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Abstract

Spatiotemporal forecasting of urban growth requires models that explain not only1

where change occurs but why, linking built form to demographic dynamics and2

mobility outcomes. However, most models treat these signals in isolation, rely-3

ing on static projections. To address this problem, we present a Demographics-4

Informed Neural Network (DINN) that integrates multiyear satellite imagery with5

demographic data for spatiotemporal prediction of urban growth. The study also6

leverages these learned demographic-spatial representations for travel behavior7

forecasting. DINN couples a DenseNet-style image predictor with gated residual8

connections and a demographic encoder fused at the bottleneck; a separately pre-9

trained demographic predictor serves as a frozen consistency regularizer during10

training, while its encoder transfers to a travel-behavior head predicting 16 mobility11

features. A multi-objective loss balances image fidelity, demographic consistency,12

and semantic consistency. Using satellite images from 2012-2023 paired with13

county-level American Community Survey data, DINN improves image quality14

(SSIM ≈ 0.83) and demographic coherence (Demo-loss ≈ 0.14), achieves strong15

demographic prediction (overall R2 ≈ 0.80, >0.93 for core population metrics),16

and delivers accurate travel behavior forecasts (overall R2 ≈ 0.91). To validate the17

relevance of each architectural component in DINN, we conduct comprehensive18

ablation studies which effectively highlights the relevance of each model compo-19

nent. This study shows that the framework accurately forecasts spatiotemporal20

urban change and its associated demographics, linking where change occurs to its21

drivers and to resulting travel behavior.22

1 Introduction23

Spatiotemporal forecasting of urban growth requires an understanding of the fundamental relation-24

ships that exist between built environments, demographic characteristics, and travel behavior patterns25

[1–3]. These three components are fundamentally interconnected, as population dynamics drive26

land-use change, infrastructure development shapes residential patterns, and transportation networks27

structure mobility behaviors; yet conventional urban spatiotemporal analysis methods often treat28

them as isolated variables[4–6]. This fragmented approach has contributed to costly planning fail-29

ures, exemplified by projects such as the construction of Interstate 95 through Miami’s Overtown30

neighborhood, which displaced 10,000-12,000 residents and destroyed 40 blocks of established31

community infrastructure, resulting in substantial social disruption and economic losses[7]. Cur-32
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rent urban growth models predominantly rely on static projections that fail to capture the dynamic33

temporal relationships between demographic shifts, spatial transformations, and transportation pat-34

terns, limiting their effectiveness for sustainable development planning [8–10]. To address these35

limitations, this study introduces the Demographics-Informed Neural Network (DINN), a novel deep36

learning framework that integrates satellite imagery sequences with demographic data through an37

encoder-decoder architecture forecast future urban settings. DINN employs temporal gated residual38

connections to capture spatiotemporal dynamics, incorporates a frozen demographic predictor to39

enforce spatial-demographic consistency, and demonstrates transferability of learned representations40

through a travel behavior prediction network that utilizes frozen encoder weights.41

2 Literature Review42

Spatiotemporal urban growth studies range from cellular-automata models that simulate diffusion43

of land use [11–13] to deep spatiotemporal predictors that learn from image sequences using44

CNN–LSTM/ConvLSTM variants atop encoder–decoder backbones such as U-Net [14–16], yet45

most approaches append demographics rather than embed them in the representation, weakening46

cross-modal coherence. Building on evidence that built form strongly conditions travel demand and47

mode choice [17], recent mode-choice studies show that statistical and neural models with post-hoc48

explanation such as SHAP [18] outperform classical logit baselines [19, 20], yet they typically rely49

on tabular demographics and network summaries rather than spatial data, leaving the connection to50

imagery-derived representations underused. Moreover, recent multimodal fusion studies in remote51

sensing identify attention-based architectures as effective for combining heterogeneous inputs, while52

also noting persistent challenges in aligning modalities and enforcing cross-modal consistency [21].53

Complementing this, studies that fuse sociodemographic attributes with satellite imagery via deep hy-54

brid models show consistent gains when numeric and image features are embedded in a shared latent55

space, reinforcing the case for representation-level integration [22]. Therefore these studies highlight56

the need for a framework that (i) fuses imagery and demographics within the encoder–decoder,57

(ii) regularizes forecasts with demographic consistency, and (iii) transfers the learned demographic58

representation to travel-behavior prediction.59

3 Problem Formulation60

Despite the significant advancements in data-driven transportation planning methodologies, effectively61

modeling the dynamic and temporal relationship between geographic changes in satellite imagery62

and socio-demographic patterns remains a persistent challenge. This paper proposes the utilization of63

satellite image sequences and corresponding demographics to predict future spatial representations64

and also predict the future demographics and travel behavior. To effectively model the relationship65

between geographic changes in satellite images and demographic factors, we formalize the problem66

as follows. Specifically, let {xt−n, . . . , xt} denote a temporal sequence of (n+ 1) historical satellite67

images, where each image xi ∈ RH×W×C comprises RGB channels, C with spatial dimensions68

H×W (height and width, respectively). Correspondingly, let {dt−n, . . . , dt} represent the associated69

demographic feature vectors, each di ∈ Rf containing f socio-demographic variables. The objective70

is to predict the future satellite image x̂t+1 ∈ RH×W×C and the future demographic vector d̂t+1 ∈71

Rf by using the temporal sequence of past satellite images, {xt−n, . . . , xt} together with their72

corresponding demographics, {dt−n, . . . , dt} as input into a network that predicts the future year.73

The general methodology adopted to achieve the objective is described in section 4. This study also74

leverages the strong relationship that exists between demographics and travel behavior [22, 23] to75

develop a travel behavior prediction network that leverages transfer learning by using a pretrained76

demographic feature encoder along with a specialized decoder to predict travel behavior.77

4 Method78

Demographics-Informed Neural Network (DINN): As displayed in Figure 1, DINN integrates79

satellite image sequences {xt−n, . . . , xt} (each image xi ∈ RH×W×C) and the corresponding80

demographic feature vectors {dt−n, . . . , dt} (each vector di ∈ Rf ) through a DenseNet-based81

encoder-decoder with gated residual connections. The encoder extracts hierarchical spatial features82

E = {E1, . . . , E7}, while the demographic sequence is embedded as ed ∈ R512 and fused at83
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Figure 1: Demographics-Informed Neural Network (DINN)

the bottleneck as Efused = Conv1×1

(
[Ebottleneck, Ed]

)
, where Ebottleneck ∈ RH′×W ′×Cb and84

Ed = tile(ed;H
′,W ′) ∈ RH′×W ′×512 is the spatial broadcast of ed across the bottleneck height85

and width (H ′,W ′). During decoding, gated residual connections Gi = σ(fθ([Ei,Up(Di+1)]))86

regulate feature flow between encoder and decoder, where σ(·) denotes the sigmoid function, fθ87

is a 1 × 1 convolution with batch normalization, and Up(·) represents bilinear upsampling. The88

predictor outputs the future satellite image x̂t+1, which is passed into a frozen demographic predictor89

pre-trained to map imagery into demographics, producing d̂t+1. Training minimizes the combined90

loss L = αLimage(x̂t+1, xt+1) + βLdemo(d̂t+1, dt+1), where Limage blends perceptual and SSIM91

terms for visual fidelity, Ldemo is a scale-normalized mean squared error enforcing demographic92

alignment, and α, β weight their contributions. This design ensures that spatial predictions are both93

visually realistic and demographically consistent, with the frozen demographic predictor acting as the94

key innovation that constrains the model to cross-modal coherence.95

Travel Behavior Prediction Network: The travel behavior prediction network builds on the96

demographic predictor by adopting its pre-trained encoder as a frozen feature extractor, thereby97

preserving robust spatial–demographic mappings while avoiding overfitting. Specifically, the frozen98

encoder ffrozen : RH×W×C → Rh′×w′×c′ provides fixed bottleneck features that encode both spatial99

context and demographic structure, ensuring that the downstream model inherits representations100

already aligned with population characteristics. A trainable decoder reconstructs transportation-101

specific patterns through transposed convolutions, while a global context pathway aggregates region-102

wide signals using fully connected layers to capture broader mobility trends. The outputs are103

concatenated and passed through a predictor head to produce the travel behavior vector t̂t+1 ∈ Rm,104

which includes attributes such as mode choice, vehicle availability, and travel times. Training105

minimizes the objective L = Ltravel(t̂t+1, tt+1)+ γLsemantic, where Ltravel is a scale-normalized mean106

squared error across all m travel variables and Lsemantic preserves alignment between the decoder’s107

embedding and the frozen encoder bottleneck. The key innovation lies in freezing the demographic108

encoder which constrains the model to reuse learned demographic representations, the network109

ensures that travel behavior forecasts remain demographically grounded while leveraging transfer110

learning to improve generalization.111

5 Experiments and Evaluation Metrics112

We evaluate DINN on a multimodal dataset (2012–2023) comprising satellite imagery, demographics,113

and travel behavior data for U.S. counties. Training used Adam (lr = 3 × 10−4, batch size 8) for114

200 epochs on NVIDIA A100 GPU. Performance metrics include MSE for demographic/travel115

predictions, SSIM/PSNR for image fidelity, and R2 for predictive accuracy. We also conduct ablation116

studies and change heatmap evaluation to assess temporal robustness and spatial consistency.117

6 Results and Discussion118

Demographic and Travel Behavior Predictor Performance: As shown in Figure 2, the demo-119

graphic predictor demonstrates strong performance across most population categories, achieving R2120

values exceeding 0.90 for total and gender-specific populations, though comparatively lower accuracy121
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is observed for income- and inequality-related variables. This robust performance enables the demo-122

graphic predictor to successfully enforce spatial-demographic consistency during training. Similarly,123

the travel behavior predictor achieves high predictive accuracy across most mobility attributes, with124

mode choice and vehicle availability well captured (R2 > 0.95) but walking remaining the most chal-125

lenging attribute due to higher variance in spatial distribution. These results demonstrate successful126

representation transfer from the frozen demographic encoder to behavioral forecasting, validating the127

framework’s ability to leverage learned spatial-demographic relationships for cross-modal prediction128

tasks.129

Figure 2: Line plots summarizing demographic predictor (Left) and Travel behavior Predictor (Right)
test performance by feature.

Ablation Study Results: As illustrated in Figure 3, removing DenseNet blocks or gated skip130

connections increases missed-change regions and spurious artifacts in the predictions (revealed131

through the change heatmaps), while dropping the demographic predictor further disrupts demo-132

graphic coherence. The quantitative trends in Table 1 mirror these effects with lower SSIM/PSNR133

and higher Demo-Loss for ablated variants, whereas the full DINN attains the best scores across all134

metrics, confirming each component’s contribution. Beyond architectural validation, the framework135

successfully predicts subtle urban spatiotemporal changes that are typically difficult to identify136

through visual inspection alone, leveraging change heatmaps that compute pixel-level differences137

between temporal image sequences to quantify transformation patterns.138

Table 1: Ablation study Results

Model Variant Encoder Type Gated Skip Demographic Predictor SSIM PSNR (dB) Demo-Loss
Baseline 2DConv ✗ ✗ 0.73 25.40 0.95
DINN-V1 2DConv ✓ ✓ 0.75 25.60 0.62
DINN-V2 Dense ✗ ✓ 0.78 25.77 0.33
DINN-V3 Dense ✓ ✗ 0.81 25.63 0.58
DINN Dense ✓ ✓ 0.83 25.17 0.14

Figure 3: Qualitative ablation: top:inputs/predictions; bottom:change heatmaps. Red boxes highlight
regions where ablations miss subtle changes; DINN preserves them.

7 Conclusion139

This study demonstrates that integrating demographic context into spatiotemporal urban prediction140

significantly enhances prediction accuracy, with the proposed DINN framework achieving remark-141
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able performance and validating co-evolutionary theories linking built environments and population142

characteristics. The strong predictive accuracy across demographic and travel behavior patterns143

confirms that spatial configurations encode sufficient information to forecast urban dynamics, provid-144

ing planners with a practical tool that explicitly models demographic-spatial relationships for more145

equitable development strategies. The framework’s ability to predict both where urban change occurs146

and it’s corresponding demographics (why it occurs) represents a significant advancement toward147

evidence-based planning that can mitigate costly retrofitting and infrastructure obsolescence. Future148

research should extend validation beyond US metropolitan areas to diverse international contexts149

where demographic-spatial correlations may differ substantially.150
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