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Abstract

This paper proposes a sustainable and adap-001
tive prompting system for ReAct-based lan-002
guage model agents that enhances reasoning003
accuracy, contextual consistency, and align-004
ment with human expectations in multi-step005
question answering. The system integrates006
task-adaptive evaluation, structured memory007
editing, and reactive reasoning cycles to en-008
able iterative prompt refinement and context-009
aware adaptation. Unlike existing methods that010
treat prompts and memory as static, our ap-011
proach dynamically updates both based on in-012
teraction feedback. Experiments across six QA013
domains show consistent improvements over014
strong baselines in LLM-as-judge and human015
evaluations, achieving up to 91.88% agreement016
with human judgment (Cohen’s Kappa). These017
results underscore the value of memory-aware018
prompting and reactive reasoning in developing019
reliable and adaptable LLM agents.020

1 Introduction021

The emergence of large language models (LLMs)022

has enabled agent-based frameworks that surpass023

conventional single-turn NLP tasks by supporting024

iterative reasoning and goal-directed interaction025

(Gao et al., 2023). Recent studies demonstrate026

the potential of LLMs as autonomous agents capa-027

ble of tool use and multi-step problem solving (Li028

et al., 2025; Wang et al., 2024a; Hu et al., 2024).029

This shift has sparked increased interest in prompt030

optimization to enhance reasoning and decision-031

making (Yin and Wang, 2025; Yuksekgonul et al.,032

2024). Chain-of-thought (CoT) prompting has033

been widely adopted to elicit step-by-step reason-034

ing (Chantangphol et al., 2025; Wei et al., 2022),035

but its static structure limits adaptability and error036

resilience. To address these limitations, the ReAct037

framework integrates reasoning and interaction, en-038

abling agents to perform dynamic, multi-step tasks039

more robustly (Tang et al., 2024; Roy et al., 2024).040

However, existing ReAct implementations depend 041

on manual prompt engineering, which is difficult 042

to scale and lacks task adaptability. This motivates 043

the development of adaptive prompting strategies 044

to ensure sustained alignment with evolving user 045

goals and task requirements. 046

Despite recent advances in optimizing LLM 047

agents with ReAct integration, existing frame- 048

works—such as LangGraph (Harrison, 2024), 049

TextGrad (Yuksekgonul et al., 2024), and Adalflow 050

(Yin and Wang, 2025)—remain limited in their 051

support for structured memory and robust cyclic 052

reasoning processes, which are critical capabili- 053

ties for real-world, multi-step tasks. LangGraph 054

leverages a graph-based engine for multi-step rea- 055

soning with modular control over tools, agent selec- 056

tion, and task decomposition. Integrated with Lang- 057

Mem (Harrison, 2023b), it offers basic long-term 058

memory by enabling context storage and retrieval, 059

though its reliance on predefined graphs and lim- 060

ited memory editing reduce flexibility in adaptive 061

prompting. TextGrad employs textual gradients for 062

prompt refinement and supports basic iterative rea- 063

soning. Nevertheless, the lacks structured memory 064

editing limits effectiveness in multi-agent coordina- 065

tion and cyclic reasoning, where prior steps across 066

cycles must be revisited. Adalflow employs graph- 067

based auto-differentiation to optimize multi-step 068

interactions. However, its lack of memory editing 069

integration limits adaptability in tasks requiring 070

persistent memory. These approaches share limita- 071

tions in memory flexibility and manual task-aware 072

optimization strategies, resulting in agent responses 073

that are misaligned with human expectations. 074

To examine current limitations, we conducted hu- 075

man–LLM agreement studies on question answer- 076

ing tasks across three domains: human resources 077

(HR), regulatory compliance, and the Personal Data 078

Protection Act (PDPA). These domains reflect vary- 079

ing answer linguistically restrictiveness providing 080

a basis for evaluating model consistency under dif- 081
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ferent strict interpretation. The HR dataset allows082

flexible responses, provided the content is complete083

and accurate, whereas the Regulatory and PDPA084

datasets demand semantically dense and legally pre-085

cise responses, where lexical variation is limited086

and any deviation may alter the intended meaning.087

In this study setup, the answers were generated by088

Gemini 2.0 Flash (Reid et al., 2024) and evaluated089

with human judgments and an LLM-as-Judge setup,090

where GPT-4o (Achiam et al., 2023) serving as the091

evaluator, to compare alignment between human092

evaluation and LLM-as-Judge outputs. We mea-093

sured Cohen’s Kappa (McHugh, 2012) to assess094

the consistency of evaluator095

As shown in Table 1, the HR domain yields the096

highest Kappa value, indicating strong consistency.097

In contrast, the limited lexical variation such as098

Regulatory and PDPA exhibit lower scores and099

negative scores, especially without reference an-100

swers. The negative Kappa indicate systematic101

disagreement—worse than chance—between the102

LLM-as-Judge and human evaluation, particularly103

in cases where precise legal phrasing is required but104

not provided in the reference. This highlights the105

limitations of model in handling tasks that require106

precise language alignment, revealing discrepan-107

cies between human intent and LLM reasoning.108

These findings underscore the need for a sustain-109

able, memory-aware, and task-adaptive prompting110

pipeline that enables ReAct agents to dynamically111

optimize reasoning and action—without manual112

tuning or degradation of behavioral consistency.113

LLM-as-Judge setting Cohen’s Kappa score
Prompt tuning Expected answer HR Regulatory PDPA

Yes Yes 68.18 18.75 22.47
Yes No 70.21 -10.96 -1.03
No Yes 73.88 11.22 16.70
No No 65.35 14.86 18.77

Table 1: Human evaluation and LLM-as-Judge agree-
ment score (%).

To address the limitations of existing techniques,114

we propose a sustainable and adaptive prompt-115

ing framework for question answering. Our ap-116

proach integrates three key components: cyclic117

reactive reasoning, task-adaptive answer evaluation118

and memory-aware editing. Memory-aware editing119

enables agents to retain, update, and reuse contex-120

tual information for long-term consistency. Task-121

adaptive answer evaluation combines automated122

correctness classification with domain-specific val-123

idation to support response revision. These mech-124

anisms operate within a cyclic reasoning loop en- 125

abling dynamic adaptation to evolving inputs. By 126

integrating validation and memory updates into the 127

reasoning process, our pipeline enhances integrity, 128

reduces reliance on manual prompt engineering, 129

and supports robust decision-making in complex 130

tasks. Our main contributions are as follows: 131

1. A novel framework that integrates ReAct rea- 132

soning, answer validation, and dynamic re- 133

trieval from editable memory to support sus- 134

tainable question answering. 135

2. Task-adaptive evaluation that supports au- 136

tonomous prompt optimization based on task 137

complexity. 138

3. Memory-aware optimization that decouples 139

prompt logic from editable memory, ensuring 140

essential instructions during updates. 141

The paper comprises methodology, experimental 142

setup and results, discussion and conclusion. 143

2 Methodology 144

To improve the robustness of LLM-generated re- 145

sponses in question answering tasks, the frame- 146

work incorporates six interdependent modules, 147

as shown in Figure 1. The ReAct agent com- 148

bines reactive reasoning with retrieval-augmented 149

memory, generating answers through iterative 150

thought–action–observation cycles. An answer 151

validation module evaluates the ReAct agent’s re- 152

ponse across relevance, accuracy, coverage, and 153

completeness. The data checking chain ensures 154

factual alignment by verifying whether expected 155

answers are supported by retrieved document. In 156

cases where the data checking module finds that the 157

retrieved evidence supports the answer, while the 158

original query remains under-specified, the ques- 159

tion rewriting module reformulates the query to im- 160

prove alignment with the supporting document. In 161

the absence of supporting evidence, as determined 162

by the data checking module, the memory editor 163

and generator supports continual learning by updat- 164

ing the memory state—adding validated knowledge 165

and removing conflicting information—to guide fu- 166

ture reasoning. The prompt optimization module re- 167

fines prompt configurations based on accumulated 168

feedback, dynamically adjusting roles, instructions, 169

and answer formats to improve task adherence. 170
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Figure 1: Overview of methodology

2.1 LLM-based React agent171

The LLM-based React agent enables iterative172

decision-making in question answering by in-173

terleaving reasoning steps with actionable out-174

puts, guided by contextual understanding and task-175

specific configurations. The system accepts a user176

query, expected answer format, and agent configu-177

ration. To initiate the reasoning loop, the agent is178

primed through an initial prompt that embeds a de-179

tailed task description, role specification, preferred180

answer style, and relevant domain knowledge. This181

initialization constrains the behavior of LLM to a182

defined persona and task scope, aligning its outputs183

with the domain-specific requirements.184

During execution, the agent performs multi-step185

reasoning through a sequence, represented as:186

THTi → ACTi → OBSi (1)187

Here, THTi denotes the thought operation,188

ACTi denotes the action operation, and OBSi de-189

notes the observation operation, all corresponding190

to the i step of ReAct.191

In the thought stage, the agent hypothesizes a192

response based on the input query and its con-193

textual understanding. This is followed by the194

Action stage, where it selects and executes oper-195

ations—such as employing a document retrieval196

tool to gather relevant information. The observa-197

tion stage then processes the outcome, enabling198

the agent to interpret the evidence and assess its199

relevance. Finally, the agent synthesizes a response200

by integrating retrieved knowledge and prior obser-201

vations to refine its answer to the user query.202

The system is employed a vector-based retrieval203

tool to access relevant knowledge from a structured204

database. The queries and database entries are em-205

bedded into a shared vector space, and retrieval is206

performed by matching the query vector to the clos-207

est entries. This process is formalized as follows:208

K = S(q, e,D) (2)209

where K denotes the retrieved knowledge, S rep- 210

resents the vector search engines, q is the query, e is 211

the embedding model and D denotes the database. 212

To integrate retrieved information into the rea- 213

soning process, the agent generates a response us- 214

ing a system prompt that includes its predefined 215

role, task-specific instructions, stylistic preferences, 216

and the retrieved knowledge. The response is gen- 217

erated as follows: 218

R = LLMr(q, r, t, s,K) (3) 219

where R denotes the response of agent, LLMr 220

represents the language model responsible for 221

agent response generation, q denotes the query, r 222

specifies the agent role, t denotes the agent task, s 223

indicates the desired answer style and K refers to 224

the retrieved knowledge. 225

The LLM-based ReAct agent allows the agent to 226

iteratively refine its reasoning through knowledge 227

retrieval, enhancing the accuracy and contextual 228

relevance of its responses to align with the desired 229

answer style, user intent, and task requirements. 230

2.2 Answer Validation 231

To enhance the accuracy of agent responses, we in- 232

troduce an answer validation module that conducts 233

structured evaluations of both semantic fidelity and 234

lexical appropriateness to ensure response relia- 235

bility. For each agent response, the module em- 236

ploys the LLM to summarizes and evaluates the re- 237

sponse across four dimensions—Relevance, Accu- 238

racy, Coverage, and Completeness—as suggested 239

by Auer et al. (2023). Relevance ensures the an- 240

swer directly addresses the user’s query; Accuracy 241

verifies the factual correctness of the information; 242

Coverage assesses whether all essential aspects 243

of the question are included; and Completeness 244

evaluates the sufficiency of detail for comprehen- 245

sive understanding. These dimensions collectively 246

enhance the reliability and utility of the informa- 247

tion provided, aligning with established evaluation 248
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frameworks in information retrieval and data qual-249

ity assessment. For each identified issue, the LLM250

suggests actionable improvements. Finally, it gen-251

erates a response that includes the answer valida-252

tion result and corresponding feedback. The valida-253

tion result is categorized into one of three classes:254

fully correct, partially correct, or incorrect. The255

feedback is provided to clarify and justify the out-256

come of the validation, as formalized in the follow-257

ing equation:258

Vr, Vf = LLMv(q, a,R) (4)259

where Vr denotes the result of answer valida-260

tion, Vf denotes the feedback of answer validation,261

LLMv represents the language model for answer262

validation, q denotes the query, a specifies the ex-263

pected answer, and R denotes the agent’s response.264

The answer validation module evaluates the Re-265

Act agent’s response. If errors are detected, valida-266

tion feedback is passed to data checking module;267

otherwise, it is retained for prompt optimization.268

2.3 Data Checking269

To address potential inaccuracies in the response270

of the agent as identified by the answer validation271

module, we introduce a data checking mechanism.272

This mechanism verifies whether the expected an-273

swer is supported by the retrieved document, help-274

ing to distinguish between incorrect responses due275

to faulty reasoning and those resulting from miss-276

ing information. It also facilitates memory revision277

and assists the memory editor in further improving278

the agent’s performance.279

The output of the data checking process con-280

sists of two parts, which are the result of the data281

checking evaluation and an explanatory rationale282

supporting that judgment. Each validated label is283

classified into one of three categories: fully valid,284

partially valid, or invalid. This structured classifi-285

cation ensures that ground-truth answers are mean-286

ingfully aligned with the contents of the database.287

To support this data checking, the system performs288

knowledge retrieval using vector search, as defined289

by the equation 2. The data checking is defined as:290

Cr, Cs = LLMc(a,K) (5)291

where LLMc is a LLM-based data checking, Cr292

is data checking result, Cs is support reason for293

data checking result, a is the expected answer and294

K is the retrieved knowledge .295

The data checking module employs an LLM- 296

based verifier to assess the consistency between 297

the expected answer and retrieved evidence. If the 298

evidence supports the answer although the query 299

remains under-specified, the output is forwarded 300

to the Question Rewriting module; otherwise, it is 301

routed to the Memory Editor and Generator. 302

2.4 Question rewriting 303

To address cases where the response of agent is 304

incorrect despite sufficient supporting documents, 305

we introduce a question rewriting component that 306

enhances contextual alignment and retrieval perfor- 307

mance. The question rewriter operates under the 308

assumption that the expected answer is appropriate 309

but the original query lacks the specificity needed 310

for effective document retrieval. It reformulates the 311

query by leveraging both the expected answer and 312

the context retrieved from previous attempts, ensur- 313

ing the new query targets documents that contain 314

supporting evidence without revealing the answer. 315

This design enhances the retrieval process by 316

enabling iterative refinement of user queries, par- 317

ticularly in cases where insufficiently specific ques- 318

tions degrade retrieval performance and hinder the 319

agent’s ability to access relevant context. The re- 320

formulated query is then retained as feedback for 321

prompt optimization. The rewriting process is for- 322

mally defined as: 323

Q′ = LLMq(q, a,K) (6) 324

where LLMq denotes the language model for 325

question rewriting, q is the original query, a is the 326

expected answer, and K represents the previously 327

retrieved knowledge. The output Q′ is the reformu- 328

lated query. 329

2.5 Memory editor and generation 330

To address incorrect outcomes from the answer 331

validation module and failure cases in data check- 332

ing, we introduce a memory editing and generation 333

module, implemented as a language model-based 334

mechanism that updates memory based on the cur- 335

rent memory state, answer validation feedback, the 336

original query–answer pair, and the target memory 337

format. This design ensures that agent maintains an 338

up-to-date and coherent internal knowledge base, 339

allowing it to evolve based on validated feedback 340

and interaction history. 341

The module first analyzes the validation feed- 342

back to determine necessary updates that enhance 343
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response of the agent. It then integrates newly de-344

rived knowledge with the existing memory entries.345

The output consists of two structured components:346

a list of new memory entries to be added, formatted347

consistently with the input memory structure, and a348

list of conflicting memory entries that should be re-349

moved, also presented in the same format. Memory350

operations are governed by:351

Ma,Mc = LLMm(Mo, Vf , Cs, f, q, a) (7)352

where Ma denotes the added memory, Mc de-353

notes the conflicted memory, LLMm represents the354

language model for memory editor, Mo denotes the355

current memory, Vf denotes the feedback of answer356

validation, Cs is support reason for data checking357

result, f is the format of the memory, q denotes the358

query, and a specifies the expected answer.359

2.6 Adaptive prompting optimization360

The adaptive prompt optimization is implemented361

as an LLM-based mechanism that updates the sys-362

tem prompt based on interaction feedback, ensur-363

ing the agent remains aligned with task-specific364

objectives and expected output standard. In our365

framework, prompt optimization is informed by366

three key inputs: the feedback from the answer val-367

idation module, the added memory entries, and the368

conflicting memory entries identified by the mem-369

ory editor. These elements indicate the current370

performance of the agent and knowledge state, pro-371

viding rich context for refining the configuration of372

the agent. The goal is to adjust core components of373

the prompt which are task instructions, and answer-374

ing style description—to better suit the current task375

context and improve downstream response quality.376

This design ensures the agent remains adaptable,377

domain-aligned, and capable of generating accu-378

rate, coherent answers. The prompt optimization379

process is formally defined as:380

P ′
j = LLMp(r, t, s,Ma,Mc, Vf )j−1 (8)381

where LLMp denotes the language model re-382

sponsible for prompt optimization at step j − 1,383

and P ′
j is the resulting optimized prompt used at384

the j-th iteration. r, t, and s represent the orig-385

inal agent role, task instructions, and answering386

style, respectively. Each iteration j denotes a full387

framework cycle, including ReAct-based interac-388

tion, validation, data checking, memory editing,389

and prompt refinement.This formulation enables 390

iterative refinement of the ReAct agent’s prompt 391

based on performance feedbacks and memory up- 392

dates from the previous interaction step. 393

By dynamically adjusting the prompt configura- 394

tion based on performance feedback and memory 395

evolution, this mechanism enhances the contextual 396

relevance and task effectiveness of agent over time. 397

3 Experimental Setting 398

3.1 Datasets 399

We evaluate our framework on three domain- 400

specific QA datasets featuring single-turn, chatbot- 401

style interactions, where each question–answer 402

pair is independent and devoid of multi-turn di- 403

alogue context an HR dataset with 329 human 404

resource inquiries, a regulatory dataset with 72 405

question–answer pairs on organizational policies, 406

and a PDPA dataset with 59 queries related to Per- 407

sonal Data Protection Act. These datasets were 408

constructed by retrieving relevant content from in- 409

ternal databases, followed by the generation of cor- 410

responding questions and ground-truth answers to 411

reflect realistic user intents and information needs. 412

Each dataset was approved by our organization and 413

consisted of organizational policies and regulations 414

without any personally identifiable information. 415

Additionally, we incorporate the official dataset 416

from the COLING-2025 Regulations Challenge 417

(Wang et al., 2024b), which contains QA pairs 418

curated for evaluating ReAct-based agents. This 419

dataset integrates foundational knowledge and 420

stylistic conventions relevant to real-world com- 421

pliance scenarios. Its validation and test sets in- 422

clude 49 named entity recognition (NER) sam- 423

ples derived from the EMIR dataset, along with 424

190 financial math cases generated using Chat- 425

GPT—containing formulas and code—and subse- 426

quently verified by human annotators. 427

To evaluate performance on multiple-choice rea- 428

soning tasks, we also include 1,032 samples from 429

the publicly available Flare-CFA dataset1, which is 430

modeled after professional certification exams and 431

emphasizes high-level reasoning over structured 432

answer choices. This evaluation spans six QA do- 433

mains, covering high-precision tasks that require 434

standardized output formats (e.g., financial math, 435

NER, and CFA), and policy-driven scenarios with 436

limited lexical variation and strict language restric- 437

1https://huggingface.co/datasets/ChanceFocus/
flare-cfa

5

https://huggingface.co/datasets/ChanceFocus/flare-cfa
https://huggingface.co/datasets/ChanceFocus/flare-cfa


tiveness (e.g., regulatory and PDPA), providing a438

comprehensive basis for assessing the robustness439

and generalizability of our proposed framework440

3.2 Implementation Details441

All components are implemented in Python us-442

ing an architecture built on LangChain (Harri-443

son, 2023a), integrating OpenAI GPT models and444

Hugging Face Transformers (Wolf et al., 2019)445

to support structured reasoning, generation, and446

evaluation. A ReAct-based agent framework or-447

chestrates multi-agent execution and reasoning-448

intensive tasks, with agent creation and coordi-449

nation managed via LangGraph (Harrison, 2024).450

The answer generation is performed using Gem-451

ini 2.0 Flash (Reid et al., 2024), while GPT-4o452

(Achiam et al., 2023) is employed for answer val-453

idation and serves as the LLM-as-a-judge in ex-454

periments. A temperature setting of 0.0 is used455

throughout to ensure deterministic outputs. To456

enhance factual accuracy and answer consistency,457

the ReAct-based agent and data checking modules458

incorporate vector-based retrieval implemented459

with OpenSearch. The retrieval system uses the460

multilingual-e5-small embedding model to support461

language-agnostic semantic search aligned with462

expected answers and underlying database content.463

Our experimental setup was executed on an464

NVIDIA A6000 GPU with 64 GB RAM. The aver-465

age prompt length for our ReAct-based agent is ap-466

proximately 1,675 characters (453 tokens), which467

is notably more efficient compared to AdalFlow468

(2,900 characters, 683 tokens) and TextGrad (5,700469

characters, 1,277 tokens). Additional modules ex-470

hibit compact prompts as follows: answer valida-471

tion (952 characters, 256 tokens), data checking472

(696 characters, 192 tokens), and memory editing473

(905 characters, 228 tokens). This compact prompt-474

ing strategy supports lower compute overhead. All475

experiments were completed within 12 hours.476

3.3 Evaluation Metrics477

We evaluate the performance of the agent using478

three primary metrics: accuracy based on LLM-479

as-judge, accuracy based on human annotations,480

and inter-rater agreement, measured by Cohen’s481

Kappa, between LLM and human evaluations. A482

total of four annotators, employed by organization483

in departments relevant to the evaluation domains,484

participated in the human evaluation. Annotators485

were presented with a side-by-side comparison of486

the original question and the agent-generated an-487

swer and were prompted to assign a binary label: 488

Correct or Incorrect. To ensure consistent judg- 489

ment, all annotators followed a shared set of qual- 490

itative evaluation criteria: Relevance, Accuracy, 491

Coverage, and Completeness. Relevance assesses 492

whether the response directly addresses the user’s 493

question. Irrelevant responses automatically inval- 494

idate coverage and completeness. Accuracy eval- 495

uates factual correctness and consistency with the 496

intended source. Responses that introduce unsup- 497

ported or fabricated content are marked as inac- 498

curate. Coverage considers whether all parts of 499

the question are addressed. For example, omitting 500

one of four requested items results in insufficient 501

coverage. Completeness refers to structural and 502

linguistic integrity. A response is complete if it is 503

fully delivered, not truncated, and ends coherently, 504

even when expressing uncertainty. 505

To assess the consistency between LLM-as- 506

judge and human annotators, we report Cohen’s 507

Kappa—a statistical measure of inter-rater relia- 508

bility that accounts for chance agreement. Unlike 509

raw agreement rates, Cohen’s Kappa adjusts for the 510

probability of random alignment and is defined as: 511

κ =
Po − Pe

1− Pe
512

where Po is the observed agreement and Pe is 513

the expected agreement by chance. A score of 1 514

indicates perfect agreement, 0 reflects chance-level 515

agreement, and negative values suggest systematic 516

disagreement. In this study, Cohen’s Kappa pro- 517

vides a quantitative measure of alignment between 518

LLM-based and human evaluations, offering in- 519

sight into the reliability of automated assessment. 520

4 Experimental Results and Discussion 521

4.1 Performance comparison with baselines 522

Table 2 presents a comparative evaluation of our 523

prompting framework against AdalFlow, TextGrad, 524

and baseline LLMs, using LLM-as-judge and hu- 525

man assessments, along with agreement measured 526

by Cohen’s Kappa. This experiment investigates 527

the impact of two key components—memory edit- 528

ing and adaptive prompt optimization—on the per- 529

formance of ReAct agents. All variants incorpo- 530

rate a memory mechanism; however, only spe- 531

cific configurations implement memory editing. 532

Our proposed framework, which integrates both 533

components, achieves the highest scores across all 534

metrics (90.24% LLM-as-judge, 88.50% human, 535

6



Method Memory generator LLM-as-judge Human evaluation Agreement score
and editing score (%) score (%) (Cohen’s Kappa) (%)

Our proposed

Adaptive Optimization Yes 90.244 88.496 91.876
- Yes 86.939 87.254 87.297

Adaptive Optimization No 88.167 85.178 90.733
- No 82.055 81.219 82.574

Adalflow
Auto-differentiation Yes 81.869 79.670 83.984
Auto-differentiation No 79.958 75.580 81.541

Textgrad
Textual gradient Yes 78.595 76.079 86.082
Textual gradient No 76.099 73.164 83.312

GPT 74.723 71.120 82.635
Gemini 74.473 72.866 81.770

Table 2: Performance comparison of ReAct agents with and without memory generator and editing across training
strategies.

Method Domain QA Total Samples
LLM-as-judge Human evaluation Agreement score

score (%) score (%) (Cohen’s Kappa) (%)

Our proposed
Trainable ReAct prompt
optimization with memory gener-
ator and editing

NER 49 96.062 91.616 93.119
CFA 1032 92.970 91.505 96.234
Financial math 190 98.017 95.160 94.111
PDPA QA 59 85.245 84.029 87.117
HR QA 329 96.512 94.444 97.198
Regulatory QA 72 83.879 81.547 90.659

Adalflow
Trainable ReAct prompt
optimization with memory gener-
ator and editing

NER 49 92.203 86.731 87.547
CFA 1032 84.601 83.477 87.986
Financial math 190 93.186 89.112 88.123
PDPA QA 59 79.812 72.753 75.229
HR QA 329 83.052 79.599 87.999
Regulatory QA 72 79.530 73.560 79.729

Textgrad
Trainable ReAct prompt
optimization with memory gener-
ator and editing

NER 49 76.190 71.998 86.732
CFA 1032 81.724 80.816 87.114
Financial math 190 85.663 82.928 86.631
PDPA QA 59 71.296 64.088 72.628
HR QA 329 74.989 68.957 85.081
Regulatory QA 72 70.649 65.710 77.669

Table 3: Performance Comparison Across Domain QA Tasks

and 91.88% agreement), demonstrating strong task536

alignment and consistent output quality. Abla-537

tion studies demonstrate that excluding either com-538

ponent degrades performance, underscoring their539

complementary contributions. The configuration540

incorporating memory editing without adaptive541

prompt optimization remains competitive to en-542

sure the independent effectiveness of structured543

memory and task-adaptive evaluation. Compared544

to gradient-based baselines, our framework demon-545

strates improved performance, particularly in hu-546

man evaluations, suggesting enhanced instruction547

fidelity and context-aware reasoning. Furthermore,548

it substantially increases Cohen’s Kappa agreement549

between LLM-as-judge and human ratings, indicat-550

ing stronger alignment with human intent.551

4.2 Performance comparison of our proposed552

and baseline across domain QA tasks553

We further evaluated the generalizability of our pro-554

posed framework across six diverse QA domains:555

NER, CFA, financial math, PDPA, HR, and regula-556

tory QA. As shown in Table 3, our method consis-557

tently outperforms AdalFlow and TextGrad across558

all domains in both LLM-as-judge and human559

evaluations. It demonstrates particularly strong560

performance in high-precision tasks such as fi-561

nancial math (98.02% LLM-as-judge, 95.16% hu- 562

man) and HR QA (96.51%, 94.44%), indicating 563

robust reasoning and stability. In more nuanced 564

domains, such as PDPA and regulatory QA, where 565

instruction fidelity and adaptability are critical, our 566

method achieves higher agreement scores (87.12% 567

and 90.66% Cohen’s Kappa, respectively) com- 568

pared to the baselines. These findings highlight 569

the benefits of memory-aware and prompt opti- 570

mization in enhancing consistency and contextual 571

alignment. Overall, the framework adapts effec- 572

tively across domains of varying complexity, out- 573

performing static gradient-based approaches and 574

reinforcing the value of structured prompting and 575

task-adaptive evaluation. 576

4.3 Performance comparison across prompt 577

patterns and iterative steps. 578

To examine the impact of iterative optimization 579

and prompt initialization, we conducted an ablation 580

study varying the number of the full framework cy- 581

cle (maximum steps = 3, 5, 7) and starting prompt 582

patterns. As shown in Table 4, performance con- 583

sistently improved with increased reasoning steps, 584

with the highest scores achieved at 7 maximum 585

steps using Our proposed (90.24% LLM-as-judge, 586

88.50% human evaluation, and 91.88% agreement). 587
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Method Max Step Starting Prompt
LLM-as-judge Human evaluation Agreement score

score (%) score (%) (Cohen’s Kappa) (%)

Our proposed
Trainable ReAct prompt
optimization with memory gener-
ator and editing

3 Adalflow 85.434 85.411 88.747
5 Adalflow 86.281 86.791 89.745
7 Adalflow 87.462 88.622 90.337
3 Textgrad 83.320 84.175 88.503
5 Textgrad 84.985 85.298 89.379
7 Textgrad 85.513 87.022 89.768
3 Our prompt 87.990 87.510 89.365
5 Our prompt 90.295 87.919 90.270
7 Our prompt 90.244 88.496 91.876

Table 4: Performance Comparison Across Prompt Patterns and Iterative Steps.

Method Prompt optimization LLM-as-judge setting
LLM-as-judge Human evaluation Agreement score

score (%) score (%) (Cohen’s Kappa) (%)

Our proposed

Adaptive Optimization with expected answer 90.244 88.496 91.876
Adaptive Optimization without expected answer 89.044 88.496 88.782

- with expected answer 86.939 87.254 87.297
- without expected answer 85.009 87.254 84.446

Table 5: Performance Comparison Across LLM-as-Judge Settings

These findings suggest that deeper iterative reason-588

ing through adaptive prompting enhances both ac-589

curacy and stability. Across all settings, our imple-590

mentation outperformed alternatives, underscoring591

the role of well-designed initial prompts in guiding592

memory updates and prompt refinement. These593

results support our design of cyclic learning with594

structured prompt evolution, enabling ReAct agents595

to adapt effectively while preserving coherence and596

contextual relevance.597

4.4 Performance comparison across598

LLM-as-Judge settings599

We examined the impact of including the expected600

answers in the LLM-as-judge evaluation to assess601

alignment with human judgment. As shown in602

Table 5, the highest performance was obtained un-603

der the system incorporated adaptive prompt opti-604

mization and was evaluated with expected answers605

(90.24% LLM-as-judge, 88.50% human evalua-606

tion, 91.88% agreement). In the absence of the607

expected answers, the LLM-as-judge score slightly608

declined to 88.782% agreement. A similar trend609

was observed in the non-prompt optimization set-610

ting. These findings suggest that expected answers611

enhance automated scoring consistency, while the612

proposed method remains robust even under lack613

of expected answer.614

5 Discussion615

Our LLM-based ReAct agent integrates reactive616

reasoning with retrieval-augmented memory to im-617

prove performance across diverse QA tasks. The618

full system outperforms gradient-based baselines in619

both automatic and human evaluations, achieving620

high inter-rater agreement and strong task align- 621

ment. Ablation results highlight the complemen- 622

tary roles of adaptive prompting and memory edit- 623

ing, with the non-trainable variant still perform- 624

ing competitively. Notably, our approach main- 625

tains high agreement with human judgments even 626

without reference answers (e.g., 88.78% Cohen’s 627

Kappa), demonstrating robustness in open-ended 628

evaluation. These findings underscore the effec- 629

tiveness of combining dynamic memory with task- 630

adaptive prompting to build more reliable and 631

context-aware LLM agents. 632

6 Conclusion 633

we proposed a sustainable and adaptive prompting 634

framework for ReAct-based LLM agents that inte- 635

grates task-adaptive evaluation, structured mem- 636

ory editing, and reactive reasoning. Existing 637

frameworks such as LangGraph, TextGrad, and 638

Adalflow, while advancing modular control and 639

prompt optimization, remain limited in their abil- 640

ity to revise memory and adapt reasoning dynam- 641

ically across multi-step tasks. They often rely 642

on static prompts and treat memory as fixed con- 643

text, resulting in brittle behavior and poor adapt- 644

ability in ambiguous or evolving environments. 645

Our approach addresses these limitations by en- 646

abling agents to iteratively revise context, adjust 647

prompts, and react to feedback through structured 648

Thought–Action–Observation cycles. Empirical re- 649

sults across QA domains show consistent improve- 650

ments over baselines, underscoring the importance 651

of combining memory-aware adaptation with reac- 652

tive reasoning to build more reliable, flexible, and 653

human-aligned LLM agents. 654
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Limitations655

Although our framework demonstrates promising656

results, it presents several limitations. The incorpo-657

ration of multiple reasoning and validation steps in-658

creases computational overhead, posing challenges659

for real-time and large-scale deployment. The cur-660

rent memory module, while effective for structured661

updates, has not been evaluated on unstructured662

or noisy inputs, which are common in real-world663

applications. Moreover, the use of teachable mem-664

ory structures may result in increased token con-665

sumption during inference, which introduces effi-666

ciency concerns. Nevertheless, this overhead re-667

mains lower than that of retrieval-augmented gener-668

ation (RAG) approaches, which inherently involve669

external document retrieval. Additionally, although670

the framework has been tested across several QA671

domains, it has not yet been extended to multilin-672

gual or multimodal tasks, and its effectiveness in673

low-resource settings remains unexplored. The ini-674

tial prompt patterns were designed and may require675

further adaptation to generalize across diverse tasks676

or domains. Future work will focus on improving677

computational efficiency, enabling support for mul-678

tilingual and interactive use cases, and enhancing679

the adaptability of prompt design to broaden the680

framework’s applicability.681

References682

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,683
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-684
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-685
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,686
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim687
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,688
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-689
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made690
laine Boyd, Anna-Luisa Brakman, Greg Brockman,691
Tim Brooks, Miles Brundage, Kevin Button, Trevor692
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,693
Chelsea Carlson, Rory Carmichael, Brooke Chan,694
Che Chang, Fotis Chantzis, Derek Chen, Sully695
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben-696
jamin Chess, Chester Cho, Casey Chu, Hyung Won697
Chung, Dave Cummings, Jeremiah Currier, Yunx-698
ing Dai, Cory Decareaux, Thomas Degry, Noah699
Deutsch, Damien Deville, Arka Dhar, David Do-700
han, Steve Dowling, Sheila Dunning, Adrien Ecof-701
fet, Atty Eleti, Tyna Eloundou, David Farhi, Liam702
Fedus, Niko Felix, Sim’on Posada Fishman, Jus-703
ton Forte, Is abella Fulford, Leo Gao, Elie Georges,704
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel705
Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Mor-706
gan Grafstein, Scott Gray, Ryan Greene, Joshua707
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-708

lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, 709
Jo hannes Heidecke, Chris Hesse, Alan Hickey, Wade 710
Hickey, Peter Hoeschele, Brandon Houghton, Kenny 711
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu 712
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger 713
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie 714
Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, 715
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish 716
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook 717
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch- 718
ner, Jamie Ryan Kiros, Matthew Knight, Daniel 719
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, 720
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, 721
Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, 722
Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, 723
Rachel Lim, Molly Lin, Stephanie Lin, Ma teusz 724
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 725
Anna Makanju, Kim Malfacini, Sam Manning, Todor 726
Markov, Yaniv Markovski, Bianca Martin, Katie 727
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 728
McKinney, Christine McLeavey, Paul McMillan, 729
Jake McNeil, David Medina, Aalok Mehta, Jacob 730
Menick, Luke Metz, Andrey Mishchenko, Pamela 731
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. 732
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 733
M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev 734
Nayak, Arvind Neelakantan, Richard Ngo, Hyeon- 735
woo Noh, Ouyang Long, Cullen O’Keefe, Jakub W. 736
Pachocki, Alex Paino, Joe Palermo, Ashley Pantu- 737
liano, Giambattista Parascandolo, Joel Parish, Emy 738
Parparita, Alexandre Passos, Mikhail Pavlov, Andrew 739
Peng, Adam Perelman, Filipe de Avila Belbute Peres, 740
Michael Petrov, Henrique Pondé de Oliveira Pinto, 741
Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, 742
Tolly Powell, Alethea Power, Boris Power, Elizabeth 743
Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya 744
Ramesh, Cameron Raymond, Francis Real, Kendra 745
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, 746
Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani 747
Santurkar, Girish Sastry, Heather Schmidt, David 748
Schnurr, John Schulman, Daniel Selsam, Kyla Shep- 749
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, 750
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie 751
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, 752
Benjamin D. Sokolowsky, Yang Song, Natalie Stau- 753
dacher, Felipe Petroski Such, Natalie Summers, Ilya 754
Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine 755
Thompson, Phil Tillet, Amin Tootoonchian, Eliz- 756
abeth Tseng, Preston Tuggle, Nick Turley, Jerry 757
Tworek, Juan Felipe Cer’on Uribe, Andrea Val- 758
lone, Arun Vijayvergiya, Chelsea Voss, Carroll L. 759
Wainwright, Justin Jay Wang, Alvin Wang, Ben 760
Wang, Jonathan Ward, Jason Wei, CJ Weinmann, 761
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian 762
Weng, Matt Wiethoff, Dave Willner, Clemens Win- 763
ter, Samuel Wolrich, Hannah Wong, Lauren Work- 764
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, 765
Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Woj- 766
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar- 767
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang 768
Zhuang, William Zhuk, and Barret Zoph. 2023. Gpt- 769
4 technical report. 770

S. Auer, Dante Augusto Couto Barone, Cassiano 771

9

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815


Bartz, E. Cortes, Mohamad Yaser Jaradeh, Oliver772
Karras, Manolis Koubarakis, Dmitry I. Mouromt-773
sev, Dmitrii Pliukhin, Daniil Radyush, Ivan Shilin,774
Markus Stocker, and Eleni Tsalapati. 2023. The775
sciqa scientific question answering benchmark for776
scholarly knowledge. Scientific Reports, 13.777

Pantid Chantangphol, Pornchanan Balee, Kantapong778
Sucharitpongpan, Chanatip Saetia, and Tawunrat779
Chalothorn. 2025. FinMind-Y-me at the regulations780
challenge task: Financial mind your meaning based781
on THaLLE. In Proceedings of the Joint Workshop of782
the 9th Financial Technology and Natural Language783
Processing (FinNLP), the 6th Financial Narrative784
Processing (FNP), and the 1st Workshop on Large785
Language Models for Finance and Legal (LLMFinLe-786
gal), pages 349–362, Abu Dhabi, UAE. Association787
for Computational Linguistics.788

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao789
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2023.790
Large language models empowered agent-based mod-791
eling and simulation: A survey and perspectives.792
ArXiv, abs/2312.11970.793

Harrison Harrison. 2023a. Langchain: Building ap-794
plications with llms through composability. https:795
//www.langchain.com/. Accessed: 2025-03-31.796

Harrison Harrison. 2023b. Langchain memory797
module. https://docs.langchain.com/docs/798
modules/memory/. Accessed: 2025-03-31.799

Harrison Harrison. 2024. Langgraph: Stateful multi-800
agent workflows for llms. https://github.com/801
langchain-ai/langgraph. Accessed: 2025-03-31.802

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf,803
Yisong Yue, David A. Ross, Cordelia Schmid, and804
Alireza Fathi. 2024. Scenecraft: An LLM agent for805
synthesizing 3d scenes as blender code. In Forty-806
first International Conference on Machine Learning,807
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-808
Review.net.809

Yutong Li, Lu Chen, Aiwei Liu, Kai Yu, and Lijie Wen.810
2025. Chatcite: LLM agent with human workflow811
guidance for comparative literature summary. In812
Proceedings of the 31st International Conference813
on Computational Linguistics, COLING 2025, Abu814
Dhabi, UAE, January 19-24, 2025, pages 3613–3630.815
Association for Computational Linguistics.816

M. L. McHugh. 2012. Interrater reliability: the kappa817
statistic. Biochemia Medica, 22:276 – 282.818

Machel Reid, Nikolay Savinov, Denis Teplyashin,819
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste820
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan821
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro-822
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie823
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-824
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,825
Yuanzhong Xu, James Molloy, Jilin Chen, Michael826
Isard, Paul Barham, Tom Hennigan, Ross McIl-827
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,828

Eliza Rutherford, Erica Moreira, Kareem W. Ay- 829
oub, Megha Goel, Clemens Meyer, Gregory Thorn- 830
ton, Zhen Yang, Henryk Michalewski, Zaheer Ab- 831
bas, Nathan Schucher, Ankesh Anand, Richard Ives, 832
James Keeling, Karel Lenc, Salem Haykal, Siamak 833
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro- 834
man Ring, Stephen Spencer, Eren Sezener, Luke 835
Vilnis, Oscar Chang, Nobuyuki Morioka, George 836
Tucker, Ce Zheng, Oliver Woodman, Nithya At- 837
taluri, Tomás Kociský, Evgenii Eltyshev, Xi Chen, 838
Timothy Chung, Vittorio Selo, Siddhartha Brahma, 839
Petko Georgiev, Ambrose Slone, Zhenkai Zhu, James 840
Lottes, Siyuan Qiao, Ben Caine, Sebastian Riedel, 841
Alex Tomala, Martin Chadwick, J Christopher Love, 842
Peter Choy, Sid Mittal, Neil Houlsby, Yunhao Tang, 843
Matthew Lamm, Libin Bai, Qiao Zhang, Luheng 844
He, Yong Cheng, Peter Humphreys, Yujia Li, Sergey 845
Brin, Albin Cassirer, Ying-Qi Miao, Lukás Zilka, 846
Taylor Tobin, Kelvin Xu, Lev Proleev, Daniel Sohn, 847
Alberto Magni, Lisa Anne Hendricks, Isabel Gao, 848
Santiago Ontan’on, Oskar Bunyan, Nathan Byrd, Ab- 849
hanshu Sharma, Biao Zhang, Mario Pinto, Rishika 850
Sinha, Harsh Mehta, Dawei Jia, Sergi Caelles, Al- 851
bert Webson, Alex Morris, Becca Roelofs, Yifan 852
Ding, Robin Strudel, Xuehan Xiong, Marvin Rit- 853
ter, Mostafa Dehghani, Rahma Chaabouni, Abhijit 854
Karmarkar, Guangda Lai, Fabian Mentzer, Bibo Xu, 855
YaGuang Li, Yujing Zhang, Tom Le Paine, Alex 856
Goldin, Behnam Neyshabur, Kate Baumli, Anselm 857
Levskaya, Michael Laskin, Wenhao Jia, Jack W. Rae, 858
Kefan Xiao, Antoine He, Skye Giordano, Laksh- 859
man Yagati, Jean-Baptiste Lespiau, Paul Natsev, San- 860
jay Ganapathy, Fangyu Liu, Danilo Martins, Nanxin 861
Chen, Yunhan Xu, Megan Barnes, Rhys May, Arpi 862
Vezer, Junhyuk Oh, Ken Franko, Sophie Bridgers, 863
Ruizhe Zhao, Boxi Wu, Basil Mustafa, Sean Sechrist, 864
Emilio Parisotto, Thanumalayan Sankaranarayana 865
Pillai, Chris Larkin, Chenjie Gu, Christina Sorokin, 866
Maxim Krikun, Alexey Guseynov, Jessica Landon, 867
Romina Datta, Alexander Pritzel, Phoebe Thacker, 868
Fan Yang, Kevin Hui, A.E. Hauth, Chih-Kuan Yeh, 869
David Barker, Justin Mao-Jones, Sophia Austin, Han- 870
nah Sheahan, Parker Schuh, James Svensson, Rohan 871
Jain, Vinay Venkatesh Ramasesh, Anton Briukhov, 872
Da-Woon Chung, Tamara von Glehn, Christina But- 873
terfield, Priya Jhakra, Matt Wiethoff, Justin Frye, 874
Jordan Grimstad, Beer Changpinyo, Charline Le 875
Lan, Anna Bortsova, Yonghui Wu, Paul Voigtlaender, 876
Tara N. Sainath, Charlotte Smith, Will Hawkins, Kris 877
Cao, James Besley, Srivatsan Srinivasan, Mark Omer- 878
nick, Colin Gaffney, Gabriela de Castro Surita, Ryan 879
Burnell, Bogdan Damoc, Junwhan Ahn, Andrew 880
Brock, Mantas Pajarskas, Anastasia Petrushkina, Seb 881
Noury, Lorenzo Blanco, Kevin Swersky, Arun Ahuja, 882
Thi Avrahami, Vedant Misra, Raoul de Liedekerke, 883
Mariko Iinuma, Alex Polozov, Sarah York, George 884
van den Driessche, Paul Michel, Justin Chiu, Rory 885
Blevins, Zach Gleicher, Adrià Recasens, Alban 886
Rrustemi, Elena Gribovskaya, Aurko Roy, Wiktor 887
Gworek, S’ebastien M. R. Arnold, Lisa Lee, James 888
Lee-Thorp, Marcello Maggioni, Enrique Piqueras, 889
Kartikeya Badola, Sharad Vikram, Lucas Gonza- 890
lez, Anirudh Baddepudi, Evan Senter, Jacob Devlin, 891
James Qin, Michael Azzam, Maja Trebacz, Martin 892

10

https://api.semanticscholar.org/CorpusID:258507546
https://api.semanticscholar.org/CorpusID:258507546
https://api.semanticscholar.org/CorpusID:258507546
https://api.semanticscholar.org/CorpusID:258507546
https://api.semanticscholar.org/CorpusID:258507546
https://aclanthology.org/2025.finnlp-1.41/
https://aclanthology.org/2025.finnlp-1.41/
https://aclanthology.org/2025.finnlp-1.41/
https://aclanthology.org/2025.finnlp-1.41/
https://aclanthology.org/2025.finnlp-1.41/
https://api.semanticscholar.org/CorpusID:266362356
https://api.semanticscholar.org/CorpusID:266362356
https://api.semanticscholar.org/CorpusID:266362356
https://www.langchain.com/
https://www.langchain.com/
https://www.langchain.com/
https://docs.langchain.com/docs/modules/memory/
https://docs.langchain.com/docs/modules/memory/
https://docs.langchain.com/docs/modules/memory/
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://openreview.net/forum?id=gAyzjHw2ml
https://openreview.net/forum?id=gAyzjHw2ml
https://openreview.net/forum?id=gAyzjHw2ml
https://aclanthology.org/2025.coling-main.244/
https://aclanthology.org/2025.coling-main.244/
https://aclanthology.org/2025.coling-main.244/
https://api.semanticscholar.org/CorpusID:5421278
https://api.semanticscholar.org/CorpusID:5421278
https://api.semanticscholar.org/CorpusID:5421278


Polacek, Kashyap Krishnakumar, Shuo yiin Chang,893
Matthew Tung, Ivo Penchev, Rishabh Joshi, Kate894
Olszewska, Carrie Muir, Mateo Wirth, Ale Jakse895
Hartman, Joshua Newlan, Sheleem Kashem, Vijay896
Bolina, Elahe Dabir, Joost R. van Amersfoort, Za-897
farali Ahmed, James Cobon-Kerr, Aishwarya B Ka-898
math, Arnar Mar Hrafnkelsson, Le Hou, Ian Mack-899
innon, Alexandre Frechette, Eric Noland, Xiance900
Si, Emanuel Taropa, Dong Li, Phil Crone, Anmol901
Gulati, S’ebastien Cevey, Jonas Adler, Ada Ma,902
David Silver, Simon Tokumine, Richard Powell,903
Stephan Lee, Michael B. Chang, Samer Hassan, Di-904
ana Mincu, Antoine Yang, Nir Levine, Jenny Bren-905
nan, Mingqiu Wang, Sarah Hodkinson, Jeffrey Zhao,906
Josh Lipschultz, Aedan Pope, Michael B. Chang,907
Cheng Li, Laurent El Shafey, Michela Paganini,908
Sholto Douglas, Bernd Bohnet, Fabio Pardo, Seth909
Odoom, Mihaela Rosca, Cicero Nogueira dos Santos,910
Kedar Soparkar, Arthur Guez, Tom Hudson, Steven911
Hansen, Chulayuth Asawaroengchai, Ravichandra912
Addanki, Tianhe Yu, Wojciech Stokowiec, Mina913
Khan, Justin Gilmer, Jaehoon Lee, Carrie Grimes Bo-914
stock, Keran Rong, Jonathan Caton, Pedram Pejman,915
Filip Pavetic, Geoff Brown, Vivek Sharma, Mario916
Luvci’c, Rajkumar Samuel, Josip Djolonga, Amol917
Mandhane, Lars Lowe Sjosund, Elena Buchatskaya,918
Elspeth White, Natalie Clay, Jiepu Jiang, Hyeontaek919
Lim, Ross Hemsley, Jane Labanowski, Nicola De920
Cao, David Steiner, Sayed Hadi Hashemi, Jacob921
Austin, Anita Gergely, Tim Blyth, Joe Stanton,922
Kaushik Shivakumar, Aditya Siddhant, Anders An-923
dreassen, Carlos L. Araya, Nikhil Sethi, Rakesh924
Shivanna, Steven Hand, Ankur Bapna, Ali Kho-925
daei, Antoine Miech, Garrett Tanzer, Andy Swing,926
Shantanu Thakoor, Zhufeng Pan, Zachary Nado,927
Stephanie Winkler, Dian Yu, Mohammad Saleh,928
Lorenzo Maggiore, Iain Barr, Minh Giang, Thais929
Kagohara, Ivo Danihelka, Amit Marathe, Vladimir930
Feinberg, Mohamed Elhawaty, Nimesh Ghelani, Dan931
Horgan, Helen Miller, Lexi Walker, Richard Tanburn,932
Mukarram Tariq, Disha Shrivastava, Fei Xia, Chung-933
Cheng Chiu, Zoe C. Ashwood, Khuslen Baatar-934
sukh, Sina Samangooei, Fred Alcober, Axel Stjern-935
gren, Paul Komarek, Katerina Tsihlas, Anudhyan936
Boral, Ramona Comanescu, Jeremy Chen, Ruibo937
Liu, Dawn Bloxwich, Charlie Chen, Yanhua Sun,938
Fangxi aoyu Feng, Matthew Mauger, Xerxes Doti-939
walla, Vincent Hellendoorn, Michael Sharman, Ivy940
Zheng, Krishna Haridasan, Gabriel Barth-Maron,941
Craig Swanson, Dominika Rogozi’nska, Alek An-942
dreev, Paul Kishan Rubenstein, Ruoxin Sang, Dan943
Hurt, Gamaleldin Elsayed, Ren shen Wang, Dave944
Lacey, Anastasija Ili’c, Yao Zhao, Woohyun Han,945
Lora Aroyo, Chimezie Iwuanyanwu, Vitaly Niko-946
laev, Balaji Lakshminarayanan, Sadegh Jazayeri,947
Raphael Lopez Kaufman, Mani Varadarajan, Chetan948
Tekur, Doug Fritz, Misha Khalman, David Reitter,949
Kingshuk Dasgupta, Shourya Sarcar, T. Ornduff,950
Javier Snaider, Fantine Huot, Johnson Jia, Rupert951
Kemp, Nejc Trdin, Anitha Vijayakumar, Lucy Kim,952
Christof Angermueller, Li Lao, Tianqi Liu, Haibin953
Zhang, David Engel, Somer Greene, Anais White,954
Jessica Austin, Lilly Taylor, Shereen Ashraf, Dan-955
gyi Liu, Maria Georgaki, Irene Cai, Yana Kulizh-956

skaya, Sonam Goenka, Brennan Saeta, Kiran Vo- 957
drahalli, Christian Frank, Dario de Cesare, Brona 958
Robenek, Harry Richardson, Mahmoud Alnahlawi, 959
Christopher Yew, Priya Ponnapalli, Marco Tagliasac- 960
chi, Alex Korchemniy, Yelin Kim, Dinghua Li, Bill 961
Rosgen, Kyle Levin, Jeremy Wiesner, Praseem Ban- 962
zal, Praveen Srinivasan, Hongkun Yu, cCauglar Unlu, 963
David Reid, Zora Tung, Daniel F. Finchelstein, Ravin 964
Kumar, Andre Elisseeff, Jin Huang, Ming Zhang, 965
Rui Zhu, Ricardo Aguilar, Mai Gim’enez, Jiawei 966
Xia, Olivier Dousse, Willi Gierke, Soheil Hassas 967
Yeganeh, Damion Yates, Komal Jalan, Lu Li, Eri 968
Latorre-Chimoto, Duc Dung Nguyen, Ken Durden, 969
Praveen Kallakuri, Yaxin Liu, Matthew Johnson, 970
Tomy Tsai, Alice Talbert, Jasmine Liu, Alexander 971
Neitz, Chen Elkind, Marco Selvi, Mimi Jasarevic, 972
Livio Baldini Soares, Albert Cui, Pidong Wang, 973
Alek Wenjiao Wang, Xinyu Ye, Krystal Kallarackal, 974
Lucia Loher, Hoi Lam, Josef Broder, Daniel Niels 975
Holtmann-Rice, Nina Martin, Bramandia Ramad- 976
hana, Daniel Toyama, Mrinal Shukla, Sujoy Basu, 977
Abhi Mohan, Nicholas Fernando, Noah Fiedel, 978
Kim Paterson, Hui Li, Ankush Garg, Jane Park, 979
Donghyun Choi, Diane Wu, Sankalp Singh, Zhishuai 980
Zhang, Amir Globerson, Lily Yu, John Carpen- 981
ter, Félix de Chaumont Quitry, Carey Radebaugh, 982
Chu-Cheng Lin, Alex Tudor, Prakash Shroff, Drew 983
Garmon, Dayou Du, Neera Vats, Han Lu, Shariq 984
Iqbal, Alexey Yakubovich, Nilesh Tripuraneni, James 985
Manyika, Haroon Qureshi, Nan Hua, Christel Ngani, 986
Maria Abi Raad, Hannah Forbes, Anna Bulanova, 987
Jeff Stanway, Mukund Sundararajan, Victor Un- 988
gureanu, Colton Bishop, Yunjie Li, Balaji Venka- 989
traman, Bo Li, Chloe Thornton, Salvatore Scellato, 990
Nishesh Gupta, Yicheng Wang, Ian Tenney, Xihui 991
Wu, Ashish Shenoy, Gabriel Carvajal, Diana Gage 992
Wright, Ben Bariach, Zhuyun Xiao, Peter Hawkins, 993
Sid Dalmia, Cl’ement Farabet, Pedro Valenzuela, 994
Quan Yuan, Christoper A. Welty, Ananth Agarwal, 995
Mianna Chen, Wooyeol Kim, Brice Hulse, Nan- 996
dita Dukkipati, Adam Paszke, Andrew Bolt, El- 997
naz Davoodi, Kiam Choo, Jennifer Beattie, Jen- 998
nifer Prendki, Harsha Vashisht, Rebeca Santamaria- 999
Fernandez, Luis C. Cobo, Jarek Wilkiewicz, David 1000
Madras, Ali Elqursh, Grant Uy, Kevin Ramirez, 1001
Matt Harvey, Tyler Liechty, Heiga Zen, Jeff Seib- 1002
ert, Clara Huiyi Hu, A. Ya. Khorlin, Maigo Le, Asaf 1003
Aharoni, Megan Li, Lily Wang, Sandeep Kumar, 1004
Alejandro Lince, Norman Casagrande, Jay Hoover, 1005
Dalia El Badawy, David Soergel, Denis Vnukov, Matt 1006
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A Appendices1086

A.1 Comparative Analysis Across Prompt1087

Patterns and Reasoning Steps.1088

We conducted an extended comparison of our adap-1089

tive optimization framework against AdalFlow and1090

TextGrad across varying reasoning steps (3, 5,1091

7) and prompt patterns. As shown in Table 5,1092

our method consistently outperformed both base-1093

lines across all configurations, with the best results1094

achieved using our starting prompt at 7 steps (LLM-1095

as-Judge: 90.24%, Human Eval: 88.50%, Agree-1096

ment: 91.88%). Performance improved steadily1097

with increased steps, confirming that iterative op-1098

timization enhances decision quality. Across all1099

step counts, our approach demonstrated higher1100

alignment with human judgment than AdalFlow1101

and TextGrad, whose improvements plateaued or1102

lagged behind—particularly in complex reason-1103

ing configurations. The results also highlight the1104

importance of initial prompt structure: while all1105

three patterns showed improvement with more1106

steps, our starting prompt yielded the most sta-1107

ble gains. These findings reinforce the value of1108

our framework’s structured memory refinement1109

and reflection-driven learning, enabling more effec-1110

tive and interpretable prompt evolution than direct1111

gradient-based methods.1112

A.2 Queries and expected responses 1113

Table 7 provides representative examples of input 1114

queries and their corresponding expected responses 1115

for each task evaluated in the experiment. 1116
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Method Max Step Starting Prompt
LLM-as-judge Human evaluation Agreement score

score (%) score (%) (Cohen’s Kappa) (%)

Our proposed
Trainable ReAct prompt opti-
mization

3 Adalflow 85.434 85.411 88.747
5 Adalflow 86.281 86.791 89.745
7 Adalflow 87.462 88.622 90.337
3 Textgrad 83.320 84.175 88.503
5 Textgrad 84.985 85.298 89.379
7 Textgrad 85.513 87.022 89.768
3 Our 87.990 87.510 89.365
5 Our 90.295 87.919 90.270
7 Our 90.244 88.496 91.876

Adalflow
Trainable ReAct prompt opti-
mization

3 Adalflow 79.683 76.941 81.517
5 Adalflow 80.545 78.716 82.390
7 Adalflow 81.869 79.670 83.984
3 Textgrad 80.460 82.431 83.651
5 Textgrad 81.835 83.826 85.256
7 Textgrad 83.170 84.569 86.106
3 Our 78.385 77.237 81.229
5 Our 79.817 78.168 82.228
7 Our 81.173 78.972 83.074

Textgrad
Trainable ReAct prompt opti-
mization

3 Adalflow 74.949 72.912 83.113
5 Adalflow 76.197 74.615 83.641
7 Adalflow 77.927 75.390 85.154
3 Textgrad 75.521 73.731 83.823
5 Textgrad 77.008 75.221 84.529
7 Textgrad 78.595 76.079 86.082
3 Our 76.353 72.919 82.998
5 Our 77.108 74.432 83.645
7 Our 77.953 75.506 85.144

Table 6: Performance comparison across prompt patterns and max step settings in ReAct agents.

Task Query Expected response in stylistic-answer format
HR Do new employees get a free health check-up? Employees who started work before January 1st are eligible

for the annual health check-up.
For more details, please visit {the_reference_document_link}

PDPA Where can I find information about how to complete You can access the PDPA Assessment form guidance
the PDPA Assessment form? at {the_reference_document_link}

Regulatory What measures are in place to protect customer data There are data security measures, data encryption, and access restrictions
confidentiality under the Market Conduct guidelines? so that only authorized personnel can access the information.

NER

Regulation (EU) No 648/2012 of the European Answer:
Parliament and of the Council of 4 July 2012 {"Organizations":["European Parliament","Council of the European Union"],
on OTC derivatives, central counterparties "Legislations":["Regulation (EU) No 648/2012"],
and trade repositories (“EMIR”) entered "Dates":["4 July 2012","16 August 2012"], "Monetary Values":[],"Statistics":[]}
into force on 16 August 2012.

CFA Question: The nominal risk-free rate is best described as Answer: C. Expected Inflation
the sum of the real risk-free rate and a premium for:
A. Maturity, B. Liquidity, C. Expected Inflation

Financial A project expects annual cash inflows of $6,000 for 4 years. Answer: 21462.58
math If the discount rate is 8%, what is the NPV of the project?

Table 7: Examples of queries and expected responses

A.3 Queries and expected responses1117

Tables 8,9,10,11, and 12 present the system1118

prompts employed in this study for the agent work-1119

flow, ReAct-based agent, answer validation, data1120

checking, and memory editing tasks, respectively.1121
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Agent workflow prompt
You are a supervisor tasked with managing a conversation between the following workers: {members}:
Given the following user request, respond with the worker to act next.
Each worker will perform a task and respond with their results and status.
When finished, respond with FINISH.
To answer a question or response from user query apart from a new user command
to change personalization or tell the new facts, send to TempAnswer and then FINISH.
Call the memory editing when a user tells the new personalization or the new facts or the correct answer.
The memory editing sequence is workflow starts with AnswerChecker.
Given the conversation above, who should act next? Answer with the reason, or should we FINISH? Select one of: {options}

Table 8: The system prompt for agent workflow

ReAct starting prompt
You are a {role} Expert for {domain}
Your task is to answer {user_detail} based on the searched documents and searched additional knowledge.
Please also provide the references when the answer is based on the searched documents.
After getting the answer from the searched documents, ALWAYS polish the answer and return it as a Final Answer.
You need to answer the question based on the searched documents only, don’t assume anything.
If you can’t answer from the searched documents, please give {general_handling} as a JSON format get from polishing answer.

this is additional knowledge
{stm_memory }
{ltm_memory }

Your co-worker also found this additional knowledge for your answer:
{retrieval_knowledge }

This is the additional charactistic for your answer:

You have access to the following tools:

{tools }

To use a tool, please use the following format:

“‘
Thought: The reason that you think and end with "Do I need to use a tool? Yes"
Action: the action to take, should be one of [ {tool_names }]
Action Input: the input to the action (Always in dictionary)
Observation: the result of the action
“‘

When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format and the following steps:

Thought: The reason that you think, and end with "Do I need to use a tool? No"
Final Answer: your JSON response from polishing the answer>your JSON response from polishing the answer

“‘

Begin!

Previous conversation history:
{chat_history }

New input: {last_message }
{agent_scratchpad }

Table 9: The starting system prompt for ReAct-based agent
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Answer validation prompt
You are a feedback assistant tasked with analyzing the assistant’s response based on the predicted correctness data. Your goal is to:
1. Summarize the overall quality of the assistant’s response.
2. Identify specific issues based on the provided evaluation dimensions.
3. Suggest actionable improvements for each issue.
4. Specify the similarity score returns 1 if the similarity exceeds the {correctness_criteria}, 0.5 if the similarity falls between
the {partial_correctness_criterai} and {correctness_criteria}, and 0 if the similarity is below {partial_correctness_criterai}.

Your task is to return JSON result:
{{"feedback": "",
"result": "correct / partially correct / wrong",
"score":"1" or "0.5 or "1"}}

Question : {target_question}
actual : {label}
predicted : {last_answer}
Here is the predicted correctness data:

Table 10: The system prompt for answer validation

Data checking prompt
You are a data checker who see the proper answer of the human (user) and find if the Documents includes any information to give that answer or not.
additionally, the similarity score returns 1 if the validation exceeds the
{validation_criteria}, 0.5 if the validation falls between
the {partial_validity_criterai} and {validation_criteria}, and 0 if the validation is below {partial_validity_criterai}.

Your task is to return JSON result:
{{"reason": "",
"result":"fully valid/partially valid/invalid"}}.

The reason should not state any information if the result is "success".
Documents:
{context}
Answer:
{last_message}

Table 11: The system prompt for data checking

Memory edition prompt
You are a memory management assistant. Your task is to update the system’s memory based on recent feedback where {correctionsource}iscorrect.
Inputs:
1. Memory:
{memory}
2. Recent Feedback:
{feedback}
3. Original Question:
{last_message}
4. Original Response:
{response}
5. Memory Type to Update:
{memory_type}
Task:
Analyze the feedback and determine how to update the memory to improve session continuity and learning.
Then combine the updated knowledge with existing memory entries. Finally, provide the list of updated memory.
Output: 1. Provide the memory that is added for update in the same structured format as the input memory:
{memory_output_format}
2. Provide the memory that conflicts with the added memory and should be removed in the same structured format as the input memory:
{memory_output_format}

Table 12: The system prompt for memory edition

16


	Introduction
	Methodology
	LLM-based React agent
	Answer Validation
	Data Checking
	Question rewriting
	Memory editor and generation
	Adaptive prompting optimization

	Experimental Setting
	Datasets
	Implementation Details
	Evaluation Metrics

	Experimental Results and Discussion
	Performance comparison with baselines
	Performance comparison of our proposed and baseline across domain QA tasks
	Performance comparison across prompt patterns and iterative steps.
	Performance comparison across LLM-as-Judge settings

	Discussion
	Conclusion
	Appendices
	Comparative Analysis Across Prompt Patterns and Reasoning Steps.
	Queries and expected responses
	Queries and expected responses


