5, i.e., {X̃𝑠

𝑡,𝜚 ;
˜𝑘
, Ỹ𝑠

𝑡,𝜚 ;
˜𝑘
}𝑚′
𝜚=1

and

{X̃𝑞

𝑡,𝜚 ;
˜𝑘
, Ỹ

𝑞

𝑡,𝜚 ;
˜𝑘
}𝑚
𝜚=1

. Note that the sampled 𝜆 each time is different.

Finally, we repeat the second and third steps 𝑁 times to con-

struct an 𝑁 -way 𝑚′
-shot interpolation task T𝑎𝑢𝑔

𝑡 = { ˜S𝑡 , ˜Q𝑡 } =

{{X̃𝑠

𝑡 ;
˜𝑘
, Ỹ𝑠

𝑡 ;
˜𝑘
}𝑁

˜𝑘=1

, {X̃𝑞

𝑡 ;
˜𝑘
, Ỹ

𝑞

𝑡 ;
˜𝑘
}𝑁

˜𝑘=1

}. We can conduct the above pro-

cessmultiple times to obtain the interpolated tasksD𝑎𝑢𝑔 = {T𝑎𝑢𝑔
𝑡 }T𝑎𝑢𝑔

𝑡=1

and merge them with the original tasksD𝑜𝑟𝑔 to form the final meta-

training tasks D𝑎𝑙𝑙 =D𝑜𝑟𝑔∪D𝑎𝑢𝑔 . The number of tasks in D𝑎𝑙𝑙 is

T=T𝑜𝑟𝑔+T𝑎𝑢𝑔 .

Model Training. After performing the dual-level mixup operation,

we adopt a classic metric-based episodic training for few-shot node

classification. We first derive the prototype C𝑘 in the support set

S𝑡 of each task T𝑡 from D𝑎𝑙𝑙 with the manner shown in Eq.4.

Next, we optimize the parameters of the model by performing

distance-based cross-entropy loss function on all query sets inD𝑎𝑙𝑙

as:

L =

T∑︁
𝑡=1

𝑚∑︁
𝑖=1

I
Y𝑡,𝑖=𝑘 log

exp(−𝑑 (𝜃⊤X
𝑞

𝑡,𝑖
,C𝑘))∑

𝑘 ′ exp(−𝑑 (𝜃⊤X
𝑞

𝑡,𝑖
,C𝑘 ′))

, (6)

where𝑑 (·, ·) is the Euclidean distance function and 𝜃 is the trainable
vector.

In the meta-testing stage, we do not perform any mixup oper-

ations for the evaluated task T𝑡𝑒𝑠 . Actually, we first use the well-
trained model to compute class prototypes on the support set, and

then assign samples in the query set to their nearest prototype,

defined as:

C𝑘 =
1

|S𝑡𝑒𝑠,𝑘 |
∑︁

(X𝑠
𝑡𝑒𝑠,𝑖

,Y𝑠
𝑡𝑒𝑠,𝑖

) ∈S𝑡𝑒𝑠

I
Y𝑡𝑒𝑠,𝑖=𝑘X

𝑠
𝑡𝑒𝑠,𝑖 ,

Y
𝑞
𝑡𝑒𝑠,∗=argmin𝑘𝑑 (𝜃⊤X,C𝑘).

(7)

We present the process of proposed SMILE in Algorithm 1. The

time complexity analysis of SMILE are presented in Appendix B.

5 Theoretical Analysis
In this section, we theoretically analyze why our proposed SMILE,

equipped with intra-task and inter-task mixup, can alleviate overfit-

ting and exhibit better generalization capabilities. We first present

the obtained key points: SMILE can regularize the weight parameters
in a distribution-dependent manner and reduce the upper bound of
the generalization gap by controlling the Rademacher complexity.
Next, we elaborate on the proposed theorems to support the afore-

mentioned points. For simplicity, we conduct a detailed theoretical

analysis of SMILE in the binary classification scenario, assuming

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 The process of SMILE

Input: A graph G= {V, E,Z,A}.
Output: The well-trained SMILE.

1: // Meta-training process
2: while not convergence do
3: Learn node embeddings using Eq.1.

4: Refine node embeddings using Eq.2.

5: Construct meta-training tasks D𝑜𝑟𝑔 .

6: Perform within-task mixup to obtain the augmented task T𝑡
using Eq.3.

7: Perform across-task mixup to obtain the interpolated task

T𝑎𝑢𝑔
𝑡 using Eqs.4 and 5.

8: Form the interpolated tasks D𝑎𝑢𝑔 .

9: Obtain the enriched meta-training tasks D𝑎𝑙𝑙 .

10: Compute the prototypes of support set for each task using

Eq.4.

11: Optimize the model using Eq.6.

12: end while
13: // Meta-testing process
14: Construct meta-testing task T𝑡𝑒𝑠 .
15: Compute the prototypes in S𝑡𝑒𝑠 using Eq.7.
16: Predict the node labels in Q𝑡𝑒𝑠 .

the use of preprocessed centralized dataset that satisfies the con-

dition EX [X]=0. Moreover, the proposed SMILE can be modeled

as 𝑓𝜃 (Z)=𝜃⊤𝑔𝜁 (Z)=𝜃⊤X, where 𝑔𝜁 (·) denotes the graph encoder

parameterized by 𝜁 . We consider using the loss from Eq.6 for tasks

in D𝑎𝑙𝑙 . Particularly, the empirical loss function based on enriched

training samples for binary classification can be simplified as:

L(D𝑎𝑙𝑙 ;𝜃)=
T∑︁
𝑡=1

𝑚∑︁
𝑖=1

(1+exp(⟨X𝑞

𝑡,𝑖
−(C1+C2)/2, 𝜃⟩))−1,

C𝑘 =
1

|S𝑡,𝑘 |
∑︁

(X𝑠
𝑡,𝑖
,Y𝑠

𝑡,𝑖
) ∈S𝑡

I
Y𝑡,𝑖=𝑘X

𝑠
𝑡,𝑖 ,

(8)

where ⟨·, ·⟩ denote the dot product operation. The approximation

of the loss function L(D𝑎𝑙𝑙 ;𝜃) in Eq.8 is formalized as:

L(D𝑎𝑙𝑙 ;𝜃) ≈ L(D𝑜𝑟𝑔 ;𝜃)+L(¯𝜆D𝑜𝑟𝑔 ;𝜃)+M(𝜃), (9)

where
¯𝜆=E𝜌𝜆 [𝜆] andM(𝜃) is a quadratic regularization term with

respect to 𝜃 , defined as:

M(𝜃)=ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
𝜙 (P𝑡) (𝜙 (P𝑡)−0.5)

2(1+exp (P𝑡))
(𝜃⊤ΣX𝜃) (10)

in which P𝑡 = ⟨X𝑞
𝑡 −(C1+C2)/2, 𝜃⟩, 𝜙 (P𝑡) = exp(P𝑡)/(1+exp(P𝑡)),

and ΣX = E[XX
⊤] = 1

𝑚

∑𝑚
𝑖=1

X𝑖X
⊤
𝑖
. The detailed proofs for Eqs.9

and 10 can be found in Lemma C.1 of Appendix C.

Eq.9 shows that SMILE imposes an additional regularization term

on the trainable weights to constrain the solution space, thereby

reducing the likelihood of overfitting.

To define the generalization gap problem formally, we introduce

a function class of the dual form related to the regularization term

in Eq.9, as shown in Eq.11.

F𝜈 = {X → 𝜃⊤X : 𝜃⊤ΣX𝜃 ≤ 𝜈}. (11)

Moreover, we represent the expected risk R and empirical risk R̂ as

follows:

R=ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗),

R̂=ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗) .
(12)

Then, we present the following theorem for improved generaliza-

tion gap brought by SMILE.

Theorem 5.1. Assume that X, Y and 𝜃 are bounded. For all 𝑓 ∈F𝜈 ,
where 𝜃 satisfies 𝜃⊤ΣX𝜃 ≤ 𝜈 , we have the following generalization
gap bound, with probability at least (1− 𝜖) over the training samples,

|R̂ − R| ≤ 2

(√︂
𝜈 · rank(∑

X
)

𝑚
+
√︂
𝜈

T

(
rank(ΣX)

))
+3

(√︂
log(2/𝜖)

2𝑚
+
√︂

log(2/𝜖)
2T

)
,

(13)

where𝑚 and T denote the number of nodes in the query set and the
number of meta-training tasks.

Based on Theorem 5.1, we can obtain several in-depth findings.

On the one hand, SMILE induces a regularized weight space for

𝜃 , leading to a smaller 𝜈 . On the other hand, the introduced intra-

task and inter-task interpolations increase𝑚 and T simultaneously.

These two aspects work together to reduce the upper bound of the

generalization gap of SMILE and alleviate overfitting.

According to the above theorem, we can naturally confirm the

following corollary.

Corollary 5.2. Let |R̂−R| and |R̂ori−Rori | denote the model gen-
eralization bounds trained under our proposed task augmentation
strategy and standard training strategy, respectively. We have the
following inequality holding,

U(|R̂−R|) ≤ U(|R̂ori−Rori |), (14)

where U(·) denotes the operation of taking the upper bound.

Corollary 5.2 suggests that SMILE achieves tight generalization

bound than other models trained in a standard way.

Suppose the empirical distribution of source tasks in the meta-

training be
ˆP and the expected distribution of the query set of

target tasks be Q, then during the adaptation process, we expect to

reduce the data-dependent upper bound, defined as sup

𝑓 ∈F
|E

ˆP−EQ |.

Empirically, when source tasks and target tasks are more similar,

the model is more likely to extract generalizable meta-knowledge

from source tasks to quickly adapt to target tasks. Theoretically, we

present the Theorem 5.3, which demonstrates the reduction of the

upper bound between
ˆP and Q induced by our proposed strategy.

Theorem 5.3. Assume the source tasks and target tasks are drawn
from distribution ˆP and Q, and they are independent. For 𝜖 >0, with
probability at least (1−𝜖) over the draws of samples, we have the
following upper bound between data distributions,

sup

𝑓 ∈F
|E

ˆP−EQ | ≤
(
2

√︁
𝜈 · rank(ΣX) +

√︂
log(1/𝜖)

2

) (√︂
1

𝑚
+
√︄

1

𝑛𝑞

)
,

(15)

where 𝑛𝑞 denotes the number of nodes in the query set of the meta-
testing task.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We can draw the conclusion that the introduction of intra-task

interpolation leads to an increase in the value of𝑚. Additionally,

according to Eq.9, the regularization effect can result in a decrease

of 𝜈 . Consequently, Theorem 5.3 suggests that our method has the

capability to diminish the disparity between the distributions of the

source task and target task, facilitating the extraction of pertinent

knowledge and, in turn, enhancing the model’s generalization. All

detailed proofs can be found in Appendix C.

6 Experiment
Datasets. To demonstrate the effectiveness of our approach, we con-

duct few-shot node classification with fewer tasks on four selected

prevalent datasets widely used by previous researches, including

Amazon-Clothing [28],CoraFull [3],Amazon-Electronics [28],
and DBLP [44]. Table 1 shows the statistics of these datasets. Con-

cisely, # Nodes and # Edges represent the number of nodes and

edges in the dataset, respectively. # Features denotes the dimen-

sion of the initialized node features, and # Labels is the number of

classes. Class Splits represents the number of classes used for meta-

training/meta-validation/meta-testing. The detailed descriptions of

these evaluated datasets can be found in Appendix D.

Table 1: Statistics of the datasets.

Dataset # Nodes # Edges # Features # Labels Class Splits

Amazon-Clothing 24,919 91,680 9,034 77 40/17/20

Cora-Full 19,793 65,311 8,710 70 25/20/25

Amazon-Electronics 42,318 43,556 8,669 167 90/37/40

DBLP 40,672 288,270 7,202 137 80/27/30

Baselines.We mainly select three types of baselines for compar-

ison to verify the superiority of the proposed SMILE. Traditional
meta-learning methods consist of Protonet [40] andMAML [6].

Meta-learning with fewer tasks methods compriseMetaMix [58],

MLTI [60], and Meta-Inter [19]. Graph meta-learning methods

includeMeta-GNN [65],GPN [5],G-Meta [15],Meta-GPS [25],X-
FNC [51], COSMIC [53], TLP [43], and TEG [17]. We provide the

descriptions and implementations of these baselines in Appendix
E.

Implementation Details. In the node representation learning stage,
we adopt 2-layer SGC with 16 hidden units. In the dual-level mixup
stage, we uniformly set the two parameters involved in the beta

distribution to 0.5, i.e., 𝜂=𝛾 =0.5. Moreover, in within-task mixup,

we generate the same number of nodes as the original support and

query set in each meta-training task by default, that is, 𝑛𝑠′ = 𝑛𝑠 ,

𝑛𝑞′ = 𝑛𝑞 . In across-task mixup, we generate as many interpolated

tasks as original tasks, that is T𝑎𝑢𝑔 = T𝑜𝑟𝑔 . In the cross-domain

setting, we meta-train the model on one source domain and then

meta-test it on another target domain. To ensure fair comparison,

we perform meta-training on the same sampled tasks for all models.

Moreover, we evaluate the performance of our model using the

average accuracy (Acc) and macro-F1 (F1) score across 50 randomly

selected meta-testing tasks.

7 Result
Model Performance. We present the results of our proposed

SMILE and other models under both in-domain and cross-domain

settings with different number of tasks across several datasets in

Tables 2 and 3. According to above results, we can obtain the follow-

ing in-depth analysis. We can find that our approach achieves the

best performance across varying numbers of meta-training tasks in

both in-domain and cross-domain settings for all datasets, demon-

strating its superiority in dealing with graph few-shot learning with

fewer tasks. One plausible reason is that we explicitly introduce

degree-based prior in the node representation stage, resulting in

more discriminative features beneficial for subsequent tasks. Fur-

thermore, we employ a dual-level mixup strategy, enriching the

diversity of both within-task and across-task data, effectively allevi-

ating the negative impact of data and task scarcity. These strategies

facilitate the model to extract more transferable meta-knowledge,

thereby greatly enhancing its generalization capability.

We find that graph meta-learning models represented by COS-

MIC and TEG perform well in scenarios with more tasks across

multiple datasets, which aligns with our expectations. These mod-

els are specifically designed for graph few-shot learning and utilize

unique few-shot algorithms that enable them to achieve discrim-

inative node representations with limited labeled data. However,

they struggle in scenarios with fewer tasks, performing signifi-

cantly worse than our model. This is because they can only extract

sufficient transferable meta-knowledge when there are ample meta-

training tasks. Moreover, themeta-learningwith fewer tasks models

equipped with SGC, such as MLTI and Meta-Inter, also demonstrate

impressive performance in the both in-domain and cross-domain

experimental settings. We attribute this phenomenon to the spe-

cific strategies employed by these models to mitigate the negative

effects caused by limited tasks. However, this type of models still

significantly lag behind our model, as they do not incorporate

degree-based prior knowledge and fail to address scarcity issues

from both data and task perspectives simultaneously. Addition-

ally, traditional meta-learning methods consistently underperform

compared to other methods because they completely overlook the

important structural information in the graph.

Also, we show additional results of these models under different

experimental settings in the Appendix F, including model perfor-

mance with sufficient tasks and across various graph encoders and

so on, due to the space constraints.

Ablation Study. To demonstrate the effectiveness of our adopted

strategies, we design several model variants. (I) vanilla mixup: With-

out the dual-level mixup, we first compute the prototypes using the

support set, and then perform vanilla mixup to query set, which

involves mixing the features and generates soft labels. (II) internal
mixup: In the absence of dual-level mixup, we directly perform

mixup on different classes within each task and generate corre-

sponding hard labels, treating them as novel classes. (III) w/o within
and across: We simultaneously discard both within-task and across-

task mixup operations. (IV) w/o within: We delete the within-task

operation and leave the across-task one. (V) w/o across: We remove

the across-task strategy and retain the within-task one. (VI) w/o
degree: We exclude the utilization of degree information and solely

employ the vanilla SGC for node representation learning.

According to Table 4, it is evident that the employed strategies

have a favorable impact on the model performance. The introduc-

tion of dual-level mixup enriches the samples within each task

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Results (%) of different models using fewer tasks on datasets under the 5-way 5-shot in-domain setting. Bold: best
(based on the pairwise t-test with 95% confidence). Underline: runner-up.

Model

Amazon-Clothing CoraFull

5 tasks 10 tasks 15 tasks 20 tasks 5 tasks 10 tasks 15 tasks 20 tasks

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Protonet 49.17 48.36 53.51 52.55 55.82 54.99 57.99 57.14 37.20 35.98 40.14 38.89 43.90 42.96 45.58 44.34

MAML 44.90 43.66 45.67 44.44 46.29 44.97 46.90 45.60 38.15 36.83 42.26 41.28 44.21 43.95 46.37 45.43

MetaMix 78.32 78.22 78.66 78.52 80.16 79.15 81.09 80.52 62.95 62.25 64.20 63.95 65.72 64.19 67.59 66.26

MLTI 79.19 78.59 79.91 78.92 80.22 79.39 81.27 80.86 63.19 63.06 65.72 65.69 66.25 64.92 67.15 66.10

Meta-Inter 79.92 79.22 80.12 79.56 80.55 79.90 81.26 81.05 63.82 63.36 66.59 65.92 67.19 65.50 68.22 67.59

Meta-GNN 55.29 50.44 57.19 53.65 62.29 59.55 70.19 67.22 42.96 40.83 45.09 42.87 47.15 45.38 49.88 48.12

GPN 68.23 67.16 70.06 69.57 72.40 71.95 72.81 71.56 43.35 42.08 46.19 44.81 51.56 50.24 55.83 54.76

G-Meta 60.43 60.11 64.51 63.74 68.99 67.96 71.98 72.75 45.84 44.27 49.22 48.91 51.15 50.53 59.12 58.56

Meta-GPS 62.02 59.76 69.21 69.04 73.01 71.92 75.74 74.85 50.33 48.22 57.85 54.86 61.28 60.11 63.76 62.28

X-FNC 69.12 68.29 72.12 71.11 75.19 74.63 79.26 78.02 55.06 53.10 61.53 60.29 65.22 64.10 66.09 65.12

COSMIC 75.66 74.92 76.39 75.72 77.92 76.59 78.36 77.39 62.29 60.39 65.39 64.80 66.72 65.72 68.29 67.20

TLP 71.39 70.39 73.39 72.52 74.72 73.36 75.60 74.29 51.79 49.72 56.72 55.79 57.72 56.73 57.99 57.30

TEG 78.55 77.92 80.26 79.30 80.82 79.99 81.19 80.16 62.89 61.26 68.29 67.39 68.59 67.55 70.06 69.29

SMILE 82.80 82.49 83.46 82.88 83.92 83.33 84.66 84.52 66.34 65.70 71.72 71.15 70.78 70.19 72.60 72.10

Model

Amazon-Electronics DBLP

5 tasks 10 tasks 15 tasks 20 tasks 5 tasks 10 tasks 15 tasks 20 tasks

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Protonet 46.20 45.09 49.56 48.57 51.98 51.05 54.03 53.20 46.57 45.47 50.90 49.81 51.02 49.74 52.09 51.05

MAML 34.34 33.42 34.76 33.76 35.42 34.41 35.91 34.95 39.71 38.86 40.34 39.58 40.70 39.85 41.31 40.58

MetaMix 61.96 61.82 63.72 63.66 65.19 64.92 66.15 65.72 72.12 71.15 73.19 72.12 75.16 73.95 76.22 74.79

MLTI 62.25 62.02 65.26 65.09 66.72 65.59 67.19 66.22 72.36 71.96 72.92 72.55 73.22 73.10 75.10 74.95

Meta-Inter 62.79 62.56 65.76 65.52 67.19 66.15 68.99 67.29 72.52 72.11 73.19 72.99 74.28 73.25 75.29 75.10

Meta-GNN 40.52 39.74 46.16 45.87 48.92 47.93 50.86 50.07 50.68 49.04 53.86 49.67 59.72 59.36 65.49 62.12

GPN 49.08 47.91 51.12 49.98 54.24 53.23 56.69 55.62 70.26 69.13 74.42 73.48 76.02 75.03 76.61 75.60

G-Meta 43.29 42.20 49.57 52.90 56.96 55.38 60.41 59.91 53.08 48.13 55.92 53.64 57.82 56.76 63.17 62.85

Meta-GPS 46.11 43.62 57.90 56.20 67.73 66.69 70.13 69.15 56.59 54.12 65.20 63.20 73.00 72.35 75.16 73.19

X-FNC 59.26 56.39 63.72 62.10 69.82 67.63 71.36 70.02 69.06 68.10 72.53 71.29 74.29 73.22 76.19 75.20

COSMIC 64.06 63.02 67.36 66.32 68.22 67.09 70.16 69.30 71.29 70.19 72.09 70.80 73.02 71.20 75.16 72.22

TLP 63.09 62.19 64.30 63.59 65.72 64.32 67.18 66.72 71.26 70.75 72.87 72.09 73.39 73.06 75.16 74.69

TEG 65.90 64.62 67.29 66.22 69.80 68.29 72.12 71.16 72.59 72.26 73.79 72.19 75.52 74.50 76.26 75.12

SMILE 67.30 66.30 70.76 70.05 73.48 72.66 75.42 75.42 75.88 75.05 76.64 75.77 79.56 78.77 80.50 79.61

and provides diverse tasks, making significant contributions to en-

hancing the model. The adopted degree-based prior information

also improves the model by learning expressive node embeddings,

especially in cross-domain setting.When removing the degree infor-

mation, the performance drastically declines. One plausible reason

is that this module explicitly utilizes structural prior knowledge

from the target graph domain, benefiting downstream tasks. Ad-

ditionally, the results of model variants I and II demonstrate that

performing label interpolation within each task, whether gener-

ating soft or hard labels, degrades the model performance. The

possible reason is that the introduced mixing labels can confuse

the model.

Hyperparameter Sensitivity. In the 5-way 5-shot in-domain set-

ting, we investigate the impact of two primary hyperparameters

on the model performance: the ratio of generated nodes to the

original nodes per task (i.e.,
𝑛′
𝑠+𝑛′

𝑞

𝑛𝑠+𝑛𝑞), and the number of generated

tasks T𝑎𝑢𝑔 . Notably, when the studied hyperparameter changes,

we set others to their default values. The results are presented in

1 2 3 4 5
Generated Nodes Ratio

65

70

75

80

85

Ac
cu

ra
cy

 (%
) Amazon-Clothing

Cora-Full
Amazon-Electronics
DBLP

10 20 30 40 50
Number of Generated Tasks

65

70

75

80

85

Ac
cu

ra
cy

 (%
) Amazon-Clothing

Cora-Full
Amazon-Electronics
DBLP

Figure 3: Results vary with hyperparameters.

Fig. 3. We can observe that both parameters demonstrate similar

trends, with the model performance showing an initial increase

followed by a decrease. We attribute this behavior to the substantial

enrichment of data diversity by increasing the number of nodes

within each task or the number of tasks. However, beyond a certain

threshold, the introduced additional data fails to further densify the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Results (%) of different models using fewer tasks on datasets under the 5-way 5-shot cross-domain setting. A→B denotes
the model is trained on A and evaluated on B.

Dataset

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing

5 tasks 10 tasks 15 tasks 20 tasks 5 tasks 10 tasks 15 tasks 20 tasks

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Protonet 20.72 7.90 22.84 10.89 29.70 15.91 32.96 18.19 24.84 13.18 29.96 22.49 32.84 26.01 34.58 29.90

MAML 20.40 13.51 20.74 13.19 26.68 12.22 30.19 15.92 23.56 12.10 27.35 20.16 30.19 23.95 32.96 27.96

MetaMix 31.96 28.76 33.12 31.22 35.22 33.19 37.15 35.55 34.76 31.66 36.25 33.69 39.72 37.16 41.26 39.25

MLTI 33.29 30.12 35.16 32.29 38.25 35.52 40.22 38.29 35.12 33.49 37.22 35.29 42.19 41.52 45.66 43.95

Meta-Inter 34.72 32.19 35.76 34.26 40.16 37.59 42.29 40.32 41.76 39.59 43.22 41.57 44.11 42.25 47.29 45.55

Meta-GNN 26.36 20.99 30.50 26.72 33.22 30.15 35.99 32.16 32.16 22.39 35.22 26.62 38.16 29.35 39.66 32.90

GPN 35.86 34.81 39.38 38.03 41.10 39.82 41.96 41.15 40.08 38.73 41.78 40.67 43.90 42.87 45.04 44.30

G-Meta 30.36 26.95 33.19 29.62 35.29 33.16 36.21 35.20 35.22 30.16 37.22 30.29 40.19 32.29 41.19 36.96

Meta-GPS 32.02 27.07 34.15 30.19 35.66 34.15 39.26 37.55 45.59 43.29 47.62 45.10 50.19 47.12 52.19 49.32

X-FNC 33.59 31.10 35.15 32.19 37.25 34.12 39.72 36.29 47.26 45.16 49.30 46.22 52.20 49.29 53.72 50.22

COSMIC 38.02 36.22 40.09 37.05 42.20 39.09 42.46 40.30 49.20 47.19 52.02 51.29 53.09 52.16 55.39 53.90

TLP 37.99 37.29 41.23 39.59 41.99 40.92 42.26 41.25 51.12 50.15 53.90 52.29 54.26 52.66 55.20 53.30

TEG 33.05 31.29 35.26 34.32 35.80 34.69 36.35 35.36 41.09 40.20 42.12 41.39 43.72 42.60 46.56 43.87

SMILE 42.64 41.27 45.14 43.69 45.88 44.10 46.72 45.65 56.36 55.25 58.84 57.53 59.08 57.96 59.38 58.25

Dataset

Amazon-Electronics→DBLP DBLP→Amazon-Electronics

5 tasks 10 tasks 15 tasks 20 tasks 5 tasks 10 tasks 15 tasks 20 tasks

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Protonet 31.86 22.56 32.58 23.73 35.90 32.76 39.88 35.71 28.84 18.62 30.54 20.08 33.10 22.37 35.46 25.20

MAML 29.17 19.13 30.10 22.15 32.97 25.98 35.25 29.11 26.59 17.99 28.36 19.29 30.02 20.15 32.16 22.16

MetaMix 40.16 35.68 43.25 41.69 45.19 43.12 49.12 43.59 37.70 35.22 40.20 39.09 42.25 40.16 44.19 42.20

MLTI 42.12 37.19 46.39 45.06 49.19 47.25 51.35 50.39 38.22 36.96 41.39 40.25 43.39 42.05 46.12 45.09

Meta-Inter 46.19 45.12 48.15 46.79 51.29 49.76 53.18 51.02 41.50 40.15 43.19 41.10 45.20 43.35 47.15 45.05

Meta-GNN 39.19 34.72 42.26 39.16 43.96 39.55 45.66 42.19 35.72 33.20 39.59 38.62 40.39 39.29 41.26 40.22

GPN 60.08 58.75 61.92 61.58 63.19 62.60 63.99 63.10 42.99 41.46 46.36 44.73 47.09 45.42 47.52 45.76

G-Meta 45.72 43.32 47.22 45.09 47.96 45.99 49.56 48.39 37.22 35.93 40.19 39.52 42.35 40.19 43.62 42.19

Meta-GPS 47.59 46.70 49.20 47.16 50.26 49.96 52.39 51.22 43.06 42.05 45.12 43.16 46.02 44.95 46.79 45.02

X-FNC 49.19 48.36 49.55 48.02 51.35 50.26 52.90 51.39 41.59 40.02 42.36 42.19 44.16 43.16 46.39 45.25

COSMIC 57.22 55.30 58.29 57.35 60.20 61.19 61.36 62.30 39.20 37.11 41.02 40.22 43.03 42.22 44.32 43.26

TLP 58.25 57.19 59.33 59.01 61.29 60.02 62.16 61.25 41.11 40.16 43.20 42.25 44.16 42.32 45.20 43.90

TEG 38.05 36.29 40.21 39.32 42.80 41.69 43.35 42.36 33.19 31.20 34.22 33.52 35.70 34.62 36.55 35.37

SMILE 62.44 61.66 64.54 64.16 65.04 64.43 65.78 65.42 46.24 44.54 48.82 47.26 49.26 47.70 49.52 47.88

Table 4: Results of different model variants with respect to 5 tasks under the 5-way 5-shot setting.

Dataset

Clothing Electronics DBLP CoraFull Clothing→CoraFull CoraFull→Clothing Electronics→DBLP DBLP→Electronics

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

vanilla mixup 78.82 78.45 60.98 60.70 74.06 73.03 61.90 61.07 38.90 38.26 52.93 52.29 57.92 57.30 40.52 39.26

internal mixup 78.96 78.72 63.59 62.21 75.34 74.45 63.64 63.00 39.12 38.59 53.22 53.19 59.02 57.96 41.36 40.56

w/o within and across 79.10 78.97 62.36 61.08 73.14 72.36 62.44 61.85 39.72 39.19 53.58 52.42 59.34 58.94 42.12 41.41

w/o within 80.72 80.93 65.96 64.99 75.44 74.59 64.06 63.40 40.28 39.63 54.52 53.50 60.86 59.16 42.28 41.79

w/o across 81.18 80.19 64.40 63.57 74.67 73.68 63.08 62.56 41.88 41.38 54.76 53.92 61.52 61.26 43.84 42.29

w/o degree 79.14 80.16 63.49 62.12 74.36 73.28 63.68 62.96 30.89 21.05 32.82 23.07 31.12 21.61 30.44 21.08

ours 82.80 82.49 67.30 66.30 75.88 75.05 66.34 65.70 42.64 41.27 56.36 55.25 62.44 61.66 46.24 44.54

data distribution, resulting in limited information gain. Moreover,

we also provide the visualization study in Appendix G.

8 Conclusion
In this work, we propose a simple yet effective approach, called

SMILE, for graph few-shot learning with fewer tasks. Specifically,

we introduce a novel dual-level mixup strategy, including within-

task and across-task mixup, for enriching the diversity of nodes

within each task and the diversity of tasks. Also, we incorporate

the degree-based prior information to learn expressive node embed-

dings. Theoretically, we prove that SMILE effectively enhances the

model’s generalization performance. Empirically, we conduct exten-

sive experiments on multiple benchmarks and the results suggest

that SMILE significantly outperforms other baselines, including

both in-domain and cross-domain few-shot settings.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. 2020. Few-shot text

classification with distributional signatures. In ICLR.
[2] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal.

2020. Improved few-shot visual classification. In CVPR.
[3] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep gaussian embed-

ding of graphs: Unsupervised inductive learning via ranking. In ICLR.
[4] Jatin Chauhan, Deepak Nathani, and Manohar Kaul. 2020. Few-shot learning on

graphs via super-classes based on graph spectral measures. In ICLR.
[5] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.

2020. Graph prototypical networks for few-shot learning on attributed networks.

In CIKM. 295–304.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML. 1126–1135.
[7] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. 2019. On-

line meta-learning. In ICML.
[8] Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic model-agnostic

meta-learning. In NeurIPS.
[9] Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun

Yin, and Raia Hadsell. 2020. Meta-Learning with Warped Gradient Descent. In

ICLR.
[10] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths.

2019. Recasting gradient-based meta-learning as hierarchical bayes. In ICLR.
[11] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang,

and Nitesh V. Chawla. 2021. Few-Shot Graph Learning for Molecular Property

Prediction. In The Web Conference. 2559–2567.
[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS.
[13] Bharath Hariharan and Ross Girshick. 2017. Low-shot visual recognition by

shrinking and hallucinating features. In ICCV. 3018–3027.
[14] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2021.

Meta-learning in neural networks: A survey. IEEE TPAMI 44, 9 (2021), 5149–5169.
[15] Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.

In NeurIPS. 5862–5874.
[16] Muhammad Abdullah Jamal and Guo-Jun Qi. 2019. Task agnostic meta-learning

for few-shot learning. In CVPR. 11719–11727.
[17] Sungwon Kim, Junseok Lee, Namkyeong Lee, Wonjoong Kim, Seungyoon Choi,

and Chanyoung Park. 2023. Task-Equivariant Graph Few-shot Learning. In

SIGKDD.
[18] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In ICLR.
[19] Seanie Lee, Bruno Andreis, Kenji Kawaguchi, Juho Lee, and Sung Ju Hwang. 2022.

Set-based meta-interpolation for few-task meta-learning. In NeurIPS. 6775–6788.
[20] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. 2019. Dense

classification and implanting for few-shot learning. In CVPR.
[21] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Learning to propagate for graph meta-learning. In NeurIPS.
[22] Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and Xiaoyue

Feng. 2021. Deep attention diffusion graph neural networks for text classification.

In EMNLP. 8142–8152.
[23] Yonghao Liu, Lan Huang, Bowen Cao, Ximing Li, Fausto Giunchiglia, Xiaoyue

Feng, and Renchu Guan. 2024. A simple but effective approach for unsupervised

few-shot graph classification. InWWW.

[24] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang,

and Yi Yang. 2019. Learning to propagate labels: Transductive propagation

network for few-shot learning. In ICLR.
[25] Yonghao Liu, Mengyu Li, Ximing Li, Fausto Giunchiglia, Xiaoyue Feng, and

Renchu Guan. 2022. Few-shot node classification on attributed networks with

graph meta-learning. In SIGIR. 471–481.
[26] David J Livingstone. 2000. The characterization of chemical structures using

molecular properties. A survey. Journal of chemical information and computer
sciences 40, 2 (2000), 195–209.

[27] Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng Zhou,

and Xifeng Yan. 2020. Adaptive-step graph meta-learner for few-shot graph

classification. In CIKM.

[28] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of

substitutable and complementary products. In SIGKDD. 785–794.
[29] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2018. A simple

neural attentive meta-learner. In ICLR.
[30] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations

of machine learning. MIT press.

[31] Subhabrata Mukherjee and Ahmed Awadallah. 2020. Uncertainty-aware self-

training for few-shot text classification. In NeurIPS. 21199–21212.
[32] Alfred Müller. 1997. Integral probability metrics and their generating classes of

functions. Advances in Applied Probability 29, 2 (1997), 429–443.

[33] Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. 2021.

Data augmentation for meta-learning. In ICML. 8152–8161.

[34] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. 2021. BOIL:

Towards Representation Change for Few-shot Learning. In ICLR.
[35] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos.

2019. Estimating Node Importance in Knowledge Graphs Using Graph Neural

Networks. In SIGKDD. 596–606.
[36] Janarthanan Rajendran, Alexander Irpan, and Eric Jang. 2020. Meta-learning

requires meta-augmentation. In NeurIPS. 5705–5715.
[37] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy

Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable graph

transformer. In NeurIPS.
[38] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,

Simon Osindero, and Raia Hadsell. 2019. Meta-learning with latent embedding

optimization. In ICLR.
[39] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-

thy Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In

ICML.
[40] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NeurIPS.
[41] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M

Hospedales. 2018. Learning to compare: Relation network for few-shot learning.

In CVPR. 1199–1208.
[42] Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual node tuning

for few-shot node classification. In SIGKDD.
[43] Zhen Tan, SongWang, Kaize Ding, Jundong Li, and Huan Liu. 2022. Transductive

Linear Probing: A Novel Framework for Few-Shot Node Classification. In LoG.
4–1.

[44] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-

miner: extraction and mining of academic social networks. In SIGKDD. 990–998.
[45] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip

Isola. 2020. Rethinking few-shot image classification: a good embedding is all

you need?. In ECCV. 266–282.
[46] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using

t-SNE. JMLR 9, 11 (2008).

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[48] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.

Matching networks for one shot learning. In NeurIPS.
[49] Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, and Michael Brudno. 2021.

Grad2task: Improved few-shot text classification using gradients for task repre-

sentation. In NeurIPS.
[50] Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. 2022. Task-

adaptive few-shot node classification. In SIGKDD. 1910–1919.
[51] Song Wang, Yushun Dong, Kaize Ding, Chen Chen, and Jundong Li. 2023. Few-

shot node classification with extremely weak supervision. In WSDM. 276–284.

[52] Song Wang, Yushun Dong, Xiao Huang, Chen Chen, and Jundong Li. 2022. Faith:

Few-shot graph classification with hierarchical task graphs. In IJCAI.
[53] Song Wang, Zhen Tan, Huan Liu, and Jundong Li. 2023. Contrastive Meta-

Learning for Few-shot Node Classification. In SIGKDD.
[54] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup

for node and graph classification. In The Web Conference.
[55] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML.
[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[57] Xinnuo Xu, Guoyin Wang, Young-Bum Kim, and Sungjin Lee. 2021. AugNLG:

Few-shot Natural Language Generation using Self-trained Data Augmentation.

In ACL.
[58] Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou,

Junzhou Huang, et al. 2021. Improving generalization in meta-learning via task

augmentation. In ICML. 11887–11897.
[59] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,

Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge

transfer. In AAAI.
[60] Huaxiu Yao, Linjun Zhang, and Chelsea Finn. 2022. Meta-learning with fewer

tasks through task interpolation. In ICLR.
[61] Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea

Finn. 2020. Meta-learning without memorization. In ICLR.
[62] Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V

Chawla, and Huan Liu. 2022. Few-shot learning on graphs. In IJCAI.
[63] Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao Xu, and Xiaokang Yang.

2019. Variational Few-Shot Learning. In ICCV. 1685–1694.
[64] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil

Shah. 2021. Data augmentation for graph neural networks. In AAAI.
[65] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji

Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.

In CIKM. 2357–2360.

[66] Jing Zhou, Yanan Zheng, Jie Tang, Jian Li, and Zhilin Yang. 2022. Flipda: Effective

and robust data augmentation for few-shot learning. In ACL.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Appendix
A Description of Symbols

Table S1: Descriptions of the symbols.

Symbols Descriptions

G,V, E Graph, node set, and edge set

Z,A Initialized node features and adjacency matrix

D̂,H,X Degree matrix, hidden vectors, and refined vectors

𝜅, 𝛼, 𝛽 Interaction weights, node centralities, and adjusted scores

𝑁,𝐾,𝑀 𝑁 way, 𝐾 shot,𝑀 query

D𝑜𝑟𝑔 Original meta-training tasks

D𝑎𝑢𝑔 Generated meta-training tasks

D𝑎𝑙𝑙 All original and generated meta-training tasks

S𝑡 ,Q𝑡 Support and query set

𝑛𝑠 , 𝑛𝑞 Number of samples in S𝑡 and Q𝑡

T𝑡𝑒𝑠 Meta-testing task

S𝑡𝑒𝑠 ,Q𝑡𝑒𝑠 Support and query set of T𝑡𝑒𝑠
𝜂, 𝜁 Hyperparameters in Beta distribution

𝜆 Random variable drawn from Beta distribution

S′
𝑡 ,Q′

𝑡 Generated support and query set

𝑛𝑠′ , 𝑛𝑞′ Number of samples in S′
𝑡 and Q′

𝑡

𝑚′,𝑚 Number of samples in S𝑡 ∪ S′
𝑡 and Q𝑡 ∪ Q′

𝑡

T𝑎𝑢𝑔
𝑡 , ˜S, ˜Q Interpolated task with its support and query set

T𝑜𝑟𝑔 Number of tasks in D𝑜𝑟𝑔

T𝑎𝑢𝑔 Number of tasks in D𝑎𝑢𝑔

T Number of tasks in D𝑎𝑙𝑙

We summarize the used important symbols in Table S1.

B Complexity Analysis
We analyze the time complexity of our proposed model to demon-

strate its effectiveness. Our model mainly contains two parts, in-

cluding node presentation learning and dual-level mixup. As lin-

ear interpolation is employed in the dual-level mixup, it does not

introduce additional time complexity. Basically, most of the time-

consuming operations arise from the node embedding process. Here,

we choose SGC as the base graph encoder, which removes layer-

wise non-linear operations and performs feature extraction in a

parameter-free manner. The required time complexity of this step is

𝑂 (𝑛2𝑑), where 𝑛 and 𝑑 denote the number of nodes and the dimen-

sion of node features, respectively. Note that as feature extraction

does not require any weights, it is essentially equivalent to a pre-

processing step and can be precomputed in practice. Moreover, in

the procedure of incorporating degree-based prior information to

obtain the refined node representations, the required time complex-

ity is𝑂 (2𝑛𝑑 +𝑛). Thus, the overall time complexity of our approach

is 𝑂 (𝑛2𝑑) +𝑂 (2𝑛𝑑 + 𝑛), which is acceptable to us.

C Theoretical Proof
C.1 Proof of Eqs.9 and 10
To prove Eqs.9 and 10, we give the following Lemma C.1.

Lemma C.1. Suppose the designed model with mixup distribution
𝜆 ∼ Beta(𝜂,𝛾). Let 𝜌𝜆 ∼ 𝜂

𝜂+𝛾 Beta(𝜂+1, 𝛾)+ 𝛾
𝜂+𝛾 (𝛾+1, 𝜂). The approxi-

mation of the loss function L(D𝑎𝑙𝑙 ;𝜃) is given by,

L(D𝑎𝑙𝑙 ;𝜃) ≈ L(D𝑜𝑟𝑔 ;𝜃)+L(¯𝜆D𝑜𝑟𝑔 ;𝜃)+M(𝜃), (16)

where ¯𝜆=E𝜌𝜆 [𝜆] and M(𝜃) is a quadratic regularization term with
respect to 𝜃 , defined as

M(𝜃)=ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
𝜙 (P𝑡) (𝜙 (P𝑡)−0.5)

2(1+exp (P𝑡))
(𝜃⊤ΣX𝜃) (17)

in which P𝑡 = ⟨X𝑞
𝑡 −(C1+C2)/2, 𝜃⟩, 𝜙 (P𝑡) = exp(P𝑡)/(1+exp(P𝑡)),

and ΣX=E[XX
⊤]= 1

𝑚

∑𝑚
𝑖=1

X𝑖X
⊤
𝑖
.

Proof. As stated in Section 5, the adopted simplified loss func-

tion for binary classification can be formulated as:

L(D𝑎𝑙𝑙 ;𝜃) = L(D𝑜𝑟𝑔 ;𝜃) + L(D𝑎𝑢𝑔 ;𝜃)

= L({T𝑡 }
T𝑜𝑟𝑔

𝑡=1
;𝜃) + L({T𝑎𝑢𝑔

𝑡 }T𝑎𝑢𝑔

𝑡=1
;𝜃)

= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡) (1 + exp(⟨X𝑞
𝑡 − (C1 + C2)/2, 𝜃⟩))−1+

ET𝑎𝑢𝑔

𝑡 ∼𝑝 (T𝑎𝑢𝑔)E(X̃𝑡 ,Ỹ𝑡)∼𝑞 (T𝑎𝑢𝑔

𝑡) (1 + exp(⟨X̃𝑞
𝑡 − (C̃1 + C̃2)/2, 𝜃⟩))−1,

(18)

where

C𝑘 =
1

|S𝑡,𝑘 |
∑︁

(X𝑠
𝑡,𝑖
,Y𝑠

𝑡,𝑖
) ∈S𝑡

I
Y𝑡,𝑖=𝑘X

𝑠
𝑡,𝑖 ,

C̃𝑘 =
1

| ˜S𝑡,𝑘 |

∑︁
(X̃𝑠

𝑡,𝑖
,Ỹ𝑠

𝑡,𝑖
) ∈ ˜S𝑡

I
Ỹ𝑡,𝑖=𝑘

X̃
𝑠
𝑡,𝑖 .

(19)

Since the preprocessed centralized dataset satisfies the condition

ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)X𝑡 =
1

T𝑜𝑟𝑔

∑T𝑜𝑟𝑔

𝑡=1

1

2𝑛𝑞

∑
2

𝑘=1

∑𝑛𝑞
𝑖=1

𝜃⊤X𝑡,𝑖;𝑘 =

0, which means that the overall sample mean equals 0, we can ob-

tain
1

¯𝜆
E[X̃𝑡,𝑖;𝑘 |X𝑡,𝑖;𝑘] = X𝑡,𝑖;𝑘 . Moreover, as we simultaneously

include linear weights and biases, the predictions are invariant to

scaling and shifting of X̃𝑡 , so it suffices to consider {X̃𝑡 , Ỹ𝑡 }
T𝑎𝑢𝑔

𝑡=1

with X̃ = 1

¯𝜆
(𝜆X𝑡 ;𝑘 + (1 − 𝜆)X𝑚;𝑘). Then, we apply the second-

order Taylor expansion on L(D𝑎𝑢𝑔;𝜃) = L({T𝑎𝑢𝑔
𝑡 }T𝑎𝑢𝑔

𝑡=1
;𝜃) =

ET𝑎𝑢𝑔

𝑡 ∼𝑝 (T𝑎𝑢𝑔)E(X̃𝑡 ,Ỹ𝑡)∼𝑞 (T𝑎𝑢𝑔

𝑡) (1+exp(⟨X̃𝑞
𝑡 − (C̃1 + C̃2)/2, 𝜃⟩))−1

with respect to X̃
𝑞
𝑡 around

1

¯𝜆
E[X̃𝑞

𝑡,𝑖;𝑘
|X𝑞

𝑡,𝑖;𝑘
] = 𝜃⊤X

𝑞

𝑡,𝑖;𝑘
as follows.

L(D𝑎𝑢𝑔 ;𝜃) ≈ L(¯𝜆D𝑜𝑟𝑔 ;𝜃) +
𝜕L(D𝑜𝑟𝑔 ;𝜃)
𝜕𝜃⊤X

𝑞
𝑡

(𝜃⊤X̃
𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)

+ (𝜃⊤X̃
𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)

⊤ 𝜕
2L(D𝑜𝑟𝑔 ;𝜃)
𝜕(𝜃⊤X

𝑞
𝑡)2

(𝜃⊤X̃
𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)

(20)

For ease of presentation, let H𝑡 = 𝜃⊤X
𝑞
𝑡 and P𝑡 = ⟨X𝑞

𝑡 − (C1 +
C2)/2, 𝜃⟩. Then, we have

𝜕L(D𝑜𝑟𝑔 ;𝜃)
𝜕H𝑡

=
𝜕L(D𝑜𝑟𝑔 ;𝜃)

𝜕P𝑡
× 𝜕P𝑡

𝜕H𝑡

= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
exp(P𝑡)

2(1 + exp(P𝑡))2

(21)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

By defining the function 𝜙 (P𝑡) = exp(P𝑡)
1+exp(P𝑡) , we have

𝜕2L(D𝑜𝑟𝑔 ;𝜃)
𝜕H2

𝑡

= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)[
− exp (P𝑡)
(1 + exp (P𝑡))3

exp (P𝑡)
𝜕H𝑡

+ 1

2(1 + exp (P𝑡))2

𝜕 exp (P𝑡)
𝜕H𝑡

]
= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)

[
exp (P𝑡)2

2(1 + exp (P𝑡))3
− exp (P𝑡)

4(1 + exp (P𝑡))2

]
= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)

exp (P𝑡) (𝜙 (P𝑡) − 0.5)
2(1 + exp (P𝑡))2

= ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
𝜙 (P𝑡) (𝜙 (P𝑡) − 0.5)

2(1 + exp (P𝑡))
(22)

Plugging Eqs.21 and 22 into the Eq.20, we can obtain

L(D𝑎𝑢𝑔 ;𝜃) ≈ L(¯𝜆D𝑜𝑟𝑔 ;𝜃)+

ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
exp(P𝑡)

2(1 + exp(P𝑡))2
(𝜃⊤X̃

𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)+(

(𝜃⊤X̃
𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)

⊤ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)

𝜙 (P𝑡) (𝜙 (P𝑡) − 0.5)
2(1 + exp (P𝑡))

(𝜃⊤X̃
𝑞
𝑡 − 𝜃⊤X

𝑞
𝑡)

)
(23)

Since E[X̃𝑡 − X𝑡] = 0 and Var(X̃𝑡) = E[XX
⊤] = ΣX, the first-

order term vanishes and we then simplify the above equation as

L(D𝑎𝑢𝑔 ;𝜃) ≈ L(¯𝜆D𝑜𝑟𝑔 ;𝜃)

+ ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
𝜙 (P𝑡) (𝜙 (P𝑡) − 0.5)

2(1 + exp (P𝑡))
(𝜃⊤ΣX𝜃)

(24)

Combining Eqs.18 and 24, we can acquire

L(D𝑎𝑙𝑙 ;𝜃) = L(D𝑜𝑟𝑔 ;𝜃) + L(D𝑎𝑢𝑔 ;𝜃)
≈ L(D𝑜𝑟𝑔 ;𝜃) + L(¯𝜆D𝑜𝑟𝑔 ;𝜃)

+ ET𝑡∼𝑝 (T)E(X𝑡 ,Y𝑡)∼𝑞 (T𝑡)
𝜙 (P𝑡) (𝜙 (P𝑡) − 0.5)

2(1 + exp (P𝑡))
(𝜃⊤ΣX𝜃)

= L(D𝑜𝑟𝑔 ;𝜃) + L(¯𝜆D𝑜𝑟𝑔 ;𝜃) +M(𝜃)

(25)

Thus, we complete the proof and derive the desired results. □

C.2 Proof of Theorem 5.1
Before formally proving Theorem 5.1, we first provide some relevant

definitions. The Rademacher complexity [30] reflects the richness of

a function class by measuring the extent to which the hypothesis

set fits random noise. It is a commonly used and flexible measure

of complexity for hypothesis classes, which is defined formally as

follows.

Definition C.2. Empirical Rademacher Complexity. The em-
pirical Rademacher complexity of a function class F with respect to
a sample set {𝑧𝑖 }𝑚𝑖=1

of size𝑚 drawn from a specific data distribution
is defined as:

ˆR(F |𝑧1, . . . , 𝑧𝑚) = E
𝜎

[
sup

𝑓 ∈F

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑧𝑖)
]
, (26)

where 𝜎 = [𝜎1, . . . , 𝜎𝑚]⊤ are Rademacher variables, in which 𝜎𝑖
follows a uniform distribution and takes values in {−1, +1}.

Next, we present the definition of Rademacher complexity, which
eliminates the dependence on specific sample sets and provides a

more uniform measure of the complexity of a function class.

Definition C.3. Rademacher Complexity. The Rademacher com-
plexity of a function class F is defined by the expectation of the

empirical Rademacher complexity over all samples of size𝑚 drawn

according to data distribution P:

R(F) = E
{𝑧1,...,𝑧𝑚 }∼P

ˆR(F |𝑧1, . . . , 𝑧𝑚) . (27)

The integral probability metric [32] is a type of distance function
between probability distributions that measures how a class of

functions distinguishes between two probability distributions. Its

formal definition is as follows.

Definition C.4. Integral Probability Metric. The integral proba-
bility metric between two probability distributions P andQ on the data
space Z with respect to the class of real-valued bounded measurable
functions F is given by:

DF (P,Q) = sup

𝑓 ∈F

��EP 𝑓 (Z) − EQ 𝑓 (Z)
�� . (28)

Next, we present the standard uniform deviation bound in Lemma

C.5 [30] using Rademacher complexity.

Lemma C.5. Let F be a collection of functions mapping from Z
to [𝑎, 𝑎 + 1]. For 𝜖 > 0, with probability at least (1 − 𝜖) over an i.i.d.
sample set {𝑧𝑖 }𝑚𝑖=1

drawn from a distribution P overZ, each 𝑓 in F
satisfies:

EP 𝑓 (𝑧) ≤
1

𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑧𝑖) + 2R(F) +
√︂

log(1/𝜖)
2𝑚

, or

EP 𝑓 (𝑧) ≤
1

𝑚

𝑚∑︁
𝑖=1

𝑓 (𝑧𝑖) + 2
ˆR(F |𝑧1, · · · , 𝑧𝑚) + 3

√︂
log(2/𝜖)

2𝑚
,

(29)

where R(F) and ˆR(F |𝑧1, · · · , 𝑧𝑚) are the Rademacher complexity
and the empirical Rademacher complexity, respectively.

We can leverage the integral probability metric to transform

Eq.29 into the following form:

DF (ˆP, P) = sup

𝑓 ∈F

��E
ˆP 𝑓 (𝑧) − EP 𝑓 (𝑧)

�� ≤ 2R(F) +
√︂

log(1/𝜖)
2𝑚

,𝑜𝑟

DF (ˆP, P) = sup

𝑓 ∈F

��E
ˆP 𝑓 (𝑧) − EP 𝑓 (𝑧)

�� ≤ 2
ˆR(F |𝑧1, · · · , 𝑧𝑚) + 3

√︂
log(2/𝜖)

2𝑚
,

(30)

where
ˆP denotes the empirical distribution of samples.

Additionally, we introduce LemmaC.6 that bounds the Rademacher

complexity, which is utilized in the proof of Theorem 5.1.

Lemma C.6. Let
∑

X
= E[XX

⊤] and F𝜈 = {X → 𝜃⊤X : 𝜃⊤
∑

X
𝜃 ≤

𝜈}. Then, the Rademacher complexity of F𝜈 satisfies

R(F𝜈) ≤
√︂
𝜈 · rank(∑

X
)

𝑚
. (31)

Proof. According to the definition of empirical Rademacher

complexity, given a set of i.i.d Rademacher random variables, we

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

have:

ˆR(F |X1, . . . ,X𝑚) = E
𝜎

[
sup

𝑓 ∈F

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖 𝑓 (X𝑖)
]

= E
𝜎

[
sup

𝜃⊤ ∑
X
𝜃≤𝜈

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖 𝑓 (X𝑖)
]

= E
𝜎

[
sup

𝜃⊤ ∑
X
𝜃≤𝜈

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖𝜃
⊤

X𝑖

]
= E

𝜎

 sup

| |Σ1/2

X
𝜃 | |2≤𝜈

1

𝑚

𝑚∑︁
𝑖=1

𝜎𝑖 (Σ1/2

X
𝜃)⊤ (Σ†/2

X
X𝑖)

≤

√
𝜈

𝑚
E
𝜎

 𝑚∑︁
𝑖=1

𝜎𝑖Σ
†/2

X
X𝑖

≤

√
𝜈

𝑚

√√√
E
𝜎

 𝑚∑︁
𝑖=1

𝜎𝑖Σ
†/2

X
X𝑖

2

≤
√
𝜈

𝑚

√√
𝑚∑︁
𝑖=1

(Σ†/2

X
X𝑖)

⊤
(Σ†/2

X
X𝑖)

=

√
𝜈

𝑚

√√
𝑚∑︁
𝑖=1

X
⊤
𝑖

X𝑖 ,

where Σ†
X
is the generalized inverse of ΣX.

R(F) = E
{X1,...,X𝑚 }∼P

ˆR(F |X1, . . . ,X𝑚)

≤
√
𝜈

𝑚

√√
𝑚∑︁
𝑖=1

EX𝑖
(X⊤

𝑖
X𝑖)

≤
√
𝜈
√︁
rank(ΣX𝑖

)
√
𝑚

.

□

Now, we are ready to prove the Theorem 5.1.

Proof.

|R̂ − R|

=

���ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−

ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)
���

=

���ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−
ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)+
ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−

ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)
���

(32)

For the first two terms of Eq.32, we can rewrite them as:

ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−
ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)

≤ ET𝑖∼𝑝 (T)
[
E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−

E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)
]

(𝑖)
≤ ET𝑖∼𝑝 (T) [DF (𝑞, 𝑞)]

(𝑖𝑖)
= ET𝑖∼𝑝 (T)

[
sup

𝑓 ∈F

��E𝑞L(𝑓𝜃 (X𝑗), Y𝑗) − E𝑞L(𝑓𝜃 (X𝑗), Y𝑗)
��]

(𝑖𝑖𝑖)
≤ ET𝑖∼𝑝 (T)

[
2

ˆR(F |X1, · · · ,X𝑚) + 3

√︂
log(2/𝜖)

2𝑚

]
(𝑖𝑣)
= 2R(F) + 3

√︂
log(2/𝜖)

2𝑚

(𝑣)
≤ 2

√︂
𝜈 · rank(∑

X
)

𝑚
+ 3

√︂
log(2/𝜖)

2𝑚
,

(33)

where Inequality (𝑖) holds due to the definition of the integral

probability metric, Equation (𝑖𝑖) is the expansion of the integral

probability metric, Inequality (𝑖𝑖𝑖) holds due to Lemma C.5, Equa-

tion (𝑖𝑣) is the definition of Rademacher complexity, and Inequality

(𝑣) holds due to Lemma C.6.

For the last two terms of Eq.32, we first define a function class

H , which satisfies:

H = {ℎ(T) : ℎ(T) = E(X𝑗 ,Y𝑗)∼𝑞 (T) (L(𝑓𝜃 (X𝑗), Y𝑗),
such that 𝑓𝜃 ∈ F𝜈 and ℎ(·) maps T to R}.

Then, by utilizing the integral probability metric and Lemma C.5,

we have

ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−
ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)
= ET𝑖∼𝑝 (T)ℎ(T𝑖) − ET𝑖∼𝑝 (T)ℎ(T𝑖)
= DH (𝑝, 𝑝)

= sup

ℎ∈H

���E𝑝ℎ(T𝑖) − E𝑝ℎ(T𝑖)
���

≤ 2
ˆR(H |T1, · · · ,TT) + 3

√︂
log(2/𝜖)

2T

.

(34)

Next, we need to obtain the empirical Rademacher complexity

for the defined function class over distributions. According to the

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

definition, we have

ˆR(H |T1, · · · ,TT) = E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖ℎ(T𝑖)
]

= E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)

(
1

1 + exp (𝜃⊤X𝑗)
− 𝜃⊤X𝑗Y𝑗

)]
≤ E

𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
𝜃⊤X𝑡

)]
+

E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
𝜃⊤X𝑗Y𝑗

)]
≤ E

𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖 (Σ1/2

X
𝜃)⊤Σ†/2

X
𝜇X

]
︸ ︷︷ ︸

(𝑖)

+

E
𝜎

[
sup

ℎ∈H

1

T

(Σ1/2

X
𝜃)⊤

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
Σ
†/2

X
X𝑗Y𝑗

)]
︸ ︷︷ ︸

(𝑖𝑖)

,

(35)

where 𝜇X = E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)X𝑗 .

For the first term (i) in Eq.35, we can bound it as follows:

E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖 (Σ1/2

X
𝜃)⊤Σ†/2

X
𝜇X

]
≤

(Σ1/2

X
𝜃)⊤

 · E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖Σ
†/2

X
𝜇X

]

≤
√
𝜈E
𝜎

 1

T

T∑︁
𝑖=1

𝜎𝑖Σ
†/2

X
𝜇X

 ≤
√
𝜈

T

√√√√
E
𝜎

 T∑︁
𝑖=1

𝜎𝑖Σ
†/2

X
𝜇X

2

≤
√
𝜈

√
T

Σ†/2

X
𝜇X

 .

(36)

For the second term (ii) in Eq.35, we have the following bound as

follows:

E
𝜎

[
sup

ℎ∈H

1

T

(Σ1/2

X
𝜃)⊤

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
Σ
†/2

X
X𝑗Y𝑗

)]
≤

(Σ1/2

X
𝜃)⊤

 · E
𝜎

[
sup

ℎ∈H

1

T

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
Σ
†/2

X
X𝑗Y𝑗

)]
≤
√
𝜈E
𝜎

 1

T

T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
(
Σ
†/2

X
X𝑗Y𝑗

)
≤

√
𝜈

T

√√√√
E
𝜎

 T∑︁
𝑖=1

𝜎𝑖E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖) (Σ
†/2

X
X𝑗Y𝑗)

2

≤
√
𝜈

√
T

√√√
T∑︁
𝑖=1

E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)
[
(Σ†/2

X
X𝑗Y𝑗)⊤ (Σ†/2

X
X𝑗Y𝑗)

]
≤

√
𝜈 · rank(ΣX)√

T

.

(37)

By combining the derivations from Eqs.36 and 37, we have the

following bound in Eq.35:

ˆR(H |T1, · · · ,TT) ≤
√︂
𝜈

T

(Σ†/2

X
𝜇X

 + rank(ΣX)
)
. (38)

Thus, the last two terms of Eq.32 can be bounded as follows:

ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)−
ET𝑖∼𝑝 (T)E(X𝑗 ,Y𝑗)∼𝑞 (T𝑖)L(𝑓𝜃 (X𝑗), Y𝑗)

≤ 2
ˆR(H |T1, · · · ,TT) + 3

√︂
log(2/𝜖)

2T

≤ 2

√︂
𝜈

T

(Σ†/2

X
𝜇X

 + rank(ΣX)
)
+ 3

√︂
log(2/𝜖)

2T

.

(39)

By combining the results from Eqs.33 and 39, we can obtain the

following result.

|R̂ − R| ≤ 2

(√︂
𝜈 · rank(∑

X
)

𝑚
+

√︂
𝜈

T

(Σ†/2

X
𝜇X

 + rank(ΣX)
))

+

3

(√︂
log(2/𝜖)

2𝑚
+

√︂
log(2/𝜖)

2T

)
.

(40)

When 𝜇X is set to 0, we can obtain the desired outcome as shown

in Theorem 5.1, which is listed below.

|R̂ − R| ≤ 2

(√︂
𝜈 · rank(∑

X
)

𝑚
+

√︂
𝜈

T

(rank(ΣX))
)
+

3

(√︂
log(2/𝜖)

2𝑚
+

√︂
log(2/𝜖)

2T

)
.

(41)

□

C.3 Proof of Corollary 5.2
Proof. According to Theorem 5.1, the upper bound of the model

using our proposed strategy can be represented as:

U(|R̂ − R|) = 2

(√︂
𝜈 · rank(∑

X
)

𝑚
+

√︂
𝜈

T

(rank(ΣX))
)
+

3

(√︂
log(2/𝜖)

2𝑚
+

√︂
log(2/𝜖)

2T

)
.

(42)

The upper bound of the model without any strategy can be

represented as:

U(|R̂ori − Rori |) = 2
©«
√︄
𝜈 · rank(∑

X
)

𝑚ori

+
√︂

𝜈

Tori

(rank(ΣX))
ª®¬+

3
©«
√︄

log(2/𝜖)
2𝑚ori

+

√︄
log(2/𝜖)

2Tori

ª®¬ .
(43)

Thus, we can proceed with the proof as follows:

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

U(|R̂ − R|) − U(|R̂ori − Rori |)

= 2

√︁
𝜈 · rank(ΣX)

©«
√︂

1

𝑚
−

√︂
1

𝑚ori︸ ︷︷ ︸
(𝑖)

ª®®®®®®¬
+

©«
√
𝜈 (rank(ΣX))

©«
√︂

1

T

−
√︂

1

Tori

Tori︸ ︷︷ ︸
(𝑖𝑖)

ª®®®®®®¬
ª®®®®®®¬

+ 3

√︁

log(2/𝜖)

©«
√︂

1

2𝑚
−

√︂
1

2𝑚ori︸ ︷︷ ︸
(𝑖𝑖𝑖)

ª®®®®®®¬
+

√︁
log(2/𝜖)

©«
√︂

1

2T

−
√︂

1

2Tori︸ ︷︷ ︸
(𝑖𝑣)

ª®®®®®®¬

.

(44)

Due to the introduction of within-task interpolation, we have

𝑚 > 𝑚ori, thus inequalities (𝑖) and (𝑖𝑖𝑖) are both less than 0. Fur-

thermore, due to the introduction of inter-task interpolation, we

have 𝑇 > 𝑇ori, thus inequalities (𝑖𝑖) and (𝑖𝑣) are also both less than

0. Therefore, the inequality U(|R̂ − R|) ≤ U(|R̂ori − Rori |) is held.
The Corollary 5.2 is also satisfied. □

C.4 Proof of Theorem 5.3
According to Theorem 5.3, we have

sup

𝑓 ∈F
|E

ˆP − EQ | ≤
(
2

√︁
𝜈 · rank(ΣX) +

√︂
log(1/𝜖)

2

) (√︂
1

𝑚
+

√︄
1

𝑛𝑞

)
.

(45)

The procedure of Theorem 5.3 is summarized as follows.

Proof.

sup

𝑓 ∈F
|E

ˆP − EQ | = sup

𝑓 ∈F
|E

ˆP − E
ˆQ + E

ˆQ − EQ |

≤ sup

𝑓 ∈F

[���EˆP − E
ˆQ

��� + ���E ˆQ − EQ
���]

≤ sup

𝑓 ∈F

���EˆP − E
ˆQ

��� + sup

𝑓 ∈F

���E ˆQ − EQ
��� ,

(46)

where
ˆP denotes the empirical distribution of source tasks in the

meta-training phase,
ˆQ denotes the empirical distribution of the

support set for target tasks in the meta-testing phase, andQ denotes

the expected distribution of the query set.

For the first term in Eq.46, according to Lemma C.5 and Lemma

C.6, we can bound the result as follows:

sup

𝑓 ∈F

���EˆP − E
ˆQ

��� ≤ 2R(F) +
√︂

log(1/𝜖)
2𝑚

≤ 2

√︂
𝜈 · rank(ΣX)

𝑚
+

√︂
log(1/𝜖)

2𝑚
.

(47)

Similarly, for the last term in Eq.46, we can obtain the bounded

result as follows:

sup

𝑓 ∈F

���E ˆQ − EQ
��� ≤ 2R(F) +

√︄
log(1/𝜖)

2𝑛𝑞

≤ 2

√︄
𝜈 · rank(ΣX)

𝑛𝑞
+

√︄
log(1/𝜖)

2𝑛𝑞
.

(48)

Combining Eqs.47 and 48, we can obtain the desired results as

shown in Theorem 5.3. Consequently,

sup

𝑓 ∈F
|E

ˆP − EQ | ≤ sup

𝑓 ∈F

���EˆP − E
ˆQ

��� + sup

𝑓 ∈F

���E ˆQ − EQ
���

≤ 2

√︂
𝜈 · rank(ΣX)

𝑚
+

√︂
log(1/𝜖)

2𝑚
+ 2

√︄
𝜈 · rank(∑

X
)

𝑛𝑞
+

√︄
log(1/𝜖)

2𝑛𝑞

=

(
2

√︁
𝜈 · rank(ΣX) +

√︂
log(1/𝜖)

2

) (√︂
1

𝑚
+

√︄
1

𝑛𝑞

)
.

(49)

□

Thus, we complete the proof.

D Statistics and Descriptions of Datasets
In this section, we provide detailed statistics and descriptions of

the used datasets, which have been widely used in previous studies

[5, 25, 50]. The detailed descriptions are provided below.

•Amazon-Clothing [28]: It is a product network constructed from
the “Clothing, Shoes, and Jewelry” category on Amazon. In this

dataset, each product is treated as a node, and its description is used

to construct node features. A link is created between products if

they are co-viewed. The labels are defined as the low-level product

class. For this dataset, we use the 40/17/20 class split for meta-

training/meta-validation/meta-testing.

• CoraFull [3]: It is a prevalent citation network. Each node rep-

resents a paper, and an edge is created between two papers if one

cites the other. The nodes are labeled based on the topics of the pa-

pers. This dataset extends the previously widely used small dataset

Cora by extracting raw data from the entire network. For this

dataset, we use a 25/20/25 node class split for meta-training/meta-

validation/meta-testing.

• Amazon-Electronics [28]: It is another Amazon product net-

work that contains products belonging to the “Electronics" category.

Each node represents a product, with its features representing the

product description. An edge is created between products if there

is a co-purchasing relationship. The low-level product categories

are used as class labels. For this dataset, we use a 90/37/40 node

category split for meta-training/meta-validation/meta-testing.

• DBLP [44]: It is a citation network where each node represents

a paper, and the edges represent citation relationships between

different papers. The abstracts of the papers are used to construct

node features. The class labels of the nodes are defined as the

publication venues of the papers. For this dataset, we use an 80/27/30

node category split for meta-training/meta-validation/meta-testing.

E Descriptions of Baselines
In this section, we present the detailed descriptions of the selected

baselines below.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

E.1 Traditional Meta-learning Method
Protonet [40]: It learns a metric space by acquiring prototypes of

different categories from the support set and computes the similarity

between the query samples and each prototype to predict their

categories.

MAML [6]: It enables the meta-trainer to obtain a well-initialized

parameter by performing one or more gradient update steps on the

model parameters, allowing for rapid adaptation to downstream

novel tasks with limited labeled data.

E.2 Meta-learning with Fewer Tasks Method
MetaMix [58]: It enhances meta-training tasks by linearly combin-

ing the features and labels of samples from the support and query

sets to improve the generalization of the model.

MLTI [60]: It generates additional tasks by randomly sampling a

pair of tasks and interpolating their corresponding features and

labels, replacing the original tasks for training.

Meta-Inter [19]: It proposes a domain-agnostic task augmentation

method that utilizes expressive neural set functions to densify the

distribution of meta-training tasks through a bi-level optimization

process.

E.3 Graph Meta-learning Method
Meta-GNN [65]: It seamlessly integrates MAML and GNNs in

a straightforward manner, leveraging the MAML framework to

acquire useful prior knowledge from previous tasks during the

process of learning node embeddings, enabling it to rapidly adapt

to novel tasks.

GPN [5]: It adopts the concept of Protonet for the few-shot node

classification task. It uses a GNN-based encoder and evaluator to

learn node embeddings and assess the importance of these nodes,

while assigning novel samples to their closest categories.

G-Meta [15]: It constructs an individual subgraph for each node,

transmits node-specific information within these subgraphs, and

employs meta-gradients to learn transferable knowledge based on

the MAML framework.

Meta-GPS [25]: It cleverly introduces prototype-based parameter

initialization, scaling, and shifting transformations to better learn

transferable meta-knowledge within the MAML framework and

adapts to novel tasks more quickly.

X-FNC [51]: It first performs label propagation to obtain rich

pseudo-labeled nodes based on Poisson learning, and then filters

out irrelevant information through classifying nodes and an infor-

mation bottleneck-based method to gather meta-knowledge across

different meta-tasks with extremely supervised information.

COSMIC [53]: It proposes a contrastive meta-learning framework,

which first explicitly aligns node embeddings by contrasting two-

step optimization within each episode, and then generates hard

node classes through a similarity-sensitive mixing strategy.

TLP [43]: It introduces the concept of transductive linear probing,

initially pretraining a graph encoder through graph contrastive

learning, and then applying it to obtain node embeddings during

the meta-testing phase for downstream tasks.

TEG [17]: It designs a task-equivariant graph few-shot learning

framework, leveraging equivariant neural networks to learn adap-

tive task-specific strategies, aimed at capturing task inductive biases

to quickly adapt to unseen tasks.

E.4 Implementation Details of Baselines
For traditional meta-learning models, we follow the same settings

as [5, 25], and conduct careful hyperparameter search and report

their optimal performance. For meta-learning with fewer tasks

models, we uniformly use SGC as the graph encoder. Moreover, we

adopt the following additional experimental settings. Specifically,

for MetaMix, we allow it to perform task augmentation by generat-

ing the same number of nodes as those in the original support and

query sets for each meta-training task. For MLTI and Meta-Inter,

we make them to generate the same number of additional tasks

as in our experiments to ensure fairness. For graph meta-learning

baselines, we use the hyperparameters recommended in the origi-

nal papers. All the experiments are conducted by NVIDIA 3090Ti

GPUs with the Python 3.7 and PyTorch 1.13 environment.

F More Experimental Results
F.1 Model Performance with Sufficient Tasks
We present the experimental results of our method and other base-

lines in Tables S5 under sufficient tasks with the 5 way 5 shot

setting. According to Table S5, we observe that the proposed SMILE

achieves competitive performance compared to other baselines,

thus providing strong evidence for its effectiveness in addressing

the graph few-shot learning problem.

Also, we provide the results of these models in more challenging

cross-domain experimental settings in Table S6. In this experimental

setup, we first meta-train the model on the source domain and then

evaluate it on the target domain. According to the results, similar

to the in-domain ones, we find that our proposed approach still

significantly outperforms all baselines, further demonstrating its

ability to effectively extract transferable knowledge and exhibit

strong generalization performance.

F.2 Comparison of Performance with With-in
Task Mixup and Increased Shot Numbers

Further, we conduct an interesting experiment to explore how our

model augmented via within-task mixup fares against baselines

enhanced by increasing shot count with external data. While our

augmented data originates fromwithin task distributions, we aim to

evaluate its effectiveness compared to baselines explicitly inflated

with external data. Specifically, we ran experiments using the 5-

way 5-shot setting with five tasks on all datasets. As within-task

mixup effectively doubles the shot count, we opt for the 5-way

10-shot setting for the baselines. Note that we have not included

meta-learning with fewer tasks methods (i.e., MetaMix, MLTI, and

Meta-Inter) here, as they have already explicitly performed data

augmentation or task augmentation. According to Table S7, we

find that baseline models exhibit slight performance improvements

from 5-way 5-shot to 5-way 10-shot settings, yet they still fail to

outperform our model. This further highlights the superiority of

SMILE.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table S5: Results (%) of different models with sufficient meta-training tasks under the 5-way 5-shot in-domain setting.

Model

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

Protonet 63.51±3.62 63.70±2.59 55.65±3.76 52.92±3.66 59.72±2.69 61.50±2.62 56.32±2.39 55.39±2.32
MAML 66.12±3.12 67.82±2.92 56.52±2.70 55.39±3.15 59.02±3.49 58.31±3.20 49.93±3.62 47.79±3.16
MetaMix 83.19±2.95 82.12±2.56 70.36±2.39 68.59±2.69 78.25±3.25 77.09±3.11 80.26±2.55 79.06±2.59
MLTI 83.39±2.46 82.56±2.30 70.99±2.15 69.39±2.56 79.36±2.75 78.12±2.56 81.22±2.52 80.16±2.36

Meta-Inter 85.39±2.72 84.26±2.19 73.19±2.59 72.65±2.35 80.16±2.95 79.49±2.76 81.59±2.76 80.96±2.52
Meta-GNN 74.79±2.39 77.50±2.52 59.12±2.36 57.12±2.56 67.91±3.19 66.83±3.32 74.20±2.95 73.10±3.19

GPN 76.13±2.20 79.03±2.39 60.31±2.19 59.46±2.36 70.93±2.72 70.64±2.79 76.19±2.52 75.82±2.35
G-Meta 76.62±3.25 78.60±3.19 62.43±3.11 61.61±2.76 73.62±2.52 72.60±3.19 77.61±3.26 76.93±3.03

Meta-GPS 82.62±2.39 81.62±2.26 69.25±2.52 68.60±2.25 80.26±2.16 79.32±2.05 81.76±1.95 81.15±1.86
X-FNC 82.83±2.66 81.59±2.32 71.26±2.19 69.02±2.59 77.39±2.56 76.50±2.39 79.59±2.26 78.06±2.19
COSMIC 86.22±1.70 85.65±1.93 77.24±1.52 75.10±1.82 79.38±2.25 77.59±2.36 81.94±2.20 80.39±2.79
TLP 85.22±3.35 83.65±3.19 71.36±4.49 70.70±3.72 79.38±3.92 77.59±3.55 81.94±2.82 80.39±2.56
TEG 90.18±0.95 89.25±1.36 76.37±1.92 75.76±1.25 87.17±1.15 85.29±2.02 83.33±1.22 82.39±1.29
SMILE 88.86±1.12 88.59±1.16 75.50±1.26 75.14±1.39 85.55±1.62 84.95±1.29 83.90±1.19 83.42±1.56

Table S6: Results (%) of different models with sufficient meta-training tasks under the 5-way 5-shot cross-domain setting.

Dataset

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing Amazon-Electronics→DBLP DBLP→Amazon-Electronics

Acc F1 Acc F1 Acc F1 Acc F1

Protonet 36.46±3.19 22.85±2.72 36.52±2.93 33.36±2.90 42.76±2.78 39.30±2.72 37.86±2.66 29.47±2.62
MAML 34.01±3.39 20.95±3.12 35.19±2.96 34.29±2.60 38.47±3.10 32.51±3.19 35.92±2.70 26.70±3.06
MetaMix 40.16±2.13 38.25±2.39 44.19±2.56 42.39±2.92 53.10±2.42 51.90±2.35 47.36±2.56 45.19±2.32
MLTI 43.35±2.11 42.10±2.09 48.20±2.33 46.26±2.17 55.11±2.77 53.49±2.60 49.10±2.09 47.06±2.46

Meta-Inter 45.36±2.39 43.25±2.11 49.15±2.66 47.36±2.72 56.39±2.40 55.16±2.30 49.39±2.59 47.49±2.56
Meta-GNN 37.29±2.56 31.66±2.49 45.79±2.32 43.72±2.29 50.16±2.30 49.76±2.36 45.66±2.29 43.66±2.25

GPN 45.26±3.35 43.25±3.12 56.16±2.99 55.68±2.75 65.28±2.42 65.37±2.53 49.20±3.39 47.62±3.40
G-Meta 39.39±3.41 38.72±2.95 49.90±2.75 48.56±2.96 55.26±2.47 53.75±2.49 46.72±2.32 45.67±2.29

Meta-GPS 41.29±2.16 40.79±2.12 58.62±2.25 57.29±2.20 60.12±2.06 59.73±2.02 49.39±2.15 47.96±2.12
X-FNC 42.56±2.75 41.19±2.46 55.39±2.49 54.29±2.37 61.55±2.32 60.92±2.74 49.21±2.51 46.55±2.39
COSMIC 46.55±2.45 44.29±2.42 57.26±2.39 56.22±2.40 63.59±2.98 62.29±2.93 51.22±2.86 50.35±2.78
TLP 44.76±3.47 43.29±3.32 57.95±2.91 56.36±2.77 64.52±2.73 63.22±2.49 49.51±2.36 46.55±2.72
TEG 40.19±1.26 39.96±1.66 50.23±2.53 48.29±2.06 46.35±2.65 45.26±2.72 41.25±1.93 40.59±1.60
SMILE 49.08±1.23 47.46±1.42 62.72±2.02 61.29±1.86 68.96±1.12 68.03±1.06 53.38±1.32 52.70±1.25

F.3 Model Performance with Alternative
Across-task Mixup

To further demonstrate the superiority of our proposed across-task

mixup, we attempt to replace it with the mixup strategy in the MLTI

[60]. It directly performs mixup on the support set and query set

from two tasks to achieve task augmentation, formally defined as:

X̃
𝑠

𝑡 ;
˜𝑘
=𝜆X

𝑠
𝑖;𝑘

+(1−𝜆)X𝑠
𝑗 ;𝑘 ′ , X̃

𝑞

𝑡 ;
˜𝑘
=𝜆X

𝑞

𝑖;𝑘
+(1−𝜆)X𝑞

𝑗 ;𝑘 ′ . (50)

We present the results with different mixup strategies under the

5-way 5-shot in-domain and cross-domain settings varying number

of tasks in Table S8. Here, “alternate” denotes the model variant

that performs the aforementioned task augmentation.

According to the results, we can conclude that the adopted across-

task augmentation strategy consistently outperforms the task aug-

mentation of MLTI on various experimental settings. One plausible

reason is that the adopted prototype-based across-task mixup can

generate more reliable data compared to instance-based one of other

models, thus further reducing adverse oscillations when predicting

examples beyond the training set.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table S7: Results of our model on the 5-way 5-shot 5 tasks in-domain setting compared with those of other models on the 5-way
10-shot 5 tasks setting.

Model

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

Protonet 49.27±3.19 48.72±2.79 38.95±2.61 37.87±2.68 50.14±2.73 49.80±2.65 50.91±2.56 49.99±2.73
MAML 46.42±2.30 45.16±2.34 40.12±2.35 38.79±2.56 39.95±2.62 38.60±2.71 45.26±2.42 43.92±2.93

Meta-GNN 57.06±3.72 53.19±3.47 43.90±3.12 42.19±3.09 45.16±2.19 43.96±2.15 52.35±2.35 51.76±2.32
GPN 68.64±2.73 68.39±2.07 45.22±3.45 43.29±3.21 54.23±2.73 53.17±2.50 70.39±2.29 70.13±2.65

G-Meta 61.29±2.59 60.96±2.32 46.72±2.40 45.35±2.49 45.20±3.12 43.56±3.22 53.99±2.93 49.20±2.71
Meta-GPS 63.22±2.35 60.36±2.29 52.16±2.19 50.10±2.11 49.32±2.95 46.02±2.62 58.19±1.98 56.22±1.72
X-FNC 70.22±2.97 69.35±2.73 56.99±2.65 53.96±2.42 62.19±2.34 59.39±2.47 71.66±2.39 70.92±2.91
COSMIC 77.29±2.93 76.33±2.82 64.22±2.53 62.33±2.45 65.25±2.46 64.18±2.72 72.10±3.16 71.15±3.06
TLP 73.21±2.29 72.13±2.12 53.11±2.35 52.01±2.19 64.51±2.77 63.18±3.02 72.39±3.03 71.35±3.12
TEG 80.22±2.12 79.36±2.36 64.16±1.76 63.31±1.63 66.06±1.96 65.16±1.95 74.36±2.03 73.19±2.39

SMILE 82.80±1.32 82.49±1.52 66.34±1.29 65.70±1.56 67.30±1.20 66.30±1.19 75.88±1.29 75.05±1.36

Table S8: Results (%) of different model variants on the datasets under various experimental settings.

Task Model

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

5

alternate 81.69±1.39 81.52±1.22 65.42±1.70 64.79±1.35 65.96±1.19 65.20±1.22 74.92±1.32 73.95±1.15
ours 82.80±1.32 82.49±1.52 66.34±1.29 65.70±1.56 67.30±1.20 66.30±1.19 75.88±1.29 75.05±1.36

10

alternate 82.22±1.50 82.02±1.12 70.79±1.26 70.22±1.32 69.99±1.02 69.16±1.39 75.26±1.70 73.90±1.96
ours 83.46±1.66 82.88±1.35 71.72±1.95 71.15±1.76 70.76±1.06 70.05±1.09 76.64±1.22 75.77±1.19

15

alternate 82.99±1.29 82.39±1.36 69.72±1.52 69.03±1.32 72.25±1.39 71.12±1.47 78.52±1.56 77.35±1.30
ours 83.92±1.16 83.33±1.22 70.78±1.59 70.19±1.42 73.48±1.36 72.66±1.22 79.56±1.26 78.77±1.76

20

alternate 83.72±1.38 82.95±1.49 71.92±1.71 71.72±1.96 74.39±1.86 74.32±1.72 79.52±1.39 78.51±1.77
ours 84.66±1.55 84.52±1.39 72.60±1.66 72.10±1.55 75.42±1.52 75.42±1.29 80.50±1.72 79.61±1.55

Task Model

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing Amazon-Electronics→DBLP DBLP→Amazon-Electronics

Acc F1 Acc F1 Acc F1 Acc F1

5

alternate 42.02±2.36 41.42±1.72 55.37±1.97 54.36±1.86 61.30±1.79 61.02±1.75 45.14±1.39 43.72±1.55
ours 42.64±2.02 41.27±1.65 56.36±2.02 55.25±1.75 62.44±1.35 61.66±1.29 46.24±1.60 44.54±1.62

10

alternate 43.59±1.22 41.79±1.59 57.99±1.73 56.76±1.62 63.12±1.79 62.29±2.25 47.95±2.22 46.82±2.16
ours 45.14±1.29 43.69±1.10 58.84±1.79 57.53±1.56 64.54±1.22 64.16±1.20 48.82±1.12 47.26±1.19

15

alternate 45.12±1.77 43.39±1.56 58.16±1.32 54.76±1.39 63.70±1.42 63.26±1.49 48.39±1.51 46.89±1.60
ours 45.88±1.36 44.10±1.22 59.08±1.55 55.96±1.50 65.04±1.19 64.43±1.26 49.26±1.55 47.70±1.36

20

alternate 46.12±1.09 44.26±1.75 57.99±1.79 57.56±1.73 63.92±1.60 63.22±1.92 47.28±1.50 47.06±1.35
ours 46.72±1.96 45.65±1.66 59.38±1.62 58.25±1.60 65.78±1.32 65.42±1.26 49.52±1.29 47.88±1.26

F.4 Impact of Original Tasks
Our proposed model is trained during the meta-training stage uti-

lizing a merged task D𝑎𝑙𝑙 composed of original tasks D𝑜𝑟𝑔 and

interpolated tasks D𝑎𝑢𝑔 . In contrast, MLTI disregards the use of

original tasks and solely uses the generated new tasks for train-

ing. However, this approach raises concerns as the model does

not directly encounter the data distribution of the original tasks,

potentially compromising its generalization ability. Moreover, in

scenarios where training data is already scarce, this practice results

in the wastage of valuable data resources. To further quantitatively

explore the impact of these original tasks on model performance,

we conduct additional experiments with several model variants

under different experimental settings across all the datasets. Here,

“w/o original taks” denotes that we exclude the original tasks and
solely rely on the generated tasks for model training. All the results

are presented in Table S9.

Based on the above results, the training strategy utilized consis-

tently brings about performance improvements compared to solely

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table S9: Results (%) of different training methods on the datasets.

Task Model

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

5

w/o original tasks 81.74±1.79 81.60±1.69 65.69±1.75 64.72±1.52 65.36±1.22 64.20±1.29 74.05±1.36 73.09±1.19
ours 82.80±1.32 82.49±1.52 66.34±1.29 65.70±1.56 67.30±1.20 66.30±1.19 75.88±1.29 75.05±1.36

10

w/o original tasks 82.06±1.55 81.36±1.19 70.29±1.32 69.95±1.36 69.09±1.42 68.16±1.33 75.36±1.75 72.90±1.73
ours 83.46±1.66 82.88±1.35 71.72±1.95 71.15±1.76 70.76±1.06 70.05±1.09 76.64±1.22 75.77±1.19

15

w/o original tasks 82.93±1.32 81.99±1.56 69.92±1.31 68.26±1.37 72.29±1.19 71.20±1.40 78.39±1.52 77.20±1.35
ours 83.92±1.16 83.33±1.22 70.78±1.59 70.19±1.42 73.48±1.36 72.66±1.22 79.56±1.26 78.77±1.76

20

w/o original tasks 83.69±1.39 83.26±1.42 71.90±1.52 70.72±1.94 74.29±1.26 73.29±1.71 79.49±1.93 78.39±1.78
ours 84.66±1.55 84.52±1.39 72.60±1.66 72.10±1.55 75.42±1.52 75.42±1.29 80.50±1.72 79.61±1.55

Task Model

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing Amazon-Electronics→DBLP DBLP→Amazon-Electronics

Acc F1 Acc F1 Acc F1 Acc F1

5

w/o original tasks 41.32±2.09 40.56±1.71 55.29±1.67 53.76±1.66 61.26±1.73 60.10±1.69 45.15±1.32 43.69±1.59
ours 42.64±2.02 41.27±1.65 56.36±2.02 55.25±1.75 62.44±1.35 61.66±1.29 46.24±1.60 44.54±1.62

10

w/o original tasks 43.56±1.29 41.66±1.53 57.29±1.66 56.65±1.60 63.09±1.39 62.16±2.12 47.32±2.23 46.92±2.11
ours 45.14±1.29 43.69±1.10 58.84±1.79 57.53±1.56 64.54±1.22 64.16±1.20 48.82±1.12 47.26±1.19

15

w/o original tasks 44.23±1.27 43.92±1.67 57.90±1.34 55.29±1.31 64.29±1.44 63.20±1.40 48.29±1.39 46.29±1.63
ours 45.88±1.36 44.10±1.22 59.08±1.55 55.96±1.50 65.04±1.19 64.43±1.26 49.26±1.55 47.70±1.36

20

w/o original tasks 45.66±1.11 43.69±1.72 57.97±1.73 57.22±1.60 64.26±1.35 63.22±1.46 48.46±1.59 46.29±1.23
ours 46.72±1.96 45.65±1.66 59.38±1.62 58.25±1.60 65.78±1.32 65.42±1.26 49.52±1.29 47.88±1.26

training the model on generated new tasks. This further underscore

the effectiveness of our employed training method.

F.5 Impact of Graph Augmentation
In this work, we actually employ feature-level mixup. We would

like to explain our rationale. Firstly, mixup is a simple and highly

effective technique that aligns with the straightforward concept

we aim to convey in our research. Secondly, by employing feature-

level mixup, we can directly address the scarcity of nodes and tasks

within a given task by enriching both the node and task distribu-

tions. Given that the target data is graph-structured data, someone

may wonder how the model performance would be affected by uti-

lizing other augmentation methods designed for graph-structured

data instead of mixup. We argue that using graph augmentation

methods would primarily impact the learning of node representa-

tions and would have minimal influence on subsequent algorithms

that extract generalizable knowledge from limited data. To verify

our hypothesis, we utilize GAug [64] and GMix [54] for graph aug-

mentation on the vanilla SGC [55] node representation learning

module. Subsequently, we directly conduct metric-based few-shot

node classification without introduced dual-level mixup techniques.

The corresponding model variants are denoted as “w GAug” and

“w GMix”. Moreover, “SGC” denotes that we directly utilize SGC

for node representation learning and subsequently perform metric-

based few-shot node classification. The experimental results are

presented in Table S10.

Based on the results, we observe that incorporating graph aug-

mentation techniques can result in slight performance improve-

ments for the SGC model. This is attributed to the ability of graph

augmentation to facilitate the learning of high-quality node repre-

sentations by the model.

F.6 Model Performance with Different Graph
Encoders

To further validate the flexibility of our proposed model, we replace

the graph backbone with GCN [18], GAT [47], SAGE [12], and

GraphGPS [37] under the 5 way 5 shot setting. The results of these

experiments are presented in Table S11. According to the results, we

find that our proposed method, even when equipped with different

graph encoders, still achieves excellent performance across various

datasets under different experimental settings, providing strong

evidence of its effectiveness.

F.7 Model Performance for Few-shot Graph
Classification

In this section, we explore the application of our method to few-shot

graph classification tasks. By utilizing graph pooling operations to

obtain graph-level features, extending our model to downstream

graph-level tasks is straightforward. To support this, we select sev-

eral representative datasets Letter-high, ENZYMES, TRIANGLES,

and Reddit, which are widely used for few-shot graph classification.

We provide the statistics of evaluated datasets in Table S12. Detailed

descriptions of these datasets are provided below.

• Letter-high contains graphs representing the English alphabet,

with each label corresponding to a specific letter type.

• ENZYMES is a protein tertiary structure dataset composed of

enzymes from the BRENDAdatabase, with each class corresponding

to a top-level enzyme.

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table S10: Results (%) of different models on the datasets.

Task Model

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

5

SGC 69.02±1.94 67.12±1.65 43.02±1.75 42.29±1.50 50.20±1.26 47.92±1.23 70.11±1.33 69.25±1.15
w GAug 69.22±1.29 67.55±1.35 43.56±2.29 42.39±2.17 50.26±1.74 47.99±1.70 70.39±1.59 69.39±1.24
w GMix 70.26±1.51 68.36±1.26 45.29±1.17 44.02±1.39 51.92±1.56 49.39±1.39 71.30±1.32 70.70±1.20
ours 82.80±1.32 82.49±1.52 66.34±1.29 65.70±1.56 67.30±1.20 66.30±1.19 75.88±1.29 75.05±1.36

10

SGC 71.29±2.25 70.32±2.19 46.11±1.73 44.72±1.95 52.10±2.13 53.56±2.36 74.39±1.94 73.52±1.75
w GAug 71.66±2.02 70.62±2.13 46.29±1.97 44.99±1.92 52.19±2.12 53.66±2.49 74.56±2.03 73.92±1.59
w GMix 72.90±1.90 71.36±1.75 48.09±2.05 45.92±2.13 53.59±2.06 54.02±2.31 75.30±2.19 74.12±2.37
ours 83.46±1.66 82.88±1.35 71.72±1.95 71.15±1.76 70.76±1.06 70.05±1.09 76.64±1.22 75.77±1.19

15

SGC 72.12±1.62 71.49±1.51 51.96±1.36 50.20±1.35 55.02±1.39 54.12±1.47 76.22±1.57 75.12±1.65
w GAug 72.53±1.79 71.99±2.05 52.06±1.49 50.36±1.70 55.29±1.96 54.20±1.71 76.59±2.13 75.26±2.03
w GMix 73.56±1.72 72.26±1.59 54.29±1.77 51.20±1.67 56.49±1.72 55.39±1.40 77.29±1.93 76.12±2.14
ours 83.92±1.16 83.33±1.22 70.78±1.59 70.19±1.42 73.48±1.36 72.66±1.22 79.56±1.26 78.77±1.76

20

SGC 72.66±1.79 72.16±1.49 56.35±1.57 55.32±1.92 57.52±1.56 56.69±1.75 76.99±1.91 76.52±1.72
w GAug 73.06±2.02 72.36±1.99 56.25±1.97 55.29±1.72 57.36±1.96 56.49±1.47 76.90±2.20 76.02±2.14
w GMix 73.66±1.95 72.99±1.73 57.29±1.60 56.92±1.95 59.90±2.09 58.20±2.03 77.32±1.76 77.20±1.65
ours 84.66±1.55 84.52±1.39 72.60±1.66 72.10±1.55 75.42±1.52 75.42±1.29 80.50±1.72 79.61±1.55

Task Model

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing Amazon-Electronics→DBLP DBLP→Amazon-Electronics

Acc F1 Acc F1 Acc F1 Acc F1

5

SGC 36.22±2.03 35.15±1.75 41.06±1.62 40.13±1.60 59.99±1.72 58.91±1.63 43.02±1.71 43.02±1.54
w GAug 36.42±2.17 35.56±1.92 41.26±1.49 40.36±1.73 60.36±1.49 59.10±1.70 43.19±1.56 42.69±1.44
w GMix 37.52±2.11 36.26±2.04 40.39±2.19 40.02±2.11 60.99±1.75 60.36±1.59 43.32±1.74 42.79±1.96
ours 42.64±2.02 41.27±1.65 56.36±2.02 55.25±1.75 62.44±1.35 61.66±1.29 46.24±1.60 44.54±1.62

10

SGC 39.39±1.52 38.52±1.11 42.01±1.37 41.45±1.32 61.92±1.41 61.42±1.72 47.19±2.21 46.36±2.01
w GAug 39.76±1.79 38.62±1.56 42.29±1.66 41.66±1.73 62.09±1.57 61.69±1.63 47.30±2.19 46.62±1.94
w GMix 39.92±1.93 39.36±1.76 43.39±2.03 42.91±1.97 62.39±1.60 62.02±1.49 47.39±1.75 46.92±1.66
ours 45.14±1.29 43.69±1.10 58.84±1.79 57.53±1.56 64.54±1.22 64.16±1.20 48.82±1.12 47.26±1.19

15

SGC 41.29±2.56 40.76±2.35 43.76±2.02 42.66±2.43 63.12±1.97 62.39±1.74 47.12±3.19 45.26±3.05
w GAug 41.53±1.22 40.99±1.60 43.96±1.31 42.96±1.22 63.29±1.40 62.90±1.45 47.39±1.32 45.69±1.63
w GMix 42.36±1.41 41.26±2.73 44.39±2.59 43.20±2.44 63.39±2.40 63.09±2.37 47.59±2.18 45.92±2.10
ours 45.88±1.36 44.10±1.22 59.08±1.55 55.96±1.50 65.04±1.19 64.43±1.26 49.26±1.55 47.70±1.36

20

SGC 41.92±3.26 41.16±2.72 45.02±3.73 44.66±3.60 63.90±3.35 63.19±2.66 47.36±2.59 45.62±2.23
w GAug 42.06±3.19 41.60±2.74 45.26±2.59 44.99±2.73 64.06±2.56 63.42±2.70 47.96±2.19 45.99±2.31
w GMix 42.36±2.56 41.99±2.40 45.99±2.37 45.26±2.42 63.92±2.31 63.29±2.56 48.36±2.15 47.92±2.26
ours 46.72±1.96 45.65±1.66 59.38±1.62 58.25±1.60 65.78±1.32 65.42±1.26 49.52±1.29 47.88±1.26

• TRIANGLES consists of graphs, where the category is deter-

mined by the number of triangles (3-cliques) present in each graph.

• Reddit contains graphs representing threads, where each node

represents a user, and different graph labels correspond to different

types of forums.

We choose several representative few-shot graph classification

models, GSM [4], AS-MAML [27], FAITH [52], and SMART [23], for

comparison. The detailed descriptions of these models are presented

below.

•GSM [4]: It generates a set of superclasses through graph spectral

metrics and constructs corresponding super-graphs to model the

relationships between the classes.

• AS-MAML [27]: It directly combines GNN and MAML to quickly

adapt to unseen test graphs, utilizing a step controller to enhance

the robustness of the meta-trainer.

• FAITH [52]: It captures task relevance by constructing hierarchi-

cal graphs of varying granularity, thereby enhancing the model’s

adaptability to unseen new classes.

• SMART [23]: It replaces the complex meta-learning training

paradigm with a simpler transfer learning approach, utilizing graph

contrastive learning and prompt learning to enhance the model’s

representation extraction capability and learning efficiency.

We present the results of our model and these baselines in the

Table S13. According to the results, we can find that our model sig-

nificantly surpasses other baseline models across multiple datasets

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Table S11: Results (%) of our model on the datasets under various backbones.

Task Backbone

Amazon-Clothing CoraFull Amazon-Electronics DBLP

Acc F1 Acc F1 Acc F1 Acc F1

5

GCN 81.76±1.39 81.29±1.95 65.96±1.66 65.25±2.02 67.96±2.11 66.82±1.96 75.52±2.32 74.75±2.30
GAT 80.19±2.21 79.59±2.02 63.99±1.97 63.36±1.73 66.75±1.66 65.32±1.55 73.96±1.50 73.96±1.45
SAGE 82.92±1.70 82.52±1.49 66.82±1.53 66.36±1.39 67.10±1.75 66.16±1.50 75.39±2.22 74.95±1.92

GraphGPS 80.25±1.99 78.26±1.97 64.39±1.85 63.95±1.82 66.19±1.80 65.29±2.36 73.29±2.39 72.72±2.52
SGC (ours) 82.80±2.19 82.49±2.26 66.34±2.28 65.70±2.52 67.30±2.59 66.30±2.32 75.88±2.21 75.05±2.22

10

GCN 82.56±2.36 82.29±2.30 72.20±2.15 71.35±2.45 69.76±2.29 69.22±2.26 75.39±2.17 74.62±2.79
GAT 81.92±2.36 80.96±2.66 70.92±1.80 70.39±1.77 68.15±2.16 67.29±2.30 74.99±2.22 74.29±2.15
SAGE 83.02±1.73 82.56±1.79 71.96±2.32 71.52±2.25 70.26±2.26 70.15±2.21 76.32±2.46 75.32±2.39

GraphGPS 81.26±2.11 80.76±2.23 70.15±2.25 69.69±2.76 67.92±2.82 66.95±2.37 74.25±2.29 74.12±2.46
SGC (ours) 83.46±1.66 82.88±1.35 71.72±1.95 71.15±1.76 70.76±1.32 70.05±1.90 76.64±1.56 75.77±1.38

Task Model

Amazon-Clothing→CoraFull CoraFull→Amazon-Clothing Amazon-Electronics→DBLP DBLP→Amazon-Electronics

Acc F1 Acc F1 Acc F1 Acc F1

5

GCN 42.16±1.88 41.75±1.82 55.79±1.81 54.66±1.85 62.19±1.39 60.99±1.22 46.09±1.26 45.69±1.21
GAT 40.25±1.29 40.02±1.26 53.32±1.22 52.12±1.34 61.02±1.36 60.19±1.42 45.62±1.58 45.19±1.52
SAGE 41.99±1.57 40.95±1.59 55.96±1.64 55.29±1.43 62.92±1.41 62.29±1.30 47.19±1.36 45.20±1.33

GraphGPS 39.62±1.49 38.66±1.52 52.29±1.55 51.96±1.66 60.72±1.60 59.79±1.53 45.02±1.42 44.16±1.51
SGC (ours) 42.64±1.20 41.27±1.22 56.36±1.39 55.25±1.30 62.44±1.55 61.66±1.26 46.24±1.22 44.54±1.66

10

GCN 43.12±1.24 42.26±1.26 57.65±1.32 57.16±1.39 63.25±1.42 62.35±1.49 47.22±1.55 46.29±2.12
GAT 43.19±2.12 42.59±2.19 56.99±2.22 56.36±2.55 62.39±2.36 61.96±1.91 46.29±2.16 45.56±2.59
SAGE 44.66±2.66 44.25±2.75 58.16±2.30 57.25±2.36 63.92±2.15 62.92±2.50 48.09±1.72 47.02±1.76

GraphGPS 42.26±1.79 42.09±1.92 55.26±1.22 55.12±2.05 61.52±2.17 60.92±2.09 46.25±2.01 45.29±2.06
SGC (ours) 45.14±2.19 43.69±2.22 58.84±2.39 57.53±2.26 64.54±1.79 64.16±1.86 48.82±1.79 47.22±1.66

Table S12: Statistics of the evaluated datasets.

Dataset # Graphs # Nodes # Edges # Classes # Novel

Letter-high 2,250 4.67 4.50 15 4

ENZYMES 600 32.63 62.14 6 2

TRIANGLES 2,000 20.85 35.50 10 3

Reddit 1,111 391.41 456.89 11 4

under various experimental settings, clearly demonstrating the

superiority and adaptability of our approach.

F.8 Performance Varies with Mixup Parameters
In this section, we investigate the sensitivity of the performance of

our proposed model to the parameters of the Beta distribution used

in the developed mixing strategy. We present how the performance

of our model varies with the Beta distribution parameters, 𝛼 and

𝛽 , across different datasets under the 5-way 5-shot 5 tasks few-

shot experimental settings. For simplicity, we always keep 𝛼 and 𝛽

equal. As shown in Fig. S1, we observe that our model exhibits good

robustness concerning this parameter. As the parameters change,

the model performance maintains a stable trend.

F.9 Exploring Model Generalization Gap
Moreover, we further investigate whether SMILE can improve its

generalization capability by reducing the generalization gap, where

the generalization gap is empirically defined as the disparity be-

tween the model’s accuracy on the meta-training tasks and its accu-

racy on the meta-testing tasks. Fig. S2 illustrates the generalization

gap induced by different models under the 5-way 5-shot few-shot

setting, including both in-domain and cross-domain settings. Upon

comparing the disparities depicted in Fig. S2 (a) and (b), it is evident

that the discrepancy between the training and testing accuracies

when employing our method consistently remains smaller than that

of other methods. These results empirically support our theoretical

findings, showing that, compared to standard training without dual-

levl mixup, SMILE consistently exhibits a smaller generalization

gap with high probability. This further confirms the effectiveness

of our proposed method under both in-domain and cross-domain

settings.

G Visualization Study
To visually present the introduced dual-level mixup strategy, we

leverage t-SNE [46] to visualize the results of dual-level mixup on

the Amazon-clothing dataset under the 5-way 5-shot with 5 tasks

few-shot setting, as shown in Fig. S3. Specifically, in the within-

task mixup, we randomly select one task consisting of support and

query sets. In the across-task, we interpolate 50 tasks, where the

task embeddings are the average of the contained node embeddings.

According to Fig. S3, we observe that the interpolated nodes within

each task and the interpolated tasks generated by SMILE indeed

densify the node and task distributions, thereby enhancing the

model generalization capability.

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

Table S13: Results of different models on few-shot graph classification tasks.

Model

Letter-high ENZYMES TRIANGLES Reddit

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

GSM 69.91±5.90 73.28±3.64 55.42±5.74 60.64±3.84 71.40±4.34 75.60±3.67 41.59±4.12 45.67±3.68
AS-MAML 69.44±0.75 75.93±0.53 49.83±1.12 52.30±1.43 78.42±0.67 80.39±0.56 36.96±0.74 41.47±0.83
FAITH 71.55±3.58 76.65±3.26 57.89±4.65 62.16±4.11 79.59±4.05 80.79±3.53 42.71±4.18 46.63±4.01
SMART 74.17±2.75 76.89±1.55 59.80±3.39 65.11±2.70 79.39±2.45 80.43±2.12 43.83±2.21 47.75±2.77
Ours 76.56±1.96 79.22±2.32 61.35±3.75 67.19±2.89 81.22±2.66 82.56±2.75 45.72±2.39 49.26±2.82

0.3 0.4 0.5 0.6 0.7
 and

65

70

75

80

85

90

Ac
cu

ra
cy

(%
)

Amazon-Clothing
CoraFull
Amazon-Electronics
DBLP

(a) in-domain

0.3 0.4 0.5 0.6 0.7
 and

40

45

50

55

60

65

Ac
cu

ra
cy

(%
)

Amazon-Clothing CoraFull
CoraFull Amazon-Clothing
Amazon-Electronics DBLP
DBLP Amazon-Electronics

(b) cross-domain

Figure S1: Model performance varies with the values of the mixup hyperparameters 𝛼 and 𝛽 .

0 5 10 15 20 25 30 35 40
Generalization Gap (Train - Test)

G-Meta

Meta-GPS

X-FNC

COSMIC

TLP

TEG

SMILE

M
od

el
s

(a) Amazon-Clothing

0 10 20 30 40 50 60 70
Generalization Gap (Train - Test)

G-Meta

Meta-GPS

X-FNC

COSMIC

TLP

TEG

SMILE

M
od

el
s

(b) Amazon-Clothing→CoraFull

Figure S2: (a) Generalization gap over several methods on the Amazon-Clothing dataset under the 5-way 5-shot 5 tasks setting.
(b) Generalization gap over several methods on the Amazon-Clothing dataset under the 5-way 5-shot 5 tasks setting.

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

original node
new node

(a) within-task mixup

new task

original task

(b) across-task mixup

Figure S3: Visualization of the dual-level mixup strategies. In (a), the original nodes in each task are represented by triangles,
while the generated nodes are represented by circles, with colors indicating the corresponding classes. In (b), the original tasks
are represented by triangles, the generated tasks are represented by circles, and the colors indicate the most similar original
tasks.

22

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Node Representation Learning
	4.2 Dual-level Mixup Strategy

	5 Theoretical Analysis
	6 Experiment
	7 Result
	8 Conclusion
	References
	A Description of Symbols
	B Complexity Analysis
	C Theoretical Proof
	C.1 Proof of Eqs.9 and 10
	C.2 Proof of Theorem 5.1
	C.3 Proof of Corollary 5.2
	C.4 Proof of Theorem 5.3

	D Statistics and Descriptions of Datasets
	E Descriptions of Baselines
	E.1 Traditional Meta-learning Method
	E.2 Meta-learning with Fewer Tasks Method
	E.3 Graph Meta-learning Method
	E.4 Implementation Details of Baselines

	F More Experimental Results
	F.1 Model Performance with Sufficient Tasks
	F.2 Comparison of Performance with With-in Task Mixup and Increased Shot Numbers
	F.3 Model Performance with Alternative Across-task Mixup
	F.4 Impact of Original Tasks
	F.5 Impact of Graph Augmentation
	F.6 Model Performance with Different Graph Encoders
	F.7 Model Performance for Few-shot Graph Classification
	F.8 Performance Varies with Mixup Parameters
	F.9 Exploring Model Generalization Gap

	G Visualization Study

