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ABSTRACT

Recently, convergence as well as convergence rate analyses of optimizers for non-
convex optimization have been widely studied. Meanwhile, numerical evaluations
for the optimizers have precisely clarified the relationship between batch size and
the number of steps needed for training deep neural networks. The main contri-
bution of this paper is to show theoretically that the number of steps needed for
nonconvex optimization of each of the optimizers can be expressed as a rational
function of batch size. Having these rational functions leads to two particularly
important facts, which were validated numerically in previous studies. The first
fact is that there exists an optimal batch size such that the number of steps needed
for nonconvex optimization is minimized. This implies that using larger batch
sizes than the optimal batch size does not decrease the number of steps needed
for nonconvex optimization. The second fact is that the optimal batch size de-
pends on the optimizer. In particular, it is shown theoretically that momentum and
Adam-type optimizers can exploit larger optimal batches and further reduce the
minimum number of steps needed for nonconvex optimization than the stochastic
gradient descent optimizer.

1 INTRODUCTION

One way to train deep neural networks is to find the model parameters of the deep neural networks
that minimize loss functions called the expected risk and empirical risk using first-order optimiza-
tion methods (Bottou et al., 2018, Section 4). The simplest optimizer is stochastic gradient descent
(SGD) (Robbins & Monro, 1951; Zinkevich, 2003; Nemirovski et al., 2009; Ghadimi & Lan, 2012;
2013). There have been many deep learning optimizers to accelerate SGD, such as momentum
methods (Polyak, 1964; Nesterov, 1983) and adaptive methods, e.g., Adaptive Gradient (AdaGrad)
(Duchi et al., 2011), Root Mean Square Propagation (RMSProp) (Tieleman & Hinton, 2012), Adap-
tive Moment Estimation (Adam) (Kingma & Ba, 2015), and Adaptive Mean Square Gradient (AMS-
Grad) (Reddi et al., 2018) (Table 2 in (Schmidt et al., 2021) lists useful deep learning optimizers).

Convergence and convergence rate analyses of deep learning optimizers have been widely studied
for convex optimization (Zinkevich et al., 2010; Kingma & Ba, 2015; Reddi et al., 2018; Luo et al.,
2019; Mendler-Dünner et al., 2020). Meanwhile, theoretical investigation of deep learning optimiz-
ers for nonconvex optimization is needed so that these optimizers can be put into practice for non-
convex optimization in deep learning (Xu et al., 2015; Arjovsky et al., 2017; Vaswani et al., 2017).

Convergence analyses of SGD for nonconvex optimization were studied in (Fehrman et al.,
2020; Chen et al., 2020; Scaman & Malherbe, 2020; Loizou et al., 2021) (see (Gower et al., 2021;
Loizou et al., 2021) for convergence analyses of SGD for two classes of nonconvex optimization
problems, quasar-convex and Polyak–Lojasiewicz optimization problems). For example, Theorem
11 in (Scaman & Malherbe, 2020) indicates that SGD with a diminishing learning rate αk = 1/

√
k

has O(1/
√
K) convergence, where K denotes the number of steps. Convergence analyses of SGD

depending on the batch size were presented in (Chen et al., 2020). In particular, Theorem 3.2 in
(Chen et al., 2020) indicates that running SGD with a diminishing learning rate αk = 1/k and large
batch size for sufficiently many steps leads to convergence to a local minimizer of a sum of loss
functions.
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Figure 2: Relationships between the optimiz-
ers in terms of the results in Table 2 (relations
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Convergence analyses of adaptive methods for nonconvex optimization were studied in (Fang et al.,
2018; Chen et al., 2019; Zhuang et al., 2020; Iiduka, 2021). In (Chen et al., 2019), it was shown that
generalized Adam, which includes the Heavy-ball method, AdaGrad, RMSProp, AMSGrad, and
AdaGrad with First Order Momentum (AdaFom), using a diminishing learning rate αk = 1/

√
k

has an O(logK/
√
K) convergence rate. AdaBelief (named for adapting stepsizes by the belief in

observed gradients) using αk = 1/
√
k has O(logK/

√
K) convergence (Zhuang et al., 2020). In

(Iiduka, 2021), a method was presented to unify useful adaptive methods such as AMSGrad and
AdaBelief, and it was shown that the method with αk = 1/

√
k has an O(1/

√
K) convergence rate,

which improves on the results in (Chen et al., 2019; Zhuang et al., 2020).

Meanwhile, in (Shallue et al., 2019), it was studied how increasing the batch size affects the per-
formances of SGD, SGD with momentum (Polyak, 1964; Rumelhart et al., 1986), and Nesterov
momentum (Nesterov, 1983; Sutskever et al., 2013). The relationships between batch size and per-
formance for Adam and K-FAC (Kronecker-Factored Approximate Curvature (Martens & Grosse,
2015)) were studied in (Zhang et al., 2019). In both studies, it was numerically shown that increas-
ing batch size tends to decrease the number of steps K needed for training deep neural networks,
but with diminishing returns. Moreover, it was shown that SGD with momentum and Nesterov mo-
mentum can exploit larger batches than SGD (Shallue et al., 2019), and that K-FAC and Adam can
exploit larger batches than SGD with momentum (Zhang et al., 2019). Thus, it was shown that mo-
mentum and adaptive methods can significantly reduce the number of steps K needed for training
deep neural networks (Shallue et al., 2019, Figure 4), (Zhang et al., 2019, Figure 5). In (Smith et al.,
2018), it was numerically shown that using enormous batch sizes leads to reducing the number of
parameter updates and model training time.

1.1 MOTIVATION

As indicated above, the performance of the optimizer strongly depends on not only learning rate αk

but also the batch size, s. However, the previous studies did not clarify any relationship between αk

and s. Moreover, the previous studies did not show theoretically the relationship between batch size
s and the performance of the optimizer. Hence, the motivation of this paper is to clarify theoretically
the relationship between αk and s and that between s and the number of steps, K, needed for
nonconvex optimization of the optimizer.

1.2 NOTATION

N denotes the set of nonnegative integers. Let n ∈ N\{0}. We define [n] := {1, 2, . . . , n}. Rd

denotes d-dimensional Euclidean space with inner product ⟨·, ·⟩ inducing norm ∥ · ∥. Let Sd++ be the
set of d × d symmetric positive-definite matrices and let Dd be the set of d × d diagonal matrices:
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Dd = {M ∈ Rd×d : M = diag(xi), xi ∈ R (i ∈ [d])}. For a random variable Z, we use E[Z] to
indicate its expectation. Throughout this paper, let ϵ > 0, α > 0, b̃ := 1− b (b ∈ (0, 1)), γ̃ := 1− γ
(γ ∈ [0, 1)), and H ≥ h∗

0 > 0. The number of samples is denoted by n, Li is the Lipschitz
constant of ∇fi : Rd → Rd (i ∈ [n]), and L denotes the maximum value of Li. ∇f : Rd → Rd

denotes the gradient of a nonconvex loss function f : Rd → R. D is the upper bound of (xk,i−xi)
2

((xi) ∈ Rd), where (xk)k∈N = ((xk,i))k∈N is generated by an optimizer. Aα and Bα are positive
constants depending on a learning rate α and Cβ is a positive constant depending on a momentum
coefficient β (see Theorem 3.1 for detailed definitions of the constants). A batch size s⋆ is said to
be optimal if the number of steps K needed for nonconvex optimization is minimized at s⋆.

1.3 CONTRIBUTION

The contribution of this paper is to construct a theory guaranteeing the useful numerical results in
(Shallue et al., 2019; Zhang et al., 2019). Table 1 (resp. Table 2) summarizes our results for SGD,
Nesterov momentum (N-Momentum), and Adam-type optimizers with a constant learning rate rule
(resp. diminishing learning rate rule), described in Theorem 3.1 (resp. Theorem 3.2). See Theorem
A.2 in Appendix for other result for the optimizers with a diminishing learning rate rule. Figure 1
(resp. Figure 2) visualizes the relationships between the optimizers for the results shown in Table 1
(resp. Table 2) for an appropriately set momentum coefficient β.

Table 1: Relationship between batch size s and the number of steps Kϵ needed for nonconvex
optimization in the sense of (1) of optimizers with constant learning rates

Constant Learning Rate Rule
(αk(s) =

α
s , βk = β ∈ [0, b] ⊂ [0, 1))

Rational Function Optimal Batch Size s⋆ Minimum Steps Kϵ(s
⋆)

SGD Kϵ =
Aαs

2

ϵ2s−Bα

dDL2n2α

ϵ2
(dDLn)2

ϵ4

N-Momentum Kϵ =
Aαs

2

(ϵ2 − Cβ)s−Bα

dDL2n2α

b̃ϵ2 − dDLnβ

(dDLn)2

(b̃ϵ2 − dDLnβ)2

Adam-type Kϵ =
Aαs

2

(ϵ2 − Cβ)s−Bα

dDL2n2α

γ̃2(b̃ϵ2 − dDLnβ)h∗
0

(dDLn)2H

γ̃2(b̃ϵ2 − dDLnβ)2h∗
0

Table 2: Relationship between batch size s and the number of steps Kϵ needed for nonconvex
optimization in the sense of (1) of optimizers with diminishing learning rates

Diminishing Learning Rate Rule
(αk(s) =

α
s
√
k

, βk = β ∈ [0, b] ⊂ [0, 1))
Rational Function Optimal Batch Size s⋆ Minimum Steps Kϵ(s

⋆)

SGD Kϵ =

{
Aαs

2 +Bα

ϵ2s

}2 √
2Lnα

2(dDLn)2

ϵ4

N-Momentum Kϵ =

{
Aαs

2 +Bα

(ϵ2 − Cβ)s

}2 √
2Lnα

2(dDLn)2

(b̃ϵ2 − dDLnβ)2

Adam-type Kϵ =

{
Aαs

2 +Bα

(ϵ2 − Cβ)s

}2 √
2Lnα

γ̃
√

Hh∗
0

2(dDLn)2H

γ̃2(b̃ϵ2 − dDLnβ)2h∗
0

The main contribution of this paper is to clarify that the number of steps K = Kϵ needed for
nonconvex optimization in the sense of an ϵ-approximation, 1

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ ϵ2, (1)

of one of SGD, N-Momentum, and Adam-type optimizers can be expressed as a rational function of
batch size s (see the “Rational Function” columns of Tables 1 and 2).

1Jensen’s inequality guarantees that (1) implies that mink∈[K] E [∥∇f(xk)∥] ≤ ϵ.
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The explicit forms of the rational functions imply the following two significant facts:

(I) There exists an optimal batch size s⋆ such that Kϵ(s) is minimized. This fact guarantees
theoretically the existences of the diminishing returns shown in (Shallue et al., 2019, Figure
4), (Zhang et al., 2019, Figure 8), which are such that increasing the batch size does not
decrease the number of steps Kϵ.

(II) The optimal batch size s⋆ and the minimum number of steps Kϵ(s
⋆) depend on the opti-

mizer. In particular, N-Momentum and Adam-type optimizers can exploit the same sized
or larger batches (s⋆ in Tables 1 and 2 and Figures 1 and 2) than can SGD. Furthermore,
the dependence of N-Momentum and Adam-type optimizers on β allows them to reduce
the minimum number of steps (Kϵ(s

⋆) in Tables 1 and 2 and Figures 1 and 2) more than
can SGD (see Section 3 for details).

The relationship between αk and s and the existence of the optimal batch size s⋆ lead to the learning
rate α⋆

k (e.g., the constant learning rate is α⋆
k = α/s⋆) for nonconvex optimization in the sense of an

ϵ-approximation (1). This result justifies that this nonconvex optimization requires not only for the
batch size to be set appropriately but also the learning rate.

COMPARISONS OF OPTIMAL BATCH SIZES FOR DIFFERENT LEARNING RATE RULES

Tables 1 and 2 ensure that Kϵ(s
⋆) for the optimizer using constant learning rates is almost the

same as Kϵ(s
⋆) for the optimizer using diminishing learning rates. Meanwhile, we would like to

emphasize that the optimal batch size s⋆C for the optimizer using constant learning rates depends on
β, and the optimal batch size s⋆D for the optimizer using diminishing learning rates does not depend
on β. For example, under the precision accuracy ϵ = 10−1, we can know the optimal batch sizes for
N-Momentum with the frequently used parameter value α = 10−3 are respectively

s⋆C,NM =
dDL2n2ϵ3

b̃ϵ2 − dDLnβ
and s⋆D,NM =

√
2Lnϵ3

before implementing N-Momentum.

2 NONCONVEX OPTIMIZATION AND OPTIMIZERS

This section provides the assumptions used in this paper and states optimizers for a nonconvex
optimization problem under the assumptions.

2.1 ASSUMPTIONS REGARDING LOSS FUNCTION AND GRADIENT ESTIMATION

This paper considers optimization problems under the following assumptions.

Assumption 2.1

(A1) [Loss function] fi : Rd → R (i ∈ [n]) is differentiable and f : Rd → R is defined for all
x ∈ Rd by

f(x) :=
1

n

n∑
i=1

fi(x),

where n denotes the number of samples.

(A2) [Gradient estimation] For each iteration k, optimizers sample a batch Sk ⊂ [n] of size
s := |Sk| independently of k and estimate the full gradient∇f as

∇fSk
:=

1

s

∑
i∈Sk

∇fi.

(A3) [Gradient boundedness] There exists a positive number G such that, for all x ∈ X ,
E
[
∥∇fSk

(x)∥2
]
≤ G2, (2)

where X is a subset of Rd.
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Assumption (A1) is a standard one for nonconvex optimization in deep neural networks (see, e.g.,
(Chen et al., 2019, (2)) and (Fang et al., 2018, (1.2))). Assumption (A2) is needed for the optimizers
to work (see, e.g., (Chen et al., 2019, Section 2) and (Fang et al., 2018, Notation section)). Assump-
tion (A3) is used to analyze the optimizers (see, e.g., (Chen et al., 2019, Section 2)). Assumption
(A3) holds if each of the following holds:

(G1) X ⊂ Rd is bounded, the gradient ∇fi is Lipschitz continuous with Lipschitz constant Li,
and Si := {x∗ ∈ Rd : ∇fi(x∗) = 0} ̸= ∅ (i ∈ [n]), where L := maxi∈[n] Li. (If we
define Gk,L := supx∈X

∑
i∈Sk
∥∇fi(x)∥, then we can take G := supk∈N Gk,L.)

(G2) X ⊂ Rd is bounded and closed. (If we define Gk := supx∈X

∑
i∈Sk
∥∇fi(x)∥, then we

can take G := supk∈N Gk.)

For example, under (G1), the Lipschitz continuity of∇fi, together with the definition of L, ensures
that, for all x ∈ Rd and all i ∈ [n], ∥∇fi(x)∥ = ∥∇fi(x)−∇fi(x∗)∥ ≤ Li∥x−x∗∥ ≤ L∥x−x∗∥.
Accordingly,

∑
i∈Sk
∥∇fi(x)∥ ≤ Ls∥x − x∗∥ ≤ Ln∥x − x∗∥. The definition of ∇fSk

and
the triangle inequality imply that there exists G such that ∥∇fSk

(x)∥2 ≤ (
∑

i∈Sk
∥∇fi(x)∥)2 ≤

(Ln∥x− x∗∥)2 ≤ G2, i.e., (A3) holds (see Proposition A.1 in Appendix for details).

2.2 NONCONVEX OPTIMIZATION

This paper considers the following problem (Chen et al., 2019; Zhuang et al., 2020).

Problem 2.1 Under Assumption 2.1, we would like to find a point x⋆ ∈ Rd such that

x⋆ ∈ X⋆ :=
{
x ∈ Rd : ∇f(x) = 0

}
.

See the third and fourth paragraphs of Section 1 for the previous studies on Problem 2.1.

2.3 OPTIMIZERS

There are many optimizers (Schmidt et al., 2021, Table 2). In this paper, we consider the fol-
lowing algorithm (Algorithm 1), which is a unified algorithm for useful optimizers, for example,
N-Momentum (Nesterov, 1983; Sutskever et al., 2013), AMSGrad (Reddi et al., 2018; Chen et al.,
2019), AMSBound (Luo et al., 2019), modified Adam (M-Adam) (Kingma & Ba, 2015; Iiduka,
2021), and AdaBelief (Zhuang et al., 2020), listed in Table 4 in Appendix.

Algorithm 1 Optimizer for solving Problem 2.1
Require: (αk)k∈N ⊂ (0,+∞), (βk)k∈N ⊂ [0, b] ⊂ [0, 1), γ ∈ [0, 1)

1: k ← 0, x0,m−1 := 0 ∈ Rd, H0 ∈ Sd++ ∩ Dd, S0 ⊂ [n]
2: loop
3: mk := βkmk−1 + (1− βk)∇fSk

(xk)

4: m̂k :=
mn

1− γk+1

5: Hk ∈ Sd++ ∩ Dd (see Table 4 for examples of Hk)
6: Find dk ∈ Rd that solves Hkd = −m̂k

7: xk+1 := xk + αkdk
8: k ← k + 1
9: end loop

The useful optimizers, such as N-Momentum, AMSGrad, AMSBound, M-Adam, and AdaBelief
(Table 4), all satisfy the following conditions:

Assumption 2.2 The sequence (Hk)k∈N ⊂ Sd++ ∩ Dd, with Hk := diag(hk,i), in Algorithm 1
satisfies the following conditions:

(A4) hk+1,i ≥ hk,i for all k ∈ N and all i ∈ [d];

(A5) For all i ∈ [d], a positive number Hi exists such that supk∈N E[hk,i] ≤ Hi.

5
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Moreover, the following condition holds:

(A6) D := maxi∈[d] supk∈N(xk,i − xi)
2 < +∞, where x := (xi) ∈ Rd and (xk)k∈N :=

((xk,i))k∈N is the sequence generated by Algorithm 1.

We define
h∗
0 := min

i∈[d]
h0,i and H := max

i∈[d]
Hi,

where hk,i and Hi are defined as in Assumption 2.2. Assumption (A6) is assumed in
(Nemirovski et al., 2009, p.1574), (Kingma & Ba, 2015, Theorem 4.1), (Reddi et al., 2018, p.2),
(Luo et al., 2019, Theorem 4), and (Zhuang et al., 2020, Theorem 2.1). If (A6) holds, then there ex-
ists a bounded set X ⊂ Rd such that (xk)k∈N ⊂ X . Accordingly, the Lipschitz continuity of ∇fi,
the nonemptiness of Si, and (A6) (i.e., (G1)) imply that (A3) with G := Ln

√
dD holds (see Propo-

sition A.1 in Appendix for details). The previous results in (Chen et al., 2019, p.29), (Zhuang et al.,
2020, p.18), and (Iiduka, 2021) show that (Hk)k∈N in Table 4 satisfies (A4) and (A5). For example,
AMSGrad (resp. M-Adam) satisfies (A4) and (A5) with H =

√
M (resp. H =

√
M/(1− ζ)),

where M := supk∈N ∥∇fSk
(xk)⊙∇fSk

(xk)∥ < +∞ (Iiduka, 2021). AMSBound coincides with
AMSGrad using H = supk∈N l−1

k . In general, the performance of AMSGrad with H =
√
M differs

from the that of AMSBound (i.e., AMSGrad with H = supk∈N l−1
k ) since the optimal batch size and

the minimum number of steps depend on H , as seen in Tables 1 and 2 (see also (Luo et al., 2019,
Section 5) for numerical comparisons of AMSGrad and AMSBound).

3 MAIN RESULTS

This section gives our results (Theorems 3.1 and 3.2) indicating the relationship between batch size
s and the number of steps Kϵ needed for (1) for Algorithm 1 with each of constant and diminishing
learning rates (see Tables 1 and 2 for the specific results in Theorems 3.1 and 3.2 with G := Ln

√
dD

(i.e., under condition (G1))).

3.1 CONSTANT LEARNING RATE RULE

Theorem 3.1 Suppose that Assumptions 2.1 and 2.2 hold and let ϵ > 0 and α ∈ (0, 1].

(i) Consider Algorithm 1 with

αk = αk(s) :=
α

s
(s > 0) and βk := β ∈ [0, b] ⊂ [0, 1).

Then, for all K ≥ 1 and all s > 0,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ dDH

2(1− b)α︸ ︷︷ ︸
Aα

s

K
+

G2α

2(1− b)(1− γ)2h∗
0︸ ︷︷ ︸

Bα

1

s
+

√
dDG

1− b
β︸ ︷︷ ︸

Cβ

.

(ii) Consider Algorithm 1 with

αk = αk(s) =
α

s
(s > 0) and βk := β < min

{
1− b√
dDG

ϵ2, b

}
.

Then, the number of steps Kϵ needed to achieve an ϵ-approximation (1) is expressed as the following
rational function of batch size s:

Kϵ(s) =
Aαs

2

(ϵ2 − Cβ)s−Bα

(
s ∈

(
Bα

ϵ2 − Cβ
,+∞

))
. (3)

In particular, the minimum value of Kϵ needed to achieve (1) is

Kϵ(s
⋆) =

4AαBα

(ϵ2 − Cβ)2
=

dDG2H

(1− γ)2{(1− b)ϵ2 −
√
dDGβ}2h∗

0

when

s⋆ =
2Bα

ϵ2 − Cβ
=

G2α

(1− γ)2{(1− b)ϵ2 −
√
dDGβ}h∗

0

.

6
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3.1.1 DISCUSSION OF THEOREM 3.1

[Performance of Algorithm 1] SGD is Algorithm 1 with β = γ = 0 and h∗
0 = H = 1, N-

Momentum is Algorithm 1 with γ = 0 and h∗
0 = H = 1, and the Adam-type optimizer is Algorithm

1 with γ ∈ [0, 1) and hk,i defined by one of
√

v̂k,i, ṽk,i, and
√
ŝk,i (see Table 4). Theorem 3.1(i)

indicates that, for all K ≥ 1, all α ∈ (0, 1], all β ∈ [0, b] ⊂ [0, 1), and all s > 0,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤


dDSGD

2α
s
K + G2α

2
1
s (SGD),

dDNM

2(1−b)α
s
K + G2α

2(1−b)
1
s +

√
dDNMG
1−b β (N-Momentum),

dDAH
2(1−b)α

s
K + G2α

2(1−b)(1−γ)2h∗
0

1
s +

√
dDAG
1−b β (Adam-type).

(4)

Note that D depends on the optimizer, which we distinguish by the notation DSGD, DNM, and DA.
For fixed s, if α and β are sufficiently small, (4) indicates that SGD, N-Momentum, and Adam-type
optimizers have approximately O(1/K) convergence. For fixed s and K, if α is sufficiently small,
the second term on the right-hand side of (4) will be small, whereas the first term will be large.
Hence, there is no evidence that Algorithm 1 with a sufficiently small learning rate α would perform
arbitrarily well. For fixed α and K, if s is sufficiently large, again the second term of the right-hand
side of (4) will be small and the first term will be large. Hence, (4) indicates that there is no evidence
that Algorithm 1 with a large batch size s performs better than with a smaller batch size.

[Existence of optimal batch size] The function Kϵ(s) defined by (3) satisfies the following:

dKϵ(s)

ds


< 0 if s ∈

(
Bα

ϵ2−Cβ
, s⋆
)
,

= 0 if s = s⋆ = 2Bα

ϵ2−Cβ
,

> 0 if s ∈ (s⋆,+∞).

The above shows that increasing the batch size initially decreases the number of steps Kϵ needed
to achieve (1). Then, there is an optimal batch size (s = s⋆) minimizing Kϵ(s). We note that the
optimal batch size depends on the upper bound defined by the right-hand side of (4).

[Comparison of optimal batch sizes] We assume that SGD, N-Momentum, and Adam-type op-
timizers all use the same G. For example, under (G1), we have G = Ln

√
dD, where D =

max{DSGD, DNM, DA}. From Theorem 3.1(ii), we find that

s⋆C,SGD =
G2α

ϵ2
≤ s⋆C,NM =

G2α

(1− b)ϵ2 −
√
dDNMGβ

. (5)

Moreover, if (1− γ)2 ≤ 1/h∗
0, then we have that

s⋆C,SGD =
G2α

ϵ2
≤ s⋆C,A =

G2α

(1− γ)2{(1− b)ϵ2 −
√
dDAGβ}h∗

0

. (6)

Moreover, if (1− γ)2 ≤ 1/h∗
0 holds and if DNM ≤ DA, then

s⋆C,NM ≤ s⋆C,A.

The right-hand side of (4) with β = 0 is the smallest. Hence, it might seem that N-Momentum and
Adam-type optimizers are not useful. However, using β ̸= 0 leads to the finding that N-Momentum
and Adam-type optimizers exploit larger batches than SGD, as seen in (5) and (6).

[Comparison of minimum numbers of steps] Theorem 3.1(ii) guarantees that the dependence of
N-Momentum and Adam-type optimizers of β allows them to satisfy that

Kϵ(s
⋆
C,A) ≤ Kϵ(s

⋆
C,NM) ≤ Kϵ(s

⋆
C,SGD) (7)

(see (27), (28), (29), (30), (31), and (32) in Appendix).

3.2 DIMINISHING LEARNING RATE RULE

Theorem 3.2 Suppose that Assumptions 2.1 and 2.2 hold and let ϵ > 0 and α ∈ (0, 1].

(i) Consider Algorithm 1 with

αk = αk(s) :=
α

s
√
k
(s > 0) and βk := β ∈ [0, b] ⊂ [0, 1).

7
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Then, for all K ≥ 1 and all s > 0,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ dDH

2(1− b)α︸ ︷︷ ︸
Aα

s√
K

+
G2α

(1− b)(1− γ)2h∗
0︸ ︷︷ ︸

Bα

1

s
√
K

+

√
dDG

1− b
β︸ ︷︷ ︸

Cβ

.

(ii) Consider Algorithm 1 with

αk = αk(s) :=
α

s
√
k
(s > 0) and βk := β < min

{
1− b√
dDG

ϵ2, b

}
.

Then, the number of steps Kϵ needed to achieve an ϵ-approximation (1) is expressed as the following
rational function of batch size s:

Kϵ(s) =

{
Aαs

2 +Bα

(ϵ2 − Cβ)s

}2

. (8)

In particular, the minimum value of Kϵ needed to achieve (1) is

Kϵ(s
⋆) =

4AαBα

(ϵ2 − Cβ)2
=

2dDG2H

(1− γ)2{(1− b)ϵ2 −
√
dDGβ}2h∗

0

when

s⋆ =

√
Bα

Aα
=

√
2Gα

(1− γ)
√
dDHh∗

0

.

3.2.1 DISCUSSION OF THEOREM 3.2

[Performance of Algorithm 1] Theorem 3.2(i) indicates that Algorithm 1 satisfies that, for all
K ≥ 1, all α ∈ (0, 1], all β ∈ [0, b], and all s > 0,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤


dDSGD

2α
s√
K

+ G2α
s
√
K

(SGD),
dDNM

2(1−b)α
s√
K

+ G2α
(1−b)

1
s
√
K

+
√
dDNMG
1−b β (N-Momentum),

dDAH
2(1−b)α

s√
K

+ G2α
(1−b)(1−γ)2h∗

0

1
s
√
K

+
√
dDAG
1−b β (Adam-type).

By a similar argument to that in Section 3.1.1, SGD, N-Momentum, and Adam-type optimizers have
approximately O(1/

√
K) convergence and there is no evidence that Algorithm 1 with a large batch

size s performs better than with a smaller batch size.

[Existence of optimal batch size] Kϵ defined by (8) guarantees that there exists s⋆ such that
dKϵ(s

⋆)/ds = 0, the same as seen in Section 3.1.1 for Theorem 3.1. This implies that there is
an optimal batch size (s = s⋆) such that Kϵ(s) is minimized.

[Comparison of optimal batch sizes] For simplicity, let us consider the case where (G1) holds.
Theorem 3.2(ii) with G = Ln

√
dD ensures that the optimal batch sizes for SGD, N-Momentum,

and Adam-type optimizers satisfy that s⋆D,SGD =
√
2Gα√

dDSGD
=
√
2Lnα =

√
2Gα√
dDNM

= s⋆D,NM. Fur-

thermore, if (1 − γ)2 ≤ 1/(Hh∗
0), then s⋆D,SGD = s⋆D,NM ≤ s⋆D,A =

√
2Lnα

(1−γ)
√

Hh∗
0

. Therefore,

N-Momentum and Adam-type optimizers exploit the same sized or larger batches than SGD. Here,
we notice that s⋆C,SGD, s⋆C,NM, and s⋆C,A defined as in (5) and (6) depend on ϵ and β, while s⋆D,SGD,
s⋆D,NM, and s⋆D,A do not depend on ϵ and β.

[Comparison of minimum numbers of steps] Again, by a similar argument to (7) in Section 3.1.1,
the restrictions on β (see (27), (28), (29), (30), (31), and (32) in Appendix) imply that

Kϵ(s
⋆
D,A) ≤ Kϵ(s

⋆
D,NM) ≤ Kϵ(s

⋆
D,SGD). (9)

The previous studies (Kingma & Ba, 2015; Reddi et al., 2018; Luo et al., 2019) used β = 0.9 or
0.99, which is close to 1, for adaptive methods. Meanwhile, a sufficient condition (see (31)) for
Kϵ(s

⋆
D,A) ≤ Kϵ(s

⋆
D,NM) with D = DNM = DA and G = Ln

√
dD is β ≤ (1 − b)ϵ2/(LndD),

which implies that adaptive methods using the above β (which is small when the number of samples
n and the number of dimension d are both large and the precision accuracy ϵ is small) are good for
training deep neural networks in the sense that Kϵ(s

⋆
D,A) ≤ Kϵ(s

⋆
D,NM) (see Sections A.8 and A.9

in Appendix for how to set β and its advantage).

8
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4 NUMERICAL COMPARISONS AND DISCUSSIONS

Table 3: Number of steps, elapsed time, and training accuracy of optimizers when f(xK) ≤ 10−1

to train ResNet-20 on CIFAR-10
SGD

Batch Size 26 27 28 29 210 211 212 213 214 215

Steps 537500 287500 142500 146875 — — — — — —
Time (m) 34.2 20.8 15.4 14.5 — — — — — —
Acc. (%) 96.6 96.8 96.6 96.7 — — — — — —

N-Momentum
Batch Size 26 27 28 29 210 211 212 213 214 215

Steps 392187 27734 12402 19531 — — — — — —
Time (m) 38.2 21.7 14.3 12.6 — — — — — —
Acc. (%) 96.5 96.7 96.7 96.7 — — — — — —

M-Adam
Batch Size 26 27 28 29 210 211 212 213 214 215

Steps 33593 15234 7226 3125 1367 659 378 320 323 337
Time (m) 14.2 11.3 7.2 6.7 6.4 6.4 6.6 6.6 6.4 6.6
Acc. (%) 96.4 96.6 96.5 96.7 96.7 97.2 97.5 97.7 97.5 99.0

We evaluated the performances of SGD, N-Momentum, and M-Adam with different batch sizes to
train ResNet-20 on the CIFAR-10 dataset with n = 50000. We set α = 10−3, β = 10−2, γ = 0.9,
h∗
0 = 10−2, and L = 10. H = 10 were set so as to satisfy γ̃

√
Hh∗

0 < 1, i.e., s⋆D,SGD = s⋆D,NM <
s⋆D,A. Table 2 confirms that the optimal batch sizes of the optimizers are such that s⋆D,SGD =

s⋆D,NM =
√
2Lnα ≈ 28 < 213 ≈

√
2Lnα/(γ̃

√
Hh∗

0) = s⋆D,A. Table 3 shows that the optimizers
with s⋆ (indicated by bold type) could reduce the number of steps more than the ones with other
batch sizes, (9) was satisfied, and Adam with s⋆ performed better than other optimizers. We also
checked that SGD and N-Momentum with s ≥ 210 do not satisfy f(xK) ≤ 10−1 until the stopping
condition, namely, that the number of epochs is 200 and that the value of f of all of the optimizers
is decreasing stably, i.e., the norm of the gradient of f converges to zero.

Finally, we check whether the batch sizes shown in (Shallue et al., 2019) are approximately the same
as the optimal batch sizes. For training CNN on the MNIST dataset, SGD exploited the batch size
between 212 and 214 and N-Momentum exploited the batch size between 213 and 214 (Shallue et al.,
2019, Figure 4(a)). Meanwhile, when n = 55000, α = 10−3, and L ≈ 174 (Virmaux & Scaman,
2018, Figure 5), the optimal batch sizes are such that s⋆D,SGD = s⋆D,NM =

√
2Lnα ≈ 13533 ≈

214. Hence, the optimal batch sizes of SGD and N-Momentum are almost the same as the ones in
(Shallue et al., 2019, Figure 4(a)).

5 CONCLUSION

The main contribution of this paper was to show that the number of steps Kϵ(s) needed for noncon-
vex optimization, mink∈[K] E[∥∇f(xk)∥2] ≤ ϵ2, of a deep learning optimizer is a rational function
of batch size. We showed that there exists an optimal batch size s⋆ such that Kϵ(s) is minimized.
Hence, there is no guarantee that the optimizer with a sufficiently large batch size s (> s⋆) would
perform better than with a smaller batch size. We also showed that the optimal batch size depends on
the optimizer. In particular, it was shown that momentum and adaptive methods can exploit the same
sized or larger optimal batches than can SGD and that, if we can set an appropriate momentum co-
efficient β, then momentum and adaptive methods reduce Kϵ(s

⋆) more than can SGD. Additionally,
numerical results were provided to support the theoretical results in this paper.

9



Under review as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

ETHICS STATEMENT

Ethics approval was not required for this study.

REPRODUCIBILITY STATEMENT

The experimental environment is as follows: two Intel(R) Xeon(R) Gold 6148 at 2.4 GHz CPUs
with 20 cores, 16 GB NVIDIA Tesla V100 at 900 Gbps GPU, Red Hat Enterprise Linux 7.6. The
code was all written in Python 3.8.2 using the NumPy 1.17.3 and PyTorch 1.3.0 packages. Sufficient
conditions for Assumption (A3) and complete proofs of the theoretical results (Theorems 3.1 and
3.2) were included as Appendix.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
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A APPENDIX

Unless stated otherwise, all relations between random variables are supported to hold almost surely.
Let S ∈ Sd++. The S-inner product of Rd is defined for all x,y ∈ Rd by ⟨x,y⟩S := ⟨x, Sy⟩ and
the S-norm is defined by ∥x∥S :=

√
⟨x, Sx⟩. The history of process ξ0, ξ1, . . . to time step k is

denoted by ξ[k] = (ξ0, ξ1, . . . , ξk).

A.1 SUFFICIENT CONDITIONS FOR ASSUMPTION (A3)

Proposition A.1 Assumption (A3) holds if each of the following holds:

(G1) X ⊂ Rd is bounded, the gradient ∇fi is Lipschitz continuous with Lipschitz constant Li,
and Si := {x∗ ∈ Rd : ∇fi(x∗) = 0} ̸= ∅ (i ∈ [n]), where L := maxi∈[n] Li. (If we define
Gk,L := supx∈X

∑
i∈Sk
∥∇fi(x)∥, then we can take G := supk∈N Gk,L.)

(G2) X ⊂ Rd is bounded and closed. (If we define Gk := supx∈X

∑
i∈Sk
∥∇fi(x)∥, then we

can take G := supk∈N Gk.)

Under (A6), G in (G1) and (G2) are respectively G = Ln
√
dD and G = nG̃, where G̃ :=

maxi∈[n] supx∈X ∥∇fi(x)∥.

Proof: The definition of∇fSk
and the triangle inequality imply that, for all x ∈ Rd and all k ∈ N,

∥∇fSk
(x)∥2 =

∥∥∥∥∥1s ∑
i∈Sk

∇fi(x)

∥∥∥∥∥
2

≤ 1

s2

(∑
i∈Sk

∥∇fi(x)∥

)2

≤

(∑
i∈Sk

∥∇fi(x)∥

)2

, (10)

where the final inequality comes from s ≥ 1. Suppose that (G1) holds. Let x∗ ∈ Si (i ∈ [n]). The
Lipschitz continuity of ∇fi, together with the definition of L, ensures that, for all x ∈ Rd and all
i ∈ [n],

∥∇fi(x)∥= ∥∇fi(x)−∇fi(x∗)∥ ≤ Li∥x− x∗∥ ≤ L∥x− x∗∥.

Accordingly, we have that, for all x ∈ X and all k ∈ N,∑
i∈Sk

∥∇fi(x)∥ ≤ Ls∥x− x∗∥ ≤ Ln∥x− x∗∥. (11)

12
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Hence, there exists G > 0 such that Gk,L ≤ Ln supx∈X ∥x − x∗∥≤ G. Taking the expectation of
(10), together with (11), thus implies that

E[∥∇fSk
(x)∥2] ≤ E

(∑
i∈Sk

∥∇fi(x)∥

)2
 ≤ (Ln∥x− x∗∥)2 ≤ G2.

Assumption (A6) implies that there exists a bounded set X ⊂ Rd such that (xk)k∈N ⊂ X . From
∥xk − x∗∥2 =

∑
i∈[d](xk,i − xi)

2 ≤ dD, we have that, for all k ∈ N,

Gk,L ≤ Ln
√
dD =: G.

Suppose that (G2) holds. Since ∇fi is continuous and X is compact, we have that G =
supk∈N Gk < +∞. Taking the expectation of (10) thus implies (A3). Assumption (A6) en-
sures that there exists a bounded, closed set X ⊂ Rd such that (xk)k∈N ⊂ X . Define G̃i :=

supx∈X ∥∇fi(x)∥ < +∞ and G̃ := maxi∈[n] G̃i. Then, we have that, for all x ∈ X ,∑
i∈Sk

∥∇fi(x)∥ ≤ sG̃ ≤ nG̃ =: G.

This completes the proof. 2

A.2 EXAMPLES OF ALGORITHM 1

We list some examples of Hk ∈ Sd++ ∩ Dd (step 5) in Algorithm 1.

Table 4: Examples of Hk ∈ Sd++ ∩ Dd (step 5) in Algorithm 1 (δ, ζ ∈ [0, 1))
Hk

SGD Hk is the identity matrix.
(βk = γ = 0)
N-Momentum (Nesterov, 1983) Hk is the identity matrix.
(γ = 0)
AMSGrad vk = δvk−1 + (1− δ)∇fSk

(xk)⊙∇fSk
(xk)

(Reddi et al., 2018; Chen et al., 2019) v̂k = (max{v̂k−1,i, vk,i})di=1

(γ = 0) Hk = diag(
√
v̂k,i)

AMSBound (Luo et al., 2019) vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk)
(γ = 0) v̂k = (max{v̂k−1,i, vk,i})di=1

ṽk =

(
Clip

(
1√
v̂k,i

, lk, uk

)−1
)d

i=1
Hk = diag(ṽk,i)

M-Adam vk = δvk−1 + (1− δ)∇fSk
(xk)⊙∇fSk

(xk)
(Kingma & Ba, 2015; Iiduka, 2021) v̄k = vk

1−ζk

v̂k = (max{v̂k−1,i, v̄k,i})di=1

Hk = diag(
√
v̂k,i)

AdaBelief (Zhuang et al., 2020) s̃k = (∇fSk
(xk)−mk)⊙ (∇fSk

(xk)−mk)
(sk,i ≤ sk+1,i is needed) sk = δvk−1 + (1− δ)s̃k

ŝk = sk

1−ζk

Hk = diag(
√
ŝk,i)

We define x ⊙ x for x := (xi)
d
i=1 ∈ Rd by x ⊙ x := (x2

i )
d
i=1 ∈ Rd. Clip(·, l, u) : R → R in

AMSBound (l, u ∈ R with l ≤ u are given) is defined for all x ∈ R by

Clip(x, l, u) :=


l if x < l,

x if l ≤ x ≤ u,

u if x > u.

While Adam (Kingma & Ba, 2015) uses Hk = diag(
√
v̄k,i), M-Adam (Iiduka, 2021) uses Hk =

diag(
√

v̂k,i) to satisfy (A4) (see also Theorem 1 in (Reddi et al., 2018) indicating that Adam does
not always converge).

13
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A.3 LEMMAS AND THEOREM

The following are the key lemmas to prove the main theorems in this paper.

Lemma A.1 Suppose that (A1) and (A2) hold and consider Algorithm 1. Then, for all x ∈ Rd and
all k ∈ N,

E
[
∥xk+1 − x∥2Hk

]
≤ E

[
∥xk − x∥2Hk

]
+ α2

kE
[
∥dk∥2Hk

]
+ 2αk

{
β̃k

γ̃k
E [⟨x− xk,∇f(xk)⟩] +

βk

γ̃k
E [⟨x− xk,mk−1⟩]

}
,

where β̃k := 1− βk and γ̃k := 1− γk+1.

Proof: Let x ∈ Rd and k ∈ N. The definition of xk+1 implies that

∥xk+1 − x∥2Hk
= ∥xk − x∥2Hk

+ 2αk ⟨xk − x,dk⟩Hk
+ α2

k ∥dk∥
2
Hk

.

Moreover, the definitions of dk, mk, and m̂k ensure that

⟨xk − x,dk⟩Hk
=

1

γ̃k
⟨x− xk,mk⟩ =

βk

γ̃k
⟨x− xk,mk−1⟩+

β̃k

γ̃k
⟨x− xk,∇fSk

(xk)⟩ ,

where β̃k := 1− βk and γ̃k := 1− γk+1. Hence,

∥xk+1 − x∥2Hk
≤ ∥xk − x∥2Hk

+ 2αk

{
βk

γ̃k
⟨x− xk,mk−1⟩+

β̃k

γ̃k
⟨x− xk,∇fSk

(xk)⟩

}
+ α2

k ∥dk∥
2
Hk

.

(12)

Meanwhile, the relationship between the expectation of the stochastic gradient vector∇fSk
(x) and

the full gradient vector∇f(x) is as follows: For all x ∈ Rd,

E [∇fSk
(x)] = E

[
1

s

∑
i∈Sk

∇fi(x)

]
= E [∇fi(x)] = ∇f(x), (13)

where the first equation comes from (A2), the second equation comes from the existence of T such
that [n] = ∪T−1

k=0 Sk, and the third equation comes from (A1). Condition (13) guarantees that

E [⟨x− xk,∇fSk
(xk)⟩] = E

[
E
[
⟨x− xk,∇fSk

(xk)⟩ |ξ[k−1]

]]
= E

[〈
x− xk,E

[
∇fSk

(xk)|ξ[k−1]

]〉]
= E [⟨x− xk,∇f(xk)⟩] .

Therefore, the lemma follows by taking the expectation of (12). 2

Lemma A.2 Algorithm 1 satisfies that, under (A3), for all k ∈ N,

E
[
∥mk∥2

]
≤ G2.

Under (A3) and (A4), for all k ∈ N,

E
[
∥dk∥2Hk

]
≤ G2

(1− γ)2h∗
0

,

where h∗
0 := mini∈[d] h0,i.

Proof: The convexity of ∥ · ∥2, together with the definition of mk and (A3), guarantees that, for all
k ∈ N,

E
[
∥mk∥2

]
≤ βkE

[
∥mk−1∥2

]
+ (1− βk)E

[
∥∇fSk

(xk)∥2
]

≤ βkE
[
∥mk−1∥2

]
+ (1− βk)G

2.
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Induction thus ensures that, for all k ∈ N,

E
[
∥mk∥2

]
≤ max

{
∥m−1∥2, G2

}
= G2, (14)

where m−1 = 0 is used. For k ∈ N, Hk ∈ Sd++ guarantees the existence of a unique matrix

Hk ∈ Sd++ such that Hk = H
2

k (Horn & Johnson, 1985, Theorem 7.2.6). We have that, for all
x ∈ Rd, ∥x∥2Hk

= ∥Hkx∥2. Accordingly, the definitions of dk and m̂k imply that, for all k ∈ N,

E
[
∥dk∥2Hk

]
= E

[∥∥∥H−1

k Hkdk

∥∥∥2] ≤ 1

γ̃2
k

E
[∥∥∥H−1

k

∥∥∥2 ∥mk∥2
]
≤ 1

(1− γ)2
E
[∥∥∥H−1

k

∥∥∥2 ∥mk∥2
]
,

where ∥∥∥H−1

k

∥∥∥ =
∥∥∥diag (h− 1

2

k,i

)∥∥∥ = max
i∈[d]

h
− 1

2

k,i

and γ̃k := 1− γk+1 ≥ 1− γ. Moreover, (A4) ensures that, for all k ∈ N,

hk,i ≥ h0,i ≥ h∗
0 := min

i∈[d]
h0,i.

Hence, (14) implies that, for all k ∈ N,

E
[
∥dk∥2Hk

]
≤ G2

(1− γ)2h∗
0

,

completing the proof. 2

We are in the position to prove the following theorem, which leads to Theorems 3.1, 3.2, and A.2.

Theorem A.1 Suppose that Assumptions 2.1 and 2.2 hold and consider Algorithm 1. Let (δk)k∈N ⊂
(0,+∞) be the sequence defined by δk := αkβ̃k/γ̃k and Vk(x) := E[⟨xk − x,∇f(xk)⟩] for all
x ∈ Rd and all k ∈ N. Assume that (δk)k∈N is monotone decreasing. Then, for all x ∈ Rd and all
K ≥ 1,

K∑
k=1

Vk(x) ≤
dDH

2b̃αK

+
G2

2b̃γ̃2h∗
0

K∑
k=1

αk +

√
dDG

b̃

K∑
k=1

βk,

where b̃ := 1− b, γ̃ := 1− γ, D and Hi are defined as in Assumption 2.2, and H := maxi∈[d] Hi.

Proof: Let x ∈ Rd. Lemma A.1 guarantees that, for all k ∈ N,

Vk(x) ≤
1

2δk

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
+

αkγ̃k

2β̃k

E
[
∥dk∥2Hk

]
+

βk

β̃k

E [⟨x− xk,mk−1⟩] .

Summing the above inequality from k = 1 to K ≥ 1 implies that
K∑

k=1

Vk(x) ≤
1

2

K∑
k=1

1

δk

{
E
[
∥xk − x∥2Hk

]
− E

[
∥xk+1 − x∥2Hk

]}
︸ ︷︷ ︸

∆K

+
1

2

K∑
k=1

αkγ̃k

β̃k

E
[
∥dk∥2Hk

]
︸ ︷︷ ︸

AK

+

K∑
k=1

βk

β̃k

E [⟨x− xk,mk−1⟩]︸ ︷︷ ︸
BK

.

(15)

From the definition of ∆K and E[∥xK+1 − x∥2HK
]/δK ≥ 0,

∆K ≤
E
[
∥x1 − x∥2H1

]
δ1

+

K∑
k=2

E
[
∥xk − x∥2Hk

]
δk

−
E
[
∥xk − x∥2Hk−1

]
δk−1

︸ ︷︷ ︸
∆̃K

. (16)
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Since Hk ∈ Sd++ exists such that Hk = H
2

k, we have ∥x∥2Hk
= ∥Hkx∥2 for all x ∈ Rd. Accordingly,

we have

∆̃K = E

[
K∑

k=2

{∥∥Hk(xk − x)
∥∥2

δk
−
∥∥Hk−1(xk − x)

∥∥2
δk−1

}]
.

From Hk = diag(
√

hk,i), we have that, for all x = (xi)
d
i=1 ∈ Rd, ∥Hkx∥2 =

∑d
i=1 hk,ix

2
i . Hence,

for all K ≥ 2,

∆̃K = E

[
K∑

k=2

d∑
i=1

(
hk,i

δk
− hk−1,i

δk−1

)
(xk,i − xi)

2

]
.

Accordingly, from (A4) and the monotone decrease of (δk)k∈N, we have that, for all k ≥ 1 and all
i ∈ [d],

hk,i

δk
− hk−1,i

δk−1
≥ 0.

Moreover, from (A6), D := maxi∈[d] supk∈N(xk,i − xi)
2 < +∞. Accordingly, for all K ≥ 2,

∆̃K ≤ DE

[
K∑

k=2

d∑
i=1

(
hk,i

δk
− hk−1,i

δk−1

)]
= DE

[
d∑

i=1

(
hK,i

δK
− h1,i

δ1

)]
.

Therefore, (16), E[∥x1 − x∥2H1
]/δ1 ≤ DE[

∑d
i=1 h1,i/δ1], and (A5) imply, for all K ≥ 1,

∆K ≤ DE

[
d∑

i=1

h1,i

δ1

]
+DE

[
d∑

i=1

(
hK,i

δK
− h1,i

δ1

)]
=

D

δK
E

[
d∑

i=1

hK,i

]
≤ D

δK

d∑
i=1

Hi,

which, together with δK := αK(1− βK)/(1− γK+1) ≥ b̃αK and H = maxi∈[d] Hi, implies

1

2
∆K ≤

dDH

2b̃αK

. (17)

Lemma A.2 implies that, for all K ≥ 1,

AK :=

K∑
k=1

αkγ̃k

β̃k

E
[
∥dk∥2Hk

]
≤

K∑
k=1

αkγ̃k

β̃k

G2

γ̃2h∗
0

,

which, together with γ̃k ≤ 1 and βk ≤ b, implies that

1

2
AK ≤

G2

2b̃γ̃2h∗
0

K∑
k=1

αk. (18)

Lemma A.2 and Jensen’s inequality ensure that, for all k ∈ N,

E [∥mk∥] ≤ G.

The Cauchy-Schwarz inequality and (A6) guarantee that, for all K ≥ 1,

BK :=

K∑
k=1

βk

β̃k

E [⟨x− xk,mk−1⟩] ≤
K∑

k=1

√
dDβk

b̃
E [∥mk−1∥] ≤

√
dDG

b̃

K∑
k=1

βk. (19)

Therefore, (15), (17), (18), and (19) lead to the assertion in Theorem A.1. This completes the proof.
2
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A.4 PROOF OF THEOREM 3.1

(i) Theorem A.1, together with αk = α/s and βk = β, guarantees that, for all K ≥ 1, all s > 0,
and all x ∈ Rd,

1

K

K∑
k=1

Vk(x) ≤
dDH

2b̃α

s

K
+

G2α

2b̃γ̃2h∗
0

1

s
+

√
dDG

b̃
β. (20)

Moreover, there exists m ∈ [K] such that, for all x ∈ Rd,

E [⟨xm − x,∇f(xm)⟩] = Vm(x) = min
k∈[K]

Vk(x) ≤
1

K

K∑
k=1

Vk(x). (21)

Setting x = xm −∇f(xm), together with (20) and (21), guarantees that

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ E

[
∥∇f(xm)∥2

]
≤ dDH

2b̃α︸ ︷︷ ︸
Aα

s

K
+

G2α

2b̃γ̃2h∗
0︸ ︷︷ ︸

Bα

1

s
+

√
dDG

b̃
β︸ ︷︷ ︸

Cβ

. (22)

(ii) A sufficient condition for (1), i.e.,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ ϵ2

is that the right-hand side of (22) is equal to ϵ2, i.e.,

Aαs
2 +BαK + (Cβ − ϵ2)sK = 0,

which implies that

K(s) =
Aαs

2

(ϵ2 − Cβ)s−Bα

(
s ∈

(
Bα

ϵ2 − Cβ
,+∞

))
,

where ϵ2 − Cβ > 0 is guaranteed from β < b̃ϵ2/
√
dDG. We have that

dK(s)

ds
=

Aαs

{(Cβ − ϵ2)s+Bα}2
{
(ϵ2 − Cβ)s− 2Bα

}

< 0 if s ∈

(
Bα

ϵ2 − Cβ
, s⋆
)
,

= 0 if s = s⋆ =
2Bα

ϵ2 − Cβ
,

> 0 if s ∈ (s⋆,+∞).

Hence, K(s) attains the minimum K(s⋆) when s = s⋆. 2

A.5 PROOF OF THEOREM 3.2

(i) Theorem A.1, together with αk = α/(s
√
k) and βk = β, guarantees that, for all K ≥ 1, all

s > 0, and all x ∈ Rd,

1

K

K∑
k=1

Vk(x) ≤
dDH

2b̃

1

αKK
+

G2

2b̃γ̃2h∗
0

1

K

K∑
k=1

αk +

√
dDG

b̃
β

≤ dDH

2b̃α

s√
K

+
G2α

b̃γ̃2h∗
0

1

s
√
K

+

√
dDG

b̃
β,

(23)

where we use

1

K

K∑
k=1

1√
k
≤ 1

K

(
1 +

∫ K

1

dt√
t

)
=

1

K

(
2
√
K − 1

)
≤ 2√

K
.
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An argument similar to the one for showing (21) and (22) ensures that (23) implies that

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ dDH

2b̃α︸ ︷︷ ︸
Aα

s√
K

+
G2α

b̃γ̃2h∗
0︸ ︷︷ ︸

Bα

1

s
√
K

+

√
dDG

b̃
β︸ ︷︷ ︸

Cβ

. (24)

(ii) A sufficient condition for (1), i.e.,
min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ ϵ2

is that the right-hand side of (24) is equal to ϵ2, i.e.,

Aαs
2 + (Cβ − ϵ2)s

√
K +Bα = 0,

which implies that

K(s) =

{
Aαs

2 +Bα

(ϵ2 − Cβ)s

}2

,

where ϵ2 − Cβ > 0 is guaranteed from β < b̃ϵ2/
√
dDG. We have that

dK(s)

ds
=

2(Aαs
2 +Bα)

(ϵ2 − Cβ)2s3
(Aαs

2 −Bα)


< 0 if s ∈ (0, s⋆),

= 0 if s = s⋆ =

√
Bα

Aα
,

> 0 if s ∈ (s⋆,+∞),

which implies that K(s) attains the minimum K(s⋆) when s = s⋆. 2

A.6 RELATIONSHIP BETWEEN s AND Kϵ(s) FOR ALGORITHM 1 WITH DIMINISHING
LEARNING RATES

The following is a result for Algorithm 1 with diminishing sequences αk and βk.

Theorem A.2 Suppose that Assumptions 2.1 and 2.2 hold and let ϵ > 0, α ∈ (0, 1], and β ∈
[0, b] ⊂ [0, 1).

(i) Consider Algorithm 1 with

αk = αk(s) :=
α

s
√
k
(s > 0) and βk := βk.

Then, for all K ≥ 1 and all s > 0,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ dDH

2(1− b)α︸ ︷︷ ︸
Aα

s√
K

+
G2α

(1− b)(1− γ)2h∗
0︸ ︷︷ ︸

Bα

1

s
√
K

+
β
√
dDG

(1− b)(1− β)︸ ︷︷ ︸
Cβ

1

K
.

(ii) The number of steps Kϵ needed to achieve (1) is expressed as the following rational function of
batch size s:

Kϵ(s) =

{
(Aαs

2 +Bα) +
√
(Aαs2 +Bα)2 + 4ϵ2Cβs2

2ϵ2s

}2

.

In particular, the minimum value of Kϵ needed to achieve (1) is

Kϵ(s
⋆) =

{√
AαBα +

√
AαBα + ϵ2Cβ

ϵ2

}2

=

{√
(1− β)dDHG+

√(
(1− β)dDGH + 2(1− b)β(1− γ)2ϵ2

√
dDh∗

0

)
G

}2

2(1− b)2(1− β)(1− γ)2ϵ4h∗
0

when

s⋆ =

√
Bα

Aα
=

Gα

(1− γ)
√
dDHh∗

0

.
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Proof: (i) Theorem A.1, together with αk = α/(s
√
k) and βk = βk, guarantees that, for all K ≥ 1,

all s > 0, and all x ∈ Rd,

1

K

K∑
k=1

Vk(x) ≤
dDH

2b̃

1

αKK
+

G2

2b̃γ̃2h∗
0

1

K

K∑
k=1

αk +

√
dDG

b̃

1

K

K∑
k=1

βk

≤ dDH

2b̃α

s√
K

+
G2α

b̃γ̃2h∗
0

1

s
√
K

+
β
√
dDG

b̃β̃

1

K
,

(25)

where we use β̃ := 1− β,

1

K

K∑
k=1

1√
k
≤ 1

K

(
1 +

∫ K

1

dt√
t

)
=

1

K

(
2
√
K − 1

)
≤ 2√

K
,

1

K

K∑
k=1

βk ≤ 1

K

+∞∑
k=1

βk =
β

β̃K
.

An argument similar to the one for showing (21) and (22) ensures that (25) implies that

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ dDH

2b̃α︸ ︷︷ ︸
Aα

s√
K

+
G2α

b̃γ̃2h∗
0︸ ︷︷ ︸

Bα

1

s
√
K

+
β
√
dDG

b̃β̃︸ ︷︷ ︸
Cβ

1

K
. (26)

(ii) A sufficient condition for (1), i.e.,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ ϵ2

is that the right-hand side of (26) is equal to ϵ2, i.e.,

Aαs
2
√
K +Bα

√
K + Cβs− ϵ2sK = 0,

which implies that

K(s) =

{
(Aαs

2 +Bα) +
√

(Aαs2 +Bα)2 + 4ϵ2Cβs2

2ϵ2s

}2

.

We have that

d
√

K(s)

ds
=

(Aαs
2 +Bα) +

√
(Aαs2 +Bα)2 + 4ϵ2Cβs2

2ϵ2s2
√
(Aαs2 +Bα)2 + 4ϵ2Cβs2

(Aαs
2 −Bα)


< 0 if s ∈ (0, s⋆),

= 0 if s = s⋆ =

√
Bα

Aα
,

> 0 if s ∈ (s⋆,+∞),

which implies that K(s) attains the minimum K(s⋆) when s = s⋆. 2

A.7 CONDITIONS ON β SATISFYING (7)

If β satisfies the condition in Theorem 3.1(ii) and if

β ≤ (1− b)
√
DSGD −

√
DNM√

dDSGDDNMG
ϵ2, (27)

then

Kϵ(s
⋆
C,SGD) =

dDSGDG
2

ϵ4
≥ Kϵ(s

⋆
C,NM) =

dDNMG2

{(1− b)ϵ2 −
√
dDNMGβ}2

. (28)

Moreover, if β satisfies the condition in Theorem 3.1(ii) and if

β ≤
(1− b)(1− γ)

√
DSGDh∗

0 −
√
DAH

(1− γ)
√
dDSGDDAh∗

0G
ϵ2, (29)
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then

Kϵ(s
⋆
C,SGD) ≥ Kϵ(s

⋆
C,A) =

dDAG
2H

(1− γ)2{(1− b)ϵ2 −
√
dDAGβ}2h∗

0

. (30)

If β satisfies the condition in Theorem 3.1(ii) and if

β ≤
(1− b){(1− γ)

√
DNMh∗

0 −
√
DAH}

{(1− γ)
√
dDNMDAh∗

0 −
√
dDNMDAH}G

ϵ2, (31)

then

Kϵ(s
⋆
C,NM) ≥ Kϵ(s

⋆
C,A). (32)

A.8 HOW TO SET β

Theorems 3.1(ii) and 3.2(ii) under (G1) indicate that the following restriction on β is needed:

β < min

{
1− b

LndD
ϵ2, b

}
. (33)

Let us suppose that the number of samples n and the number of dimension d are both large and the
precision accuracy ϵ is small. Then, β is small. The momentum term mk (step 3 of Algorithm 1)
satisfies

mk = βmk−1 + (1− β)∇fSk
(xk) ≈

{
∇fSk

(xk) if β satisfies (33),
mk−1 if β = 0.99 or 0.9.

Accordingly, using β in (33) puts considerable emphasis on stochastic mini-batch sampling, which
leads to the results such as s⋆C,SGD ≤ s⋆C,NM ≤ s⋆C,A and s⋆D,SGD = s⋆D,NM ≤ s⋆D,A.

A.9 STOCHASTIC GRADIENT COMPLEXITY

Table 5: Stochastic gradient complexity (SGC) for ϵ-approximation of optimizers (SGD, N-
Momentum, Adam-type, and SPIDER (Fang et al., 2018)) with constant and diminishing learning
rates

Stochastic Gradient Complexity
Constant Learning Rate Rule Diminishing Learning Rate Rule

SGD O
(
n4α

ϵ6

)
O
(
n3α

ϵ4

)
N-Momentum O

(
n4α

(b̃ϵ2 − dDLnβ)3

)
O
(

n3α

(b̃ϵ2 − dDLnβ)2

)
Adam-type O

(
n4α

(b̃ϵ2 − dDLnβ)3

)
O
(

n3α

(b̃ϵ2 − dDLnβ)2

)
SPIDER O

(
n+

√
n

ϵ2

)
——

A theoretical investigation of Stochastic Path-Integrated Differential EstimatoR (SPIDER) for ϵ-
approximation in nonconvex optimization was reported in (Fang et al., 2018). In particular, The-
orem 2 in (Fang et al., 2018) clarified that SPIDER, which has a constant learning rate, for ϵ-
approximation must use the full-batch gradient with the number of samples n or the stochastic
gradient with batch size

√
n. Meanwhile, our results show the optimal batch size of SGD, N-

Momentum, and Adam-type optimizers (see Tables 1 and 2). Table 5 indicates that the SGCs of
SGD, N-Momentum, and Adam-type optimizers depend on a positive parameter α. For example,
let us set α = ϵ2 and focus on N-Momentum using diminishing learning rate. Then, the SGC of
N-Momentum is O(n3/ϵ2). The SGC of SPIDER is O(n +

√
n/ϵ2) (see (Fang et al., 2018, Table

1) for the SGCs of the variance-reduction type of optimizer).
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