
Benign Overfitting in Two-Layer ReLU Convolutional Neural
Networks for XOR Data

Xuran Meng 1 Difan Zou 2 Yuan Cao 1 3

Abstract

Modern deep learning models are usually highly
over-parameterized so that they can overfit the
training data. Surprisingly, such overfitting neural
networks can usually still achieve high prediction
accuracy. To study this “benign overfitting” phe-
nomenon, a line of recent works has theoretically
studied the learning of linear models and two-
layer neural networks. However, most of these
analyses are still limited to the very simple learn-
ing problems where the Bayes-optimal classifier
is linear. In this work, we investigate a class of
XOR-type classification tasks with label-flipping
noises. We show that, under a certain condition
on the sample complexity and signal-to-noise ra-
tio, an over-parameterized ReLU CNN trained by
gradient descent can achieve near Bayes-optimal
accuracy. Moreover, we also establish a matching
lower bound result showing that when the previ-
ous condition is not satisfied, the prediction accu-
racy of the obtained CNN is an absolute constant
away from the Bayes-optimal rate. Our result
demonstrates that CNNs have a remarkable capac-
ity to efficiently learn XOR problems, even in the
presence of highly correlated features.

1. Introduction
Modern deep neural networks are often highly over-
parameterized, with the number of parameters far exceeding
the number of samples in the training data. This can lead to
overfitting, where the model performs well on the training
data but poorly on unseen test data. However, an interest-
ing phenomenon, known as “benign overfitting”, has been

1Department of Statistics and Actuarial Science, University of
Hong Kong, Hong Kong 2 Department of Computer Science, Uni-
versity of Hong Kong, Hong Kong 3Department of Mathematics,
University of Hong Kong, Hong Kong. Correspondence to: Yuan
Cao <yuancao@hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

observed, where these models maintain remarkable perfor-
mance on the test data despite the potential for overfitting
(Neyshabur et al., 2019; Zhang et al., 2021). Bartlett et al.
(2020) theoretically proved this phenomenon in linear re-
gression and coined the term “benign overfitting”.

There has been a recent surge of interest in studying benign
overfitting from a theoretical perspective. A line of recent
works provided significant insights under the settings of
linear/kernel/random feature models (Belkin et al., 2019;
2020; Bartlett et al., 2020; Chatterji & Long, 2021; Hastie
et al., 2022; Montanari & Zhong, 2022; Mei & Montanari,
2022; Tsigler & Bartlett, 2023). However, the analysis of
benign overfitting in neural networks under gradient de-
scent is much more challenging due to the non-convexity in
the optimization and non-linearity of activation functions.
Nevertheless, several recent works have made significant
progress in this area. For instance, Frei et al. (2022) pro-
vided an upper bound of risk with smoothed leaky ReLU
activation when learning the log-concave mixture data with
label-flipping noise. By proposing a method named “signal-
noise decomposition”, (Cao et al., 2022) established a condi-
tion for sharp phase transition between benign and harmful
overfitting in the learning of two-layer convolutional neural
networks (CNNs) with activation functions ReLUq (q > 2).
(Kou et al., 2023) further extended the analysis to ReLU
neural networks, and established a condition for such a
sharp phase transition with more general conditions. De-
spite the recent advances in the theoretical study of benign
overfitting, the existing studies are still mostly limited to
very simple learning problems where the Bayes-optimal
classifier is linear.

In this paper, we study the benign overfitting phenomenon
of two-layer ReLU CNNs in more complicated learning
tasks where linear models will provably fail. Specifically,
we consider binary classification problems where the label
of the data is jointly determined by the presence of two
types of signals with an XOR relation. We show that for this
XOR-type of data, any linear predictor will only achieve
50% test accuracy. On the other hand, we establish tight
upper and lower bounds of the test error achieved by two-
layer CNNs trained by gradient descent, and demonstrate
that benign overfitting can occur even with the presence of
label-flipping noises.

1

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

The contributions of our paper are as follows:

1. We establish matching upper and lower bounds on the
test error of two-layer CNNs trained by gradient descent
in learning XOR-type data. Our test error upper bound
suggests that when the sample size, signal strength, noise
level, and dimension meet a certain condition, then the
test error will be nearly Bayes-optimal. This result is
also demonstrated optimal by our lower bound, which
shows that under a complementary condition, the test
error will be a constant gap away from the Bayes-optimal
rate. These results together demonstrate a similar “sharp”
phase transition between benign and harmful overfitting
of CNNs in learning XOR-type data, as previously shown
in works by Cao et al. (2022) and Kou et al. (2023).

2. Our results demonstrate that CNNs can efficiently learn
complicated data such as the XOR-type data. Notably,
the conditions on benign/harmful overfitting we derive
for XOR-type data are the same as the corresponding
conditions established for linear logistic regression (Cao
et al., 2021), two-layer fully connected networks (Frei
et al., 2022) and two-layer CNNs (Kou et al., 2023),
although these previous results on benign/harmful over-
fitting are established where the Bayes-optimal classifiers
are linear. Therefore, our results imply that two-layer
ReLU CNNs can learn XOR-type data as efficiently as
using linear logistic regression or two-layer neural net-
works to learn Gaussian mixtures. Notably, learning the
XOR-type data relies on different CNN filters to learn
different features, while in previous works, the optimal
case is in fact when all neurons are (almost) parallel to a
single signal direction. Therefore, the result in this paper
can better reveal the strength of the non-linear structure
of neural networks.

3. Our work also considers the regime when the features in
XOR-type data are highly correlated. To overcome the
technical challenges caused by the high correlation in the
training process, we introduce a novel proof technique
called “virtual sequence comparison”, to enable analyz-
ing the learning of such highly correlated XOR-type data.
We believe that this novel proof technique can find wide
applications in related studies and therefore may be of
independent interest.

A concurrent work (Xu et al., 2023) studies using two-layer
fully connected neural networks to learn an XOR problem,
where for fixed vectors u and v, the two classes of data are
generated from Gaussian clusters N(±u, I) and N(±v, I)
respectively. The authors show that gradient descent can
train a neural network to achieve benign overfitting, and
can exhibit a “grokking” phenomenon. There are several
differences between (Xu et al., 2023) and our work. First,

they assume that the “signal vectors” u and v are orthogo-
nal. In comparison, we can cover the case where the angle
between u and v is small, assuming that the signal vectors
and Gaussian noises are on different patches of the data.
Moreover, they rely on a condition that the signal strength
(∥u∥2, ∥v∥2) increases with the sample size n, while our
result indicates that if n increases, then a smaller signal
strength may be sufficient to achieve benign overfitting. In
addition, they focus on the neural networks trained in the
first

√
n-th iterations, while our results are for CNNs trained

until convergence. At last, they mainly focus on the upper
bound of test error, while our result gives matching upper
and lower bounds.

1.1. Additional Related Works

In this section, we introduce the related works in detail.

Benign overfitting in linear/kernel/random feature mod-
els. A key area of research aimed at understanding benign
overfitting involves theoretical analysis of test error in lin-
ear/kernel/random feature models. Wu & Xu (2020); Mel
& Ganguli (2021); Hastie et al. (2022) explored excess risk
in linear regression, where the dimension and sample size
are increased to infinity while maintaining a fixed ratio.
These studies showed that the risk decreases in the over-
parameterized setting relative to this ratio. In the case of
random feature models, Liao et al. (2020) delved into double
descent when the sample size, data dimension, and number
of random features maintain fixed ratios, while Adlam et al.
(2022) extended the model to include bias terms. Addi-
tionally, Misiakiewicz (2022); Xiao et al. (2022); Hu & Lu
(2022) demonstrated that the risk curve of certain kernel pre-
dictors can exhibit multiple descent concerning the sample
size and data dimension.

Benign overfitting in neural networks. In addition to theo-
retical analysis of test error in linear/kernel/random feature
models, another line of research explores benign overfitting
in neural networks. For example, Zou et al. (2021) investi-
gated the generalization performance of constant stepsize
stochastic gradient descent with iterate averaging or tail
averaging in the over-parameterized regime. Montanari &
Zhong (2022) investigated two-layer neural networks and
gave the interpolation of benign overfitting in NTK regime.
Meng et al. (2023) investigated gradient regularization in
the over-parameterized setting and found benign overfit-
ting even under noisy data. Additionally, Chatterji & Long
(2023) bounded the excess risk of deep linear networks
trained by gradient flow and showed that “randomly ini-
tialized deep linear networks can closely approximate or
even match known bounds for the minimum ℓ2-norm inter-
polant”.

Learning the XOR function. In the context of feedforward
neural networks, Hamey (1998) pointed out that there is

2

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

no existence of local minima in the XOR task. XOR-type
data is particularly interesting as it is not linearly separa-
ble, making it sufficiently complex for backpropagation
training to become trapped without achieving a global op-
timum. The analysis by Brutzkus & Globerson (2019) fo-
cused on XOR in ReLU neural networks that were specific
to two-dimensional vectors with orthogonal features. Un-
der quadratic NTK regime, Bai & Lee (2020); Chen et al.
(2020) proved learning ability of neural networks for XOR
problems.

1.2. Notation

Given two sequences xn and yn, we denote xn = O(yn) if
for some absolute constant C1 > 0 and N > 0 such that
|xn| ≤ C1|yn| for all n ≥ N . We denote xn = Ω(yn) if
yn = O(xn), and denote xn = Θ(yn) if xn = O(yn) and
xn = Ω(yn) both hold. We use Õ(·), Ω̃(·), and Θ̃(·) to hide
logarithmic factors in these notations, respectively. We use
1(·) to denote the indicator variable of an event. We say
y = poly(x1, ..., xk) if y = O(max{|x1|, ..., |xk|}D) for
some D > 0, and y = polylog(x) if y = poly(log(x)).

2. Learning XOR-Type Data with Two-Layer
CNNs

In this section, we introduce in detail the XOR-type learn-
ing problem and the two-layer CNN model considered in
this paper. We first introduce the definition of an “XOR
distribution”.
Definition 2.1. Let a,b ∈ Rd\{0} with a ⊥ b be two
fixed vectors. For µ ∈ Rd and y ∈ {±1}, we say that µ and
y are jointly generated from distribution DXOR(a,b) if the
pair (µ, y) is randomly and uniformly drawn from the set
{(a+ b,+1), (−a− b,+1), (a− b,−1), (−a+ b,−1)}.

Definition 2.1 gives a generative model of µ ∈ Rd and
y ∈ {±1} and guarantees that the samples satisfy an XOR
relation with respect to two basis vectors a,b ∈ Rd. When
d = 2, a = [1, 0]⊤ and b = [0, 1]⊤, Definition 2.1 recov-
ers the XOR data model studied by Brutzkus & Globerson
(2019). We note that Definition 2.1 is more general than the
standard XOR model, especially because it does not require
that the two basis vectors have equal lengths. Note that in
this model, µ = ±(a+b) when y = 1, and µ = ±(a−b)
when y = −1. When ∥a∥2 ̸= ∥b∥2, it is easy to see that
the two vectors a + b and a − b are not orthogonal. In
fact, the angles between ±(a+b) and ±(a−b) play a key
role in our analysis, and the classic setting where a+ b and
a− b are orthogonal is a relatively simple case covered in
our analysis.

Although DXOR(a,b) and its simplified versions are classic
models, we note that DXOR(a,b) alone may not be a suit-
able model to study the benign overfitting phenomena: the

study of benign overfitting typically requires the presence
of certain types of noises. In this paper, we consider a more
complicated XOR-type model that introduces two types of
noises: (i) the µ vector is treated as a “signal patch”, which
is hidden among other “noise patches”; (ii) a label flipping
noise is applied to the clean label y to obtain the observed
label y. The detailed definition is given as follows.

Definition 2.2. Let a,b ∈ Rd\{0} with a ⊥ b be two
fixed vectors. Then each data point (x, y) with x =
[x(1)⊤,x(2)⊤]⊤ ∈ R2d and y ∈ {±1} is generated from
D as follows:

1. µ ∈ Rd and y ∈ {±1} are jointly generated from
DXOR(a,b).

2. One of x(1),x(2) is randomly selected and then assigned
as µ; the other is assigned as a randomly generated Gaus-
sian vector ξ ∼ N(0, σ2

p ·(I−aa⊤/∥a∥2−bb⊤/∥b∥2)).

3. The observed label y ∈ {±1} is generated with P(y =
y) = 1− p, P(y = −y) = p.

Definition 2.2 divides the data input into two patches, as-
signing one of them as a signal patch and the other as a noise
patch. In the noise patch, the covariance matrix is defined
so that ξ is orthogonal to the signal vector µ, which helps
simplify our analysis. We remark that this orthogonality
assumption can be potentially removed, and readers may
refer to Section A.1 for details. This type of model has been
explored in previous studies Cao et al. (2022); Jelassi & Li
(2022); Kou et al. (2023); Meng et al. (2023). However, our
data model is much more challenging to learn due to the
XOR relation between the signal patch µ and the clean label
y. Specifically, we note that the data distributions studied in
the previous works Cao et al. (2022); Jelassi & Li (2022);
Kou et al. (2023); Meng et al. (2023) share the common
property that the Bayes-optimal classifier is linear. On the
other hand, for (x, y) ∼ D in Definition 2.2, it is easy to
see that (x, y) d

= (−x, y), and therefore

P(x,y)∼D(y · ⟨θ,x⟩ > 0) = 1/2 for any θ ∈ R2d. (2.1)

In other words, all linear predictors will fail to learn the
XOR-type data D.

We consider using a two-layer CNN to learn the XOR-type
data model D defined in Definition 2.2, where the CNN
filters go over each patch of a data input. We focus on
analyzing the training of the first-layer convolutional filters,
and fixing the second-layer weights. Specifically, define

f(W,x) =
∑
j=±1

j · Fj(Wj ,x), (2.2)

where Fj(Wj ,x) = 1
m

∑m
r=1

∑2
p=1 σ(⟨wj,r,x

(p)⟩).
Here, F+1(W+1,x) and F−1(W−1,x) denote two parts of

3

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

the CNN models with positive and negative second layer pa-
rameters respectively. Moreover, σ(z) = max{0, z} is the
ReLU activation function, m is the number of convolutional
filters in each of F+1 and F−1. For j ∈ {±1} and r ∈ [m],
wj,r ∈ Rd denotes the weight of the r-th convolutional filter
in Fj . We denote by Wj the collection of weights in Fj

and denote by W the total collection of all trainable CNN
weights.

Given n i.i.d. training data points (x1, y1), . . . , (xn, yn)
generated from D, we train the CNN model defined above
by minimizing the objective function

L(W) =
1

n

n∑
i=1

ℓ(yi · f(W,xi)),

where ℓ(z) = log(1 + exp(−z)) is the cross entropy loss
function. We use gradient descent w

(t+1)
j,r = w

(t)
j,r −

η∇wj,r
L(W(t)) to minimize the training loss L(W). Here

η > 0 is the learning rate, and w
(0)
j,r is given by Gaussian

random initialization with each entry generated as N(0, σ2
0).

Suppose that gradient descent gives a sequence of iterates
W(t). Our goal is to establish upper bounds on the training
loss L(W(t)), and study the test error of the CNN, which is
defined as

R(W(t)) := P(x,y)∼D(yf(W
(t),x) < 0).

3. Main Results
In this section, we present our main theoretical results. We
note that the signal patch µ in Definition 2.2 takes values
±(a+ b) and ±(a− b), and therefore we see that ∥µ∥22 ≡
∥a∥22 + ∥b∥22 is not random. We use ∥µ∥2 to characterize
the “signal strength” in the data model.

Our results are separated into two parts, focusing on differ-
ent regimes regarding the angle between the two vectors
±(a+ b) and ±(a− b). Note that by the symmetry of the
data model, we can assume without loss of generality that
the angle θ between a+b and a−b satisfies 0 ≤ cos θ < 1.
Our first result focuses on a “classic XOR regime” where
0 ≤ cos θ < 1/2 is a constant. This case covers the classic
XOR model where ∥a∥2 = ∥b∥2 and cos θ = 0. In our
second result, we explore an “asymptotically challenging
XOR regime” where cos θ can be arbitrarily close to 1 with
a rate up to Θ̃(1/

√
n). The two results are introduced in

two subsections respectively.

3.1. The Classic XOR Regime

In this subsection, we introduce our result on the classic
XOR regime where 0 ≤ cos θ < 1/2. Our main theorem
aims to show theoretical guarantees that hold with a prob-
ability at least 1 − δ for some small δ > 0. Meanwhile,

our result aims to show that training loss L(W(t)) will con-
verge below some small ε > 0. To establish such results,
we require that the dimension d, sample size n, CNN width
m, random initialization scale σ0, label flipping probability
p, and learning rate η satisfy certain conditions related to ε
and δ. These conditions are summarized below.

Condition 3.1. For certain ε, δ > 0, suppose that

1. The dimension d satisfies: d = Ω̃(max{n2, n∥µ∥22
σ−2
p }) · polylog(1/ε) · polylog(1/δ).

2. Training sample size n and CNN width m satisfy m =
Ω(log(n/δ)), n = Ω(log(m/δ)).

3. Random initialization scale σ0 satisfies: σ0 ≤
Õ(min{

√
n/(σpd), n∥µ∥2/(σ2

pd)}).

4. The label flipping probability p satisfies: p ≤ c for a
small enough absolute constant c > 0.

5. The learning rate η satisfies: η =
Õ([max{σ2

pd
3/2/(n2

√
m), σ2

pd/(nm)}]−1).

6. The angle θ satisfies cos θ < 1/2.

The first two conditions above on d, n, and m are mainly to
make sure that certain concentration inequality type results
hold regarding the randomness in the data distribution and
gradient descent random initialization. These conditions
also ensure that the the learning problem is in a sufficiently
over-parameterized setting, and similar conditions have been
considered a series of recent works (Chatterji & Long, 2021;
Frei et al., 2022; Cao et al., 2022; Kou et al., 2023). The con-
dition on σ0 ensures a small enough random initialization
of the CNN filters to control the impact of random initializa-
tion in a sufficiently trained CNN model. The condition on
learning rate η is a technical condition for the optimization
analysis.

The following theorem gives our main result under the clas-
sic XOR regime.

Theorem 3.2. For any ε, δ > 0, if Condition 3.1 holds,
then there exist constants C1, C2, C3 > 0, such that with
probability at least 1 − 2δ, the following results hold at
T = Ω(nm/(ηεσ2

pd)):

1. The training loss converges below ε, i.e., L(W(T)) ≤ ε.

2. If n∥µ∥42 ≥ C1σ
4
pd, then the CNN trained by gradi-

ent descent can achieve near Bayes-optimal test error:
R(W(T)) ≤ p+ exp(−C2n∥µ∥42/(σ4

pd)).

3. If n∥µ∥42 ≤ C1σ
4
pd, then the CNN trained by gradi-

ent descent can only achieve sub-optimal error rate:
R(W(T)) ≥ p+ C3.

4

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

The first result in Theorem 3.2 shows that under our problem
setting, when learning the XOR-type data with two-layer
CNNs, the training loss is guaranteed to converge to zero.
This demonstrates the global convergence of gradient de-
scent and ensures that the obtained CNN overfits the train-
ing data. Moreover, the second and the third results give
upper and lower bounds of the test error achieved by the
CNN under complimentary conditions. This demonstrates
that the upper and the lower bounds are both tight, and
n∥µ∥42 = Ω(σ4

pd) is the necessary and sufficient condition
for benign overfitting of CNNs in learning the XOR-type
data. Moreover, by Theorem 3.2 we can see that an increase
of n∥µ∥42/σ4

pd by a logarithmic factor can sometimes be
sufficient to change the test error from a constant level to
near optimal rate p + o(1), and this matches the phenom-
ena of sharp phase transition between benign and harmful
overfitting demonstrated in (Cao et al., 2022; Kou et al.,
2023).

The condition in Theorem 3.2 also matches the conditions
discovered by previous works in other learning tasks. Specif-
ically, Cao et al. (2021) studied the risk bounds of linear
logistic regression in learning sub-Gaussian mixtures, and
the risk upper and lower bounds in Cao et al. (2021) imply
exactly the same conditions for small/large test errors. More-
over, Frei et al. (2022) studied the benign overfitting phe-
nomenon in using two-layer fully connected Leaky-ReLU
networks to learn sub-Gaussian mixtures, and established
an upper bound of the test error that is the same as the upper
bound in Theorem 3.2 with σp = 1. More recently, (Kou
et al., 2023) considered a multi-patch data model similar to
the data model considered in this paper, but with the label
given by a linear decision rule based on the signal patch,
instead of the XOR decision rule considered in this paper.
Under similar conditions, the authors also established simi-
lar upper and lower bounds of the test error. These previous
works share a common nature that the Bayes-optimal clas-
sifiers of the learning problems are all linear. On the other
hand, this paper studies an XOR-type data and we show
in equation 2.1 that all linear models will fail to learn this
type of data. Moreover, our results in Theorem 3.2 suggest
that two-layer ReLU CNNs can still learn XOR-type data
as efficiently as using linear logistic regression or two-layer
neural networks to learn sub-Gaussian mixtures.

Recently, another line of works (Wei et al., 2019; Refinetti
et al., 2021; Ji & Telgarsky, 2019; Telgarsky, 2023; Barak
et al., 2022; Ba et al., 2023; Suzuki et al., 2023) studied
a type of XOR problem under more general framework of
learning “k-sparse parity functions”. Specifically, if the la-
bel y ∈ {±1} is given by a 2-sparse parity function of the
input x ∈ {±1}d, then y is essentially determined based
on an XOR operation. For learning such a function, it has
been demonstrated that kernel methods will need n = ω(d2)
samples to achieve a small test error (Wei et al., 2019; Tel-

garsky, 2023). We remark that the data model studied in
this paper is different from the XOR problems studied in
(Wei et al., 2019; Refinetti et al., 2021; Ji & Telgarsky, 2019;
Telgarsky, 2023; Barak et al., 2022; Ba et al., 2023; Suzuki
et al., 2023), and therefore the results may not be directly
comparable. Moreover, the 2-sparse parity problem has sig-
nal strength and noise level roughly equivalent to the setting
∥µ∥2 = σp = Θ(1). According to the conditions for benign
and harmful overfitting in Theorem 3.2, n = ω(d) can lead
to a small test error, which is better than the n = ω(d2)
sample complexity requirement of kernel methods. How-
ever, this n = ω(d) setting is not covered in our analysis
due to the over-parameterization requirement d = Ω̃(n2)
in Condition 3.1, and thus the comparison is not rigorous.
We believe that d = Ω̃(n2) is only a technical condition to
enable our current proof, and it may be an interesting future
work direction to further weaken this condition.

3.2. The Asymptotically Challenging XOR Regime

In Section 3.1, we precisely characterized the conditions for
benign and harmful overfitting of two-layer CNNs under
the “classic XOR regime” where cos θ < 1/2. Due to
certain technical limitations, our analysis in Section 3.1
cannot be directly applied to the case where cos θ ≥ 1/2.
In this section, we present another set of results based on
an alternative analysis that applies to cos θ ≥ 1/2, and
can even handle the case where 1 − cos θ = Θ̃(1/

√
n).

However, this alternative analysis relies on several more
strict, or different conditions compared to Condition 3.1,
which are given below.

Condition 3.3. For a certain ε > 0, suppose that

1. The dimension d satisfies: d = Ω̃(n3m3∥µ∥22σ−2
p) ·

polylog(1/ε).

2. Training sample size n and neural network width satisfy:
m = Ω(log(nd)), n = Ω(log(md)).

3. The signal strength satisfies: ∥µ∥2(1 − cos θ) ≥
Ω̃(σpm).

4. The label flipping probability p satisfies: p ≤ c for a
small enough absolute constant c > 0.

5. The learning rate η satisfies: η =
Õ([max{σ2

pd
3/2/(n2m), σ2

pd/n}]−1).

6. The angle θ satisfies: 1− cos θ = Ω̃(1/
√
n).

Compared with Condition 3.1, here we require a larger
d and also impose an additional condition on the signal
strength ∥µ∥2. This stronger assumption on d is a technical
assumption that enables our analysis for this more challeng-
ing regime. Moreover, our results are based on a specific

5

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

choice of the Gaussian random initialization scale σ0. The
results are given in the following theorem.

Theorem 3.4. Consider gradient descent with initialization
scale σ0 = nm/(σpd) · polylog(d). For any ε > 0, if
Condition 3.3 holds, then there exists constant C > 0, such
that with probability at least 1−1/polylog(d), the following
results hold at T = Ω(nm/(ηεσ2

pd)):

1. The training loss converges below ε, i.e., L(W(T)) ≤ ε.

2. If ∥µ∥42(1−cos θ)2 ≥ Ω̃(m2σ4
pd), then the CNN trained

by gradient descent can achieve near Bayes-optimal
test error: R(W(T)) ≤ p + exp{−Cn2∥µ∥42(1 −
cos θ)2/(σ6

pd
3σ2

0)} = p+ o(1).

3. If ∥µ∥42 ≤ Õ(mσ4
pd), then the CNN trained by gra-

dient descent can only achieve sub-optimal error rate:
R(W(T)) ≥ p+ C.

Theorem 3.4 demonstrates the convergence of the train-
ing loss towards zero, establishes upper and lower bounds
on the test error achieved by the CNN trained by gra-
dient descent. Additionally, we can see that there is a
gap in the conditions for benign and harmful overfitting:
benign overfitting is only theoretically guaranteed when
∥µ∥42(1 − cos θ)2 ≥ Ω̃(m2σ4

pd), while we can only rig-
orously demonstrate harmful overfitting when ∥µ∥42 ≤
Õ(mσ4

pd). Here the gap between these two conditions is
a factor of order m · (1− cos θ)−2. Therefore, our results
are relatively tight when m is small and when cos θ is a
constant away from 1 (but not necessarily smaller than 1/2
which is covered in Section 3.1). The contribution of Theo-
rem 3.4 lies in enabling theoretical analysis under this more
challenging setting when the signal angle tends to 0.

Compared with Theorem 3.2, we see that there lacks a
factor of sample size n in both conditions for benign and
harmful overfitting. We remark that this is due to our specific
choice of σ0 = nm/(σpd) ·polylog(d), which is in fact out
of the range of σ0 required in Condition 3.1. Therefore,
Theorems 3.2 and 3.4 focus on different settings, and do not
contradict each other. We believe that unifying these results
under a more general setting is an interesting future work
direction.

4. Overview of Proof Technique
In this section, we briefly discuss our key technical tools
in the proofs of Theorem 3.2 and Theorem 3.4. We define
T ∗ = η−1poly(d,m, n, ε−1) as the maximum admissible
number of iterations.

Characterization of signal learning. Our proof is based
on a careful analysis of the training dynamics of the CNN
filters. We denote u = a+b and v = a−b. Then we have

µ = ±u for data with label +1, and µ = ±v for data with
label −1. Note that the ReLU activation function is always
non-negative, which implies that the two parts of the CNN
in equation 2.2, F+1(W+1,x) and F−1(W−1,x), are both
always non-negative. Therefore by equation 2.2, we see
that F+1(W+1,x) always contributes towards a prediction
of the class +1, while F−1(W−1,x) always contributes
towards a prediction of the class −1. Therefore, in order
to achieve good test accuracy, the CNN filters w+1,r and
w−1,r r ∈ [m] must sufficiently capture the directions ±u
and ±v respectively.

In the following, we take a convolution filter w+1,r for some
r ∈ [m] as an example, to explain our analysis of learning
dynamics of the signals ±u. For each training data input xi,
we denote by µi ∈ {±u,±v} the signal patch in xi and by
ξi the noise patch in xi. By the gradient descent update of
w

(t)
+1,r, we can easily obtain the following iterative equation:

⟨w(t+1)
+1,r ,u⟩ = ⟨w(t)

+1,r,u⟩ − I1 + I2 + I3 − I4, (4.1)

where

I1 =
η

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22,

I2 =
η

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22,

I3 =
η

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ,

I4 =
η

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ,

and we denote Sµ,y = {i ∈ [n],µi = µ, yi = y} for
µ ∈ {±u,±v}, y ∈ {±1}, and ℓ

′(t)
i = ℓ′(yif(W

(t),xi)).
Based on the above equation, it is clear that when cos θ = 0,
the dynamics of ⟨w(t)

+1,r,u⟩ can be fairly easily character-
ized. Therefore, a major challenge in our analysis is to
handle the additional terms with cos θ. Intuitively, since
cos θ < 1, we would expect that the first two summation
terms in equation 4.1 are the dominating terms so that the
learning dynamics of ±u will not be significantly different
from the case cos θ = 0. However, a rigorous proof would
require a very careful comparison of the loss derivative
values ℓ′(t)i , i ∈ [n].

Loss derivative comparison. The following lemma is the
key lemma to characterize the ratio between loss derivatives
of two different data in the “classic XOR regime”.

Lemma 4.1. Under Condition 3.1, for all i, k ∈ [n] and all
t ≥ 0, it holds that ℓ′(t)i /ℓ

′(t)
k ≤ 2 + o(1).

Lemma 4.1 shows that the loss derivatives of any two
different data points can always at most have a scale
difference of a factor 2. With this result, we can see

6

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

that in equation 4.1, for any i, i′ ∈ [n], a non-zero
ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 will always dominate

ℓ
′(t)
i′ · 1{⟨w(t)

+1,r,µi′⟩ > 0}∥µ∥22 cos θ in the “classic XOR
regime” where cos θ < 1/2. This is the major motivation of
Lemma 4.1.

To study the signal learning under the “asymptotically
challenging XOR regime” where cos θ can be close to 1,
Lemma 4.1 is clearly insufficient and tighter bounds on the
ratios between loss derivatives are needed. In the following
key lemma, we introduce a key technique called “virtual
sequence comparison”.

Lemma 4.2. Let ξi, i ∈ [n] be the noise vectors in the
training data. Define

ℓ̃
′(t)
i = −1/(1 + exp{A(t)

i }),

A
(t+1)
i = A

(t)
i − η/(nm2) · ℓ̃′(t)i · |S(0)

i | · ∥ξi∥22.

Here, S(0)
i =

{
r ∈ [m] :

〈
w

(0)
yi,r, ξi

〉
> 0

}
, and A

(0)
i = 0

for all i ∈ [n]. It holds that

|ℓ̃′(t)i − ℓ
′(t)
i | = Õ(n/d),

ℓ
′(t)
i /ℓ̃

′(t)
i , ℓ̃

′(t)
i /ℓ

′(t)
i ≤ 1 + Õ(n/d),

for all t ∈ [T ∗] and i ∈ [n].

Lemma 4.2 defines “virtual sequences” ℓ̃
′(t)
i for i ∈ [n] and

t ≥ 0, which are proved to be close to ℓ
′(t)
i , i ∈ [n], t ≥ 0.

The motivation of these ℓ̃
′(t)
i results from our proof which

relies on a careful analysis of update formulas such as equa-
tion 4.1. To find the leading term in equation 4.1, it requires
a very careful comparison among the terms I1, I2, I3, I4 in
equation 4.1. The comparison is not easy: during training,
the CNN weights are updated according to the full training
data set, and therefore for t ≥ 1, ℓ′(t)i , i ∈ [n] are not in-
dependent to each other although (xi, yi), i ∈ [n] are i.i.d.
training examples. This prevents us from using tight con-
centration bounds on the averages of different ℓ′(t)i ’s. The
“virtual sequences” ℓ̃

′(t)
i ’s are introduced to overcome these

challenges. By definition, we can see that (i) they follow a
relatively clean dynamical system and are easy to analyze;
(ii) they are independent of the actual weights W(t) of the
CNN and therefore ℓ̃

′(t)
i , i ∈ [n] are independent with each

other, enabling the application of concentration inequalities.
In this way, we can first establish precise comparison results
for ℓ̃′(t)i ’s in Lemma 4.3, and then further convert the results
to precise comparison results for the actual loss derivative
terms ℓ′(t)i ’s in Lemma 4.4.

Lemma 4.3. Consider S+ and S− to be any two distinct
index sets among {S±u,±1, S±v,±1}, then with probability

at least 1− 2δ, it holds that∣∣∣∣∑i∈S+
ℓ̃
′(t)
i /

∑
i∈S−

ℓ̃
′(t)
i − |S+|/|S−|

∣∣∣∣
≤ 2Ggap(|S−|

√
|S+|+ |S−|

√
|S+|)/|S−|2,

where Ggap = 20
√
log(2n/δ)/m ·

√
log(4/δ).

Combining Lemma 4.2 with Lemma 4.3, we can show a
precise comparison among multiple

∑
i ℓ

′(t)
i ’s. The results

are given in the following lemma.

Lemma 4.4. Under Condition 3.3, if S+, S− is defined in
Lemma 4.3, and

c0n− C
√
n · log(8n/δ) ≤ |S+|, |S−|

≤ c1n+ C
√
n · log(8n/δ)

hold for some constant c0, c1, C > 0, then with probability
at least 1− 2δ, it holds that∣∣∑

i∈S+
ℓ
′(t)
i /(

∑
i∈S−

ℓ
′(t)
i)− c1/c0

∣∣
≤ 4c1C/(c20) ·

√
log(8n/δ)/n.

By Lemma 4.4, we have a precise bound for∑
i∈S+

ℓ
′(t)
i /

∑
i∈S−

ℓ
′(t)
i . The results can be plugged

into equation 4.1 to simplify the dynamical systems
of ⟨w(t)

+1,r,u⟩, r ∈ [m], which characterizes the signal
learning process during training.

Our analysis of the signal learning process is then combined
with the analysis of how much training data noises ξi have
been memorized by CNN filters, and then the training loss
and test error can both be bounded based on their definitions.
We defer the detailed analyses to the appendix.

5. Experiments
In this section, we present simulation results on synthetic
data to back up our theoretical analysis. Our experiments
cover different choices of the training sample size n, the di-
mension d, and the signal strength ∥µ∥2. In all experiments,
the test error is calculated based on 1000 i.i.d. test data.

Given dimension d and signal strength ∥µ∥2, we generate
XOR-type data according to Definition 2.2. We consider
a challenging case where the vectors a + b and a − b
has an angle θ with cos θ = 0.4. To determine a and b,
we uniformly select the directions of the orthogonal basis
vectors a and b, and determine their norms by solving the
two equations

∥a∥22 + ∥b∥22 = ∥µ∥22, ∥a∥22 − ∥b∥22 = ∥µ∥22 · cos θ.

The signal patch µ and the clean label y are then jointly gen-
erated from DXOR(a,b) in Definition 2.1. Moreover, the

7

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

(a) Test Accuracy Heatmap (b) Truncated Heatmap with 0.8 (c) Truncated Heatmap with 0.7

Figure 1. Heatmap of test accuracy under different values of n and σ4
pd/∥µ∥42. The x-axis represents the value of σ4

pd/∥µ∥42, whereas
the y-axis is sample size n. (a) displays the original heatmap of test accuracy, where high accuracy is colored blue and low accuracy
is colored yellow. (b) and (c) show the truncated heatmap of test accuracy, where accuracy higher than 0.8 or 0.7 is colored blue, and
accuracy lower than 0.8 or 0.7 is colored yellow.

(a) Test Accuracy Heatmap (b) Truncated Heatmap with 0.8 (c) Truncated Heatmap with 0.7

Figure 2. Heatmap of test accuracy under different values of d and n∥µ∥42/σ4
p. The x-axis represents the value of n∥µ∥42/σ4

p, and y-axis
represents dimension d. (a) displays the original heatmap of test accuracy, where high accuracy is represented by blue color and low
accuracy is represented by yellow. (b) and (c) show the truncated heatmap of test accuracy, where accuracy higher than 0.8 or 0.7 is
colored blue, and accuracy lower than 0.8 or 0.7 is colored yellow.

noise patch ξ is generated with standard deviation σp = 1,
and the observed label y is given by flipping y with probabil-
ity p = 0.1. We consider a CNN model following the exact
definition as in equation 2.2, where we set m = 40. To
train the CNN, we use full-batch gradient descent starting
with entry-wise Gaussian random initialization N(0, σ2

0)
and set σ0 = 0.01. We set the learning rate as 10−2 and
run gradient descent for T = 200 training epochs. Our goal
is to verify the upper and lower bounds of the test error by
plotting heatmaps of test errors under different sample sizes
n, dimensions d, and signal strengths ∥µ∥2. We consider
two settings:

1. In the first setting, we fix d = 200 and report the test
accuracy for different choices of n and ∥µ∥2. According
to Theorem 3.2, we see that the phase transition between
benign and harmful overfitting happens around the critical
point where n∥µ∥42/(σ4

pd) = Θ(1). Therefore, in the test
accuracy heat map, we use the vertical axis to denote n and
the horizontal axis to denote the value of σ4

pd/∥µ∥42. We
report the test accuracy for n ranging from 4 to 598, and the
range of ∥µ∥2 is determined to make the value of σ4

pd/∥µ∥42

be ranged from 0.1 to 101. We also report two truncated
heatmaps converting the test accuracy to binary values based
on truncation thresholds 0.8 and 0.7, respectively. The
results are given in Figure 1.

2. In the second setting, we fix n = 80 and report the test
accuracy for different choices of d and ∥µ∥2. Here, we use
the vertical axis to denote d and use the horizontal axis to
denote the value of n∥µ∥42/σ4

p. In this heatmap, we set the
range of d to be from 10 to 406, and the range of ∥∥µ∥2∥2 is
chosen so that n∥µ∥42/σ4

p ranges from 120 to 12000. Again,
we also report two truncated heatmaps converting the test
accuracy to binary values based on truncation thresholds 0.8
and 0.7, respectively. The results are given in Figure 2.

As shown in Figures 1 and 2, it is evident that an increase in
the training sample size n or the signal length ∥µ∥2 can lead
to an increase in test accuracy. On the other hand, increasing
the dimension d results in a decrease in test accuracy. These
results are clearly intuitive and also match our theoretical

1These ranges are selected to set up an appropriate range to
showcase the change of the test accuracy.

8

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

results. Furthermore, we can see from heatmaps in Figures 1
and 2 that the contours of the test accuracy are straight lines
in the spaces (σ4

pd/∥µ∥42, n) and (n∥µ∥42/σ4
p, d), and this

observation is more clearly demonstrated with the truncated
heatmaps. Therefore, we believe our experiment results here
can provide strong support for our theory. Some additional
experiment results are given in the Appendix I.

6. Conclusions
This paper focuses on studying benign overfitting in two-
layer ReLU CNNs for XOR-type data. Our results reveal a
sharp phase transition between benign and harmful overfit-
ting, and demonstrate that CNNs have remarkable capacities
to efficiently learn XOR problems even in the presence of
highly correlated features. There are several interesting di-
rections for future investigation. It is important to generalize
our analysis to deep ReLU neural networks, and it is also
interesting to study benign overfitting of neural networks in
learning unbalanced data.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. DZ is supported by NSFC 62306252 and the central
fund from HKU IDS. YC is supported by NSFC 12301657.

Impact Statement
This paper focuses on the theoretical analysis of convolu-
tional neural networks in a simple type of XOR data. We do
not anticipate any negative societal consequences caused by
the results in this paper.

References
Adlam, B., Levinson, J. A., and Pennington, J. A random

matrix perspective on mixtures of nonlinearities in high
dimensions. In International Conference on Artificial
Intelligence and Statistics, pp. 3434–3457. PMLR, 2022.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., and Wu, D.
Learning in the presence of low-dimensional structure: a
spiked random matrix perspective. In Advances in Neural
Information Processing Systems, 2023.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances

in Neural Information Processing Systems, 35:21750–
21764, 2022.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Belkin, M., Hsu, D., and Xu, J. Two models of double
descent for weak features. SIAM Journal on Mathematics
of Data Science, 2(4):1167–1180, 2020.

Brutzkus, A. and Globerson, A. Why do larger models
generalize better? a theoretical perspective via the xor
problem. In International Conference on Machine Learn-
ing, pp. 822–830. PMLR, 2019.

Cao, Y., Gu, Q., and Belkin, M. Risk bounds for over-
parameterized maximum margin classification on sub-
gaussian mixtures. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Cao, Y., Chen, Z., Belkin, M., and Gu, Q. Benign overfitting
in two-layer convolutional neural networks. Advances in
neural information processing systems, 2022.

Chatterji, N. S. and Long, P. M. Finite-sample analysis of
interpolating linear classifiers in the overparameterized
regime. Journal of Machine Learning Research, 22(1):
5721–5750, 2021.

Chatterji, N. S. and Long, P. M. Deep linear networks
can benignly overfit when shallow ones do. Journal of
Machine Learning Research, 24(117):1–39, 2023.

Chen, M., Bai, Y., Lee, J. D., Zhao, T., Wang, H., Xiong,
C., and Socher, R. Towards understanding hierarchical
learning: Benefits of neural representations. Advances
in Neural Information Processing Systems, 33:22134–
22145, 2020.

Devroye, L., Mehrabian, A., and Reddad, T. The total
variation distance between high-dimensional gaussians
with the same mean. arXiv preprint arXiv:1810.08693,
2018.

Frei, S., Chatterji, N. S., and Bartlett, P. Benign overfitting
without linearity: Neural network classifiers trained by
gradient descent for noisy linear data. In Conference on
Learning Theory, pp. 2668–2703. PMLR, 2022.

Hamey, L. G. Xor has no local minima: A case study in
neural network error surface analysis. Neural Networks,
11(4):669–681, 1998.

9

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J.
Surprises in high-dimensional ridgeless least squares in-
terpolation. Annals of statistics, 50(2):949, 2022.

Hu, H. and Lu, Y. M. Sharp asymptotics of kernel ridge
regression beyond the linear regime. arXiv preprint
arXiv:2205.06798, 2022.

Jelassi, S. and Li, Y. Towards understanding how momen-
tum improves generalization in deep learning. In Interna-
tional Conference on Machine Learning, pp. 9965–10040.
PMLR, 2022.

Ji, Z. and Telgarsky, M. Polylogarithmic width suffices
for gradient descent to achieve arbitrarily small test error
with shallow relu networks. In International Conference
on Learning Representations, 2019.

Kou, Y., Chen, Z., Chen, Y., and Gu, Q. Benign overfitting
for two-layer relu networks. In Conference on Learning
Theory, 2023.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liao, Z., Couillet, R., and Mahoney, M. W. A random matrix
analysis of random fourier features: beyond the gaussian
kernel, a precise phase transition, and the corresponding
double descent. Advances in Neural Information Process-
ing Systems, 33:13939–13950, 2020.

Mei, S. and Montanari, A. The generalization error of
random features regression: Precise asymptotics and the
double descent curve. Communications on Pure and
Applied Mathematics, 75(4):667–766, 2022.

Mel, G. and Ganguli, S. A theory of high dimensional regres-
sion with arbitrary correlations between input features
and target functions: sample complexity, multiple descent
curves and a hierarchy of phase transitions. In Interna-
tional Conference on Machine Learning, pp. 7578–7587.
PMLR, 2021.

Meng, X., Cao, Y., and Zou, D. Per-example gradient
regularization improves learning signals from noisy data.
arXiv preprint arXiv:2303.17940, 2023.

Misiakiewicz, T. Spectrum of inner-product kernel ma-
trices in the polynomial regime and multiple descent
phenomenon in kernel ridge regression. arXiv preprint
arXiv:2204.10425, 2022.

Montanari, A. and Zhong, Y. The interpolation phase transi-
tion in neural networks: Memorization and generalization
under lazy training. The Annals of Statistics, 50(5):2816–
2847, 2022.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Sre-
bro, N. The role of over-parametrization in generalization
of neural networks. In 7th International Conference on
Learning Representations, ICLR 2019, 2019.

Refinetti, M., Goldt, S., Krzakala, F., and Zdeborová, L.
Classifying high-dimensional gaussian mixtures: Where
kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, pp. 8936–
8947. PMLR, 2021.

Suzuki, T., Wu, D., Oko, K., and Nitanda, A. Feature learn-
ing via mean-field langevin dynamics: classifying sparse
parities and beyond. In Advances in Neural Information
Processing Systems, 2023.

Telgarsky, M. Feature selection with gradient descent on
two-layer networks in low-rotation regimes. In Interna-
tional Conference on Learning Representations, 2023.

Tsigler, A. and Bartlett, P. L. Benign overfitting in ridge
regression. Journal of Machine Learning Research, 24
(123):1–76, 2023.

Vershynin, R. An introduction with applications in data
science, cambridge series in statistical and probabilis-
tic mathematics. Cambridge University Press, 10:
9781108231596, 2018.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets
vs their induced kernel. Advances in Neural Information
Processing Systems, 32, 2019.

Wu, D. and Xu, J. On the optimal weighted ℓ2 regulariza-
tion in overparameterized linear regression. Advances in
Neural Information Processing Systems, 33, 2020.

Xiao, L., Hu, H., Misiakiewicz, T., Lu, Y. M., and Penning-
ton, J. Precise learning curves and higher-order scaling
limits for dot product kernel regression. In Thirty-sixth
Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Xu, Z., Wang, Y., Frei, S., Vardi, G., and Hu, W. Benign
overfitting and grokking in relu networks for xor cluster
data, 2023.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zou, D., Wu, J., Braverman, V., Gu, Q., and Kakade, S. Be-
nign overfitting of constant-stepsize sgd for linear regres-
sion. In Conference on Learning Theory, pp. 4633–4635.
PMLR, 2021.

10

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

A. Discussion of the Proof
A.1. Discussion of the Orthogonality Assumption on the Signal and Noise Vectors

Definition 2.2 assumes that ξ ∼ N(0, σ2
p · (I− aa⊤/∥a∥2 − bb⊤/∥b∥2)). This assumption implies that ξ is orthogonal to

both a and b. As a result, the noise vector is also orthogonal to the signal vectors u and v.

The assumption of the orthogonality that ξ ⊥ u and ξ ⊥ v is just for the simplicity of the proof. By the gradient descent
updating rule, after direct calculation, we can obtain

w
(t+1)
j,r = w

(t)
j,r −

ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}u+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}u

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}v − ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}v

− η

nm

n∑
i=1

ℓ
′(t)
i (jyi)1{⟨w(t)

j,r, ξi⟩ > 0}ξi. (A.1)

As we have discussed in Section 4, our theoretical analysis is based on studying the updating dynamics of the inner products
⟨w(t)

j,r,u⟩, ⟨w
(t)
j,r,v⟩ and ⟨w(t)

j,r, ξi⟩. We can take the example of the proof of benign overfitting to explain the reason we
assume that the noise vectors ξi’s are orthogonal to u,v, and how we can potentially remove this orthogonality assumption
with more complex analyses.

With the assumption that ξi’s are orthogonal to u,v, by equation A.1, we have

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22 cos θ

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22 cos θ.

We can see clearly that because of the orthogonality assumption, the last term in equation A.1 automatically disappears in
our analysis of the inner product ⟨w(t)

j,r,u⟩. This is the major motivation for us to consider such a setting.

If we remove this orthogonality assumption, then the updating formula of ⟨w(t)
j,r,u⟩ will become

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22 cos θ

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}∥u∥22 cos θ

− η

nm

n∑
i=1

ℓ
′(t)
i (jyi)1{⟨w(t)

j,r, ξi⟩ > 0}⟨u, ξi⟩, (A.2)

and we have the last additional term due to the removal of the orthogonality assumption. However, we note that for the case

11

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

of benign overfitting, by simple Gaussian tail bound, with probability at least 1− d−2 we have

|⟨u, ξi⟩| ≤ 4σp · ∥u∥2 · log(d) ≤ ∥u∥22 · (n/d)1/4 · log(d) ≪ ∥u∥22,

where the second inequality follows by the condition n∥µ∥42 ≥ C1σ
4
pd, and the last inequality follows by the assumption

that d = Ω̃(n2). Based on this, we can easily show that the last term in equation A.2 is dominated by the other terms,
and therefore the updating formula of ⟨w(t)

j,r,u⟩ for the case without orthogonality is almost the same as the case with the
orthogonality assumption. Therefore, the orthogonality assumption can be removed, with the expense of a lot of perturbation
analyses in the subsequent proof.

For the case of harmful overfitting, we remark that the orthogonality assumption is not essential either – in this case, the
goal of the proof is to demonstrate insufficient signal learning which leads to harmful overfitting. Therefore, we only need to
establish upper bounds of |⟨w(t)

j,r,u⟩|, |⟨w
(t)
j,r,v⟩|, and it is easy to show that, even with the additional Õ(σp∥u∥2) term in

equation A.2, the resulting bounds can still lead to a constant lower bound of the test error. Therefore, the orthogonality
assumption can also be removed in the proof for the case of harmful overfitting.

A.2. More Details in the Discussion of the Proof

With Lemma 4.1, it is clear for us to see the main leading term when cos θ < 1/2. For instance, when ⟨w+1,r,u⟩ > 0

and cos θ < 1/2, it is easy to see that − η
nm

∑
i∈S+u,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 is the main leading term. With the

leading term, we can thus characterize the growth of ⟨w(t)
+1,r,µi⟩. We have the following proposition.

Proposition A.1. Under Condition 3.1, the following points hold:

1. For any r ∈ [m], the inner product between u and w
(t)
−1,r satisfies

|⟨w(t)
−1,r,u⟩| ≤ 2

√
log(12m/δ) · σ0∥µ∥2 + η∥µ∥22/m.

2. For any r ∈ [m], ⟨w(t)
+1,r,u⟩ increases if ⟨w(0)

+1,r,u⟩ > 0, ⟨w(t)
+1,r,u⟩ decreases if ⟨w(0)

+1,r,u⟩ < 0. Moreover, it holds
that ∣∣⟨w(t)

+1,r,u⟩
∣∣ ≥ −2

√
log(12m/δ) · σ0∥µ∥2 + cn∥µ∥22/(σ2

pd) · log
(
ησ2

pd(t− 1)/(12nm) + 2/3
)
− η · ∥µ∥22/m.

3. For t = Ω(nm/(ησ2
pd), the bound for

∥∥w(t)
j,r

∥∥
2

is given by:

Θ
(
σ−1
p d−1/2n1/2

)
· log

(
ησ2

pd(t− 1)/(12nm) + 2/3
)
≤

∥∥w(t)
j,r

∥∥
2
≤ Θ

(
σ−1
p d−1/2n1/2

)
· log

(
2ησ2

pdt/(nm) + 1
)
.

We are prepared to investigate the test error. Consider the test data (x, y) = ([u, ξ],+1) as an example. To classify this data
correctly, it must have a high probability of f(W(t),x) > 0, where f(W(t),x) = F+1(W+1,x)− F−1(W−1,x). Both
F+1(W+1,x) and F−1(W−1,x) are always non-negative, so it is necessary for F+1(W+1,x) > F−1(W−1,x) with high
probability. The scale of F+1(W+1,x) is determined by ⟨w(t)

+1,r,u⟩ and ⟨w(t)
+1,r, ξ⟩, while the scale of F−1(W−1,x) is

determined by ⟨w(t)
−1,r,u⟩ and ⟨w(t)

−1,r, ξ⟩. Note that the scale ⟨w(t)
j,r, ξ⟩ is determined by ∥w(t)

j,r∥2. Therefore, to determine

the test accuracy, we investigated ⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,u⟩, and ∥w(t)

j,r∥2, as shown in Proposition A.1 above. Note that the

bound in conclusion 1 in Proposition A.1 also hold for ⟨w(t)
+1,r,v⟩, and the bound in conclusion 2 of Proposition A.1 still

holds for ⟨w(t)
−1,r,v⟩. Based on Proposition A.1, we can apply a standard technique which is also employed in Chatterji &

Long (2021); Frei et al. (2022); Kou et al. (2023) to establish the proof of Theorem 3.2. A detailed proof can be found in the
following sections.

B. Noise Decomposition and Iteration Expression
In this section, we give the analysis of the update rule for the noise decomposition. We provide an analysis of the noise
decomposition. The gradient ∂L(W)

∂wj,r
can be expressed as

∂L(W)

∂wj,r
=

1

n

n∑
i=1

ℓ′iyi
∂f(W,xi)

∂wj,r
=

1

nm

n∑
i=1

ℓ′i · (jyi)
m∑
r=1

2∑
p=1

1{⟨wj,r,x
(p)
i ⟩ > 0}x(p)

i .

12

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

For each training sample point xi, we define µi ∈ {±u,±v} represents the signal part in xi and ξi represents the noise in
xi. The updated rule of w(t)

j,r hence can be expressed as

w
(t+1)
j,r = w

(t)
j,r −

ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}u+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}u

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}v − ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i 1{⟨w(t)

j,r,µi⟩ > 0}v

− η

nm

n∑
i=1

ℓ
′(t)
i (jyi)1{⟨w(t)

j,r, ξi⟩ > 0}ξi,

(B.1)

where Sµ,y = {i ∈ [n],µi = µ, yi = y}. Here, µ ∈ {±u,±v}, y ∈ {±1}. For instance, S+u,−1 = {i ∈ [n],µi =
u, yi = −1}.

Similar to the previous works (Cao et al., 2022; Kou et al., 2023), we can give the decomposition of w(t)
j,r into the space of

{u,v} and {ξi}. Let

w
(t)
j,r = w

(0)
j,r + a(t) +

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi, (B.2)

where a(t) is the projection vector of w(t)
j,r onto the space span{u,v}. We have the following lemma.

Lemma B.1. Suppose that the update rule of w(t)
j,r follows equation B.1, then a(t) and ρ

(t)
j,r,i in equation B.2 exist and are

unique. Moreover, for any j ∈ {±1}, r ∈ [m] and i ∈ [n], ρ(t)j,r,i satisfies

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · jyi, ρ

(0)
j,r,i = 0.

Proof of Lemma B.1. From the update rule equation B.1, it is clear that w(t)
j,r ∈ w

(0)
j,r + span{u,v, ξi}. Therefore, a(t) and

ρ
(t)
j,r,i exist. By our data model in Definition 2.2 and the Gaussian distribution, all the vectors are linear independent, we

conclude the uniqueness of a(t) and ρ
(t)
j,r,i. As for the update rule of ρ(t)j,r,i, we have that ρ(t)j,r,i has the unique expression

ρ
(t)
j,r,i = − η

nm

t−1∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · jyi.

Therefore it holds that ρ(t+1)
j,r,i = ρ

(t)
j,r,i −

η
nmℓ

′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥22 · jyi, ρ
(0)
j,r,i = 0, which completes the proof of

Lemma B.1.

The lemma below presents an iterative expression for the coefficients.

Lemma B.2. Suppose that the update rule of w(t)
j,r follows equation B.1, then ⟨w(t)

j,r, ξi⟩ can be decomposed into

⟨w(t)
j,r, ξi⟩ = ⟨w(0)

j,r , ξi⟩+
n∑

i′=1

ρ
(t)
j,r,i′⟨ξi′ , ξi⟩/∥ξi′∥

2
2.

Further denote ρ
(t)
j,r,i := ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0). Then

⟨w(t)
j,r, ξi⟩ = ⟨w(0)

j,r , ξi⟩+
n∑

i′=1

ρ
(t)
j,r,i′⟨ξi′ , ξi⟩/∥ξi′∥

2
2 +

n∑
i′=1

ρ(t)
j,r,i′

⟨ξi′ , ξi⟩/∥ξi′∥22.

Here, ρ(t)j,r,i and ρ(t)
j,r,i

can be defined by the following iteration:

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j), ρ

(0)
j,r,i = ρ(0)

j,r,i
= 0.

13

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Lemma B.2. Note that w(t)
j,r ∈ span{u,v, {ξi}ni=1} +w

(0)
j,r , and span{u,v} ⊥ span{{ξi}ni=1}. We can express

w
(t)
j,r by

w
(t+1)
j,r = w

(0)
j,r − η

nm

t∑
s=0

n∑
i=1

ℓ
′(s)
i · σ′(⟨w(s)

j,r , ξi⟩) · jyiξi − a(t+1),

where a(t+1) ∈ span{u,v}. By {ξi}ni=1 and u,v are linearly independent with probability 1, we have that ρ(t)j,r,i has the
unique expression

ρ
(t)
j,r,i = − η

nm

t−1∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · jyi.

Now with the notation ρ
(t)
j,r,i := ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0) and the fact ℓ′(s)i < 0, we get

ρ
(t)
j,r,i = − η

nm

t−1∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

ρ(t)
j,r,i

=
η

nm

t−1∑
s=0

ℓ
(s)
i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j).

This completes the proof.

C. Concentration
In this section, we present some fundamental lemmas that illustrate important properties of data and neural network
parameters at their random initialization.

The next two lemmas provide concentration bounds on the number of candidates in specific sets. The proof is similar to that
presented in Cao et al. (2022) and Kou et al. (2023). For the convenience of readers, we provide the proof here.

Lemma C.1. Suppose that δ > 0. Then with probability at least 1− δ, for any i ∈ [n] it holds that

∣∣∣∣S(0)
i

∣∣−m/2
∣∣ ≤√m log(2n/δ)

2
.

Proof of Lemma C.1. Note that
∣∣S(0)

i

∣∣ = ∑m
r=1 1

[〈
w

(0)
yi,r, ξi

〉
> 0

]
and P

(〈
w

(0)
yi , ξi

〉
> 0

)
= 1/2, then by Hoeffding’s

inequality, with probability at least 1− δ/n, we have∣∣∣∣
∣∣S(0)

i

∣∣
m

− 1

2

∣∣∣∣ ≤
√

log(2n/δ)

2m
,

which completes the proof.

Lemma C.2. Suppose that δ > 0. Then with probability at least 1− δ,

∣∣∣∣Sµi,yi

∣∣− n(1− p)/4
∣∣ ≤√n log(8n/δ)

2

for all i satisfies µi = ±u, yi = +1 and µi = ±v, yi = −1;

∣∣∣∣Sµi,yi

∣∣− np/4
∣∣ ≤√n log(8n/δ)

2

for all i satisfies µi = ±u, yi = −1 and µi = ±v, yi = +1.

Proof of Lemma C.2. The proof is quitely similar to the Proof of Lemma C.1, and we thus omit it.

14

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

The following lemma provides us with the bounds of noise norm and their inner product. The proof is similar to that
presented in Cao et al. (2022) and Kou et al. (2023). For the convenience of readers, we provide the proof here.

Lemma C.3. Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,

σ2
pd/2 ≤ σ2

pd− C0σ
2
p ·
√
d log(4n/δ) ≤

∥∥ξi∥∥22 ≤ σ2
pd+ C0σ

2
p ·
√
d log(4n/δ) ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log (4n2/δ)

for all i, i′ ∈ [n]. Here C0 > 0 is some absolute value.

Proof. By Bernstein’s inequality, with probability at least 1− δ/(2n) we have∣∣ ∥ξi∥22 − σ2
pd
∣∣ ≤ C0σ

2
p ·
√
d log(4n/δ).

Therefore, if we set appropriately d = Ω(log(4n/δ)), we get

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2.

Moreover, clearly ⟨ξi, ξi′⟩ has mean zero. For any i, i′ with i ̸= i′, by Bernstein’s inequality, with probability at least
1− δ/

(
2n2
)

we have
|⟨ξi, ξi′⟩| ≤ 2σ2

p ·
√

d log (4n2/δ).

Applying a union bound completes the proof.

The following lemma provides a bound on the norm of the randomly initialized CNN filter w(0)
j,r , as well as the inner product

between w
(0)
j,r and u, v, and ξi. The proof is similar to that presented in Cao et al. (2022) and Kou et al. (2023). For the

convenience of readers, we provide the proof here.

Lemma C.4. Suppose that d = Ω(log(mn/δ)),m = Ω(log(1/δ)). Let µ = u or µ = v, then with probability at least
1− δ,

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2,

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(12m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(12mn/δ) · σ0σp

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

min
r

|⟨w(0)
j,r , ξi⟩| ≥ σ0σp

√
dδ/8m

for all j ∈ {±1} and i ∈ [n].

Proof of Lemma C.4. First of all, the initial weights w(0)
j,r ∼ N (0, σ0I). By Bernstein’s inequality, with probability at least

1− δ/(6m) we have
|∥w(0)

j,r ∥
2
2 − σ2

0d| ≤ Cσ2
0 ·
√

d log(12m/δ)

for some absolute value C > 0. Therefore, if we set appropriately d = Ω(log(mn/δ)), we have with probability at least
1− δ/3, for all j ∈ {±1} and r ∈ [m],

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2.

Next, it is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,µ⟩ is a Gaussian random variable with mean zero and variance σ2

0∥µ∥22.
Therefore, by Gaussian tail bound and union bound, with probability at least 1− δ/6, for all j ∈ {±1} and r ∈ [m],

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(12m/δ) · σ0∥µ∥2.

15

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Similarly we get the bound of |⟨w(0)
j,r , ξi⟩|. To prove the last inequality, by the definition of normal distribution we have

P
(
|⟨w(0)

j,r , ξi⟩| ≥ σ0σp

√
dδ/8m

)
≥ 1− δ

2m
,

therefore we have

P
(
min
r

|⟨w(0)
j,r , ξi⟩| ≥ σ0σp

√
dδ/8m

)
≥
(
1− δ

2m

)m

≥ 1− δ.

This completes the proof.

D. Coefficient Scale Analysis
In this section, we provide an analysis of the coefficient scale during the whole training procedure, and show in detail to
provide a bound on the loss derivatives. All the results presented here are based on the conclusions derived in Appendix C.
We want to emphasize that all the results in this section, as well as in the subsequent sections, are conditional on the event E ,
which refers to the event that all the results in Appendix C hold.

D.1. Preliminary Lemmas

In this section, we present a lemma, which provides a valuable insight into the behavior of discrete processes and their
continuous counterparts.

Lemma D.1. Suppose that a sequence at, t ≥ 0 follows the iterative formula

at+1 = at +
c

1 + beat
,

for some 1 ≥ c ≥ 0 and b ≥ 0. Then it holds that

xt ≤ at ≤
c

1 + bea0
+ xt

for all t ≥ 0. Here, xt is the unique solution of

xt + bext = ct+ a0 + bea0 .

Proof of Lemma D.1. Consider a continuous-time sequence xt, t ≥ 0 defined by the integral equation

xt = x0 + c

∫ t

0

dτ

1 + bexτ
, x0 = a0. (D.1)

Obviously, xt is an increasing function of t, and xt satisfies

dxt

dt
=

c

1 + bext
, x0 = a0.

By solving this equation, we have

xt + bext = ct+ a0 + bea0 .

It is obviously that the equation above has unique solution. We first show the lower bound of at. By equation D.1, we have

xt+1 = xt + c

∫ t+1

t

dτ

1 + bexτ

≤ xt + c

∫ t+1

t

dτ

1 + bext
= xt +

c

1 + bext
.

16

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Note that c ≤ 1, x+ c/(1 + bex) is an increasing function. By comparison theorem we have at ≥ xt. For the other side, we
have

at = a0 +

t∑
τ=0

c

1 + beaτ

≤ a0 +

t∑
τ=0

c

1 + bexτ

= a0 +
c

1 + bea0
+

t∑
τ=1

c

1 + bexτ

≤ a0 +
c

1 + bea0
+ c

∫ t

0

dτ

1 + bexτ

= a0 +
c

1 + bea0
+

∫ t

0

dxτ = a0 +
c

1 + bea0
+ xt − x0

=
c

1 + bea0
+ xt.

Here, the first inequality is by at ≥ xt, the second inequality is by the definition of integration, the third equality is by
dxt

dt = c
1+bext

. We thus complete the proof.

D.2. Scale in Coefficients

In this section, we start our analysis of the scale in the coefficients during the training procedure.

We give the following proposition. Here, we remind the readers that SNR = ∥µ∥2/(σp

√
d).

Proposition D.2. For any 0 ≤ t ≤ T ∗, it holds that

0 ≤ |⟨w(t)
j,r,u⟩|, |⟨w

(t)
j,r,v⟩| ≤ 8n · SNR2 log(T ∗), (D.2)

0 ≤ ρ
(t)
j,r,i ≤ 4 log(T ∗), 0 ≥ ρ(t)

j,r,i
≥ −2

√
log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗) (D.3)

for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

We use induction to prove Proposition D.2. We introduce several technical lemmas which are applied into the inductive
proof of Proposition D.2.

Lemma D.3. Under Condition 3.1, suppose equation D.2 and equation D.3 hold at iteration t. Then, for all r ∈ [m], j ∈
{±1} and i ∈ [n], it holds that

∣∣〈w(t)
j,r −w

(0)
j,r , ξi

〉
− ρ(t)

j,r,i

∣∣ ≤ 16

√
log(4n2/δ)

d
n log(T ∗), j ̸= yi,∣∣〈w(t)

j,r −w
(0)
j,r , ξi

〉
− ρ

(t)
j,r,i

∣∣ ≤ 16

√
log(4n2/δ)

d
n log(T ∗), j = yi.

Proof of Lemma D.3. For j ̸= yi and any t ≥ 0, we have ρ
(t)
j,r,i′ = 0 for all i′ ∈ [n], and so

〈
w

(t)
j,r −w

(0)
j,r , ξi

〉
=

n∑
i′=1

ρ
(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉
+

n∑
i′=1

ρ(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉
=

n∑
i′=1

ρ(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉
= ρ(t)

j,r,i
+
∑
i′ ̸=i

ρ(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉
.

17

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Note that we have ∣∣∣∣∑
i′ ̸=i

ρ(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉∣∣∣∣ ≤∑
i′ ̸=i

∣∣ρ(t)
j,r,i′

∣∣∥∥ξi′∥∥−2

2
·
∣∣〈ξi′ , ξi〉∣∣

≤4

√
log(4n2/δ)

d

∑
i′ ̸=i

∣∣ρ(t)
j,r,i′

∣∣ = 4

√
log(4n2/δ)

d

∑
i′ ̸=i

∣∣ρ(t)
j,r,i′

∣∣
≤16

√
log(4n2/δ)

d
n log(T ∗),

where the first inequality is by triangle inequality; the second inequality is by Lemma C.3; the last inequality is by
equation D.3 that |ρ(t)

j,r,i
| ≤ log(T ∗). We complete the proof for j ̸= yi.

Similarly, for j = yi we have 〈
w

(t)
j,r −w

(0)
j,r , ξi

〉
= ρ(t)

j,r,i
+
∑
i′ ̸=i

ρ(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉
,

and also ∣∣∣∣∑
i′ ̸=i

ρ
(t)
j,r,i′

∥∥ξi′∥∥−2

2
·
〈
ξi′ , ξi

〉∣∣∣∣ ≤∑
i′ ̸=i

∣∣ρ(t)j,r,i′

∣∣∥∥ξi′∥∥−2

2
·
∣∣〈ξi′ , ξi〉∣∣

≤4

√
log(4n2/δ)

d

∑
i′ ̸=i

∣∣ρ(t)j,r,i′

∣∣ = 4

√
log(4n2/δ)

d

∑
i′ ̸=i

∣∣ρ(t)j,r,i′

∣∣
≤16

√
log(4n2/δ)

d
n log(T ∗),

where the first inequality is by triangle inequality; the second inequality is by Lemma C.3; the last inequality is by
equation D.3. We complete the proof for j = yi.

Now, we define

κ = 56

√
log(4n2/δ)

d
n log(T ∗) + 10

√
log(12mn/δ) · σ0σp

√
d+ 64n · SNR2 log(T ∗). (D.4)

By Condition 3.1, it is easy to verify that κ is a negligible term. The lemma below gives us a direct characterization of the
neural networks output with respect to the time t.

Lemma D.4. Under Condition 3.1, suppose equation D.2 and equation D.3 hold at iteration t. Then, for all r ∈ [m] it
holds that

F−yi(W
(t)
−yi

,xi) ≤
κ

2
, −κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ Fyi

(
W(t)

yi
,xi

)
≤ 1

m

m∑
r=1

ρ
(t)
yi,r,i

+
κ

2
.

Here, κ is defined in equation D.4.

Proof of Lemma D.4. Without loss of generality, we may assume yi = +1. According to Lemma D.3, we have

F−yi

(
W

(t)
−yi

,xi

)
=

1

m

m∑
r=1

[
σ
(〈
w

(t)
−yi,r,v

〉)
+ σ

(〈
w

(t)
−yi,r, ξi

〉)]
≤ 32n · SNR2 log(T ∗) +

1

m

m∑
r=1

σ

(〈
w

(0)
−yi,r, ξi

〉
+

n∑
i=1

ρ(t)−yi,r,i
· 16
√

log(4n2/δ)

d

)

≤ 32n · SNR2 log(T ∗) + 2
√

log(12mn/δ) · σ0σp

√
d+ 16n

√
log(4n2/δ)

d
log(T ∗)

≤ κ/2.

18

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Here, the first inequality is by equation D.2, and the second inequality is due to equation D.3, Lemma C.4 and Condition 3.1.
The last inequality is by the definition of κ in equation D.4.

For the analysis of Fyi

(
W

(t)
yi ,xi

)
, we first have

σ
(〈
w(t)

yi,r, ξi
〉)

≥
〈
w(t)

yi,r, ξi
〉

≥
〈
w(0)

yi,r, ξi
〉
+ ρ

(t)
yi,r,i

− 16n

√
log(4n2/δ)

d
log(T ∗)

≥ ρ
(t)
yi,r,i

− 2
√
log(12mn/δ) · σ0σp

√
d− 16n

√
log(4n2/δ)

d
log(T ∗), (D.5)

where the second inequality is by Lemma D.3, the third inequality comes from Lemma C.4. For the other side, we have

σ
(〈
w(t)

yi,r, ξi
〉)

≤
∣∣〈w(t)

yi,r, ξi
〉∣∣

≤
∣∣〈w(0)

yi,r, ξi
〉∣∣+ ρ

(t)
yi,r,i

+ 16n

√
log(4n2/δ)

d
log(T ∗)

≤ 2
√
log(12mn/δ) · σ0σp

√
d+ ρ

(t)
yi,r,i

+ 16n

√
log(4n2/δ)

d
log(T ∗). (D.6)

Here, the second inequality is by triangle inequality and the last inequality is by Lemma C.4. Moreover, it is clear that for
µi ∈ {±u,±v},

0 ≤ 1

m

m∑
r=1

σ
(〈
w

(t)
j,r,µi

〉)
≤ 32n · SNR2 log(T ∗),

combined this with equation D.5 and equation D.6, we have

−κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ Fyi

(
W(t)

yi
,xi

)
≤ 1

m

m∑
r=1

ρ
(t)
yi,r,i

+
κ

2
.

This completes the proof.

Lemma D.5. Under Condition 3.1, suppose equation D.2 and equation D.3 hold at iteration t. Then, for all i ∈ [n], it holds
that

−κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ yif(W
(t),xi) ≤

κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

.

Here, κ is defined in equation D.4.

Proof of Lemma D.5. Note that

yif(W
(t),xi) = Fyi

(
W(t)

yi
,xi

)
− F−yi

(
W

(t)
−yi

,xi

)
,

the conclusion directly holds from Lemma D.4

Lemma D.6. Under Condition 3.1, suppose equation D.2 and equation D.3 hold for any iteration t ≤ T . Then for any
t ≤ T , it holds that:

1. 1/m ·
∑m

r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
≤ log(2) + 2κ+ 4

√
log(2n/δ)/m for all i, k ∈ [n].

2. Define S
(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

and S
(t)
j,r :=

{
i ∈ [n] : yi = j,

〈
w

(t)
j,r, ξi

〉
> 0
}

. For all i ∈ [n], r ∈ [m]

and j ∈ {±1}, S(0)
i ⊆ S

(t)
i , S(0)

j,r ⊆ S
(t)
j,r .

19

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

3. Define c =
2ησ2

pd

nm , c =
ησ2

pd

3nm , b = e−κ and b = eκ, and let xt, xt be the unique solution of

xt + bext = ct+ b,

xt + bext = ct+ b,

it holds that

xt ≤
1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ xt + c/(1 + b),
1

1 + bext
≤ −ℓ

′(t)
i ≤ 1

1 + bext

for all r ∈ [m] and i ∈ [n].

Proof of Lemma D.6. We use induction to prove this lemma. All conclusions hold naturally when t = 0. Now, suppose that
there exists t̃ ≤ T such that five conditions hold for any 0 ≤ t ≤ t̃− 1, we prove that these conditions also hold for t = t̃.

We prove conclusion 1 first. By Lemma D.5, we easily see that∣∣∣∣yi · f(W(t),xi

)
− yk · f

(
W(t),xk

)
− 1

m

m∑
r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]∣∣∣∣ ≤ κ. (D.7)

Recall the update rule for ρ(t)j,r,i

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22

Hence we have

1

m

m∑
r=1

ρ
(t+1)
j,r,i =

1

m

m∑
r=1

ρ
(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

m

m∑
r=1

1
(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22

for all j ∈ {±1}, r ∈ [m], i ∈ [n] and t ∈ [T ∗]. Also note that S(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

, we have

1

m

m∑
r=1

[
ρ
(t+1)
yi,r,i

− ρ
(t+1)
yk,r,k

]
=

1

m

m∑
r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
− η

nm2
·
(∣∣S(t)

i

∣∣ℓ′(t)i ·
∥∥ξi∥∥22 − ∣∣S(t)

k

∣∣ℓ′(t)k ·
∥∥ξk∥∥22).

We prove condition 1 in two cases: 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ log(2) + 2κ + 3

√
log(2n/δ)/m and

1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≥ log(2) + 2κ+ 3

√
log(2n/δ)/m.

When 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ log(2) + 2κ+ 3

√
log(2n/δ)/m, we have

1

m

m∑
r=1

[
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

]
=

1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
− η

nm2
·
(∣∣S(t̃−1)

i

∣∣ℓ′(t̃−1)
i ·

∥∥ξi∥∥22 − ∣∣S(t̃−1)
k

∣∣ℓ′(t̃−1)
k ·

∥∥ξk∥∥22)
≤ 1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
+

η

nm
∥ξi∥22

≤ log(2) + 3
√

log(2n/δ)/m+ 2κ+
√
log(2n/δ)/m

≤ log(2) + 4
√
log(2n/δ)/m+ 2κ.

Here, the first inequality is by
∣∣S(t̃−1)

i

∣∣ ≤ m and −ℓ
′(t)
i ≤ 1, and the second inequality is by the condition of η in

Condition 3.1.

20

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

For when 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≥ log(2) + 2κ+ 3

√
log(2n/δ)/m, from equation D.7 we have

yi · f
(
W(t̃−1),xi

)
− yk · f

(
W(t̃−1),xk

)
≥ log(2) + 3

√
log(2n/δ)/m,

hence

ℓ
′(t̃−1)
i

ℓ
′(t̃−1)
k

≤ exp
(
yk · f

(
W(t̃−1),xk

)
− yi · f

(
W(t̃−1),xi

))
≤ exp

(
− κ− 3

√
log(2n/δ)/m

)
/2. (D.8)

Also from condition 2 we have
∣∣S(t̃−1)

i

∣∣ = ∣∣S(0)
i

∣∣ and
∣∣S(t̃−1)

k

∣∣ = ∣∣S(0)
k

∣∣, we have∣∣S(t̃−1)
i

∣∣ℓ′(t̃−1)
i

∥∥ξi∥∥2∣∣S(t̃−1)
k

∣∣ℓ′(t̃−1)
k

∥∥ξi∥∥2 ≤
∣∣S(t)

i

∣∣ℓ′(t̃−1)
i

∥∥ξi∥∥2∣∣S(0)
k

∣∣ℓ′(t̃−1)
k

∥∥ξi∥∥2
≤ m

(0.5m−
√
2 log(2n/δ)m)

· e
−3

√
log(2n/δ)/m

2
· e−κ ·

1 + C
√
log(4n/δ)/d

1− C
√
log(4n/δ)/d

< 1 ∗ 1 = 1.

Here, the first inequality is by Lemma C.1, equation D.8 and Lemma C.3; the second inequality is by

1

1−
√
2x

· e−3x < 1 when 0 < x < 0.1, κ ≫ 2C
√
log(4n/δ)/d.

By Lemma C.3, under event E , we have∣∣∥∥ξi∥∥22 − d · σ2
p

∣∣ ≤ C0σ
2
p ·
√

d log(4n/δ),∀i ∈ [n].

Note that d = Ω(log(4n/δ)) from Condition 3.1, it follows that∣∣S(t̃−1)
i

∣∣(− ℓ
′(t̃−1)
i

)
·
∥∥ξi∥∥22 <

∣∣S(t̃−1)
k

∣∣(− ℓ
′(t̃−1)
k

)
·
∥∥ξk∥∥22.

We conclude that

1

m

m∑
r=1

[
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

]
≤ 1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ log(2) + 2κ+ 4

√
log(2n/δ)/m.

Hence conclusion 1 holds for t = t̃.

To prove conclusion 2, we prove S
(0)
i ⊆ S

(t)
i , and it is quite similar to prove S

(0)
j,r = S

(t)
j,r . Recall the update rule of

⟨w(t)
j,r, ξi⟩, for r ∈ S

(0)
i we have〈

w(t̃)
yi,r, ξi

〉
=
〈
w(t̃−1)

yi,r , ξi
〉
− η

nm
· ℓ(t̃−1)

i ·
∥∥ξi∥∥22︸ ︷︷ ︸

I3

− η

nm
·
∑
i′ ̸=i

ℓ
(t̃−1)
i′ · σ′(〈w(t̃−1)

yi,r , ξi′
〉)

·
〈
ξi′ , ξi

〉
︸ ︷︷ ︸

I4

.

Lemma C.3 shows that

−I3 ≥
∣∣ℓ(t̃−1)

i

∣∣σ2
pd/2,

and

|I4| ≤
∑
i′ ̸=i

∣∣ℓ(t̃−1)
i′

∣∣ · σ′(〈w(t̃−1)
yi,r , ξi′

〉)
·
∣∣〈ξi′ , ξi〉∣∣

≤
∑
i′ ̸=i

∣∣ℓ(t̃−1)
i′

∣∣ · 2σ2
p ·
√

d log(4n2/δ) ≤ 2n
∣∣ℓ(t̃−1)

i

∣∣ · 2σ2
p ·
√

d log(4n2/δ),

21

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

where the first inequality is by triangle inequality, the second inequality is by Lemma C.3 and the last inequality is by
induction hypothesis of condition 3 at t = t̃− 1. By Condition 3.1, we can see −I3 ≥ |I4|, hence we have〈

w(t̃)
yi,r, ξi

〉
≥
〈
w(t̃−1)

yi,r , ξi
〉
> 0,

which indicates that

S
(0)
i ⊆ S

(t̃−1)
i ⊆ S

(t̃)
i .

We prove that

S
(0)
i ⊆ S

(t̃)
i .

As for the last conclusion, recall that

1

m

m∑
r=1

ρ
(t+1)
yi,r,i

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

− η

nm
· ℓ′(t)i · 1

m

m∑
r=1

1
(〈
w(t)

yi,r, ξi
〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22 ,

by condition 2 for t ∈ [t̃− 1], we have

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

=
1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

− η

nm
· 1

1 + exp (yif(W(t̃),xi))
· |S

(0)
i |
m

· ∥ξi∥22 ,

then Lemma C.1, Lemma C.3 and and Lemma D.5 give that

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

≤ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
η

nm
· 1

1 + e−κ · e
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

· ∥ξi∥22

≤ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
c

1 + be
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

,

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

≥ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
η

nm
·
1/2−

√
2 log(2n/δ)/m

1 + eκ · e
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

· ∥ξi∥22

≥ 1

m

m∑
r=1

ρ(t̃−1)
yi,r,i

+
c

1 + be
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

.

Combined the two inequalities with Lemma D.1 completes the first result in the last conclusion. As for the second result, by
Lemma D.5, it directly holds from

1

m

m∑
r=1

ρ
(t)
yi,r,i

− κ/2 ≤ yif(W
(t),xi) ≤

1

m

m∑
r=1

ρ
(t)
yi,r,i

+ κ/2,

c ≤ κ/2.

This completes the proof of Lemma D.6.

Lemma D.7 (Restatement of Lemma 4.1). Under Condition 3.1, suppose equation D.2 and equation D.3 hold at iteration t.
Then, for all i, k ∈ [n], it holds that

ℓ
′(t)
i /ℓ

′(t)
k ≤ 2 · e3κ+4

√
log(2n/δ)/m = 2 + o(1).

Proof of Lemma D.7. By Lemma D.6, we have 1/m ·
∑m

r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
≤ log(2) + 2κ + 4

√
log(2n/δ)/m. The

conclusion follows directly from Lemma D.5 and ℓ
′(t)
i /ℓ

′(t)
k ≤ exp{yif(W(t),xi)− ykf(W

(t),xk)}.

We are now ready to prove Proposition D.2.

22

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Proposition D.2. Our proof is based on induction. The results are obvious at t = 0. Suppose that there exists
T̃ ≤ T ∗ such that the results in Proposition D.2 hold for all 0 ≤ t ≤ T̃ − 1. We target to prove that the results hold at t = T̃ .

We first prove that equation D.3 holds. For ρ(t)
j,r,i

, recall that ρ(t)
j,r,i

= 0 when j = yi, hence we only need to consider the case

j ̸= yi. Easy to see ρ(t)
j,r,i

≤ 0. When ρ(T̃−1)
j,r,i

≤ −2
√
log(12mn/δ) · σ0σp

√
d− 16

√
log(4n2/δ)

d n log(T ∗), by Lemma D.3
we can see

⟨w(T̃−1)
j,r , ξi⟩ ≤ ρ(T̃−1)

j,r,i
+ ⟨w(0)

j,r , ξi⟩+ 16

√
log(6n2/δ)

d
n log(T ∗) ≤ 0,

hence

ρ(T̃)
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
· ℓ′(T̃−1)

i · 1(⟨w(T̃−1)
j,r , ξi⟩ ≥ 0) · 1(yi = −j)∥ξi∥22

= ρ(T̃−1)
j,r,i

≥ −2
√
log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗).

Here the last inequality is by induction hypothesis. When ρ(T̃−1)
j,r,i

≥ −2
√

log(12mn/δ) · σ0σp

√
d −

16
√

log(4n2/δ)
d n log(T ∗), we have

ρ(T̃)
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
· ℓ′(T̃−1)

i · 1
(〈
w

(T̃−1)
j,r , ξi

〉
≥ 0
)
· 1
(
yi = −j

)∥∥ξi∥∥22
≥ −2

√
log(12mn/δ) · σ0σp

√
d− 16

√
log(4n2/δ)

d
n log(T ∗)−

3ησ2
pd

2nm

≥ −2
√

log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗),

where the first inequality is by 0 < −ℓ′(T̃−1) ≤ 1 and ∥ξi∥22 ≤ 3σ2
pd/2, the second inequality is by 16

√
log(4n2/δ)/d ·

n log(T ∗) ≥ 3ησ2
nd/2nm by the condition for η in Condition 3.1. We complete the proof that ρ(t)

j,r,i
≥ −2

√
log(12mn/δ) ·

σ0σp

√
d− 32

√
log(4n2/δ)

d n log(T ∗). For ρ(t)j,r,i, it is easy to see ρ
(t)
j,r,i = 0 when j ̸= yi, hence we only consider the case

j = yi. Recall the update rule

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22 .

When j = yi, we can easily see that ρ(t)j,r,i increases when t increases. Assume that tj,r,i be the last time such that

ρ
(t)
j,r,i ≤ 2 log(T ∗), then for ρ(T̃)

j,r,i we have

ρ
(T̃)
j,r,i = ρ

(tj,r,i)
j,r,i − η

nm
· ℓ′(tj,r,i)i · 1

(〈
w

(tj,r,i)
j,r , ξi

〉
≥ 0
)
· 1
(
yi = j

)∥∥ξi∥∥22
−

∑
tj,r,i<t<T̃

η

nm
· ℓ(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)∥∥ξi∥∥22
≤ 2 log(T ∗) +

3ησ2
pd

2nm
−

∑
tj,r,i<t<T̃

3ησ2
pd

2nm
· ℓ(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)
≤ 3 log(T ∗)−

∑
tj,r,i<t<T̃

3ησ2
pd

2nm
· ℓ(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)
.

Here, the first inequality is by −ℓ
′(tj,r,i)
i ≤ 1 and ∥ξi∥22 ≤ 3σ2

pd/2 in Lemma C.3; the second inequality is by
3ησ2

pd

2nm ≤
2 log(T ∗) which comes directly from the condition for η in Condition 3.1. The only thing remained is to prove that

−
∑

tj,r,i<t<T̃

3ησ2
pd

2nm
· ℓ(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)
≤ log(T ∗).

23

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

For j = yi, we have that

〈
w

(t)
j,r, ξi

〉
≥
〈
w

(0)
j,r , ξi

〉
+ ρ

(t)
j,r,i − 16

√
log(4n2/δ)

d
n log(T ∗)

≥ −2
√
log(12mn/δ) · σ0σp

√
d+ 2 log(T ∗)− 16

√
log(4n2/δ)

d
n log(T ∗)

≥ 1.6 log(T ∗),

where the first inequality is by Lemma D.3, and the second inequality is by ρ
(t)
j,r,i > 2 log(T ∗) and Lemma C.4, and the third

inequality is by 2
√
log(12mn/δ) · σ0σp

√
d+

√
log(16n2/δ)/dn log(T ∗) ≪ 0.4 log(T ∗). Then it holds that∣∣ℓ′(t)i

∣∣ = 1

1 + exp
{
yi ·
[
F+1

(
W

(t)
+1,xi

)
− F−1

(
W

(t)
−1,xi

)]}
≤ exp

(
− yiFyi

(
W(t)

yi
,xi

)
+ 0.1

)
≤ exp

(
− 1/m ·

m∑
r=1

σ
(〈
w(t)

yi,r, ξi
〉)

+ 0.1
))

≤ 2 exp(−1.6 log(T ∗)). (D.9)

Here, the first inequality is by Lemma D.4 that F−yi

(
W

(t)
−yi

,xi

)
≤ 0.1; the last inequality is by

〈
w

(t)
yi,r, ξi

〉
≥ 1.6 log(T ∗).

By equation D.9, we have that

−
∑

tj,r,i<t<T̃

3ησ2
pd

2nm
· ℓ(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)
≤

∑
tj,r,i<t<T̃

3ησ2
pd

2nm
· exp(−1.6 log(T ∗)) · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1
(
yi = j

)
≤ T̃ ·

3ησ2
pd

2nm
· exp(−1.6 log(T ∗))· ≤ T ∗(

T ∗
)1.6 ·

3ησ2
pd

2nm
≤ 1 ≤ log(T ∗).

The last second inequality is by the condition for η in Condition 3.1. We complete the proof that 0 ≤ ρ
(t)
j,r,i ≤ 4 log(T ∗).

We then prove that equation D.2 holds. To get equation D.2, we prove a stronger conclusion that there exists a i∗ ∈ [n] with
yi∗ = j, such that for any 0 ≤ t ≤ T ∗,

|⟨w(t)
j,r,u⟩|/ρ

(t)
j,r,i∗ ≤ 8nSNR2, (D.10)

and i∗ can be taken as any sample from S
(0)
j,r . It is obviously true when t = 1. Suppose that it is true for 0 ≤ t ≤ T̃ − 1, we

aim to prove that equation D.10 holds at t = T̃ . Recall that

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ.

We have |S+u,+1 ∪ S−u,−1|+ |S−v,−1 ∪ S+v,+1| ≤ n/2 + Õ(
√
n), hence∣∣⟨w(T̃)

j,r ,u⟩
∣∣ ≤ ∣∣⟨w(T̃−1)

j,r ,u⟩
∣∣+ 2(1 + o(1)) ·

∣∣ℓ′(T̃−1)
i∗

∣∣ · η∥µ∥22(1 + cos θ)

2m
. (D.11)

24

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Here, we utilize the third conclusion in the induction hypothesis. Moreover, for ρ(T̃)
j,r,i we have that ⟨wT̃−1

yi∗ ,r
, ξi∗⟩ ≥ 0 by the

condition in Lemma D.6, therefore it holds that

ρ
(T̃)
j,r,i∗ = ρ

(T̃−1)
j,r,i∗ − η

nm
· ℓ′(T̃−1)

i∗ · ∥ξi∗∥22 ≥ ρ
(T̃−1)
j,r,i∗ − η

nm
· ℓ′(T̃−1)

i∗ · σ2
pd/2. (D.12)

Hence we have ∣∣⟨w(T̃)
j,r ,u⟩

∣∣
ρ
(T̃)
j,r,i∗

≤
∣∣⟨w(T̃−1)

j,r ,u⟩
∣∣+ 2 ·

∣∣ℓ′(T̃−1)
i∗

∣∣ · 2η∥µ∥2
2

m

ρ
(T̃−1)
j,r,i∗ − η

nm · ℓ′(T̃−1)
i∗ · σ2

pd/2

≤ max

{∣∣⟨w(T̃−1)
j,r ,u⟩

∣∣
ρ
(T̃−1)
j,r,i∗

,
4
∣∣ℓ′(T̃−1)

i∗

∣∣∥µ∥22∣∣ℓ′(T̃−1)
i∗

∣∣σ2
pd/(2n)

}
≤ 8nSNR2,

where the first inequality is by equation D.11 and equation D.12, the second inequality is by condition 3 in Lemma D.6
and (a1 + a2)/(b1 + b2) ≤ max(a1/b1, a2/b2) for a1, a2, b1, b2 > 0, and the third inequality is by induction hypothesis.

We hence completes the proof that
∣∣⟨w(T̃)

j,r ,u⟩
∣∣ ≤ 32n · SNR2 log(T ∗). The proof of

∣∣⟨w(T̃)
j,r ,v⟩

∣∣ ≤ 32n · SNR2 log(T ∗) is
exactly the same, and we thus omit it.

We summarize the conclusions above and thus have the following proposition:

Proposition D.8. If Condition 3.1 holds, then for any 0 ≤ t ≤ T ∗, j ∈ {±1}, r ∈ [m] and i ∈ [n], it holds that

0 ≤ |⟨w(t)
j,r,u⟩|, |⟨w

(t)
j,r,v⟩| ≤ 32n · SNR2 log(T ∗),

0 ≤ ρ
(t)
j,r,i ≤ 4 log(T ∗), 0 ≥ ρ(t)

j,r,i
≥ −2

√
log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗),

and for any i∗ ∈ S
(0)
j,r it holds that

|⟨w(t)
j,r,u⟩|/ρ

(t)
j,r,i∗ ≤ 8n · SNR2, |⟨w(t)

j,r,v⟩|/ρ
(t)
j,r,i∗ ≤ 8n · SNR2.

Moreover, the following conclusions hold:

1. 1/m ·
∑m

r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
≤ log(2) + 2κ+ 4

√
log(2n/δ)/m for all i, k ∈ [n].

2. −κ
2 + 1

m

∑m
r=1 ρ

(t)
yi,r,i

≤ yif(W
(t),xi) ≤ κ

2 + 1
m

∑m
r=1 ρ

(t)
yi,r,i

for any i ∈ [n]. For any i, k ∈ [n], it holds that

ℓ
′(t)
i /ℓ

′(t)
k ≤ 2 + o(1).

3. Define S
(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

and S
(t)
j,r :=

{
i ∈ [n] : yi = j,

〈
w

(t)
j,r, ξi

〉
> 0
}

. For all i ∈ [n], r ∈ [m]

and j ∈ {±1}, S(0)
i ⊆ S

(t)
i , S(0)

j,r ⊆ S
(t)
j,r .

4. Define c =
2ησ2

pd

nm , c =
ησ2

pd

3nm , b = e−κ and b = eκ, and let xt, xt be the unique solution of

xt + bext = ct+ b,

xt + bext = ct+ b,

it holds that

xt ≤
1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ xt + c/(1 + b),
1

1 + bext
≤ −ℓ

′(t)
i ≤ 1

1 + bext

for all r ∈ [m] and i ∈ [n].

The results in Proposition D.8 are deemed adequate for demonstrating the convergence of the training loss, and we shall
proceed to establish in Section F. It is worthy noting that the gap between xt and xt is small. Indeed, we have the following
lemma:

25

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Lemma D.9. It is easy to check that

log

(
ησ2

pd

8nm
t+

2

3

)
≤ xt ≤ log

(
2ησ2

pd

nm
t+ 1

)
,

log

(
ησ2

pd

8nm
t+

2

3

)
≤ xt ≤ log

(
2ησ2

pd

nm
t+ 1

)
.

Proof of Lemma D.9. We can easily obtain the inequality by

bext ≤ xt + bext ≤ 1.5bext , bext ≤ xt + bext ≤ 1.5bext ,

and ησ2
pd/(8nm) ≤ c/b ≤ 2ησ2

pd/(nm), ησ2
pd/(8nm) ≤ c/b ≤ 2ησ2

pd/(nm).

E. Signal Learning and Noise Memorization Analysis
In this section, we apply the precise results obtained from previous sections into the analysis of signal learning and noise
memorization.

E.1. Signal Learning

We start the analysis of signal learning. we have following lemma:
Lemma E.1 (Conclusion 1 in Proposition A.1). Under Condition 3.1, the following conclusions hold:

1. If ⟨w(0)
+1,r,u⟩ > 0(< 0), then ⟨w(t)

+1,r,u⟩ strictly increases (decreases) with t ∈ [T ∗];

2. If ⟨w(0)
−1,r,v⟩ > 0(< 0), then ⟨w(t)

−1,r,v⟩ strictly increases (decreases) with t ∈ [T ∗];

3. |⟨w(t)
+1,r,v⟩| ≤ |⟨w(0)

+1,r,v⟩|+ η∥µ∥22/m, |⟨w(t)
−1,r,u⟩| ≤ |⟨w(0)

−1,r,u⟩|+ η∥µ∥22/m for all t ∈ [T ∗] and r ∈ [m].

Moreover, it holds that

⟨w(t+1)
+1,r ,u⟩ ≥ ⟨w(t)

+1,r,u⟩ −
cη∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ > 0;

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
cη∥µ∥22
nm

·
∑

i∈S−u,+1

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
cη∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
cη∥µ∥22
nm

·
∑

i∈S−v,−1

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ < 0

for some constant c > 0. Similarly, it also holds that

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩ −
Cη∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ > 0;

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
Cη∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
Cη∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
Cη∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ < 0,

for some constant C > 0.

26

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Lemma E.1. Recall that the update rule for inner product can be written as

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ,

and

⟨w(t+1)
j,r ,v⟩ = ⟨w(t)

j,r,v⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22.

When ⟨w(0)
+1,r,u⟩ > 0, assume that for any 0 ≤ t ≤ T̃ − 1 such that ⟨w(t)

+1,r,u⟩ > 0, there are two cases for ⟨w(t)
+1,r,v⟩.

When ⟨w(T̃−1)
+1,r ,v⟩ < 0, the simplified update rule of ⟨w(t)

+1,r,u⟩ have the four terms below, which have the relation:

η

nm

(∑
i∈S−v,+1

ℓ
′(T̃−1)
i −

∑
i∈S−v,−1

ℓ
′(T̃−1)
i

)
· ∥µ∥22 cos θ > 0,

η

nm

(
−

∑
i∈S+u,+1

ℓ
′(T̃−1)
i +

∑
i∈S+u,−1

ℓ
′(T̃−1)
i

)
· ∥µ∥22 > 0

from Lemma C.2 and Proposition D.8. Hence we have

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩+ η

nm

(
−

∑
i∈S+u,+1

ℓ
′(T̃−1)
i +

∑
i∈S+u,−1

ℓ
′(T̃−1)
i

)
· ∥µ∥22

≥ ⟨w(T̃−1)
+1,r ,u⟩ − η∥µ∥22

nm
·
∑

i∈S+u,+1

ℓ
′(T̃−1)
i

(
1− 2pn(1 + o(1))

(1− p)n(1− o(1))

)

≥ ⟨w(T̃−1)
+1,r ,u⟩ − cη∥µ∥22

nm
·
∑

i∈S+u,+1

ℓ
′(T̃−1)
i .

Here, the second inequality is by Proposition D.8, and the third inequality is by p < 1/C fixed for large C in Condition 3.1.

We prove the case when ⟨w(T̃−1)
+1,r ,v⟩ < 0.

When ⟨w(T̃−1)
+1,r ,v⟩ > 0, the update rule can be simplified as

⟨w(T̃)
+1,r,u⟩ = ⟨w(T̃−1)

+1,r ,u⟩

− η∥µ∥22
nm

(∑
i∈S+u,+1

ℓ
′(T̃−1)
i −

∑
i∈S+u,−1

ℓ
′(T̃−1)
i −

∑
i∈S+v,−1

ℓ
′(T̃−1)
i cos θ +

∑
i∈S+v,+1

ℓ
′(T̃−1)
i cos θ

)
. (E.1)

27

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We can select i∗ such that

−
∑

i∈S+u,−1

ℓ
′(T̃−1)
i ≤ pn/4 · ℓ′(T̃−1)

i∗ · (1 + o(1)),

by the union bound in Proposition D.8, we have that∑
i∈S+u,−1

ℓ
′(T̃−1)
i /

∑
i∈S+u,+1

ℓ
′(T̃−1)
i ≤ pn/4 · ℓT̃−1

i∗ (1 + o(1))∑
i∈S+u,+1

ℓ
′(T̃−1)
i

≤ 2pn(1 + o(1))

(1− p)n(1− o(1))
.

Applying similar conclusions above, equation E.1 shows that

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩

− η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i ·

(
1− 2pn(1 + o(1))

(1− p)n(1− o(1))
− 2 cos θ(1 + o(1))

1− o(1)
+

p cos θ(1− o(1))

2(1− p)(1 + o(1))

)
.

Note that cos θ < 1/2 is fixed, and p < 1/C for sufficient large C, we conclude that when ⟨w(T̃−1)
+1,r ,v⟩ > 0,

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩ − cη∥µ∥22
nm

·
∑

i∈S+u,+1

ℓ
′(T̃−1)
i

for some constant c > 0. Similarly, we have

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
cη∥µ∥22
nm

·
∑

i∈S−u,+1

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
cη∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
cη∥µ∥22
nm

·
∑

i∈S−v,−1

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ < 0.

This completes the conclusion 1 and 2.

To prove result 3, it is easy to verify that |⟨w(0)
+1,r,v⟩| ≤ |⟨w(0)

+1,r,v⟩| + η∥µ∥22/(2m), assume that |⟨w(t)
+1,r,v⟩| ≤

|⟨w(0)
+1,r,v⟩|+ η∥µ∥22/(2m), we then prove

∣∣⟨w(t+1)
+1,r ,v⟩

∣∣ ≤ |⟨w(0)
+1,r,v⟩|+ η∥µ∥22/(2m). Recall the update rule, we have

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

− η

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

We prove the case for ⟨w(t)
+1,r,v⟩ > 0. The opposite case for ⟨w(t)

+1,r,v⟩ < 0 is similar and we thus omit it. If ⟨w(t)
+1,r,v⟩ > 0,

we immediately get that

⟨w(t+1)
+1,r ,v⟩ ≥ η

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

≥ −η∥µ∥22/m,

28

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

where the second inequality is by −ℓ′(t) ≤ 1 and Lemma C.2. As for the upper bound, if ⟨w(t)
j,r,u⟩ < 0, we have

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η∥µ∥22
nm

(∑
i∈S−u,−1

ℓ
′(t)
i cos θ −

∑
i∈S−u,+1

ℓ
′(t)
i cos θ

)

− η∥µ∥22
nm

(
−

∑
i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i

)
≤ ⟨w(t)

+1,r,v⟩,

where the inequality is by ∑
i∈S−u,−1

ℓ
′(t)
i cos θ −

∑
i∈S−u,+1

ℓ
′(t)
i cos θ > 0,

−
∑

i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i > 0

from Lemma C.2 and Proposition D.8. If ⟨w(t)
j,r,u⟩ > 0, the update rule can be written as

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η∥µ∥22
nm

(∑
i∈S+u,+1

ℓ
′(t)
i cos θ −

∑
i∈S+u,−1

ℓ
′(t)
i cos θ

)

− η∥µ∥22
nm

(
−

∑
i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i

)

= ⟨w(t)
+1,r,v⟩ −

η∥µ∥22
∑

i∈S+v,−1
ℓ
′(t)
i

nm

(∑
i∈S+u,+1

ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

· cos θ −
∑

i∈S+u,−1
ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

· cos θ
)

−
η∥µ∥22

∑
i∈S+v,−1

ℓ
′(t)
i

nm

(
− 1 +

∑
i∈S+v,+1

ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

)
≤ ⟨w(t)

+1,r,v⟩

−η∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i ·

(
2 cos θ(1 + o(1))− p cos θ(1− o(1))

2(1− p)(1 + o(1))
− 1 +

2p(1 + o(1))

(1− p)(1− o(1))

)
≤ ⟨w(t)

+1,r,v⟩.

Here, the first inequality is by Proposition D.8, the second inequality is by the condition of θ and p in Condition 3.1. We
conclude that when ⟨w(t)

+1,r,v⟩ > 0,
∣∣⟨w(t+1)

+1,r ,v⟩
∣∣ ≤ |⟨w(0)

+1,r,v⟩| + η∥µ∥22/m. The proof for ⟨w(t)
+1,r,v⟩ < 0 is quite

similar and we thus omit it. Similarly, we can also prove that |⟨w(t)
−1,r,u⟩| ≤ |⟨w(0)

−1,r,u⟩|+ η∥µ∥22/m. As for the precise
conclusions for upper bound, by the update rule, we can easily conclude from 1 + cos θ ≤ 2 that

⟨w(t+1)
j,r ,u⟩ ≤ ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

≤ ⟨w(t)
+1,r,u⟩ −

2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i .

Similarly, we can get the other conclusions. This completes the proof of Lemma E.1.

In Lemma E.1, it becomes apparent that the direction of signal learning in XOR is determined by the initial state. For
instance, if j = +1 and the signal vector is u, the monotonicity in the value of inner product between the weight and u is

29

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

solely dependent on the initialization, whether the inner product is less than or greater than 0. Conversely, for u and the
weight vectors where j = −1, the inner product between them will be relatively small. We give the growth rate of signal
learning in the next proposition.

Proposition E.2 (Conclusion 2 in Proposition A.1). For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ > 0 it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩

≥ −2
√

log(12m/δ) · σ0∥µ∥2 +
cn∥µ∥22
σ2
pd

· log
(

ησ2
pd

12nm
(t− 1) +

2

3

)
− η · ∥µ∥22/m.

For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ < 0, it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩

≤ 2
√

log(12m/δ) · σ0∥µ∥2 −
cn∥µ∥22
σ2
pd

· log
(

ησ2
pd

12nm
(t− 1) +

2

3

)
+ η · ∥µ∥22/m.

Here c > 0 is some absolute constant.

Proof of Proposition E.2. We prove the first case, the other cases are all similar and we thus omit it. By Lemma E.1, when
⟨w(0)

+1,r,u⟩ > 0,

⟨w(t+1)
+1,r ,u⟩ ≥ ⟨w(t)

+1,r,u⟩ −
cη∥µ∥22
nm

·
∑

i∈S+u,+1

ℓ
′(t)
i

≥ ⟨w(t)
+1,r,u⟩+

cη∥µ∥22
nm

·
∑

i∈S+u,+1

1

1 + e
1
m

∑m
r=1 ρ

(t)
yi,r,i

+κ/2

≥ ⟨w(t)
+1,r,u⟩+

cη∥µ∥22
m

1

1 + bext

≥ ⟨w(0)
+1,r,u⟩+

cη∥µ∥22
m

·
t∑

τ=0

1

1 + bexτ

≥ ⟨w(0)
+1,r,u⟩+

cη∥µ∥22
m

∫ t−1

1

1

1 + bexτ
dτ

≥ ⟨w(0)
+1,r,u⟩+

cη∥µ∥22
m

∫ t−1

1

1

c
dxτ

≥ ⟨w(0)
+1,r,u⟩+

cn∥µ∥22
σ2
pd

xt−1 −
c · cn∥µ∥22

σ2
pd

≥ −
√
2 log(12m/δ) · σ0∥u∥2 +

cn∥µ∥22
σ2
pd

· xt−1 − η · ∥µ∥22/m.

Note that the c here is not equal, and we write c here for the reason that all the c are absolute constant. Here, the second
inequality is by Lemma D.5, the third inequality is by p ≤ 1/C for sufficient large C in Condition 3.1, |S+u,+1| ≥
(1 − p)n/4.5 in Lemma C.2 and Proposition D.8 which gives the bound for the summation over r of ρyi,r,i, the fifth
inequality is by the definition of xt, the sixth inequality is by x1 ≤ 2c and the last inequality is by the definition c in
Proposition D.8 and Lemma C.4. By the definition of xt in Proposition D.8 and results in Lemma D.9, we can easily see that

⟨w(t+1)
+1,r ,u⟩ ≥ −

√
2 log(12m/δ) · σ0∥u∥2 +

cn∥µ∥22
σ2
pd

· log
(

ησ2
pd

12nm
(t− 1) +

2

3

)
− η · ∥µ∥22/m

The proof of Proposition E.2 completes.

Proposition E.3. For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ > 0 it holds that

30

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩ ≤ 2

√
log(12m/δ) · σ0∥µ∥2 +

Cn∥µ∥22
σ2
pd

· log
(
2ησ2

pd

nm
t+ 1

)
.

For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ < 0 it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩ ≥ −2

√
log(12m/δ) · σ0∥µ∥2 −

Cn∥µ∥22
σ2
pd

· log
(
2ησ2

pd

nm
t+ 1

)
.

Proof of Proposition E.3. We prove the case when ⟨w(0)
+1,r,u⟩ > 0, the other cases are all similar and we thus omit it. By

Lemma E.1, when ⟨w(0)
+1,r,u⟩ > 0,

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩ −
2η∥µ∥22
nm

·
∑
i∈[n]

ℓ
′(t)
i

≤ ⟨w(t)
+1,r,u⟩+

2η∥µ∥22
nm

·
∑
i∈[n]

1

1 + e
1
m

∑m
r=1 ρyi,r,i

−κ/2

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

·
t∑

τ=0

1

1 + bexτ

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

∫ t

0

1

1 + bexτ
dτ

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

∫ t

0

1

c
dxτ

≤
√
2 log(12m/δ) · σ0∥µ∥2 +

Cn∥µ∥22
σ2
pd

· xt.

Here, the second inequality is by the output bound in Lemma D.5, the third inequality is by Proposition D.8, the fifth
inequality is by the definition of xt, and the last inequality is by the definition of c in Proposition D.8 and Lemma C.4. By
the results in Lemma D.9, we have

xt ≤ log

(
2ησ2

pd

nm
t+ 1

)
.

The proof of Proposition E.3 completes.

E.2. Noise Memorization

In this section, we give the analysis of noise memorization.

Proposition E.4. Let c and xt be defined in Proposition D.8, then it holds that

3nxt ≥
n∑

i=1

ρ
(t)
j,r,i ≥

n

5
· (xt−1 − x1)

for all t ∈ [T ∗] and r ∈ [m].

Proof of Proposition E.4. Recall the update rule for ρ(t+1)
j,r,i , that we have

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22 .

31

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Hence

∑
i

ρ
(t)
yi,r,i

≥
∑
i

ρ
(t−1)
yi,r,i

+
η

nm
· 1

1 + bxt−1

· |S(0)
j,r | · ∥ξi∥

2
2

=

t−1∑
τ=1

η

nm
· 1

1 + bxτ−1

· |S(0)
j,r | · ∥ξi∥

2
2

≥
η|S(0)

j,r | · ∥ξi∥
2
2

nm

∫ t

2

1

1 + bxτ−1

dτ =
η|S(0)

j,r | · ∥ξi∥
2
2

cnm
· (xt−1 − x1)

≥ n

5
· (xt−1 − x1).

Here, the first equality is by |S(t)
j,r | = |S(0)

j,r |, the first inequality is by Proposition D.8 and the last inequality is by the
definition of c. Similarly, we have

∑
i

ρ
(t)
yi,r,i

≤
∑
i

ρ
(t−1)
yi,r,i

+
η

nm
· 1

1 + b · xt−1

·m · ∥ξi∥22

≤
ηm · ∥ξi∥22

nm

∫ t

2

1

1 + b · xτ−1

dτ

≤ 3nxt.

This completes the proof of Proposition E.4.

The next proposition gives the L2 norm of w(t)
j,r.

Proposition E.5 (Conclusion 3 in Proposition A.1). Under Condition 3.1, for t = Ω(nm/(ησ2
pd) it holds that

Θ
(
σ−1
p d−1/2n1/2

)
· log

(
ησ2

pd

12nm
(t− 1) +

2

3

)
≤

∥∥w(t)
j,r

∥∥
2
≤ Θ

(
σ−1
p d−1/2n1/2

)
· log

(
2ησ2

pd

nm
t+ 1

)
.

Proof of Proposition E.5. We first have the following inequalities:

∣∣⟨w(t)
j,r,u⟩

∣∣ · ∥µ∥−1
2

Θ
(
σ−1
p d−1/2n−1/2

)
·
∑n

i=1 ρ
(t)
j,r,i

= Θ
(
σpd

1/2n1/2∥µ∥−1
2 SNR2

)
= Θ

(
σ−1
p d−1/2n1/2∥u∥2

)
= o(1),

based on the coefficient order
∑n

i=1 ρ
(t)
j,r,i/

∣∣⟨w(t)
j,r,u⟩

∣∣ = Θ
(
SNR−2

)
, the definition SNR = ∥µ∥2/(σp

√
d) and the

condition for d in Condition 3.1; and also∥∥∥w(0)
j,r

∥∥∥
2

Θ
(
σ−1
p d−1/2n−1/2

)
·
∑n

i=1 ρ
(t)
j,r,i

=
Θ
(
σ0

√
d
)

Θ
(
σ−1
p d−1/2n−1/2

)
·
∑n

i=1 ρ
(t)
j,r,i

= O
(
σ0σpdn

−1/2
)
= o(1).

Here, we use Proposition E.4 that when t = Ω(nm/(ησ2
pd), xt ≥ C > 0 for some constant C, and hence

n∑
i=1

ρ
(t)
j,r,i ≥

n

5
· (xt−1 − x1) ≥ Ω(n).

32

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We also have the following estimation for the norm ∥
∑n

i=1 ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi∥22:∥∥∥∥∥

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

=

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 + 2

∑
1≤i1<i2≤n

ρ
(t)
j,r,i1

ρ
(t)
j,r,i2

· ∥ξi1∥
−2
2 · ∥ξi2∥

−2
2 · ⟨ξi1 , ξi2⟩

=4Θ

(
σ−2
p d−1

n∑
i=1

ρ
(t)
j,r,i

2 + 2
∑

1≤i1<i2≤n

ρ
(t)
j,r,i1

ρ
(t)
j,r,i2

·
(
16σ−4

p d−2
)
·
(
2σ2

p

√
d log (6n2/δ)

))

=Θ
(
σ−2
p d−1

) n∑
i=1

ρ
(t)
j,r,i + Θ̃

(
σ−2
p d−3/2

)(n∑
i=1

ρ
(t)
j,r,i

)2

=Θ
(
σ−2
p d−1n−1

)(n∑
i=1

ρ
(t)
j,r,i

)2

,

where the first quality is by Lemma C.3; for the second to last equation we plugged in coefficient orders. We can thus upper
bound the norm of w(t)

j,r as:

∥∥∥w(t)
j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+
∣∣⟨w(t)

j,r −w
(0)
j,r ,u⟩

∣∣ · ∥u∥−1
2 +

∣∣⟨w(t)
j,r −w

(0)
j,r ,v⟩

∣∣ · ∥v∥−1
2 +

∥∥∥∥∥
n∑

i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

≤ 4
∥∥∥w(0)

j,r

∥∥∥
2
+
∣∣⟨w(t)

j,r,u⟩
∣∣ · ∥u∥−1

2 +
∣∣⟨w(t)

j,r,v⟩
∣∣ · ∥v∥−1

2 +Θ
(
σ−1
p d−1/2n−1/2

)
·

n∑
i=1

ρ
(t)
j,r,i

= Θ
(
σ−1
p d−1/2n−1/2

)
·

n∑
i=1

ρ
(t)
j,r,i. (E.2)

Here, the first inequality is due to triangle inequality and the second inequality is due to
∣∣⟨w(0)

j,r ,u⟩/∥µ∥2
∣∣ ≤ ∥w(0)

j,r ∥2.
equation E.2 holds from the above analysis. Moreover, we also have that

∥w(t)
j,r∥2 = Θ

(
σ−1
p d−1/2n−1/2

)
·

n∑
i=1

ρ
(t)
j,r,i · (1− o(1)) = Θ

(
σ−1
p d−1/2n−1/2

)
·

n∑
i=1

ρ
(t)
j,r,i.

Combined the equation above with Proposition E.4 and Lemma D.9 completes the proof of Proposition E.5.

F. Proof of Theorem 3.2
We prove Theorem 3.2 in this section. We first prove a slightly different version as follows:

Theorem F.1. For any ε, δ > 0, if Condition 3.1 holds, then there exist constants C1, C2, C3, C4 > 0, such that with
probability at least 1− 2δ, the following results hold at T = Ω(nm/(ηεσ2

pd)):

1. The training loss converges below ε, i.e., L(W(T)) ≤ ε.

2. If n∥µ∥42 ≥ C1σ
4
pd, then the CNN trained by gradient descent can achieve near Bayes-optimal test error: R(W(T)) ≤

p+ exp(−C2n∥µ∥42/(σ4
pd)).

3. If n∥µ∥42 ≤ C3σ
4
pd, then the CNN trained by gradient descent can only achieve sub-optimal error rate: R(W(T)) ≥

p+ C4.

Clearly, Theorem F.1 is almost the same as Theorem 3.2 except some differences in absolute constants. Below we first prove
this version, and then show that Theorem F.1 can easily lead to Theorem 3.2.

33

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Theorem F.1. First of all, we prove the convergence of training. For the training convergence, Lemma D.5 and
Proposition D.8 show that

yif(W
(t),xi) ≥ −κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ −κ

2
+ xt

≥ −κ

2
+ log

(
ησ2

pd

12nm
t+

2

3

)
≥ −κ+ log

(
ησ2

pd

12nm
t+

2

3

)
.

κ is defined in equation D.4. Here, the first inequality is by the conclusion in Lemma D.5 and the second inequality is
by Proposition D.8, and third inequality are by Lemma D.9, the last inequality is by the definition of κ in equation D.4.
Therefore we have

L(W(t)) ≤ log

(
1 + exp{κ}/

(ησ2
pd

12nm
t+

2

3

))
≤ eκ

ησ2
pd

12nm t+ 2
3

.

The last inequality is by log(1 + x) ≤ x. When t ≥ Ω(nm
ησ2

pdε
), we conclude that

L(W(t)) ≤ eκ

ησ2
pd

12nm t+ 2
3

≤ eκ

2/ε+ 2
3

≤ ε.

Here, the last inequality is by eκ ≤ 1.5. This completes the proof for the convergence of training loss.

The proof for the second and third conclusion applies similar technique from Kou et al. (2023).

For the second conclusion, it is easy to see that

P (yf(W(t),x) > 0) =
∑

µ∈{±u,±v}

P (yf(W(t),x) > 0|xsignal part = µ) · 1
4
, (F.1)

without loss of generality we can assume that the test data x = (u⊤, ξ⊤)⊤, for x = (−u⊤, ξ⊤)⊤, x = (v⊤, ξ⊤)⊤ and
x = (−v⊤, ξ⊤)⊤ the proof is all similar and we omit it. We investigate

P (yf(W(t),x) > 0|xsignal part = u).

When x = (u⊤, ξ⊤)⊤, the true label y = +1. We remind that the true label for x is y, and the observed label is y. Therefore
we have

P (yf(W(t),x) < 0|xsignal part = u) = P (yf(W(t),x) < 0, y = y|xsignal part = u)

+ P (yf(W(t),x) > 0, y ̸= y|xsignal part = u)

≤ p+ P (yf(W(t),x) < 0|xsignal part = u).

It therefore suffices to provide an upper bound for P (yf(W(t),x) < 0|xsignal part = u). Note that for any test data with the
conditioned event xsignal part = u, it holds that

yf(W(t),x) =
1

m

m∑
r=1

F+1,r(W
(t),u) + F+1,r(W

(t), ξ)− 1

m

m∑
r=1

(
F−1,r(W

(t),u) + F−1,r(W
(t), ξ)

)
.

34

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We have for t ≥ Ω(nm/(ησ2
pd)), xt ≥ C > 0, and

yf(W(t),x) ≥ 1

m

m∑
r=1

ReLU(⟨w(t)
+1,r,u⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩)

≥ −2
√

log(12m/δ) · σ0∥µ∥2 +
cn∥µ∥22
σ2
pd

· xt−1 −
η∥µ∥22
m

− 1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩),

where the first inequality is by Fy,r(W
(t), ξ) ≥ 0, and the second inequality is by Proposition E.2 and |{r ∈

[m], ⟨w(0)
+1,r,u⟩ > 0}|/m ≥ 1/3. Then for t ≥ T = Ω(nm/(ησ2

pd)), xt ≥ xt ≥ C > 0, it holds that

yf(W(t),x) ≥ cn∥µ∥22
σ2
pd

· xt−1 −
1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩)

− 2
√
log(12mn/δ) · σ0∥µ∥2

≥ cn∥µ∥22
σ2
pd

· xt−1 −
1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)− 4

√
log(12mn/δ) · σ0∥µ∥2 − 2η∥µ∥22/m

≥ cn∥µ∥22
2σ2

pd
· xt−1 −

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩). (F.2)

Here, the first inequality is by the condition of σ0 , η in Condition 3.1, and xt−1 ≥ C, the second inequality is by the third
conclusion in Lemma E.1 and the third inequality is still by the condition of σ0 , η in Condition 3.1 which indicates that
cn||µ||22
2σ2

pd
· xt−1 − 4

√
log(12mn/δ) · σ0||µ||2 − 2η||µ||22/m ≥ 0. We denote by h(ξ) = 1

m

∑m
r=1 ReLU(⟨w

(t)
−1,r, ξ⟩). By

Theorem 5.2.2 in Vershynin (2018), we have

P (h(ξ)− Eh(ξ) ≥ x) ≤ exp

(
− c′x2

σ2
p∥h∥2Lip

)
. (F.3)

Here c′ is some constant. By n∥µ∥42/(σ4
pd) ≥ C1 for some sufficient large C1 and Proposition E.5, we directly have

Cn∥µ∥22
σ2
pd

· xt−1 ≥ Eh(ξ) =
σp√
2πm

m∑
r=1

∥w(t)
−1,r∥2.

Now using methods in equation F.3 we get that

P (yf(W(t),x) < 0|xsignal part = u) ≤ P

(
h(ξ)− E(h(ξ)) >

cn||µ||22
2σ2

2d
xt−1 −

σp√
2πm

m∑
r=1

||w(t)
−1,r||2

)

≤ exp

[
−

c′
(

cn||µ||22
2σ2

2d
xt−1 −

(
σp/

√
2π
)∑m

r=1

∥∥w(t)
−1,r

∥∥
2

)2
σ2
p

(∑m
r=1

∥∥w(t)
−1,r

∥∥
2

)2]

≤ exp

−Θ

c′
(

cn||µ||22
2σ2

pd
· x̄t−1 −

(
σp/(m

√
2π)
)∑m

r=1(
√

n/d · x̄t/σp)
)2

σ2
p

(∑m
r=1(

√
n/d · x̄t/σp)/m

)2

≤ exp{−C2n∥µ∥42/(σ4
pd)}.

Here, C2 = O(1) is some constant. The first inequality is directly by equation F.2, the second inequality is by equation F.3
and the last inequality is by Proposition E.2 which directly gives the lower bound of signal learning and Proposition E.5
which directly gives the scale of

∥∥w(t)
−1,r

∥∥
2
. We can similarly get the inequality on the condition xsignal part = −u and

xsignal part = ±v. Combined the results with equation F.1, we have

P (yf(W(t),x) < 0) ≤ p+ exp{−C2n∥µ∥42/(σ4
pd)}

35

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

for all t ≥ Ω(nm/(ησ2
pd)). Here, constant C in different inequalities is different, and the inequality above is by n∥µ∥42(1−

cos θ)2/(σ4
pd) ≥ C1 for some constant C1.

For the proof of the third conclusion in Theorem F.1, we have

P (yf(W(t),x) < 0) = P (yf(W(t),x) < 0, y = y) + P (yf(W(t),x) > 0, y ̸= y)

= p+ (1− 2p)P
(
yf(W(t),x) ≤ 0

)
. (F.4)

We investigate the probability P
(
yf(W(t),x) ≤ 0

)
, and have

P (yf(W (t),x) ≤ 0)

= P

(∑
r

σ(⟨w(t)
−y,r, ξ⟩)−

∑
r

σ(⟨w(t)
y,r, ξ⟩) ≥

∑
r

σ(⟨w(t)
y,r,µ⟩)−

∑
r

σ(⟨w(t)
−y,r,µ⟩)

)
.

Here, µ is the signal part of the test data. Define g(ξ) =
(

1
m

∑m
r=1 ReLU(⟨w

(t)
+1,r, ξ⟩)− 1

m

∑m
r=1 ReLU(⟨w

(t)
−1,r, ξ⟩)

)
, it is

easy to see that

P (yf(W (t),x) ≤ 0) ≥ 0.5P

(
|g(ξ)| ≥ max

{∑
r

σ(⟨w(t)
y,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−y,r,µ⟩)/m

})
, (F.5)

since if |g(ξ)| is large, we can always select y given ξ to make a wrong prediction. Define the set

Ω =

{
ξ : |g(ξ)| ≥ max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}}
,

it remains for us to proceed P (Ω). To further proceed, we prove that there exists a fixed vector ζ with ∥ζ∥2 ≤ 0.02σp, such
that ∑

j′∈{±1}

[
g
(
j′ξ + ζ

)
− g
(
j′ξ
)]

≥ 4max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}
.

Here, µ ∈ {±u,±v} is the signal part of test data. If so, we can see that there must exist at least one of ξ, ξ + ζ, −ξ + ζ
and −ξ that belongs to Ω. We immediately get that

P
(
Ω ∪ (−Ω) ∪ (Ω− ζ) ∪ (−Ω− ζ)

)
= 1.

Then we can see that there exists at least one of Ω,−Ω,Ω− ζ,−Ω− ζ such that the probability is larger than 0.25. Also
note that ∥ζ∥2 ≤ 0.02σp, we have

|P (Ω)− P (Ω− ζ)| =
∣∣Pξ∼N (0,σ2

pId)
(ξ ∈ Ω)− Pξ∼N (ζ,σ2

pId)
(ξ ∈ Ω)

∣∣
≤ ∥ζ∥2

2σp
≤ 0.01.

Here, the first inequality is by Proposition 2.1 in Devroye et al. (2018) and the second inequality is by the condition
∥ζ∥2 ≤ 0.02σp. Combined with P (Ω) = P (−Ω), we conclude that P (Ω) ≥ 0.24. We can obtain from equation F.4 that

P (yf(W(t),x) < 0) = p+ (1− 2p)P
(
yf(W(t),x) ≤ 0

)
≥ p+ (1− 2p) ∗ 0.12 ≥ 0.76p+ 0.12 ≥ p+ C4

if we find the existence of ζ. Here, the last inequality is by p < 1/2 is a fixed value.

The only thing remained for us is to prove the existence of ζ with ∥ζ∥2 ≤ 0.02σp such that∑
j′∈{±1}

[
g
(
j′ξ + ζ

)
− g
(
j′ξ
)]

≥ 4max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}
.

36

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

The existence is proved by the following construction:

ζ = λ ·
∑
i

1(yi = 1)ξi,

where λ = C4∥µ∥22/(σ2
pd) for some sufficiently large constant C4. It is worth noting that

∥ζ∥2 = Θ

(
∥µ∥22
σ2
pd

·
√
n · σ2

pd

)
= Θ

(√
n∥µ∥42
σ2
pd

)
≤ 0.02σp,

where the last inequality is by the condition n∥µ∥42 ≤ C3σ
4
pd for some sufficient small C3. By the construction of ζ, we

have almost surely that

σ(⟨w(t)
+1,r, ξ + ζ⟩)− σ(⟨w(t)

+1,r, ξ⟩) + σ(⟨w(t)
+1,r,−ξ + ζ⟩)− σ(⟨w(t)

+1,r,−ξ⟩)

≥ ⟨w(t)
+1,r, ζ⟩

≥ λ

[∑
yi=1

ρ
(t)
+1,r,i − 2n

√
log(12mn/δ) · σ0σp

√
d− 16n2 log(T ∗)

√
log (4n2/δ) /d

]
, (F.6)

where the first inequality is by the convexity of ReLU, and the second inequality is by Lemma C.4 and D.3. For the inequality
with j = −1, we have

σ(⟨w(t)
−1,r, ξ + ζ⟩)− σ(⟨w(t)

−1,r, ξ⟩) + σ(⟨w(t)
−1,r,−ξ + ζ⟩)− σ(⟨w(t)

−1,r,−ξ⟩)

≤ 2
∣∣⟨w(t)

−1,r, ζ⟩
∣∣

≤ 2λ

[∑
yi=1

ρ(t)−1,r,i
− 2n

√
log(12mn/δ) · σ0σp

√
d− 16n2 log(T ∗)

√
log (4n2/δ) /d

]
, (F.7)

where the first inequality is by the Liptchitz continuous of ReLU, and the second inequality is by Lemma C.4 and D.3.
Combing equation F.6 with equation F.7, we have

g(ξ + ζ)− g(ξ) + g(−ξ + ζ)− g(−ξ)

≥ λ

[∑
r

∑
yi=1

ρ
(t)
1,r,i/m− 6n

√
log(12mn/δ) · σ0σp

√
d− 48n2 log(T ∗)

√
log(4n2/δ)/d

]
≥ (λ/2) ·

∑
r

∑
yi=1

ρ
(t)
1,r,i/m

≥ (λ/2) · SNR−2 ·
∑
r

σ(⟨w(t)
+1,r,µ⟩)/m ≥ 4

∑
r

σ(⟨w(t)
+1,r,µ⟩)/m.

Here, the first inequality is by Proposition D.8 and Condition 3.1; the second inequality is by the scale of summation over ρ
in Proposition D.8, and when t ≥ Ω(nm/(ησ2

pd)), xt ≥ C for some constant C; the third inequality is by the upper bound
of signal learning in Proposition E.3, and the last inequality is by Condition 3.1. Wrapping all together, the proof for the
existence of ζ completes the proof of Theorem F.1.

We can simply adapt the results in Theorem F.1 to prove Theorem 3.2.

Proof of Theorem 3.2. Here we denote C ′
1, C

′
2, C

′
3, C

′
4 the constants C1, C2, C3, C4 in Theorem F.1, and then Theorem 3.2

can hold by letting C1 = C ′
3, C2 = min{− log(1 − p)/C ′

3, C
′
2} and C3 = C ′

4. We identify three different cases by
Theorem F.1: (1) n∥µ∥42/σ4

pd ≥ C ′
1, (2) C ′

3 ≤ n∥µ∥42/σ4
pd ≤ C ′

1, and (3) n∥µ∥42/σ4
pd ≤ C ′

3. We will prove Theorem 3.2
as follows:

1. When n∥µ∥42 ≥ C ′
1σ

4
pd, we have R(W(T)) ≤ p + exp{−C ′

2n∥µ∥42/σ4
pd} ≤ p + exp{−C2n∥µ∥42/σ4

pd} due to
C2 ≤ C ′

2;

37

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

2. When C ′
3σ

4
pd ≤ n∥µ∥42 ≤ C ′

1σ
4
pd, we can bound R(W(T)) ≤ 1, and by our choice of C2, we have

p+ exp{−C2n∥µ∥42/σ4
pd} ≥ 1 ≥ R(W(T)) due to C2 ≤ − log(1− p)/C ′

3;

3. When n∥µ∥42 ≤ C ′
3σ

4
pd = C1σ

4
pd, we have R(W(T)) ≥ p+ C ′

4 = p+ C3.

Therefore, from 1 and 2 above we can conclude that when n∥µ∥42 ≥ C ′
3σ

4
pd = C1σ

4
pd, R(W(T)) ≤ p +

exp{−C2n∥µ∥42/σ4
pd} with C2 = min{− log(1 − p)/C ′

3, C
′
2}; from 3 above we have n∥µ∥42 ≤ C ′

3σ
4
pd = C1σ

4
pd,

R(W(T)) ≥ p+ C ′
4 = p+ C3. This completes the proof of Theorem 3.2.

G. Analysis for small angle
In this section, we begin the proof for the case when θ can be small. It is important to note that in this section and
the following section, we only rely on the results presented in Appendix B, C, and Lemma D.1. The analysis for
cos θ ≥ 1/2 is much more complicated. For instance, it is unclear to see the main term of the dynamic on the inner product
of ⟨w(t)

+1,r,u⟩, hence additional technique is required.

G.1. Scale Difference in Training Procedure

In this section, we start our analysis of the scale in the coefficients during the training procedure.

We give the following proposition. Here, we remind the readers that SNR = ∥µ∥2/(σp

√
d).

Proposition G.1. For any 0 ≤ t ≤ T ∗, it holds that

0 ≤ |⟨w(t)
j,r,u⟩|, |⟨w

(t)
j,r,v⟩| ≤ 8n · SNR2 log(T ∗), (G.1)

0 ≤ ρ
(t)
j,r,i ≤ 4 log(T ∗), 0 ≥ ρ(t)

j,r,i
≥ −2

√
log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗) (G.2)

for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

We use induction to prove Proposition G.1. We introduce several technical lemmas which are applied into the inductive
proof of Proposition G.1.

Lemma G.2. Under Condition 3.3, suppose equation G.1 and equation G.2 hold at iteration t. Then, for all r ∈ [m], j ∈
{±1} and i ∈ [n], it holds that

∣∣〈w(t)
j,r −w

(0)
j,r , ξi

〉
− ρ(t)

j,r,i

∣∣ ≤ 16

√
log(4n2/δ)

d
n log(T ∗), j ̸= yi,∣∣〈w(t)

j,r −w
(0)
j,r , ξi

〉
− ρ

(t)
j,r,i

∣∣ ≤ 16

√
log(4n2/δ)

d
n log(T ∗), j = yi.

Proof of Lemma G.2. We omit the proof due to the similarity in the proof of Lemma D.3.

Now, we define

κ = 56

√
log(4n2/δ)

d
n log(T ∗) + 10

√
log(12mn/δ) · σ0σp

√
d+ 16n · SNR2 log(T ∗). (G.3)

By Condition 3.3, it is easy to verify that κ is a negligible term. The lemma below gives us a direct characterization of the
neural networks output with respect to the time t.

Lemma G.3. Under Condition 3.3, suppose equation G.1 and equation G.2 hold at iteration t. Then, for all r ∈ [m] it
holds that

F−yi
(W

(t)
−yi

,xi) ≤
κ

2
, −κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ Fyi

(
W(t)

yi
,xi

)
≤ 1

m

m∑
r=1

ρ
(t)
yi,r,i

+
κ

2
.

Here, κ is defined in equation G.3.

38

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Lemma G.3. The proof is similar to the proof of Lemma D.4, we thus omit it.

Lemma G.4. Under Condition 3.3, suppose equation G.1 and equation G.2 hold at iteration t. Then, for all i ∈ [n], it
holds that

−κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ yif(W
(t),xi) ≤

κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

.

Here, κ is defined in equation G.3.

Proof of Lemma G.4. Note that

yif(W
(t),xi) = Fyi

(
W(t)

yi
,xi

)
− F−yi

(
W

(t)
−yi

,xi

)
,

the conclusion directly holds from Lemma G.3

Lemma G.5. Under Condition 3.3, suppose equation G.1 and equation G.2 hold for any iteration t ≤ T . Then for any
t ≤ T , it holds that:

1. 1/m ·
∑m

r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
≤ 3κ+ 4

√
log(2n/δ)/m for all i, k ∈ [n].

2. Define S
(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

and S
(t)
j,r :=

{
i ∈ [n] : yi = j,

〈
w

(t)
j,r, ξi

〉
> 0
}

. For all i ∈ [n], r ∈ [m]

and j ∈ {±1}, S(0)
i = S

(t)
i , S(0)

j,r = S
(t)
j,r .

3. Define c =
ησ2

pd

2nm (1 +
√
2 log(6n/δ)/m)(1 + C0

√
log(4n/δ)/d), c =

ησ2
pd

2nm (1 −
√
2 log(6n/δ)/m)(1 −

C0

√
log(4n/δ)/d), b = e−κ and b = eκ, and let xt, xt be the unique solution of

xt + bext = ct+ b,

xt + bext = ct+ b,

it holds that

xt ≤
1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ xt + c/(1 + b),
1

1 + bext
≤ −ℓ

′(t)
i ≤ 1

1 + bext

for all r ∈ [m] and i ∈ [n].

Proof of Lemma G.5. We use induction to prove this lemma. All conclusions hold naturally when t = 0. Now, suppose that
there exists t̃ ≤ T such that five conditions hold for any 0 ≤ t ≤ t̃− 1, we prove that these conditions also hold for t = t̃.

We prove conclusion 1 first. By Lemma G.4, we easily see that∣∣∣∣yi · f(W(t),xi

)
− yk · f

(
W(t),xk

)
− 1

m

m∑
r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]∣∣∣∣ ≤ κ. (G.4)

Recall the update rule for ρ(t)j,r,i

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22

Hence we have

1

m

m∑
r=1

ρ
(t+1)
j,r,i =

1

m

m∑
r=1

ρ
(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

m

m∑
r=1

1
(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22

39

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

for all j ∈ {±1}, r ∈ [m], i ∈ [n] and t ∈ [T ∗]. Also note that S(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

, we have

1

m

m∑
r=1

[
ρ
(t+1)
yi,r,i

− ρ
(t+1)
yk,r,k

]
=

1

m

m∑
r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
− η

nm2
·
(∣∣S(t)

i

∣∣ℓ′(t)i ·
∥∥ξi∥∥22 − ∣∣S(t)

k

∣∣ℓ′(t)k ·
∥∥ξk∥∥22).

We prove condition 1 in two cases: 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ 2κ + 3

√
log(2n/δ)/m and 1/m

∑m
r=1

[
ρ
(t̃−1)
yi,r,i

−
ρ
(t̃−1)
yk,r,k

]
≥ 2κ+ 3

√
log(2n/δ)/m.

When 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ 2κ+ 3

√
log(2n/δ)/m, we have

1

m

m∑
r=1

[
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

]
=

1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
− η

nm2
·
(∣∣S(t̃−1)

i

∣∣ℓ′(t̃−1)
i ·

∥∥ξi∥∥22 − ∣∣S(t̃−1)
k

∣∣ℓ′(t̃−1)
k ·

∥∥ξk∥∥22)
≤ 1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
+

η

nm
∥ξi∥22

≤ 2κ+ 3
√

log(2n/δ)/m+ κ+
√

log(2n/δ)/m

≤ 3κ+ 4
√
log(2n/δ)/m.

Here, the first inequality is by
∣∣S(t̃−1)

i

∣∣ ≤ m and −ℓ
′(t)
i ≤ 1, and the second inequality is by the condition of η in

Condition 3.3.

For when 1/m
∑m

r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≥ 2κ+ 3

√
log(2n/δ)/m, from equation G.4 we have

yi · f
(
W(t̃−1),xi

)
− yk · f

(
W(t̃−1),xk

)
≥ κ+ 3

√
log(2n/δ)/m,

hence

ℓ
′(t̃−1)
i

ℓ
′(t̃−1)
k

≤ exp
(
yk · f

(
W(t̃−1),xk

)
− yi · f

(
W(t̃−1),xi

))
≤ exp

(
− κ− 3

√
log(2n/δ)/m

)
. (G.5)

Also from condition 2 we have
∣∣S(t̃−1)

i

∣∣ = ∣∣S(0)
i

∣∣ and
∣∣S(t̃−1)

k

∣∣ = ∣∣S(0)
k

∣∣, we have∣∣S(t̃−1)
i

∣∣ℓ′(t̃−1)
i

∥∥ξi∥∥2∣∣S(t̃−1)
k

∣∣ℓ′(t̃−1)
k

∥∥ξi∥∥2 =

∣∣S(0)
i

∣∣ℓ′(t̃−1)
i

∥∥ξi∥∥2∣∣S(0)
k

∣∣ℓ′(t̃−1)
k

∥∥ξi∥∥2
≤

(1 +
√

2 log(2n/δ)/m)

(1−
√
2 log(2n/δ)/m)

· e−3
√

log(2n/δ)/m · e−κ ·
1 + C

√
log(4n/δ)/d

1− C
√
log(4n/δ)/d

< 1 ∗ 1 = 1.

Here, the first inequality is by Lemma C.1, equation G.5 and Lemma C.3; the second inequality is by

1 +
√
2x

1−
√
2x

· e−3x < 1 when 0 < x < 0.1, κ ≫ 2C
√
log(4n/δ)/d.

By Lemma C.3, under event E , we have∣∣∥∥ξi∥∥22 − d · σ2
p

∣∣ ≤ C0σ
2
p ·
√

d log(4n/δ),∀i ∈ [n].

Note that d = Ω(log(4n/δ)) from Condition 3.3, it follows that∣∣S(t̃−1)
i

∣∣(− ℓ
′(t̃−1)
i

)
·
∥∥ξi∥∥22 <

∣∣S(t̃−1)
k

∣∣(− ℓ
′(t̃−1)
k

)
·
∥∥ξk∥∥22.

40

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We conclude that

1

m

m∑
r=1

[
ρ
(t̃)
yi,r,i

− ρ
(t̃)
yk,r,k

]
≤ 1

m

m∑
r=1

[
ρ
(t̃−1)
yi,r,i

− ρ
(t̃−1)
yk,r,k

]
≤ 3κ+ 4

√
log(2n/δ)/m.

Hence conclusion 1 holds for t = t̃.

To prove conclusion 2, we prove S(0)
i = S

(t)
i , and it is quite similar to prove S(0)

j,r = S
(t)
j,r . From similar proof in Lemma D.6,

we can prove one side that

S
(0)
i ⊆ S

(t̃)
i .

To prove the other side, we give the update rule for r ̸∈ S
(0)
i . By induction hypothesis, r ̸∈ S

(t̃−1)
i we have

〈
w(t̃)

yi,r, ξi
〉
=
〈
w(t̃−1)

yi,r , ξi
〉
− η

nm
·
∑
i′ ̸=i

ℓ
(t̃−1)
i′ · σ′(〈w(t̃−1)

yi,r , ξi′
〉)

·
〈
ξi′ , ξi

〉
=
〈
w(0)

yi,r, ξi
〉
− η

nm

t̃−1∑
t′=1

·
∑

i′∈S
(0)
yi,r

ℓ
(t′)
i′ · σ′(〈w(t′)

yi,r, ξi′
〉)

·
〈
ξi′ , ξi

〉

≤ −σpσ0

√
dδ

8m
+

η

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

|⟨ξi′ , ξi⟩|
1 + eyi′f(W

(t′),xi′)

≤ −σpσ0

√
dδ

8m
+

ησ2
pd

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

2 ·
√

log(4n2/δ)/d

1 + eyi′f(W
(t′),xi′)

≤ −σpσ0

√
dδ

8m
+

ησ2
pd

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

2 ·
√
log(4n2/δ)/d

1 + e−κ · e
1
m

∑m
r=1 ρ

(t′)
yi,r,i

≤ −σpσ0

√
dδ

8m
+

ησ2
pd

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

2 ·
√

log(4n2/δ)/d

1 + e−κ · ext′
.

Here, the first inequality is by Lemma C.4, Lemma C.3; the second inequality is by Lemma G.4; the third inequality is by
condition 6 in the induction hypothesis. By the definition of xt′ that

xt + bext = ct+ b,

we can easy to have

xt ≤ log(ct/b+ 1).

Then combined the inequality above with b > 1 and t ≥ 1, we have

xt ≥ log
(
ct/b+ 1− log(ct/b+ 1)/b

)
≥ log

(
ct/(2b) + 1

)
.

Here, the second inequality is by log(x) < x/2. Therefore, plug the lower bound of xt into the inequality of
〈
w

(t̃)
yi,r, ξi

〉
we

41

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

have that

〈
w(t̃)

yi,r, ξi
〉
≤ −σpσ0

√
dδ

8m
+

ησ2
pd

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

2 ·
√

log(4n2/δ)/d

1 + e−κ · ext′

≤ −σpσ0

√
dδ

8m
+

ησ2
pd

nm

t̃−1∑
t′=1

∑
i′∈S

(0)
yi,r

2 ·
√
log(4n2/δ)/d

1 + e−κ · (1 + ct/(2b))

≤ −σpσ0

√
dδ

8m
+

ησ2
pd

m

∫ t̃

0

2 ·
√

log(4n2/δ)/d

1 + e−κ · (1 + ct/(2b))
dt

= −σpσ0

√
dδ

8m
+

ησ2
pd

m
· 2 ·

√
log(4n2/δ)/d · 2be

κ

c
· log

(
1 +

e−κct̃

2b(1 + e−κ)

)
≤ −σpσ0

√
dδ

8m
+ 5n

√
log(4n2/δ)/d · log2(T ∗) < 0.

Here, the last inequality is by the selection of σ0 = nm/(σpdδ) · polylog(d). We prove that r ̸∈ S
(t̃)
i . Hence we have

S
(t̃)
i ⊆ S

(0)
i . We conclude that S(t̃)

i = S
(0)
i . The proof is quite similar for S(t)

j,r .

As for the last conclusion, recall that

1

m

m∑
r=1

ρ
(t+1)
yi,r,i

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

− η

nm
· ℓ′(t)i · 1

m

m∑
r=1

1
(〈
w(t)

yi,r, ξi
〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22 ,

by condition 2 for t ∈ [t̃− 1], we have

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

=
1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

− η

nm
· 1

1 + exp (yif(W(t̃)))
· |S

(0)
i |
m

· ∥ξi∥22 ,

then Lemma C.1, Lemma C.3 and and Lemma G.4 give that

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

≤ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
η

nm
· 1

1 + e−κ · e
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

·
(
1

2
+
√
2 log(6n/δ)/m

)
· ∥ξi∥22

≤ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
c

1 + be
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

,

1

m

m∑
r=1

ρ
(t̃)
yi,r,i

≥ 1

m

m∑
r=1

ρ
(t̃−1)
yi,r,i

+
η

nm
· 1

1 + eκ · e
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

·
(
1

2
−
√

2 log(6n/δ)/m

)
· ∥ξi∥22

≥ 1

m

m∑
r=1

ρ(t̃−1)
yi,r,i

+
c

1 + be
1
m

∑m
r=1 ρ

(t̃−1)
yi,r,i

.

Combined the two inequalities with Lemma D.1 completes the first result in the last conclusion. As for the second result, by
Lemma G.4, it directly holds from

1

m

m∑
r=1

ρ
(t)
yi,r,i

− κ/2 ≤ yif(W
(t),xi) ≤

1

m

m∑
r=1

ρ
(t)
yi,r,i

+ κ/2,

c ≤ κ/2.

This completes the proof of Lemma G.5.

We are now ready to prove Proposition G.1.

42

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Proposition G.1. With Lemma G.5 above, following the same procedure in the proof of Proposition D.2 completes
the proof of Proposition G.5.

We summarize the conclusions above and thus have the following proposition:
Proposition G.6. If Condition 3.3 holds, then for any 0 ≤ t ≤ T ∗, j ∈ {±1}, r ∈ [m] and i ∈ [n], it holds that

0 ≤ |⟨w(t)
j,r,u⟩|, |⟨w

(t)
j,r,v⟩| ≤ 8n · SNR2 log(T ∗),

0 ≤ ρ
(t)
j,r,i ≤ 4 log(T ∗), 0 ≥ ρ(t)

j,r,i
≥ −2

√
log(12mn/δ) · σ0σp

√
d− 32

√
log(4n2/δ)

d
n log(T ∗),

and for any i∗ ∈ S
(0)
j,r it holds that

|⟨w(t)
j,r,u⟩|/ρ

(t)
j,r,i∗ ≤ 2n · SNR2, |⟨w(t)

j,r,v⟩|/ρ
(t)
j,r,i∗ ≤ 2n · SNR2.

Moreover, the following conclusions hold:

1. 1/m ·
∑m

r=1

[
ρ
(t)
yi,r,i

− ρ
(t)
yk,r,k

]
≤ 3κ+ 4

√
log(2n/δ)/m for all i, k ∈ [n].

2. −κ
2 + 1

m

∑m
r=1 ρ

(t)
yi,r,i

≤ yif(W
(t),xi) ≤ κ

2 + 1
m

∑m
r=1 ρ

(t)
yi,r,i

for any i ∈ [n].

3. Define S
(t)
i :=

{
r ∈ [m] :

〈
w

(t)
yi,r, ξi

〉
> 0
}

and S
(t)
j,r :=

{
i ∈ [n] : yi = j,

〈
w

(t)
j,r, ξi

〉
> 0
}

. For all i ∈ [n], r ∈ [m]

and j ∈ {±1}, S(0)
i = S

(t)
i , S(0)

j,r = S
(t)
j,r .

4. Define c =
ησ2

pd

2nm (1 +
√
2 log(6n/δ)/m)(1 + C0

√
log(4n/δ)/d), c =

ησ2
pd

2nm (1 −
√
2 log(6n/δ)/m)(1 −

C0

√
log(4n/δ)/d), b = e−κ and b = eκ, and let xt, xt be the unique solution of

xt + bext = ct+ b,

xt + bext = ct+ b,

it holds that

xt ≤
1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ xt + c/(1 + b),
1

1 + bext
≤ −ℓ

′(t)
i ≤ 1

1 + bext

for all r ∈ [m] and i ∈ [n].

The results in Proposition G.6 are adequate for demonstrating the convergence of the training loss, and we shall proceed
to establish in Section H. Different from the previous discussion, it is worthy noting that the gap between xt and xt is
negligible. It is easy to see that xt ≥ xt > 0 for t > 0. For the other side, combined with Lemma G.8 and G.10, we have

xt − xt ≤ 2(1− b) + (b− 1) + 2(c− c)/c = o(1).

Hence, for any time t which lets xt ≥ C for some constant C > 0, we conclude that

1 ≤ xt/xt ≤ 1 + o(1).

Lemma G.7. It is easy to check that

log

(
ησ2

pd

4nm
t+

2

3

)
≤ xt ≤ log

(
ησ2

pd

nm
t+ 1

)
,

log

(
ησ2

pd

4nm
t+

2

3

)
≤ xt ≤ log

(
ησ2

pd

2nm
t+ 1

)
.

Proof of Lemma G.7. We can easily obtain the inequality by

bext ≤ xt + bext ≤ 1.5bext , bext ≤ xt + bext ≤ 1.5bext ,

and 3ησ2
pd/(8nm) ≤ c/b ≤ ησ2

pd/(nm), 3ησ2
pd/(8nm) ≤ c/b ≤ ησ2

pd/(2nm).

43

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

G.2. Precise Bound of the Summation of Loss Derivatives

In this section, we give a more precise conclusions on the difference between the summation of loss derivatives. The main
idea for virtual sequence comparison is to define a new iterative sequences, then obtain the small difference between the new
iterative sequences and the iteration sequences in CNNs. We give several technical lemmas first. The following four lemmas
are technical comparison lemmas.
Lemma G.8. For any given number b, c ≥ 0, define two continuous process xt and yt with t ≥ 0 satisfy

xt + bext = ct+ x0 + bex0 ,

yt + eyt = ct+ y0 + ey0 , x0 = y0.

If b ≥ 0.5, it holds that

sup
t≥0

|xt − yt| ≤ max{2(1− b), b− 1}.

Proof of Lemma G.8. First, it is easy to see that xt, yt ≥ x0 and increases with t. When b = 1, xt = yt and the conclusion
naturally holds. We prove the case when b > 1 and when 0.5 ≤ b < 1.

When b > 1, we can see that

yt + b(eyt − ey0) > yt + (eyt − ey0)

= ct+ y0

= ct+ x0

= xt + b(ext − ex0),

where the first inequality is by b > 1 and yt > y0. By the function x+ b(ex − ex0) is increasing, we have that yt > xt. We
investigate the value yt − xt. Assume that there exists t such that yt − xt > b− 1, then we have

0 = xt + b(ext − ex0)− yt − (eyt − ey0)

< bext − eyt + (1− b) + (1− b)ex0

= ext(b− eyt−xt) + (1− b)(1 + ex0)

< ext(b− eb−1) + (1− b)(1 + ex0) < 0,

which contradicts to the assumption yt − xt > b− 1. Here, the first equality is by the definition of xt and yt, the first and
second inequality is by the assumption yt − xt > b− 1, the last inequality is by the condition b > 1. Hence we conclude
that when b > 1, yt > xt and supt≥0 |xt − yt| ≤ b− 1.

When 0.5 ≤ b < 1, we have

yt + b(eyt − ey0) < yt + (eyt − ey0)

= ct+ y0

= ct+ x0

= xt + b(ext − ex0),

where the first inequality is by b < 1 and yt > y0. Therefore by the function x+ b(ex − ex0) is increasing by x, we have
that yt < xt. Assume that there exists t such that xt − yt > 2(1− b), then we have

0 = xt + b(ext − ex0)− yt − (eyt − ey0)

> bext − eyt + 2(1− b) + (1− b)ex0

= ext(b− eyt−xt) + (1− b)(2 + ex0)

> ext(b− e2(b−1)) + (1− b)(2 + ex0) > 0,

which contradicts to the assumption xt − yt > 2(1− b). Here, the first equality is by the definition of xt and yt, the first
and second inequality is by the assumption xt − yt > 2(1− b), the last inequality is by the condition 0.5 ≤ b < 1 which
indicates that b− e2(b−1) > 0. Hence we conclude that when 0.5 ≤ b < 1, yt < xt and supt≥0 |xt − yt| < 2(1− b). The
proof of Lemma G.8 completes.

44

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Lemma G.9. For any given number b ≥ 0 and 1 ≥ c ≥ 0, define two discrete process mt and nt with t ∈ N+ satisfy

mt+1 = mt +
c

1 + bemt
,

nt+1 = nt +
c

1 + ent
, m0 = n0.

If b ≥ 0.5, it holds that

sup
t∈N+

|mt − nt| ≤ max{2(1− b), b− 1}+ 2c.

Proof of Lemma G.9. Let xt and yt be defined in Lemma G.8, we let m0 = x0 where x0 is defined in Lemma G.8. By
Lemma D.1, we have

xt ≤ mt ≤ xt +
c

1 + bem0
, yt ≤ nt ≤ yt +

c

1 + en0
.

We have

sup
t∈N+

|xt − yt| ≤ sup
t≥0

|xt − yt| ≤ max{2(1− b), b− 1}, sup
t∈N+

|xt −mt|, |yt − nt| ≤ c,

by triangle inequality we conclude that

sup
t∈N+

|mt − nt| ≤ max{2(1− b), b− 1}+ 2c.

This completes the proof.

Lemma G.10. Given any number c1 ≥ c2 > 0 and define two continuous process xt, yt with t ≥ 0 satisfy

xt + ext = c1t+ x0 + ex0 ,

yt + eyt = c2t+ y0 + ey0 , x0 = y0.

It holds that

sup
t≥0

|xt − yt| ≤ (1 + e−x0) · c1 − c2
c2

.

Proof of Lemma G.10. Define a0 = x0 + ex0 , and the function g(x) with x ≥ 0 by

g(x) + eg(x) − a0 ≡ x.

Easy to see that xt = g(c1t), yt = g(c2t) and g(x) is an strictly increasing function. If

g(m1)− g(m2) ≤ (1 + e−x0) · m1 −m2

m2

holds for any m1 ≥ m2 > 0, we can easily see that

xt − yt = g(c1t)− g(c2t) ≤ (1 + e−x0) · c1 − c2
c2

.

It only remains to prove that

g(m1)− g(m2) ≤ (1 + e−x0) · m1 −m2

m2

holds for any m1 ≥ m2 > 0.

45

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

To prove so, define

f(m) = g(m)− g(m2)− (1 + e−x0) · m−m2

m2
,

we can see f(m2) = 0. For m ≥ m2 > 0,

f ′(m) = g′(m)− (1 + e−x0)/m2

=
1

1 + eg(m)
− 1 + e−x0

m2

=
m2 − (1 + ex0)(1 + eg(m))

(1 + eg(m))m2

=
m2 − (1 + ex0) · (m+ 1 + a0 − g(m))

(1 + eg(m))m2

=
m2 −m+ (1 + e−x0)g(m)− e−x0m− (1 + e−x0)(1 + a0)

(1 + eg(m))m2
.

Here, the second and fourth equality is by the definition of g(m). Define h(m) = (1 + e−x0)g(m) − e−x0m − (1 +
e−x0)(1 + a0), we have f ′(m) = (m2 −m+ h(m))/(1 + eg(m))m2. If h(m) < 0, combined this with m2 −m ≤ 0 we
can conclude that f ′(m) < 0, which directly prove that f(m) ≤ f(m2) = 0.

Now, the only thing remained is to prove that for m > 0,

h(m) = (1 + e−x0)g(m)− e−x0m− (1 + e−x0)(1 + a0) < 0.

It is easy to check that g(0) ≤ a0 = g(0) + eg(0) < a0 + 1, therefore h(0) < 0. Moreover, it holds that

h′(m) = (1 + e−x0)g′(m)− e−x0

=
1 + e−x0

1 + eg(m)
− e−x0

≤ e−x0 ·
(

1 + ex0

1 + eg(0)
− 1

)
≤ 0,

where the second equality is by the definition of g(m), the first inequality is by the property that g(m) is an increasing
function and the last inequality is by x0 = g(0). We have that h(m) ≤ h(0) < 0, which completes the proof.

Lemma G.11. Given any number 1 ≥ c1 ≥ c2 > 0 and define two discrete process mt, nt with t ∈ N+ satisfy

mt+1 = mt +
c1

1 + emt
,

nt+1 = nt +
c2

1 + ent
, m0 = n0.

It holds that

sup
t∈N+

|mt − nt| ≤ (1 + e−m0) · c1 − c2
c2

+ c1 + c2.

Proof of Lemma G.11. Let xt and yt be defined in Lemma G.10, we let m0 = x0 where x0 is defined in Lemma G.10. By
Lemma D.1, we have

xt ≤ mt ≤ xt +
c1

1 + em0
, yt ≤ nt ≤ yt +

c2
1 + en0

.

We have

sup
t∈N+

|xt − yt| ≤ sup
t≥0

|xt − yt| ≤ (1 + e−x0) · c1 − c2
c2

, sup
t∈N+

|xt −mt| ≤ c1, sup
t∈N+

|yt − nt| ≤ c2,

46

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

by triangle inequality we conclude that

sup
t∈N+

|mt − nt| ≤ (1 + e−x0) · c1 − c2
c2

+ c1 + c2.

This completes the proof.

We now define a new iterative sequences, which are related to the initialization state:

Definition G.12. Given the noise vectors ξi which are exactly the noise in training samples. Define

ℓ̃
′(t)
i = − 1

1 + exp{A(t)
i }

, A
(t+1)
i = A

(t)
i − η

nm2
· ℓ̃′(t)i · |S(0)

i | · ∥ξi∥22.

Here, S(0)
i =

{
r ∈ [m] :

〈
w

(0)
yi,r, ξi

〉
> 0
}

, and A
(0)
i = 0 for all i ∈ [n].

It is worth noting that the Definition G.12 is exactly the same in Lemma 4.2. With Definition G.12, we prove the following
lemmas.

Lemma G.13 (Restatement of Lemma 4.2). Let A(t)
i be defined in Definition G.12, it holds that∣∣∣∣A(t)

i − 1

m

m∑
r=1

ρ
(t)
yi,r,i

∣∣∣∣ ≤ 3κ, |ℓ̃′(t)i − ℓ
′(t)
i | ≤ 3κ, ℓ

′(t)
i /ℓ̃

′(t)
i , ℓ̃

′(t)
i /ℓ

′(t)
i ≤ e4κ,

for all t ∈ [T ∗] and i ∈ [n].

Proof of Lemma G.13. By Lemma G.4, we have

1

1 + eκ exp{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

}
≤ −ℓ

′(t)
i ≤ 1

1 + e−κ exp{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

}
.

If the first conclusion holds, we have that

ℓ̃
′(t)
i − ℓ

′(t)
i ≤ 1

1 + e−κ exp{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

}
− 1

1 + exp{A(t)
i }

=
1

1 + e−κ exp{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

}
− 1

1 + e−κ exp{A(t)
i }

+
1

1 + e−κ exp{A(t)
i }

− 1

1 + exp{A(t)
i }

≤ 1

2

∣∣∣∣A(t)
i − 1

m

m∑
r=1

ρ
(t)
yi,r,i

∣∣∣∣+ 1− e−κ ≤ 3κ.

Here, the second inequality is by (1+e−κex)−1−(1+ex)−1 ≤ 1−e−κ and
∣∣(1+e−κex1)−1−(1+e−κex2)−1

∣∣ ≤ 1
2 |x1−x2|

for x ≥ 0 and κ > 0. The last inequality is by the first conclusion and 1−e−κ ≤ 1.5κ. Similarly to get that ℓ′(t)i − ℓ̃
′(t)
i ≤ 3κ.

We see that if the first conclusion holds, the second conclusion directly holds.

Simimlarly, we prove if the first conclusion holds, the third conclusion holds. We have

ℓ̃
′(t)
i /ℓ

′(t)
i =

1 + exp{A(t)
i }

1 + e−κ exp{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

}

≤ exp

{
A

(t)
i − 1

m

m∑
r=1

ρ
(t)
yi,r,i

+ κ

}
≤ exp{4κ},

47

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

where the first inequality is by ℓ′(z1)/ℓ
′(z2) ≤ exp(|z1 − z2|). The proof for ℓ′(t)i /ℓ̃

′(t)
i is quite similar and we omit it.

We now prove the first conclusion. Recall the update rule of 1
m

∑m
r=1 ρ

(t)
yi,r,i

, we have that

1

m

m∑
r=1

ρ
(t)
yi,r,i

+
η|S(0)

i |∥ξi∥22/nm2

1 + eκe
1
m

∑m
r=1 ρ

(t)
yi,r,i

≤ 1

m

m∑
r=1

ρ
(t+1)
yi,r,i

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

− η

nm2
· ℓ′(t)i · |S(0)

i | · ∥ξi∥22

≤ 1

m

m∑
r=1

ρ
(t)
yi,r,i

+
η|S(0)

i |∥ξi∥22/nm2

1 + e−κe
1
m

∑m
r=1 ρ

(t)
yi,r,i

,

and

A
(t+1)
i = A

(t)
i +

η|S(0)
i |∥ξi∥22/nm2

1 + exp{A(t)
i }

.

Define B
(t+1)
i = B

(t)
i +

η|S(0)
i |∥ξi∥2

2/nm
2

1+e−κeB
(t)
i

, and B
(t)
i = 0, we have

1

m

m∑
r=1

ρ
(t)
yi,r,i

−A
(t)
i ≤ B

(t)
i −A

(t)
i

≤ 2(1− e−κ) + 2η|S(0)
i |∥ξi∥22/nm2 ≤ 3κ.

Here, the first inequality is by 1
m

∑m
r=1 ρ

(t)
yi,r,i

≤ B
(t)
i , the second inequality is by Lemma G.9 and the third inequality is by

the condition of η in Condition 3.3 and κ < 0.01. We can similarly have that

A
(t)
i − 1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ 3κ,

which completes the proof.

We next give the precise bound of
∑

i∈S+
ℓ̃
′(t)
i /

∑
i∈S−

ℓ̃
′(t)
i .

Lemma G.14 (Restatement of Lemma 4.3). Let ℓ̃′(t)i , S+ and S− be defined in Definition G.12, then it holds that

∣∣∣∣
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√
|S+|+ |S−|

√
|S+|)

|S−|2

with probability at least 1− 2δ. Here, Ggap is defined by

Ggap = 20
√

log(2n/δ)/m ·
√

log(4/δ).

Proof of Lemma G.14. By Lemma G.11, we have∣∣∣∣A(t)
i −A

(t)
k

∣∣∣∣ ≤ 2
∣∣η|S(0)

i |∥ξi∥22/nm2 − η|S(0)
k |∥ξk∥22/nm2

∣∣
min{η|S(0)

i |∥ξi∥22/nm2, η|S(0)
k |∥ξk∥22/nm2}

+
η

4nm2
(|S(0)

i |∥ξi∥22 + |S(0)
k |∥ξk∥22).

By Lemma C.1 and Lemma C.3, we can see that

m

2
−
√

m log(2n/δ)

2
≤ |S(0)

i |, |S(0)
k | ≤ m

2
+

√
m log(2n/δ)

2
,

σ2
pd− C0σ

2
p

√
d · log(4n/δ) ≤ ∥ξi∥22, ∥ξk∥22 ≤ σ2

pd+ C0σ
2
p

√
d · log(4n/δ).

48

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

By the condition of d in Condition 3.3, we easily conclude that∣∣|S(0)
i |∥ξi∥22 − |S(0)

k |∥ξk∥22
∣∣

min{|S(0)
i |∥ξi∥22, |S

(0)
k |∥ξk∥22}

≤ 2
√
log(2n/δ)/m, (G.6)

we conclude that ∣∣A(t)
i −A

(t)
k

∣∣ ≤ 5
√
log(2n/δ)/m. (G.7)

The inequality is by the equation G.6 and the condition of η in Condition 3.3. For any ζ between A
(t)
i and A

(t)
k , we have

|ℓ′′i (ζ)| ≤ (1 + exp(ζ))−1, and

(1 + exp(ζ))−1 − 2

(
1 + exp

(
A

(t)
i

))−1

≤ 0

by
∣∣∣ζ −A

(t)
i

∣∣∣ ≤ 5
√
log(2n/δ)/m ≤ 0.01. We have that for any i ̸= k,

∣∣ℓ̃′(t)i − ℓ̃
′(t)
k

∣∣ = ∣∣∣∣ 1

1 + exp{A(t)
k }

− 1

1 + exp{A(t)
i }

∣∣∣∣
≤ 2ℓ̃

′(t)
i

∣∣∣∣A(t)
i −A

(t)
k

∣∣∣∣.
By equation G.7, we conclude that ∣∣ℓ̃′(t)k /ℓ̃

′(t)
i − 1

∣∣ ≤ 10
√
log(2n/δ)/m

for all i, k in the index set S+ and S−.

Conditional on the event E , we can see that the bound above holds almost surely. We denote ℓ̃′(t)0 by an independent copy of
ℓ̃
′(t)
i , and note that ℓ̃′(t)i and ℓ̃

′(t)
k are independent and have same distribution, we assume that C(t) = Eℓ̃′(t)i /ℓ̃

′(t)
k , easy to see

0.5 ≤ C(t) ≤ 2. By Hoeffeding inequality we have

P

(∣∣∣∣ 1

|S+|
∑
i∈S+

ℓ̃
′(t)
i /ℓ̃

′(t)
0 − C(t)

∣∣∣∣ > t1

)
≤ 2 exp

{
− 2|S+|t21

(20
√
log(2n/δ)/m)2

}
,

P

(∣∣∣∣ 1

|S−|
∑
i∈S+

ℓ̃
′(t)
i /ℓ̃

′(t)
0 − C(t)

∣∣∣∣ > t2

)
≤ 2 exp

{
− 2|S−|t22

(20
√
log(2n/δ)/m)2

}
.

Let t1 =
(
20
√

log(2n/δ)/m
)
/
√
2|S+| ·

√
log(4/δ) and t2 =

(
20
√

log(2n/δ)/m
)
/
√

2|S−| ·
√
log(4/δ), and write

Ggap =
(
20
√

log(2n/δ)/m
)
·
√
log(4/δ) in short hand, we conclude that

P

(
|S+| · C(t) − Ggap ·

√
|S+| ≤

∣∣∣∣ ∑
i∈S+

ℓ̃
′(t)
i /ℓ̃

′(t)
0

∣∣∣∣ ≤ |S+| · C(t) + Ggap ·
√
|S+|

)
≥ 1− δ/2,

P

(
|S−| · C(t) − Ggap ·

√
|S−| ≤

∣∣∣∣ ∑
i∈S−

ℓ̃
′(t)
i /ℓ̃

′(t)
0

∣∣∣∣ ≤ |S−| · C(t) + Ggap ·
√
|S−|

)
≥ 1− δ/2.

By the inequality

P (A ∩B) ≥ P (A) + P (B)− 1,

we have that

P

(
|S+| · C(t) − Ggap ·

√
|S+|

|S−| · C(t) + Ggap ·
√
|S−|

≤
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

≤
|S+| · C(t) + Ggap ·

√
|S+|

|S−| · C(t) − Ggap ·
√
|S−|

)
≥ 1− δ.

49

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

By 0.5 ≤ C(t) ≤ 2, we directly get that

P

(∣∣∣∣
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2

)
≥ 1− δ.

Let event E1 be ∣∣∣∣
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2
,

we have

P (E1, E) = P (E1|E) · P (E) ≥ (1− δ)2 ≥ 1− 2δ.

This completes the proof.

We are now ready to give the proposition which characterizes a more precise bound of the summation of loss derivatives.

Proposition G.15. If Condition 3.3 holds, then for any 0 ≤ t ≤ T ∗, it holds with probability at least 1− 2δ such that∣∣∣∣
∑

i∈S+
ℓ
′(t)
i∑

i∈S−
ℓ
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2
· e8κ + 10κ · |S+|

|S−|
.

Here,

Ggap = 20
√
log(2n/δ)/m ·

√
log(4/δ).

Proof of Proposition G.15. By Lemma G.13, we have

|ℓ′(t)i /ℓ̃
′(t)
i |, |ℓ̃′(t)i /ℓ

′(t)
i | ≤ e4κ.

By Lemma G.14, we obtain that∣∣∣∣
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2
.

We conclude that

e−8κ

∑
i∈S+

ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

≤
∑

i∈S+
ℓ
′(t)
i∑

i∈S−
ℓ
′(t)
i

≤ e8κ
∑

i∈S+
ℓ̃
′(t)
i∑

i∈S−
ℓ̃
′(t)
i

. (G.8)

Combined the results in Lemma G.14 with equation G.8, we conclude that∣∣∣∣
∑

i∈S+
ℓ
′(t)
i∑

i∈S−
ℓ
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ 2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2
· e8κ + 10κ · |S+|

|S−|
.

Here, the inequality is by the fact that κ is small. This completes the proof.

From Proposition G.15, we can directly get the following lemma.

Lemma G.16 (Rstatement of Lemma 4.4). Under the same condition of Proposition G.15, if

c0n− C
√
n · log(8n/δ) ≤ |S+|, |S−| ≤ c1n+ C

√
n · log(8n/δ)

holds for some constant c0, c1, C > 0, then it holds that∣∣∣∣
∑

i∈S+
ℓ
′(t)
i∑

i∈S−
ℓ
′(t)
i

− c1
c0

∣∣∣∣ ≤ 4c1C

c20
·
√

log(8n/δ)

n
.

50

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Proof of Lemma G.16. By the condition

c0n− C
√
n · log(8n/δ) ≤ |S+|, |S−| ≤ c1n+ C

√
n · log(8n/δ),

it is easy to see that

2Ggap(|S−|
√

|S+|+ |S−|
√
|S+|)

|S−|2
= o(1/

√
n), 10κ · |S+|

|S−|
= o(1/

√
n),

where we utilize κ = o(1/
√
n) by Condition 3.3. Hence we have

∣∣∣∣
∑

i∈S+
ℓ
′(t)
i∑

i∈S−
ℓ
′(t)
i

− |S+|
|S−|

∣∣∣∣ ≤ o(1/
√
n). (G.9)

Moreover, we have

(c0n− C
√

n · log(8n/δ)) ·
(
c1
c0

+
3c1C

c20
·
√

log(8n/δ)/n

)
≥ c1n+ C

√
n · log(8n/δ),

(c0n− C
√

n · log(8n/δ)) ·
(
c1
c0

− 3c1C

c20
·
√

log(8n/δ)/n

)
≤ c1n+ C

√
n · log(8n/δ)

we conclude that ∣∣∣∣ |S+|
|S−|

− c1
c0

∣∣∣∣ ≤ 3c1C

c20
·
√
log(8n/δ)/n.

Replacing the equation above into equation G.9 completes the proof.

G.3. Signal Learning and Noise Memorization

We first give some lemmas on the inner product of w(t)
j,r and u,v.

Lemma G.17. Under Condition 3.3, the following conclusions hold:

1. If ⟨w(0)
+1,r,u⟩ > 0(< 0), then ⟨w(t)

+1,r,u⟩ strictly increases (decreases) with t ∈ [T ∗];

2. If ⟨w(0)
−1,r,v⟩ > 0(< 0), then ⟨w(t)

−1,r,v⟩ strictly increases (decreases) with t ∈ [T ∗];

3. |⟨w(t)
+1,r,v⟩| ≤ |⟨w(0)

+1,r,v⟩|+ η∥µ∥22/m, |⟨w(t)
−1,r,u⟩| ≤ |⟨w(0)

−1,r,u⟩|+ η∥µ∥22/m for all t ∈ [T ∗] and r ∈ [m].

Moreover, it holds that

⟨w(t+1)
+1,r ,u⟩ ≥ ⟨w(t)

+1,r,u⟩ −
η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

+1,r,u⟩ > 0;

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
η∥µ∥22
nm

·
∑

i∈S−u,+1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
η∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
η∥µ∥22
nm

·
∑

i∈S−v,−1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

−1,r,v⟩ < 0.

51

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Similarly, it also holds that

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩ −
2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ > 0;

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i , ⟨w(0)

−1,r,v⟩ < 0.

Proof of Lemma G.17. Recall that the update rule for inner product can be written as

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ,

and

⟨w(t+1)
j,r ,v⟩ = ⟨w(t)

j,r,v⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

+
ηj

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

+
ηj

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22.

When ⟨w(0)
+1,r,u⟩ > 0, assume that for any 0 ≤ t ≤ T̃ − 1 such that ⟨w(t)

+1,r,u⟩ > 0, there are two cases for ⟨w(t)
+1,r,v⟩.

When ⟨w(T̃−1)
+1,r ,v⟩ < 0, we can easily see

η

nm

(∑
i∈S−v,+1

ℓ
′(T̃−1)
i −

∑
i∈S−v,−1

ℓ
′(T̃−1)
i

)
· 1{⟨w(T̃−1)

+1,r ,µi⟩ > 0}∥µ∥22 cos θ > 0,

η

nm

(
−

∑
i∈S+u,+1

ℓ
′(T̃−1)
i +

∑
i∈S+u,−1

ℓ
′(T̃−1)
i

)
· 1{⟨w(T̃−1)

+1,r ,µi⟩ > 0}∥µ∥22 > 0

from Lemma C.2 and G.16. Hence ⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩ > 0. When ⟨w(T̃−1)
+1,r ,v⟩ > 0, the update rule can be

52

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

simplified as

⟨w(T̃)
+1,r,u⟩ = ⟨w(T̃−1)

+1,r ,u⟩

− η∥µ∥22
nm

(∑
i∈S+u,+1

ℓ
′(T̃−1)
i −

∑
i∈S+u,−1

ℓ
′(T̃−1)
i −

∑
i∈S+v,−1

ℓ
′(T̃−1)
i cos θ +

∑
i∈S+v,+1

ℓ
′(T̃−1)
i cos θ

)
.

(G.10)

Note that by Lemma C.2 and G.16, it is easy to verify that

−
∑

i∈S+v,−1

ℓ
′(T̃−1)
i cos θ +

∑
i∈S−v,+1

ℓ
′(T̃−1)
i cos θ > 0,

thus for both cases ⟨w(T̃−1)
+1,r ,v⟩ > 0 and ⟨w(T̃−1)

+1,r ,v⟩ < 0, we have that there exists an absolute constant C, such that

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩ − η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i ·

(
1− p

1− p
− C

8
·
√

log(8n/δ)

n

)

− η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i ·

(
− 1− C

4
·
√

log(8n/δ)

n
+

p

1− p

)
· cos θ.

Here, the inequality comes from Lemma G.16. By the condition of θ in Condition 3.3 that

1− cos θ ≥ Ω̃(1/
√
n),

we have

1−
(1− 2p)/(1− p) + C

4 ·
√

log(8n/δ)
n

(1− 2p)/(1− p)− C
8 ·
√

log(8n/δ)
n

cos θ = 1− cos θ −
3C
8 ·
√

log(8n/δ)
n

(1− 2p)/(1− p)− C
8 ·
√

log(8n/δ)
n

cos θ

≥ (1− cos θ) ·
(
1−

3
8 (1− 2p)
15
16 · 1−2p

1−p

)
= (1− cos θ) ·

(
1− 2(1− p)

5

)
≥ 3(1− cos θ)

5
. (G.11)

Here, the inequality is by the condition of θ in Condition 3.3, cos θ ≤ 1 and 2C ·
√

log(8n/δ)
n ≤ (1−2p)/(1−p). Therefore,

we can simplify the inequality of ⟨w(T̃)
+1,r,u⟩ in equation G.10 and get that

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩ − η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i ·

(
1− p

1− p
− C

4
·
√

log(8n/δ)

n

)
· 3(1− cos θ)

5

≥ ⟨w(T̃−1)
+1,r ,u⟩ − η∥µ∥22

nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i · 1

2

(
1− p

1− p

)
· (1− cos θ)

≥ ⟨w(T̃−1)
+1,r ,u⟩ − η∥µ∥22

nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i · 1− 2p

2(1− p)
· (1− cos θ).

Here, the first inequality is by equation G.11, and the second inequality is still by 2C ·
√

log(8n/δ)
n ≤ (1− 2p)/(2(1− p)).

Therefore we conclude that

⟨w(T̃)
+1,r,u⟩ ≥ ⟨w(T̃−1)

+1,r ,u⟩ − η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(T̃−1)
i · 1− 2p

2(1− p)
· (1− cos θ).

53

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We conclude that when ⟨w(0)
+1,r,u⟩ > 0,

⟨w(t+1)
+1,r ,u⟩ ≥ ⟨w(t)

+1,r,u⟩ −
η∥µ∥22
nm

∑
i∈S+u,+1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ).

Similarly, we have

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩+
η∥µ∥22
nm

·
∑

i∈S−u,+1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

+1,r,u⟩ < 0;

⟨w(t+1)
−1,r ,v⟩ ≥ ⟨w(t)

−1,r,v⟩ −
η∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

−1,r,v⟩ > 0;

⟨w(t+1)
−1,r ,v⟩ ≤ ⟨w(t)

−1,r,v⟩+
η∥µ∥22
nm

·
∑

i∈S−v,−1

ℓ
′(t)
i · 1− 2p

2(1− p)
· (1− cos θ), ⟨w(0)

−1,r,v⟩ < 0.

The proof for the first, second and the precise conclusions for lower bound completes.

To prove result 3, it is easy to verify that |⟨w(0)
+1,r,v⟩| ≤ |⟨w(0)

+1,r,v⟩| + η∥µ∥22/(2m), assume that |⟨w(t)
+1,r,v⟩| ≤

|⟨w(0)
+1,r,v⟩|+ η∥µ∥22/(2m), we then prove

∣∣⟨w(t+1)
+1,r ,v⟩

∣∣ ≤ |⟨w(0)
+1,r,v⟩|+ η∥µ∥22/(2m). Recall the update rule, we have

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

− η

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

We prove the case for ⟨w(t)
+1,r,v⟩ > 0. The opposite case for ⟨w(t)

+1,r,v⟩ < 0 is similar and we thus omit it. If ⟨w(t)
+1,r,v⟩ > 0,

we immediately get that

⟨w(t+1)
+1,r ,v⟩ ≥ η

nm

∑
i∈S−u,+1∪S+u,−1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22 cos θ

+
η

nm

∑
i∈S+v,−1∪S−v,+1

ℓ
′(t)
i · 1{⟨w(t)

+1,r,µi⟩ > 0}∥µ∥22

≥ −η∥µ∥22/m,

where the second inequality is by −ℓ′(t) ≤ 1 and Lemma C.2. As for the upper bound, if ⟨w(t)
j,r,u⟩ < 0, we have

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η∥µ∥22
nm

(∑
i∈S−u,−1

ℓ
′(t)
i cos θ −

∑
i∈S−u,+1

ℓ
′(t)
i cos θ

)

− η∥µ∥22
nm

(
−

∑
i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i

)
≤ ⟨w(t)

+1,r,v⟩,

where the inequality is by ∑
i∈S−u,−1

ℓ
′(t)
i cos θ −

∑
i∈S−u,+1

ℓ
′(t)
i cos θ > 0,

−
∑

i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i > 0

54

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

from Lemma C.2 and G.16. If ⟨w(t)
j,r,u⟩ > 0, the update rule can be written as

⟨w(t+1)
+1,r ,v⟩ = ⟨w(t)

+1,r,v⟩ −
η∥µ∥22
nm

(∑
i∈S+u,+1

ℓ
′(t)
i cos θ −

∑
i∈S+u,−1

ℓ
′(t)
i cos θ

)

− η∥µ∥22
nm

(
−

∑
i∈S+v,−1

ℓ
′(t)
i +

∑
i∈S+v,+1

ℓ
′(t)
i

)

= ⟨w(t)
+1,r,v⟩ −

η∥µ∥22
∑

i∈S+v,−1
ℓ
′(t)
i

nm

(∑
i∈S+u,+1

ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

· cos θ −
∑

i∈S+u,−1
ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

· cos θ
)

−
η∥µ∥22

∑
i∈S+v,−1

ℓ
′(t)
i

nm

(
− 1 +

∑
i∈S+v,+1

ℓ
′(t)
i∑

i∈S+v,−1
ℓ
′(t)
i

)

≤ ⟨w(t)
+1,r,v⟩ −

η∥µ∥22
nm

·
∑

i∈S+v,−1

ℓ
′(t)
i ·

(
1− 2p

1− p
· (cos θ − 1) +

C(2 cos θ + 1)

8

√
log(8n/δ)

n

)
≤ ⟨w(t)

+1,r,v⟩.

Here, the first inequality is by Lemma G.16, the second inequality is by the condition of θ in Condition 3.3. We conclude
that when ⟨w(t)

+1,r,v⟩ > 0,
∣∣⟨w(t+1)

+1,r ,v⟩
∣∣ ≤ |⟨w(0)

+1,r,v⟩| + η∥µ∥22/m. The proof for ⟨w(t)
+1,r,v⟩ < 0 is quite similar and

we thus omit it. Similarly, we can also prove that |⟨w(t)
−1,r,u⟩| ≤ |⟨w(0)

−1,r,u⟩|+ η∥µ∥22/m. As for the precise conclusions
for upper bound, by the update rule, we can easily conclude from 1 + cos θ ≤ 2 that

⟨w(t+1)
j,r ,u⟩ ≤ ⟨w(t)

j,r,u⟩ −
ηj

nm

∑
i∈S+u,+1∪S−u,−1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22

− ηj

nm

∑
i∈S−v,−1∪S+v,+1

ℓ
′(t)
i · 1{⟨w(t)

j,r,µi⟩ > 0}∥µ∥22 cos θ

≤ ⟨w(t)
+1,r,u⟩ −

2η∥µ∥22
nm

∑
i∈[n]

ℓ
′(t)
i .

Similarly, we can get the other conclusions. This completes the proof of Lemma G.17.

The next proposition gives us a precise characterization for w(t)
j,r and u,v.

Proposition G.18 (Conclusion 2 in Proposition A.1). For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ > 0 it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩

≥ −2
√

log(12m/δ) · σ0∥µ∥2 +
n∥µ∥22(1− cos θ)

20σ2
pd/(1− 2p)

· log
(
ησ2

pd

4nm
(t− 1) +

2

3

)
− η · ∥µ∥22/m.

For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ < 0, it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩

≤ 2
√

log(12m/δ) · σ0∥µ∥2 −
n∥µ∥22(1− cos θ)

20σ2
pd/(1− 2p)

· log
(
ησ2

pd

4nm
(t− 1) +

2

3

)
+ η · ∥µ∥22/m.

Proof of Proposition G.18. We prove the first case, the other cases are all similar and we thus omit it. By Lemma E.1, when

55

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

⟨w(0)
+1,r,u⟩ > 0,

⟨w(t+1)
+1,r ,u⟩ ≥ ⟨w(t)

+1,r,u⟩ −
η∥µ∥22
2nm

·
∑

i∈S+u,+1

ℓ
′(t)
i · (1− cos θ) · 1− 2p

1− p

≥ ⟨w(t)
+1,r,u⟩+

η∥µ∥22
2nm

·
∑

i∈S+u,+1

1− cos θ

1 + e
1
m

∑m
r=1 ρ

(t)
yi,r,i

+κ/2
· 1− 2p

1− p

≥ ⟨w(t)
+1,r,u⟩+

η∥µ∥22
9m

1− 2p

1 + bext
· (1− cos θ)

≥ ⟨w(0)
+1,r,u⟩+

η∥µ∥22
9m

·
t∑

τ=0

1− 2p

1 + bexτ
· (1− cos θ)

≥ ⟨w(0)
+1,r,u⟩+

η∥µ∥22(1− cos θ)

9m

∫ t−1

1

1− 2p

1 + bexτ
dτ

≥ ⟨w(0)
+1,r,u⟩+

η∥µ∥22(1− cos θ)

9m

∫ t−1

1

1− 2p

c
dxτ

≥ ⟨w(0)
+1,r,u⟩+

n∥µ∥22(1− cos θ)(1− 2p)

20σ2
pd

xt−1 −
cn∥µ∥22(1− cos θ)(1− 2p)

10σ2
pd

≥ −
√
2 log(12m/δ) · σ0∥u∥2 +

n∥µ∥22(1− cos θ)(1− 2p)

20σ2
pd

· xt−1 − η · ∥µ∥22/m.

Here, the second inequality is by Lemma G.4, the third inequality is by p < 1/2 for in Condition 3.3, |S+u,+1| ≥
(1 − p)n/4.5 in Lemma C.2 and Proposition G.6 which gives the bound for the summation over r of ρyi,r,i, the fifth
inequality is by the definition of xt, the sixth inequality is by x1 ≤ 2c and the last inequality is by the definition c in
Proposition G.6 and Lemma C.4. By the definition of xt in Proposition G.6 and results in Lemma G.7, we can easily see that

⟨w(t+1)
+1,r ,u⟩ ≥ −

√
2 log(12m/δ) · σ0∥u∥2 +

n∥µ∥22(1− cos θ)

20σ2
pd/(1− 2p)

· log
(
ησ2

pd

4nm
(t− 1) +

2

3

)
− η · ∥µ∥22/m

The proof of Proposition G.18 completes.

We give the upper bound of the inner product of the filter and signal component.

Proposition G.19. For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ > 0 it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩ ≤ 2

√
log(12m/δ) · σ0∥µ∥2 +

5n∥µ∥22
σ2
pd

· log
(
ησ2

pd

2nm
t+ 1

)
.

For ⟨w(0)
+1,r,u⟩, ⟨w

(0)
−1,r,v⟩ < 0 it holds that

⟨w(t)
+1,r,u⟩, ⟨w

(t)
−1,r,v⟩ ≥ −2

√
log(12m/δ) · σ0∥µ∥2 −

5n∥µ∥22
σ2
pd

· log
(
ησ2

pd

2nm
t+ 1

)
.

Proof of Proposition G.19. We prove the case when ⟨w(0)
+1,r,u⟩ > 0, the other cases are all similar and we thus omit it. By

56

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Lemma G.17, when ⟨w(0)
+1,r,u⟩ > 0,

⟨w(t+1)
+1,r ,u⟩ ≤ ⟨w(t)

+1,r,u⟩ −
2η∥µ∥22
nm

·
∑
i∈[n]

ℓ
′(t)
i

≤ ⟨w(t)
+1,r,u⟩+

2η∥µ∥22
nm

·
∑
i∈[n]

1

1 + e
1
m

∑m
r=1 ρyi,r,i

−κ/2

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

·
t∑

τ=0

1

1 + bexτ

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

∫ t

0

1

1 + bexτ
dτ

≤ ⟨w(0)
+1,r,u⟩+

2η∥µ∥22
m

∫ t

0

1

c
dxτ

≤
√
2 log(12m/δ) · σ0∥µ∥2 +

5n∥µ∥22
σ2
pd

· xt.

Here, the second inequality is by the output bound in Lemma G.4, the third inequality is by Proposition G.6, the fifth
inequality is by the definition of xt, and the last inequality is by the definition of c in Proposition G.6 and Lemma C.4. By
the results in Lemma G.7, we have

xt ≤ log

(
ησ2

pd

2nm
t+ 1

)
.

The proof of Proposition G.19 completes.

For the noise memorization, we give the following lemmas and propositions.

Proposition G.20. Let c and xt be defined in Proposition G.6, then it holds that

3nxt ≥
n∑

i=1

ρ
(t)
j,r,i ≥

n

5
· (xt−1 − x1)

for all t ∈ [T ∗] and r ∈ [m].

Proof of Proposition G.20. Recall the update rule for ρ(t+1)
j,r,i , that we have

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · 1

(〈
w

(t)
j,r, ξi

〉
≥ 0
)
· 1 (yi = j) ∥ξi∥22 .

Hence ∑
i

ρ
(t)
yi,r,i

≥
∑
i

ρ
(t−1)
yi,r,i

+
η

nm
· 1

1 + bxt−1

· |S(0)
j,r | · ∥ξi∥

2
2

=

t−1∑
τ=1

η

nm
· 1

1 + bxτ−1

· |S(0)
j,r | · ∥ξi∥

2
2

≥
η|S(0)

j,r | · ∥ξi∥
2
2

nm

∫ t

2

1

1 + bxτ−1

dτ =
η|S(0)

j,r | · ∥ξi∥
2
2

cnm
· (xt−1 − x1)

≥ n

5
· (xt−1 − x1).

57

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Here, the first equality is by |S(t)
j,r | = |S(0)

j,r |, the first inequality is by Proposition G.6 and the last inequality is by the
definition of c. Similarly, we have

∑
i

ρ
(t)
yi,r,i

≤
∑
i

ρ
(t−1)
yi,r,i

+
η

nm
· 1

1 + b · xt−1

· |S(0)
j,r | · ∥ξi∥

2
2

≤
η|S(0)

j,r | · ∥ξi∥
2
2

nm

∫ t

2

1

1 + b · xτ−1

dτ

≤ 3nxt.

This completes the proof of Proposition G.20.

The next proposition gives the L2 norm of w(t)
j,r.

Proposition G.21. Under Condition 3.3, for t ∈ [T ∗], it holds that

∥∥w(t)
j,r

∥∥
2
= Θ(σ0

√
d).

Proof of Proposition G.21. We first handle the noise memorization part, and get that

∥∥∥∥∥
n∑

i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

=

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 + 2

∑
1≤i1<i2≤n

ρ
(t)
j,r,i1

ρ
(t)
j,r,i2

· ∥ξi1∥
−2
2 · ∥ξi2∥

−2
2 · ⟨ξi1 , ξi2⟩

=4Θ

(
σ−2
p d−1

n∑
i=1

ρ
(t)
j,r,i

2 + 2
∑

1≤i1<i2≤n

ρ
(t)
j,r,i1

ρ
(t)
j,r,i2

·
(
16σ−4

p d−2
)
·
(
2σ2

p

√
d log (6n2/δ)

))

=Θ
(
σ−2
p d−1

) n∑
i=1

ρ
(t)
j,r,i + Θ̃

(
σ−2
p d−3/2

)(n∑
i=1

ρ
(t)
j,r,i

)2

=Θ
(
σ−2
p d−1n−1

)(n∑
i=1

ρ
(t)
j,r,i

)2

= o(σ2
0d),

where the first quality is by Lemma C.3; for the second to second last equation we plugged in coefficient orders. The last
equality is by the definition of σ0 and Condition 3.3. Moreover, we have

∣∣⟨w(t)
j,r,u⟩

∣∣ · ∥µ∥−1
2

Θ
(
σ0

√
d
) ≤ Θ̃

(
n∥µ∥2

σ2
pd(σ0

√
d)

)
≤ Θ

(√
n

σp

√
d · σ0

√
d

)
= o(1),

where the first inequality is by Lemma G.19 and σ0∥µ∥2 ≪ n∥µ∥22/(σ2
pd). The second inequality utilizes n∥µ∥2

σ2
pd

≪
√
n

σp

√
d

,

the last equality is due to σ0 = nm
σpdδ

· polylog(d). Similarly we have
∣∣⟨w(t)

j,r,u⟩
∣∣ · ∥µ∥−1

2 = o(σ0

√
d). Moreover, we have

that
∣∣⟨w(0)

j,r ,u⟩
∣∣ · ∥µ∥−1

2 ≤ Θ̃(σ0) = o(σ0

√
d). We can thus bound the norm of w(t)

j,r as:

∥∥∥w(t)
j,r

∥∥∥
2
= ∥w(0)

j,r ∥2 ± o(σ0

√
d) = Θ(σ0

√
d). (G.12)

The second equality is by Lemma C.4. This completes the proof of Proposition G.21.

58

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

H. Proof of Theorem 3.4
We prove Theorem 3.4 in this section. Here, we let δ = 1/polylog(d). First of all, we prove the convergence of training.
For the training convergence, Lemma G.4, Proposition G.6 and Lemma G.7 show that

yif(W
(t),xi) ≥ −κ

2
+

1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ −κ

2
+ xt

≥ −κ

2
+ log

(
ησ2

pd

nm
t+

2

3

)
≥ −κ+ log

(
ησ2

pd

4nm
t+

2

3

)
.

κ is defined in equation G.3. Here, the first inequality is by the conclusion in Lemma G.4 and the second and third

inequalities are by xt ≥ log(ct/b+ 1) ≥ log
(

ησ2
pd

4nm t+ 2
3

)
in Proposition G.6, the last inequality is by the definition of κ in

equation G.3. Therefore we have

L(W(t)) ≤ log

(
1 + exp{κ}/

(ησ2
pd

4nm
t+

2

3

))
≤ eκ

ησ2
pd

4nm t+ 2
3

.

The last inequality is by log(1 + x) ≤ x. When t ≥ 2nm
ησ2

pdε
, we conclude that

L(W(t)) ≤ eκ

ησ2
pd

4nm t+ 2
3

≤ eκ

2/ε+ 2
3

≤ ε.

Here, the last inequality is by eκ ≤ 1.5. This completes the proof for the convergence of training loss.

As for the second conclusion, it is easy to see that

P (yf(W(t),x) > 0) =
∑

µ∈{±u,±v}

P (yf(W(t),x) > 0|xsignal part = µ) · 1
4
, (H.1)

without loss of generality we can assume that the test data x = (u⊤, ξ⊤)⊤, for x = (−u⊤, ξ⊤)⊤, x = (v⊤, ξ⊤)⊤ and
x = (−v⊤, ξ⊤)⊤ the proof is all similar and we omit it. We investigate

P (yf(W(t),x) > 0|xsignal part = u).

When x = (u⊤, ξ⊤)⊤, the true label y = +1. We remind that the true label for x is y, and the observed label is y. Therefore
we have

P (yf(W(t),x) < 0|xsignal part = u) = P (yf(W(t),x) < 0, y = y|xsignal part = u)

+ P (yf(W(t),x) > 0, y ̸= y|xsignal part = u)

≤ p+ P (yf(W(t),x) < 0|xsignal part = u).

It therefore suffices to provide an upper bound for P (yf(W(t),x) < 0|xsignal part = u). Note that for any test data with the
conditioned event xsignal part = u, it holds that

yf(W(t),x) =
1

m

m∑
r=1

F+1,r(W
(t),u) + F+1,r(W

(t), ξ)− 1

m

m∑
r=1

(
F−1,r(W

(t),u) + F−1,r(W
(t), ξ)

)
.

59

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

We have for t ≥ Ω(nm/(ησ2
pd)), xt ≥ C > 0, and

yf(W(t),x) ≥ 1

m

m∑
r=1

ReLU(⟨w(t)
+1,r,u⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩)

≥ −2
√

log(12m/δ) · σ0∥µ∥2 +
n∥µ∥22(1− cos θ)(1− 2p)

60σ2
pd

· xt−1 −
η∥µ∥22
m

− 1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩),

where the first inequality is by Fy,r(W
(t), ξ) ≥ 0, and the second inequality is by Proposition G.18 and |{r ∈

[m], ⟨w(0)
+1,r,u⟩ > 0}|/m ≥ 1/3. Then for t ≥ T = Ω(nm/(ησ2

pd)), xt ≥ xt ≥ C > 0, it holds that

yf(W(t),x) ≥ n∥µ∥22(1− cos θ)(1− 2p)

60σ2
pd

· xt−1 −
1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)−

1

m

m∑
r=1

ReLU(⟨w(t)
−1,r,u⟩)

− 2
√

log(12mn/δ) · σ0∥µ∥2

≥ n∥µ∥22(1− cos θ)(1− 2p)

60σ2
pd

· xt−1 −
1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩)

− 4
√

log(12mn/δ) · σ0∥µ∥2 − 2η∥µ∥22/m

≥ n∥µ∥22(1− cos θ)(1− 2p)

100σ2
pd

· xt−1 −
1

m

m∑
r=1

ReLU(⟨w(t)
−1,r, ξ⟩). (H.2)

Here, the first inequality is by the condition of σ0 , η in Condition 3.3, and xt−1 ≥ C, the second inequality is by the
third conclusion in Lemma G.17 and the third inequality is still by the condition of σ0 , η in Condition 3.3. We have
σ0∥µ∥2 ≤ Õ(n∥µ∥22/(σ2

pd)). We denote by h(ξ) = 1
m

∑m
r=1 ReLU(⟨w

(t)
−1,r, ξ⟩). By Theorem 5.2.2 in Vershynin (2018),

we have

P (h(ξ)− Eh(ξ) ≥ x) ≤ exp

(
− c′x2

σ2
p∥h∥2Lip

)
. (H.3)

By ∥µ∥42(1− cos θ)2 ≥ Ω̃(m2σ4
pd) and Proposition G.21, we directly have

n∥µ∥22(1− cos θ)(1− 2p)

100σ2
pd

· xt−1 ≥ Eh(ξ) =
σp√
2πm

m∑
r=1

∥w(t)
−ŷ,r∥2 = Θ(σpσ0

√
d).

Here, the inequality is by the following equation under the condition ∥µ∥42(1− cos θ)2 ≥ Ω̃(m2σ4
pd):

n∥µ∥22(1− cos θ)

σ3
pd

3/2σ0
≥ Ω̃

(
∥µ∥22(1− cos θ)

σ2
p

√
dm

)
≫ 1.

Now using methods in equation H.3 we get that

P (yf(W(t),x) < 0|xsignal part = u)

≤ P

(
h(ξ)− Eh(ξ) ≥

∑
r

n∥µ∥22(1− cos θ)(1− 2p)

100σ2
pd

· xt−1 −
σp√
2πm

m∑
r=1

∥∥w(t)
−1,r

∥∥
2

)

≤ exp

[
−

c′
(

n∥µ∥2
2(1−cos θ)(1−2p)

100σ2
pd

· xt−1 −
(
σp/(m

√
2π)
)∑m

r=1

∥∥w(t)
−1,r

∥∥
2

)2
σ2
p

(∑m
r=1

∥∥w(t)
−1,r

∥∥
2
/m
)2]

≤ exp{−Cn2∥µ∥42(1− cos θ)2/(σ4
pd

2 · σ2
pσ

2
0d)}

≤ exp{−C∥µ∥42(1− cos θ)2/(m2σ4
pd · polylog(d))} = o(1).

60

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Here, C = O(1) is some constant. The first inequality is directly by equation H.2, the second inequality is by equation H.3
and the third inequality is by Proposition G.18 which directly gives the lower bound of signal learning, and Proposition G.21
which directly gives the scale of

∥∥w(t)
−1,r

∥∥
2
. The last inequality is by ∥µ∥42(1− cos θ)2 ≥ Ω̃(m2σ4

pd). We can similarly get
the inequality on the condition xsignal part = −u and xsignal part = ±v. Combined the results with equation H.1, we have

P (yf(W(t),x) < 0) ≤ p+ o(1).

for all t ≥ Ω(nm/(ησ2
pd)). Here, constant C in different inequalities is different.

For the proof of the third conclusion in Theorem 3.4, we have

P (yf(W(t),x) < 0) = P (yf(W(t),x) < 0, y = y) + P (yf(W(t),x) > 0, y ̸= y)

= p+ (1− 2p)P
(
yf(W(t),x) ≤ 0

)
. (H.4)

We investigate the probability P
(
yf(W(t),x) ≤ 0

)
, and have

P (yf(W (t),x) ≤ 0)

= P

(∑
r

σ(⟨w(t)
−y,r, ξ⟩)−

∑
r

σ(⟨w(t)
y,r, ξ⟩) ≥

∑
r

σ(⟨w(t)
y,r,µ⟩)−

∑
r

σ(⟨w(t)
−y,r,µ⟩)

)
.

Here, µ is the signal part of the test data. Define g(ξ) =
(

1
m

∑m
r=1 ReLU(⟨w

(t)
+1,r, ξ⟩)− 1

m

∑m
r=1 ReLU(⟨w

(t)
−1,r, ξ⟩)

)
, it is

easy to see that

P (yf(W (t),x) ≤ 0) ≥ 0.5P

(
|g(ξ)| ≥ max

{∑
r

σ(⟨w(t)
y,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−y,r,µ⟩)/m

})
, (H.5)

since if |g(ξ)| is large, we can always select y given ξ to make a wrong prediction. Define the set

Ω =

{
ξ : |g(ξ)| ≥ max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}}
,

it remains for us to proceed P (Ω). To further proceed, we prove that there exists a fixed vector ζ with ∥ζ∥2 ≤ 0.02σp, such
that ∑

j′∈{±1}

[
g
(
j′ξ + ζ

)
− g
(
j′ξ
)]

≥ 4max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}
.

Here, µ ∈ {±u,±v} is the signal part of test data. If so, we can see that there must exist at least one of ξ, ξ + ζ, −ξ + ζ
and −ξ that belongs to Ω. We immediately get that

P
(
Ω ∪ (−Ω) ∪ (Ω− ζ) ∪ (−Ω− ζ)

)
= 1.

Then we can see that there exists at least one of Ω,−Ω,Ω− ζ,−Ω− ζ such that the probability is larger than 0.25. Also
note that ∥ζ∥2 ≤ 0.02σp, we have

|P (Ω)− P (Ω− ζ)| =
∣∣Pξ∼N (0,σ2

pId)
(ξ ∈ Ω)− Pξ∼N (ζ,σ2

pId)
(ξ ∈ Ω)

∣∣
≤ ∥ζ∥2

2σp
≤ 0.01.

Here, the first inequality is by Proposition 2.1 in Devroye et al. (2018) and the second inequality is by the condition
∥ζ∥2 ≤ 0.02σp. Combined with P (Ω) = P (−Ω), we conclude that P (Ω) ≥ 0.24. We can obtain from equation H.4 that

P (yf(W(t),x) < 0) = p+ (1− 2p)P
(
yf(W(t),x) ≤ 0

)
≥ p+ (1− 2p) ∗ 0.12 ≥ 0.76p+ 0.12 ≥ p+ C4

61

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

if we find the existence of ζ. Here, the last inequality is by p < 1/2 is a fixed value.

The only thing remained for us is to prove the existence of ζ with ∥ζ∥2 ≤ 0.02σp such that∑
j′∈{±1}

[
g
(
j′ξ + ζ

)
− g
(
j′ξ
)]

≥ 4max

{∑
r

σ(⟨w(t)
+1,r,µ⟩)/m,

∑
r

σ(⟨w(t)
−1,r,µ⟩)/m

}
.

The existence of ζ is proved by the following construction:

ζ = λ ·
∑
r

w
(0)
+1,r,

where λ = cσp/(
√
σ2
0md) for some small constant c. It is worth noting that

∥ζ∥2 =
cσp√
σ2
0md

·
√
m · σ2

0d · (1± o(1)) ≤ 0.02σp,

where the first equality is by the concentration. By the construction of ζ, we have almost surely that

σ(⟨w(t)
+1,r, ξ + ζ⟩)− σ(⟨w(t)

+1,r, ξ⟩) + σ(⟨w(t)
+1,r,−ξ + ζ⟩)− σ(⟨w(t)

+1,r,−ξ⟩)

≥ σ′(⟨w(t)
+1,r, ξ⟩)⟨w

(t)
+1,r, ζ⟩+ σ′(⟨w(t)

+1,r,−ξ⟩)⟨w(t)
+1,r, ζ⟩

≥ ⟨w(t)
+1,r, ζ⟩

≥ λ

[
σ2
0d− 2m

√
log(12mn/δ) · σ2

0

√
d− Ω̃(nmσ0/(σp

√
d))

]
≥ λσ2

0d · (1− o(1)), (H.6)

where the first inequality is by the convexity of ReLU, the second last inequality is by Lemma C.4 and G.2, and the last
inequality is by the definition of σ0. For the inequality with j = −1, we have

σ(⟨w(t)
−1,r, ξ + ζ⟩)− σ(⟨w(t)

−1,r, ξ⟩) + σ(⟨w(t)
−1,r,−ξ + ζ⟩)− σ(⟨w(t)

−1,r,−ξ⟩)

≤ 2
∣∣⟨w(t)

−1,r, ζ⟩
∣∣

≤ 2λ · o(σ2
0d), (H.7)

where the first inequality is by the Lipschitz continuous of ReLU, and the second inequality is by Lemma C.4 and G.2.
Combing equation H.6 with equation H.7, we have

g(ξ + ζ)− g(ξ) + g(−ξ + ζ)− g(−ξ)

≥ (λ/2) · σ2
0d/2

=
cσpσ0

√
d

4
√
m

=
cn

√
m

4
√
d

polylog(d)

≥ Ω̃

(
n∥µ∥22
σ2
pd

)
≥ 4

∑
r

σ(⟨w(t)
+1,r,µ⟩)/m.

Here, the second inequality is by the definition of σ0 and the condition ∥µ∥42 ≤ Õ(mσ4
pd) and δ = 1/polylog(d), the last

inequality is by Proposition G.19 and σ0∥µ∥2 ≪ n∥µ∥22/(σ2
pd) from the condition ∥µ∥2 = Ω̃(mσp/δ). Wrapping all

together, the proof for the existence of ζ completes. This completes the proof of Theorem 3.4.

I. Additional Experiments
I.1. Training Losses in Section 5

In Seciton 5, we presented heatmaps of the test accuracy of two-layer CNNs trained on XOR data to demonstrate the phase
transition between benign and harmful overfitting. In this subsection, we aim to further backup the experiments results in

62

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

Seciton 5 by giving the corresponding heatmaps of training losses. This is to demonstrate that the experiments are indeed
trained until convergence and thus the CNN indeed achieves overfitting.

We give the heatmaps of training losses in Figure 3. These heatmaps of training losses are corresponding to the two cases of
experiments in Section 5. Figure 3 illustrates that, in the final epoch of training, almost all the training losses converge to
zero. This demonstrates that the CNNs are sufficiently trained to overfit the training data.

(a) Training loss for different d (b) Training loss for different d

Figure 3. Heatmap of training losses under the two cases in Section 5.

I.2. Experiments on the Angle θ

In this subsection, we conducted additional experiments to investigate the impact of the angle θ on the test accuracy. We
generate XOR-type data following the distribution in Definition 2.2. We fix d = 200 and n = 80, and report the test
accuracy on different choices of the width m based on 1000 i.i.d test data.

We give the hyper-parameters in the data distribution below. The setting is similar to Section 5. The vectors a + b and
a− b has an angle θ with cos θ = 0.8. The directions of vectors a and b are uniformly generated as two orthogonal vectors,
and their norms are determined by solving

∥a∥22 + ∥b∥22 = ∥µ∥22, ∥a∥22 − ∥b∥22 = ∥µ∥22 · cos θ.

The signal patch µ and the clean label y are jointly generated from DXOR(a,b) in Definition 2.1. The noise patch ξ is
generated following the noise distribution defined in Definition 2.2 with σp = 1, and the observed label y is given by flipping
y with probability p = 0.1.

We consider training CNN models with different widths m under the cases ∥µ∥2 = 1, ∥µ∥2 = 5 and ∥µ∥2 = 9. We
initialize the model parameters as entry-wisely independent Gaussian random variables N(0, σ2

0) and set σ0 = 0.01. We set
the learning rate as η = 10−3, and run full-batch gradient descent for T = 200 training epochs. The final test accuracy of
neural networks with cos θ = 0.8 are reported in Figures 4 and 5.

As depicted in Figures 4 and 5, Theorem 3.2 accurately predicts the boundary, even when the technical assumption
cos θ < 1/2 is imposed. We still observe the line when cos θ = 0.8. This is because, in our experiments, we fix the value of
cos θ, and the threshold serves as a technical condition rather than a fundamental limitation. From a broader perspective, the
setting explored in Section 3.1 represents scenarios where the angle between signal vectors is fixed, and the setting studied
in Section 3.2 tackles a particularly challenging scenario where the angle approaches zero asymptotically.

I.3. Experiments on the Width m

In this subsection, we conducted additional experiments to investigate the impact of the width of the neural networks on the
test accuracy. We generate XOR-type data following the distribution in Definition 2.2. We fix d = 200 and n = 80, and
report the test accuracy on different choices of the width m based on 1000 i.i.d test data.

63

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

(a) Test Accuracy Heatmap (b) Truncated Heatmap with 0.8 (c) Truncated Heatmap with 0.7

Figure 4. Heatmap of test accuracy under different values of n and σ4
pd/∥µ∥42. The x-axis represents the value of σ4

pd/∥µ∥42, whereas
the y-axis is sample size n. (a) displays the original heatmap of test accuracy, where high accuracy is colored blue and low accuracy
is colored yellow. (b) and (c) show the truncated heatmap of test accuracy, where accuracy higher than 0.8 or 0.7 is colored blue, and
accuracy lower than 0.8 or 0.7 is colored yellow.

(a) Test Accuracy Heatmap (b) Truncated Heatmap with 0.8 (c) Truncated Heatmap with 0.7

Figure 5. Heatmap of test accuracy under different values of d and n∥µ∥42/σ4
p. The x-axis represents the value of n∥µ∥42/σ4

p, and y-axis
represents dimension d. (a) displays the original heatmap of test accuracy, where high accuracy is represented by blue color and low
accuracy is represented by yellow. (b) and (c) show the truncated heatmap of test accuracy, where accuracy higher than 0.8 or 0.7 is
colored blue, and accuracy lower than 0.8 or 0.7 is colored yellow.

We give the hyper-parameters in the data distribution below. The setting is similar to Section 5. The vectors a + b and
a− b has an angle θ with cos θ = 0.8. The directions of vectors a and b are uniformly generated as two orthogonal vectors,
and their norms are determined by solving

∥a∥22 + ∥b∥22 = ∥µ∥22, ∥a∥22 − ∥b∥22 = ∥µ∥22 · cos θ.

The signal patch µ and the clean label y are jointly generated from DXOR(a,b) in Definition 2.1. The noise patch ξ is
generated following the noise distribution defined in Definition 2.2 with σp = 1, and the observed label y is given by flipping
y with probability p = 0.1.

We consider training CNN models with different widths m under the cases ∥µ∥2 = 1, ∥µ∥2 = 5 and ∥µ∥2 = 9. We
initialize the model parameters as entry-wisely independent Gaussian random variables N(0, σ2

0) and set σ0 = 0.01. We set
the learning rate as η = 10−3, and run full-batch gradient descent for T = 200 training epochs. The final test accuracy of
neural networks with different widths are reported in Figure 6.

As shown in Figure 6, the case when ∥µ∥2 = 1 corresponds to harmful overfitting and the test accuracy is always around 0.5
regardless of the width of the network. When ∥µ∥2 = 5 or ∥µ∥2 = 9, as the width m increases, there is a significant growth
of test accuracy when m ≤ 3, and the test accuracy does not significantly change with m after m > 3. This demonstrates
that as long as m is large enough, the test accuracy is not sensitive to the neural network width m, which aligns with our
theoretical analysis. It is also worth noting that the conditions of benign and harmful overfitting in Theorem 3.4 explicitly
depend on m. This is because our proof technique for the “asymptotically challenging XOR regime” can only cover a
specific initialization scale σ0 which depends on m. It remains open questions for the general initialization scales that do
not depend on m in the “aysmptotically challenging XOR regime”, and we believe that the test error should still not be

64

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

0 5 10 15 20 25 30 35 40
Width m

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

||μ||2 = 1
||μ||2 = 5
||μ||2 = 9

Figure 6. Test accuracy of neural networks with different widths m under different signal strengths. The x-axis represents the value of
width m ranging from 1 to 40, whereas the y-axis is the test accuracy. The different lines on the plot represent the test accuracy achieved
under different norms of ∥µ∥2.

sensitive to m.

I.4. Real data experiments

In this subsection, we conduct real data experiments by training LeNet based on the MNIST dataset (LeCun et al., 1998)
of handwritten digits. However, since this paper focuses on XOR-type data, we will first manipulate the original MNIST
images to construct an XOR-type learning problem. We descibe the experiment design as follows.

In our experiment, only images of digits 1 and 2 are selected. Subsequently, we apply an XOR operation to these chosen
images. To clarify, for the class labeled as +1, we randomly pick images of digits 1 and 2 and then either directly add them
together, or set each pixel values to negative and then add them together. Conversely, for the class labeled as −1, we perform
subtraction, subtracting the images of digit 1 from those of digit 2, or subtracting the images of digit 2 from those of digit 1.
Thus, images resulting from the operations “1 + 2” and “-1 - 2” are assigned to the +1 class, while images from “-1 + 2”
and “1 - 2” are assigned to the −1 class.

Note also that it is hard for us to accurately define the SNR in the real data due to the reason that we do not know which part
is the signal or noise. Therefore, we multiply the pixels with a positive value named “Scaled SNR”. We then add Gaussian
random noises with mean 0 and standard deviation 0.1 to the outer regions with a width of 5. In this way, we can roughly
use the Scaled SNR to represent the signal-to-noise ratio in the data.

We train the classical LeNet model by setting learning rate to be 0.01, batch size to be 64, and the number of training
epochs to be 100. We consider different training data sizes n ranging from 200 to 3800, with increment of 400, and consider
different scaled SNRs ranging from 0.1 to 1 with increment of 0.1. Figure 7 gives the example figures for “1 + 2” and “1 - 2”
with Scaled SNR equals to 1 and 0.1, respectively.

The heatmaps of test accuracy for different sample sizes and different values of scaled SNR are given in Figure 8. In addition,
we also draw a red curve indicating the shape of the rate y = Θ(x−4). Clearly, the results in Figure 8 also align with our
theoretical findings. As depicted in Figure 8, the boundary between high and low test accuracy indeed matches the rate
y = Θ(x−4), as predicted by our theory. Our theory also suggests that increasing the training sample size n and Scaled
SNR will improve the test accuracy, which is also evident in the results. This demonstrates that our study of benign/harmful
overfitting in learning XOR data understands the essence of real-world image classification problems.

65

Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data

(a) Scaled SNR = 1 (b) Scaled SNR = 1 (c) Scaled SNR = 0.1 (d) Scaled SNR = 0.4

Figure 7. Illustration of modified MNIST images. (a) shows the digit “1+2” with Scaled SNR = 1, (b) shows the digit “1-2” with Scaled
SNR = 1, (c) shows the digit “1+2” with Scaled SNR = 0.1 and (d) shows the digit “1-2” with Scaled SNR = 0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Scaled SNR

800

2400

4000

5600

7200

8800

10400

12000

13600

15200

 S
am

pl
e

Si
ze

 n

Test Accuracy Heatmap

0.5

0.6

0.7

0.8

0.9

1.0

(a) Test Accuracy Heatmap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Scaled SNR

800

2400

4000

5600

7200

8800

10400

12000

13600

15200

 S
am

pl
e

Si
ze

 n

Test Accuracy Heatmap

0.5

0.6

0.7

0.8

0.9

1.0

(b) Truncated Heatmap with 0.8

Figure 8. Heatmap of test accuracy under different values of training sample size n and Scaled SNR. The x-axis represents the value of
Scaled SNR, and y-axis represents the training sample size n. (a) displays the original heatmap of test accuracy, where high accuracy is
represented by blue color and low accuracy is represented by yellow. (b) shows the truncated heatmap of test accuracy, where accuracy
higher than 0.9 is colored blue, and accuracy lower than 0.9 is colored yellow. The red line satisfies n · Scaled SNR4 = C for some
constant C > 0.

66

