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Abstract

Spatiotemporal forecasting of urban growth requires models that explain not only
where change occurs but why, linking built form to demographic dynamics and
mobility outcomes. However, most models treat these signals in isolation, rely-
ing on static projections. To address this problem, we present a Demographics-
Informed Neural Network (DINN) that integrates multiyear satellite imagery with
demographic data for spatiotemporal prediction of urban growth. The study also
leverages these learned demographic-spatial representations for travel behavior
forecasting. DINN couples a DenseNet-style image predictor with gated residual
connections and a demographic encoder fused at the bottleneck; a separately pre-
trained demographic predictor serves as a frozen consistency regularizer during
training, while its encoder transfers to a travel-behavior head predicting 16 mobility
features. A multi-objective loss balances image fidelity, demographic consistency,
and semantic consistency. Using satellite images from 2012-2023 paired with
county-level American Community Survey data, DINN improves image quality
(SSIM = 0.83) and demographic coherence (Demo-loss = 0.14), achieves strong
demographic prediction (overall R? ~ 0.80, >0.93 for core population metrics),
and delivers accurate travel behavior forecasts (overall R? = 0.91). To validate the
relevance of each architectural component in DINN, we conduct comprehensive
ablation studies which effectively highlights the relevance of each model compo-
nent. This study shows that the framework accurately forecasts spatiotemporal
urban change and its associated demographics, linking where change occurs to its
drivers and to resulting travel behavior.

1 Introduction

Spatiotemporal forecasting of urban growth requires an understanding of the fundamental relation-
ships that exist between built environments, demographic characteristics, and travel behavior patterns
[IH3]. These three components are fundamentally interconnected, as population dynamics drive
land-use change, infrastructure development shapes residential patterns, and transportation networks
structure mobility behaviors; yet conventional urban spatiotemporal analysis methods often treat
them as isolated variables[4H6]. This fragmented approach has contributed to costly planning fail-
ures, exemplified by projects such as the construction of Interstate 95 through Miami’s Overtown
neighborhood, which displaced 10,000-12,000 residents and destroyed 40 blocks of established
community infrastructure, resulting in substantial social disruption and economic losses[7]. Cur-
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rent urban growth models predominantly rely on static projections that fail to capture the dynamic
temporal relationships between demographic shifts, spatial transformations, and transportation pat-
terns, limiting their effectiveness for sustainable development planning [8-H10]]. To address these
limitations, this study introduces the Demographics-Informed Neural Network (DINN), a novel deep
learning framework that integrates satellite imagery sequences with demographic data through an
encoder-decoder architecture forecast future urban settings. DINN employs temporal gated residual
connections to capture spatiotemporal dynamics, incorporates a frozen demographic predictor to
enforce spatial-demographic consistency, and demonstrates transferability of learned representations
through a travel behavior prediction network that utilizes frozen encoder weights.

2 Literature Review

Spatiotemporal urban growth studies range from cellular-automata models that simulate diffusion
of land use [11H13]] to deep spatiotemporal predictors that learn from image sequences using
CNN-LSTM/ConvLSTM variants atop encoder—decoder backbones such as U-Net [14H16], yet
most approaches append demographics rather than embed them in the representation, weakening
cross-modal coherence. Building on evidence that built form strongly conditions travel demand and
mode choice [17], recent mode-choice studies show that statistical and neural models with post-hoc
explanation such as SHAP [[18] outperform classical logit baselines [[19}20], yet they typically rely
on tabular demographics and network summaries rather than spatial data, leaving the connection to
imagery-derived representations underused. Moreover, recent multimodal fusion studies in remote
sensing identify attention-based architectures as effective for combining heterogeneous inputs, while
also noting persistent challenges in aligning modalities and enforcing cross-modal consistency [21]].
Complementing this, studies that fuse sociodemographic attributes with satellite imagery via deep hy-
brid models show consistent gains when numeric and image features are embedded in a shared latent
space, reinforcing the case for representation-level integration [22]]. Therefore these studies highlight
the need for a framework that (i) fuses imagery and demographics within the encoder—decoder,
(i1) regularizes forecasts with demographic consistency, and (iii) transfers the learned demographic
representation to travel-behavior prediction.

3 Problem Formulation

Despite the significant advancements in data-driven transportation planning methodologies, effectively
modeling the dynamic and temporal relationship between geographic changes in satellite imagery
and socio-demographic patterns remains a persistent challenge. This paper proposes the utilization of
satellite image sequences and corresponding demographics to predict future spatial representations
and also predict the future demographics and travel behavior. To effectively model the relationship
between geographic changes in satellite images and demographic factors, we formalize the problem
as follows. Specifically, let {zt_, ..., z:} denote a temporal sequence of (n + 1) historical satellite
images, where each image x; € R7*"W X comprises RGB channels, C with spatial dimensions
H x W (height and width, respectively). Correspondingly, let {d;_, . .., d; } represent the associated
demographic feature vectors, each d; € R/ containing f socio-demographic variables. The objective

is to predict the future satellite image #;,1 € R *W*C and the future demographic vector cim €
R/ by using the temporal sequence of past satellite images, {z;_,,...,7;} together with their
corresponding demographics, {d;_, ...,d;} as input into a network that predicts the future year.
The general methodology adopted to achieve the objective is described in section[d] This study also
leverages the strong relationship that exists between demographics and travel behavior [22] 23] to
develop a travel behavior prediction network that leverages transfer learning by using a pretrained
demographic feature encoder along with a specialized decoder to predict travel behavior.

4 Method

Demographics-Informed Neural Network (DINN):  As displayed in Figure[T] DINN integrates
satellite image sequences {z;_,...,2:} (each image z; € RHEXWXCYy and the corresponding
demographic feature vectors {d;_,,...,d;} (each vector d; € R/) through a DenseNet-based

encoder-decoder with gated residual connections. The encoder extracts hierarchical spatial features
E = {E,,..., E;}, while the demographic sequence is embedded as ¢; € R®'? and fused at
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Figure 1: Demographics-Informed Neural Network (DINN)

the bottleneck as Efused = Conlel([Ebottlenecka Ed])’ where Ebottleneck € RH/XW’XCZ’ and

Eq = tile(eq; H',W') € RH'*W'x512 jg the spatial broadcast of eq across the bottleneck height
and width (H’,W’). During decoding, gated residual connections G; = o(fy([E;, Up(D;+1)]))
regulate feature flow between encoder and decoder, where o(-) denotes the sigmoid function, fy
is a1 x 1 convolution with batch normalization, and Up(-) represents bilinear upsampling. The
predictor outputs the future satellite image &1, which is passed into a frozen demographic predictor
pre-trained to map imagery into demographics, producing cZH_l. Training minimizes the combined
loss £ = aLimage(Tt41, Te41) + 5£dem0((ft+1, d¢41), where Limage blends perceptual and SSIM
terms for visual fidelity, Lgemo is @ scale-normalized mean squared error enforcing demographic
alignment, and «, 8 weight their contributions. This design ensures that spatial predictions are both
visually realistic and demographically consistent, with the frozen demographic predictor acting as the
key innovation that constrains the model to cross-modal coherence.

Travel Behavior Prediction Network:  The travel behavior prediction network builds on the
demographic predictor by adopting its pre-trained encoder as a frozen feature extractor, thereby
preserving robust spatial-demographic mappings while avoiding overfitting. Specifically, the frozen
encoder frozen : REXWXC RA xw’ ¢’ provides fixed bottleneck features that encode both spatial
context and demographic structure, ensuring that the downstream model inherits representations
already aligned with population characteristics. A trainable decoder reconstructs transportation-
specific patterns through transposed convolutions, while a global context pathway aggregates region-
wide signals using fully connected layers to capture broader mobility trends. The outputs are
concatenated and passed through a predictor head to produce the travel behavior vector £,,.; € R™,
which includes attributes such as mode choice, vehicle availability, and travel times. Training
minimizes the objective £ = Liayel (ft+1, ti11) + Y Lsemantic, Where Lyyel 18 a scale-normalized mean
squared error across all m travel variables and Lgemanic preserves alignment between the decoder’s
embedding and the frozen encoder bottleneck. The key innovation lies in freezing the demographic
encoder which constrains the model to reuse learned demographic representations, the network
ensures that travel behavior forecasts remain demographically grounded while leveraging transfer
learning to improve generalization.

S Experiments and Evaluation Metrics

We evaluate DINN on a multimodal dataset (2012-2023) comprising satellite imagery, demographics,
and travel behavior data for U.S. counties. Training used Adam (Ir = 3 x 10~%, batch size 8) for
200 epochs on NVIDIA A100 GPU. Performance metrics include MSE for demographic/travel
predictions, SSIM/PSNR for image fidelity, and R? for predictive accuracy. We also conduct ablation
studies and change heatmap evaluation to assess temporal robustness and spatial consistency.

6 Results and Discussion

Demographic and Travel Behavior Predictor Performance: As shown in Figure 2] the demo-
graphic predictor demonstrates strong performance across most population categories, achieving R?
values exceeding 0.90 for total and gender-specific populations, though comparatively lower accuracy
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is observed for income- and inequality-related variables. This robust performance enables the demo-
graphic predictor to successfully enforce spatial-demographic consistency during training. Similarly,
the travel behavior predictor achieves high predictive accuracy across most mobility attributes, with
mode choice and vehicle availability well captured (R? > 0.95) but walking remaining the most chal-
lenging attribute due to higher variance in spatial distribution. These results demonstrate successful
representation transfer from the frozen demographic encoder to behavioral forecasting, validating the
framework’s ability to leverage learned spatial-demographic relationships for cross-modal prediction
tasks.

Demographic Prediction (R?) Travel Behavior Prediction (R?)
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Figure 2: Line plots summarizing demographic predictor (Left) and Travel behavior Predictor (Right)
test performance by feature.

Ablation Study Results:  As illustrated in Figure [3] removing DenseNet blocks or gated skip
connections increases missed-change regions and spurious artifacts in the predictions (revealed
through the change heatmaps), while dropping the demographic predictor further disrupts demo-
graphic coherence. The quantitative trends in Table [T|mirror these effects with lower SSIM/PSNR
and higher Demo-Loss for ablated variants, whereas the full DINN attains the best scores across all
metrics, confirming each component’s contribution. Beyond architectural validation, the framework
successfully predicts subtle urban spatiotemporal changes that are typically difficult to identify
through visual inspection alone, leveraging change heatmaps that compute pixel-level differences
between temporal image sequences to quantify transformation patterns.

Table 1: Ablation study Results

Model Variant Encoder Type Gated Skip Demographic Predictor SSIM PSNR (dB) Demo-Loss

Baseline 2DConv X X 0.73 25.40 0.95

DINN-V1 2DConv v v 0.75 25.60 0.62

DINN-V2 Dense X v 0.78 25.77 0.33

DINN-V3 Dense v X 0.81 25.63 0.58

DINN Dense v v 0.83 25.17 0.14
Ground Truth Baseline DINN-V1 DINN-V2 DINN-V3 DINN

Figure 3: Qualitative ablation: top:inputs/predictions; bottom:change heatmaps. Red boxes highlight
regions where ablations miss subtle changes; DINN preserves them.

Change Heatmap

7 Conclusion

This study demonstrates that integrating demographic context into spatiotemporal urban prediction
significantly enhances prediction accuracy, with the proposed DINN framework achieving remark-
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able performance and validating co-evolutionary theories linking built environments and population
characteristics. The strong predictive accuracy across demographic and travel behavior patterns
confirms that spatial configurations encode sufficient information to forecast urban dynamics, provid-
ing planners with a practical tool that explicitly models demographic-spatial relationships for more
equitable development strategies. The framework’s ability to predict both where urban change occurs
and it’s corresponding demographics (why it occurs) represents a significant advancement toward
evidence-based planning that can mitigate costly retrofitting and infrastructure obsolescence. Future
research should extend validation beyond US metropolitan areas to diverse international contexts
where demographic-spatial correlations may differ substantially.
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