

REWARDS SIMPLIFIED: REDUCING RISK IN RL FOR CYBER DEFENCE

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.

1 INTRODUCTION

Cyber attacks are increasingly frequent and sophisticated, straining limited cyber defence resources and threatening critical digital systems that people depend upon worldwide. There has been a rising level of interest in using machine learning (ML) methods to improve cyber security; in particular deep reinforcement learning (DRL) which has the ability to learn complex policies from interaction alone, enabling the discovery of strategies unconstrained by flawed system or security models. DRL based autonomous cyber defence (ACD) agents, which have gathered much attention in the literature, could discover novel techniques and provide automation for tasks that currently occupy human analysts.

Cyber gyms provide efficient and controlled environments for ACD agents. This is particularly important for network security tasks, enabling the large number of interactions required for training without risking production networks or systems. Accordingly, many cyber gyms have been created to enable training agents that defend networked systems (Vyas et al., 2023). Cyber gyms define one or more Markov Decision Processes (MDPs) in terms of a state space comprising network and host information, an action space of defensive activities, and a reward function aligned to defensive objectives. ACD reward functions are typically highly engineered based on human judgment, combining multiple penalties and incentives determined for a variety of defensive actions and network states (Andrew et al., 2022; Standen et al., 2021). Dense rewards may be preferable because of expedited learning, providing apparently effective solutions using fewer environment steps during training, but they also risk constraining agents to sub-optimal solutions (Riedmiller et al., 2018). This is especially concerning for ACD agents which might then contain avoidable weaknesses that are difficult to identify in advance of an attack. Furthermore, dense rewards draw potentially arbitrary numerical equivalences between network states and actions. As the scale and complexity of cyber tasks grow this becomes increasingly challenging to manage and the risks of undesirable agent behaviour are exacerbated.

At the expense of generally requiring more training iterations, sparse rewards place fewer constraints on the solution space and could enable preferable or more effective policies to be discovered. Existing work has not investigated the possibility that dense rewards might limit the performance of ACD agents trained using DRL. To investigate this possibility, and summarising the main contributions of this work, we: (1) propose a ground truth scoring mechanism for network security cyber gyms which allows a direct comparison between agents trained using different reward functions, (2) evaluate a comprehensive range of sparse and dense reward functions using two popular cyber gyms which are adapted to illustrate our ground truth mechanism, and (3) show that sparse reward functions can enhance the effectiveness, reliability and risk-profiles of ACD agents across a variety of network sizes and topologies, action spaces, MDP models and DRL algorithms.

2 BACKGROUND

Here we provide an introduction to ACD, motivate evaluating ACD agents more accurately, and define the key metrics we later build upon to fully evaluate the impact of reward functions in ACD.

2.1 AUTONOMOUS CYBER DEFENCE

ACD agents aim to actively mitigate attacks on computer networks using ML techniques rather than traditional rule-based approaches. By alleviating the bottlenecks of human response speed and information processing, ACD agents could provide a much needed counterbalance to the ever-increasing scale and sophistication of cyber threats. Reinforcement learning (RL), and particularly DRL given the enormity of data generated by computer networks, is particularly promising as it allows learning defensive strategies from interaction alone without the need for explicit models of how networks, systems, and attackers behave. Such models must continually be updated as attackers evolve, frequently undermining the tools and techniques that derive security proofs or assurances from their correctness. By observing the network state and choosing defensive actions, DRL agents can learn novel and adaptive strategies for defending computer networks that do not depend on potentially incorrect or outdated assumptions.

Since their learning is guided by maximising long-term rewards, ACD agents critically depend on the rewards provided throughout training. Furthermore, the exploration required for learning from trial-and-error demands a cyber gym allowing extensive experimentation (i.e., risk-taking) without jeopardising valuable production systems. Many cyber gyms have been created (Vyas et al., 2023), provided publicly (Microsoft, 2021; Oesch et al., 2024; Andrew et al., 2022), and even used for competitions seeking the best performing agents (Standen et al., 2021; Hicks et al., 2023; Foley et al., 2022). Despite these promising developments, previous work on ACD is limited to evaluating performance using only mean episodic rewards, and variance of the same, over a number of fixed-policy rollouts. Unlike games (e.g., chess) which correspond relatively naturally to the MDP framework, defending a network of computer hosts does not. Real-world attackers are not confined to turn-based interactions, partial observability affects many aspects of the network, and there is never a state where the defender can be definitively crowned the winner.

Most cyber gyms, and prominent ACD competitions, have hand-crafted dense reward functions that are used to train and evaluate agents. Such rewards may misrepresent the true performance of agents and it is impractical for them to accurately represent human knowledge (Hu et al., 2020), biasing models towards possibly lower-performance and higher-risk strategies. There is a need, which we illustrate and address for the first time to the best of our knowledge, for evaluation methods that accurately represent the ground truth of complex cyber environments. Our ground truth scoring mechanism permits a direct and reproducible comparison between different reward strategies, enabling experiments that empirically quantify the performance and risk characteristics of reward functions in ACD environments.

2.2 RELIABILITY AND RISK IN RL

The reliability and risks of RL agents is a critical issue, especially for cyber defence applications where inconsistent performance can be costly or dangerous. Training reliability metrics measure how consistently an RL algorithm performs across multiple training runs, and risk metrics quantify expectations of worst-case performance.

108 TRAINING RELIABILITY
109110 To evaluate the impact of reward function on training reliability in ACD agents, we build upon
111 the quantitative RL training reliability metrics proposed by Chan et al. (2020) based on dispersion
112 variability i.e., the width of the mean episodic rewards distribution.113 **Dispersion variability across time (DT)** measures the stability of RL training across time. Smooth
114 monotonic policy improvements offer the lowest *DT* scores, indicating high reliability during training
115 and lowered computational costs. *DT* is measured by averaging the inter-quartile range (IQR) within
116 a sliding window along each detrended training curve. Detrending ensures positive trends in policy
117 improvement do not influence the metric and is calculated using differencing (i.e., $y'_t = y_t - y_{t-1}$).
118 Where I denotes the total number of runs, the average *DT* across multiple runs is calculated:
119

120
$$\bar{DT} = \frac{\sum_{i=0}^I DT_i}{I}$$

121

122 **Dispersion variability across runs (DR)** measures the reproducibility of RL training across
123 multiple runs. Low DR indicates high consistency between training runs, meaning fewer total training
124 runs are required to discover the best performing agents. DR is measured by averaging IQR across
125 multiple training runs at each evaluation step, ensuring the metric captures differences resulting from
126 random initialisation or environment stochasticity. Let \bar{R}_i denote the mean episodic reward over
127 some window of training run i , and $\{\bar{R}_1, \bar{R}_2, \dots, \bar{R}_I\}$ the set of all such \bar{R}_i across I total runs, then:
128

129
$$DR = IQR(\{\bar{R}_i\}_{i=1}^I)$$

130

131 RISK AFTER TRAINING

132 In ACD we are particularly concerned about the worst-case scenarios for a given agent. We calculate
133 this by considering the worst-case expected loss across multiple rollouts of each trained policy.
134135 **Conditional Value at Risk (CVaR)** quantifies the risk associated with worst-case scenarios, defined
136 by some quantile α , i.e., expected performance in the worst α fraction of cases (Acerbi & Tasche,
137 2002). By focussing on extreme values in the tails of the distribution, CVaR complements IQR
138 methods in which they are cut off to focus on dispersion between central quartiles.139 **Risk across Fixed-Policy Rollouts (RF)** is calculated by applying CVaR to the distribution of
140 multiple fixed-policy evaluation rollouts. Where $X = \{\bar{R}_1, \bar{R}_2, \dots, \bar{R}_I\}$ denotes the set of mean
141 episodic returns from the trained policy, and VaR_α the α quantile of X , then:
142

143
$$RF_\alpha(X) = CVaR_\alpha(X) = \mathbb{E}[X \mid X \leq VaR_\alpha(X)]$$

144

145 3 METHODOLOGY
146147 Here we outline the methodology and experimental setup used to evaluate how different reward
148 functions impact agent performance and training reliability in ACD.
149150 3.1 YAWNING TITAN CYBER GYM
151152 Yawning Titan (YT) (Andrew et al., 2022) is a well-established cyber gym providing an abstract,
153 graph based network simulation environment for training defensive (blue) agents to defend a network
154 by minimising the number of compromised nodes. To establish foundational insights, and to minimise
155 variance and implementation errors in the first instance, we configured YT to simulate a linear network
156 structure with a fixed entry node for the attacking (red) agent which follows a fixed lateral-movement
157 strategy aiming to compromise as many nodes as possible.158 The YT observation space comprises a vector embedding the network adjacency matrix and both
159 the vulnerability and compromise status of each node. We set the vulnerability of each node to
160 1, conservatively modelling the most powerful red agent whose attacks never fail. We create two
161 action spaces: (1) basic – with two actions: "scan network" and "restore node", and (2) extended –
which also adds "place decoy". The place decoy action is a proactive defence replicating the use of a

Figure 1: One step of the YT network environment illustrating an intra-step node compromise that is concealed by standard cyber gym evaluations.

deceptive "canary", a technique sometimes used to detect and delay attackers in real world networks. The red action space has two actions: "do nothing" and "basic attack", where the fixed red policy is to at random perform a basic attack 90% of the time and do nothing otherwise (10%).

3.2 CYBER AUTONOMY GYM FOR EXPERIMENTATION (CAGE)

Cyber Autonomy Gym for Experimentation (CAGE) 2 (Kiely et al., 2023) is one of the most popular single-agent ACD environments designed to enable training defensive RL agents in simulated network attack scenarios (Standen et al., 2022; Vyas et al., 2023). Adding considerable complexity in contrast to YT, CAGE 2 defines an enterprise network with 3 subnets and 13 hosts in total: the user subnet with 5 hosts, the enterprise subnet with 3 hosts and an isolated defender host, and the operational subnet with 4 hosts. The network is separated by firewalls such that red agents must compromise multiple hosts to move from user subnet hosts, via the enterprise subnet, to the operational target. The observation space is a vector of 52 bits, comprising 4 bits detailing state and adversary information for each host. The action space includes 6 high-level actions (sleep, monitor, analyse, remove, restore, decoy) which are expanded to detail type and target for a total of 145 different actions.

In our experiments we use the refined CAGE 2 implementation, miniCAGE (Emerson et al., 2024), which eliminates bugs and increases training speeds but otherwise has exactly the same environment dynamics, red agent behaviour, observation and action spaces, and network topology. Of the two red agents included in CAGE 2, we use the "b-line" attacker, which uses partial prior knowledge of the network to exploit the shortest path from entry node to impacting the operational target.

3.3 GROUND TRUTH

To the best of our knowledge, previous work on ACD is limited to evaluating performance using the mean episodic reward and its variance over a large number of rollouts. This assumes the MDP model captures the "ground truth", and that the episodic reward is aligned with preferred ACD goals. However, cyber gyms are highly complicated environments which simulate both red and blue agent actions. According to the MDP framework actions are taken during discrete time steps, requiring a determined order in which red and blue actions occur. Current cyber gyms overlook this crucial detail and choose either a fixed order or prioritise actions according to some arbitrary function.

Illustrated in Figure 1, one issue with the MDP framework's requirement for discrete time steps is that the observation provided at the end of each step can omit critical network events occurring intra-step which are resolved before the reward is determined. Concretely—red agents may compromise nodes during the step, just before the blue agent removes the compromise, and this will not be reflected in the reward or observation returned to the agent. This makes it impossible for agents to reliably distinguish between states in which nodes have been compromised and those in which no compromise occurred. Consequently, prior ACD evaluation metrics fail to distinguish between agents with potentially very different ground truth behaviour.

Ground Truth Score (Score_{GT}) To overcome the limitations of discrete step-wise evaluation in cyber gyms we introduce the ground truth score, Score_{GT}, calculated as the maximum (max) number of compromised nodes over both the intra- and end-step. In general, where $m_t^{(\text{intra})}$ and $m_t^{(\text{end})}$ are the intra- and end-step number of compromised nodes, respectively:

$$\text{Score}_{\text{GT}}(t) = \max(m_t^{\text{intra}}, m_t^{\text{end}}) \quad (1)$$

For Figure 1, $\text{Score}_{\text{GT}}(\cdot) = \max(3, 2) = 3$ i.e., capturing the ground truth that 3 nodes were compromised during the time step. The ground truth score provides a more accurate measure of agent performance that is independent of agent order and does not depend on the reward function used during training—enabling the impact of reward on agent performance to be evaluated robustly.

3.4 EVALUATING RELIABILITY ACROSS DIFFERENT REWARDS

To evaluate the impact of reward function on training reliability using a single risk metric, we introduce a normalised version of Chan et al. (2020)’s DR measure (defined in Section 2.2). To capture variability in converged performance rather than early fluctuations we restrict our application to the final 20% of steps. For each training run i we calculate the mean episodic reward R_i across the final 20% of training steps. Then, we apply mean normalisation to each run’s mean episodic reward:

$$R'_i = (R_i - \mu)/\sigma$$

Across I total training runs, our normalised DR metric is calculated as the IQR over the mean normalised mean episodic rewards:

$$\text{DR}' = \text{IQR}(R'_i \mid \forall i \in I)$$

3.5 EXPERIMENTS

Our experiments evaluate the performance, risk, and reliability of the different reward functions defined in Table 1. These reward structures are representative of both the complex, dense reward functions currently used by most cyber gyms including YT and CAGE, and an encompassing range of sparse rewards aligned with the goal of defending the network by minimising the number of compromised nodes. The sparse reward functions place fewer constraints on the optimisation objective, e.g., by avoiding numerical comparison between nodes and defensive actions, thus might enable agents to learn more effective policies. Note that we use the terms “positive” and “negative” principally to refer to the goal of mitigating adversarial node compromise in the network. The most positive outcome is that the network is at full-health and zero nodes are compromised. Similarly, the most negative scenario entails the complete compromise of all network nodes. See also Appendix K.

In both YT and CAGE, our evaluation applies the ground truth score and reliability metrics defined in Section 3.3 and 3.4. Furthermore, upper and lower RF refer to the bounds of the average per-step ground truth score at risk across rollouts (see Section 2.2) determined by the $\alpha = 0.05$ quartile. All experiments are trained for 25 independent runs and the final policies are evaluated for 1000 episodes, resulting in a Score_{GT} , upper and lower RF, \bar{D} , DR' and 95% confidence intervals (CI) for each network size, reward function, and agent order. Agent order is fixed for each corresponding training run and evaluation. We did not search for optimal hyperparameters in this work as the Stable-Baselines3 defaults (see Appendix B) proved sufficient in both PPO and DQN, however tuned hyperparameters may further enhance learning in any given experiment. Experiments were run using Intel i9 and Apple M1 and M3 Pro CPUs, alongside NVidia RTX 4090 GPUs, requiring 720 processor days in total for the results in this paper. Including additional preliminary experiments and experimental re-runs the total rises to 1100 processor days.

Table 1: The sparse and dense reward functions evaluated.

Reward Type	YT Reward per time step	CAGE Reward per time step
Sparse Positive (SP)	+1 if no nodes compromised only.	+1 if no nodes compromised and red agent is in user subnet.
Sparse Negative (SN)	-1 if all nodes compromised only.	-1 if operational server is impacted.
Sparse Positive-Negative (SPN)	+1 if none and -1 if all nodes compromised, respectively.	+1 if no nodes compromised and red agent is in user subnet, and -1 if operational server is impacted.
Dense Negative (DN)	-1 per compromised node.	N/A.
Complex Dense Negative (CDN)	Action penalties and -1 per compromised node, see Appendix A.	Standard CAGE 2 reward, see Appendix A.

270 YAWNING TITAN EXPERIMENTS
271

272 Informed by insights provided by our ground truth mechanism, we trained agents using three different
273 orderings of red and blue actions: red then blue (standard in YT and CAGE), blue then red, and
274 random. The random order performs an alternating sequence of red then blue, and blue then red,
275 with the initial order randomised in each episode. The random order includes the worst-case for
276 the defender where the red agent acts twice consecutively before blue can act. These experiments
277 evaluate the relationship between reward structure and robustness to inter-step agent order. Prior
278 work utilising CAGE has shown that environment complexity and the inability to interpret agent
279 behaviour scales rapidly as network size grows (Foley et al., 2022). Complex network simulations
280 obfuscate the relationship between reward function and final policy outcomes. Thus, we begin in YT
281 with the least complex sub-problem: 2 nodes and 2 actions (basic) and iteratively scale the network
282 size up to 50 nodes before then including the proactive decoy action (extended). These experiments
283 evaluate the impact of reward structure as both the network size and action space are scaled up.

284 In all experiments the episode length is fixed at 100 steps and each agent is trained using PPO, one of
285 the most widely used algorithms for training ACD agents (Vyas et al., 2023). To demonstrate that our
286 findings are not specific to PPO we also perform additional experiments using DQN (Mnih et al.,
287 2015) (see Appendix D). To ensure convergence during training, we scale the number of training
288 steps so that for network sizes of 2, 5, 10, 20, and 50 nodes, agents are trained for 0.5, 1, 1.5, 2, and
289 2.5 million steps, respectively.

290 CAGE EXPERIMENTS
291

292 To explore the generalisability of our findings to non-linear network structures and expanded state-
293 action spaces we also trained agents in the MiniCAGE environment using the set of rewards detailed
294 in Table 1. The episode length was fixed at 100 steps and we trained agents using both PPO and DQN
295 for 2.5 million timesteps (see Appendix J for DQN results).

296 4 RESULTS
297

298 Here we present key results showing how reward structure impacts performance, risk and reliability.

299 SP AND SPN REWARDS PERFORM BEST ON AVERAGE
300

301 Providing an overarching view of the results in YT, shown in Table 2, we consolidate the ground
302 truth scores, risk, and training reliability of each reward function averaged across all network sizes
303 and agent orders. The SPN reward function achieves the best scores: fewer nodes are compromised

304 Table 2: PPO results in YT, for the extended action space, averaged across all network sizes and
305 agent orders for sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense
306 negative (DN) and complex dense negative (CDN) reward functions.

Reward Function	Score _{GT}	Average Evaluation Reliability				95% CI	
		Lower RF	Upper RF	DT (e-3)	DR'	LL	UL
SP	2.69	2.46	2.87	0.11	0.12	2.02	3.36
SN	10.29	9.00	10.90	0.09	0.17	9.10	11.47
SPN	2.00	1.82	2.16	0.08	0.19	1.38	2.63
DN	6.29	5.84	6.60	2.33	0.12	5.14	7.44
CDN	6.21	5.71	6.52	2.45	0.31	5.10	7.32

315 Table 3: Results for PPO agents trained in MiniCAGE using 4 reward functions: sparse positive (SP),
316 sparse negative (SN), sparse positive negative (SPN) and the default CAGE reward function (CDN).

Reward Function	Score _{GT}	Average Evaluation Reliability				95% CI	
		Lower RF	Upper RF	DT (e-3)	DR'	LL	UL
SP	1.29	0.97	3.11	0.34	0.46	1.24	1.34
SN	2.77	1.85	3.64	0.05	0.19	2.66	2.87
SPN	1.35	0.97	2.93	0.36	0.47	1.23	1.48
CDN (default CAGE rewards)	1.41	1.06	2.02	0.55	0.31	1.31	1.51

on average than agents trained using any other reward function. SP rewards provide the next-best performing agents, followed by DN, CDN and finally SN rewards. All of the sparse reward functions, including SN, show significantly lower \bar{D} than the dense rewards, confirming greater training reliability across time (albeit to a low average performance for SN). Reliability across runs is two orders of magnitude higher for dense rewards in both action spaces indicating greatly reduced reproducibility. Across every YT configuration, as shown in Tables 4, 5 and 6, the best performing PPO agents result from either either SP or SPN reward functions. This is also true for DQN agents as shown in Appendix D. Similarly in the CAGE environment, see Table 3 and Appendices J), the SP reward function achieves the best Score_{GT} . Both SP and SPN rewards outperform the standard CAGE reward function in terms of Score_{GT} , and the upper 95% confidence interval for SP is lower than the average Score_{GT} of the standard CAGE reward function.

PERFORMANCE AND RISK SCALING WITH NETWORK SIZE

Evaluating performance as the network size increases shows how each reward function scales to larger, and therefore more realistic, state-action spaces. In YT we evaluate trained agents in networks with 2, 5, 10, 20 and 50 nodes, averaging scores over all runs and agent orders for each network size. Table 5 shows the average ground truth performance, and worst 5% percent of performances i.e., risk, for all agent orders. As network size increases, the performance and risk differences between reward functions widens. In the smallest 2 and 5 node networks, both SPN and SP reward functions yield the best agents with closely matched average performance and worst-case risks—especially in the basic action space (see Appendix C). In the largest two network sizes the advantages of SPN rewards are magnified, providing significantly better policies with correspondingly reduced risks. For 10 node networks there is an exception to the overall trend where SP rewards outperform SPN in the extended action space. As discussed further in Section 5, a closer analysis of the data reveals this is likely because, in the extended action space, both SP and SPN rewards enable learning optimal strategies for defending networks when the agent order is blue then red. The results show that SP and SPN rewards not only perform best overall but also scale favourably as state-action spaces increase.

Table 4: YT PPO agent performance and risk evaluation scores across all network sizes for the extended action space. Results are averaged over all agent orders for each reward function.

Reward Function	Evaluation across network sizes									
	2		5		10		20		50	
	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF
SP	0.60	0.64	0.62	0.66	0.63	0.67	1.87	1.96	9.75	10.44
SN	1.19	1.26	3.59	3.82	7.47	7.92	12.43	13.28	26.76	28.20
SPN	0.92	0.98	0.97	1.01	0.85	0.89	0.69	0.73	6.58	7.17
DN	0.98	1.03	1.28	1.41	3.21	3.42	8.19	8.45	17.78	18.70
CDN	0.85	0.90	8.73	9.23	4.03	4.18	8.46	8.73	16.06	17.02

Table 5: YT PPO agent results for each agent action order combination in the extended action space, averaged over all network sizes, for each reward function.

Reward Function	Red then Blue			Blue then Red			Random		
	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL
SP	0.90	0.96	0.90	0.27	0.28	0.72	6.91	7.38	8.47
SN	9.31	9.95	10.92	9.01	9.51	10.72	12.54	13.23	12.77
SPN	0.90	0.96	0.90	0.61	0.63	1.23	4.50	4.89	5.75
DN	4.13	4.31	5.74	2.98	3.08	4.17	11.75	12.42	12.40
CDN	5.65	5.80	5.29	3.99	4.11	4.14	13.24	14.13	12.52

THE IMPACT OF AGENT ORDER

Evaluating the impact of different agent orders on reward function performance reveals how the real-world constraints of uncertain attacker timing and dynamics could impact the performance and worst-case risks of ACD agents. Table 4 shows the average agent performance across all runs and network sizes in each of the three agent orders: red then blue, blue then red, and random. Continuing the trend, SP and SPN have considerably higher performance scores and lower risks than the dense

378 rewards. When the agent order is randomised, the scores for all reward functions are greatly reduced,
 379 highlighting the sensitivity of DRL-based ACD agents to adversary timing. Notably, SPN significantly
 380 outperforms the other reward functions when the agent order is random—the most challenging and
 381 realistic setting in which the agent order cannot be assumed before an episode begins. Furthermore,
 382 when the agent order is blue then red and agents use the extended action space (i.e., blue can place
 383 decoys and moves before red), the average performance for SP agents reaches 0 meaning an ideally
 384 secure network with no compromised nodes during any episode. Collectively these results showcase
 385 the strong inter-relationships between reward function, action space, and performance risks when
 386 agent timing cannot be anticipated. See Appendix E for the average agent Score_{GT} alongside mean
 387 episodic rewards for each reward function in YT.

388 Table 6: Agent order results for YT agents trained in the 50 node network, extended action space.
 389

390 Reward Function	391 Red then Blue			392 Blue then Red			393 Random		
	394 Score _{GT}	395 Best Score _{GT}	396 No. of Optimal Runs (/25)	397 Score _{GT}	398 Best Score _{GT}	399 No. of Optimal Runs (/25)	400 Score _{GT}	401 Best Score _{GT}	402 No. of Optimal Runs (/25)
SP	0.90	0.90	25	1.36	0.00	23	26.98	0.94	*
SN	22.84	3.93	0	24.33	1.99	0	33.10	27.00	*
SPN	0.90	0.90	25	0.81	0.00	24	18.04	0.94	*
DN	12.53	1.89	0	8.42	0.90	0	32.39	27.67	*
CDN	10.05	1.89	0	6.71	1.89	0	31.44	27.34	*

398 * The optimal policy score is non-trivial so we do not count the number of optimal runs

399

5 DISCUSSION

 400

401 Empirical results for network sizes ranging from 2 to 50 nodes, irrespective of attacker timing or
 402 whether proactive actions are available, confirm that SP and SPN rewards provide the best performing
 403 blue agents with minimised worst-case risks. Where the optimal scores (i.e., 0.9 for red then blue
 404 and 0 for blue then red agent orderings) were computed analytically, a fine-grained evaluation of
 405 these metrics for the largest network we evaluate (shown in Table 6) further corroborates this result.
 406 Additional training curves for the 50 node network can be seen in Appendix I. Here, both SPN and
 407 SN reward functions uniquely enable agents to learn optimal strategies which limit the attacker to
 408 very few, and even 0 in favourable conditions, compromised nodes.

409 In CAGE, SP and SPN agents also performed best, achieving the lowest Score_{GT} . This shows our
 410 results generalise to more representative networks with multiple subnets and complex non-linear
 411 behaviours including hosts with different vulnerabilities. To understand why sparsely rewarded
 412 policies perform better we analyse the behaviour in Appendix G. While SP agents result in slightly
 413 elevated operational server impacts in comparison to the standard CAGE rewards, 0.24 vs. 0.02
 414 average per episode; there are significantly fewer successful operational and enterprise privilege
 415 escalations, 0.25 and 1.29 vs. 7.89 and 22.22 average per episode, respectively. In addition to much
 416 lower overall privileged host access counts (22.75 vs. 34.63 average per episode), SP agents confine
 417 21 of these (92.31%) to user subnet hosts. This policy is much better aligned to network security
 418 objectives as user hosts have the fewest network privileges, and the least overall impact on operations.

419 Also in Appendix G, we confirm that sparsely rewarded agents use the costly restore action more
 420 sparingly, and with greater focus on the user hosts, than agents trained using the standard CAGE
 421 rewards. Given the lack of numerical penalty for these actions in SP and SPN, this result highlights
 422 that sparse rewards can avoid riskier, less aligned policies which may otherwise result from incorrectly
 423 translating human domain insights into numerical rewards. Our results demonstrate that dense reward
 424 functions can suboptimally constrain the performance of ACD agents, introducing avoidable risks
 425 and reducing training reliability across runs. Furthermore, our ground truth scoring mechanism and
 426 its application in this work illustrates the importance of more considerate evaluation in current cyber
 427 gym environments. Many cyber gyms fail to capture important inter-step agent behaviours (e.g.,
 428 including compromised nodes), obscuring crucial performance and risk differences between policies.

429 Dense reward functions, which are standard practice in cyber gyms, risk artificially constraining the
 430 performance of ACD agents and weakening the resulting security of networks they defend. More
 431 broadly, our results show that ACD agents require a reward function to provide sufficient reward
 432 signal (i.e., "can be encountered frequently during training") and goal-alignment. Since dense rewards
 433 introduce bias, sparse rewards are indicated for goal-alignment. However, sparse rewards can also

432 present exploration problems as their frequency during training is highly task dependent. The sparse
 433 positive rewards utilised here are both sparse in action-state space, and can be encountered frequently
 434 provided some uncompromised network state(s) can be identified. It remains for future work to
 435 understand the scaling limitations of this approach in real world networks, but the SN reward illustrates
 436 an additional challenge faced by sparse ACD reward structures. Specifically, as the defensive policy
 437 improves throughout training, the network becomes less frequently (entirely) compromised and
 438 correspondingly provides less reward signal from which to learn further improvements. These
 439 findings likely have applications in many other cyber defence tasks beyond network defence, for
 440 example in web application vulnerability discovery (Lee et al., 2022; Al Wahaibi et al., 2023). Whilst
 441 our work is intended to advance the cyber defence domain, a potential negative impact is the dual use
 442 from adversaries who could seek to use it for malicious purposes. As cyber gyms increase in realism,
 443 moving ACD agents closer to operational environments, it is essential to establish and empirically
 444 validate the design of effective, efficient and risk-reducing reward functions.
 445

6 RELATED WORK

446 Reward functions, and how best to formulate them, has been widely discussed in relation to the
 447 emergence of intelligent behaviour within the RL framework (Silver et al., 2021; Vamplew et al.,
 448 2022). Many real-world RL applications including robotics (Dorigo & Colombetti, 1994) and video
 449 games (OpenAI et al., 2019; Song et al., 2019) utilise reward shaping to address sample inefficiency,
 450 aiming to guide learning towards useful policies by incorporating domain knowledge to reduce the
 451 learning problem difficulty. Reward shaping also arises when gradient-based methods are used to
 452 augment extrinsic rewards, such as the adaptive utilisation of a reward shaping function (Hu et al.,
 453 2020), or to provide “intrinsic motivation” towards uncertainty-reducing actions (Pathak et al., 2017).
 454 Nevertheless, a requirement for policy invariance is that reward shaping functions must apply the
 455 difference of an arbitrary potential function between successive states (Ng et al., 1999). Any other
 456 reward transformation may bias resulting trained policies away from the optimal solution (Riedmiller
 457 et al., 2018). This work establishes for the first time, with implications for widely-used cyber gyms,
 458 the performance, risk and training efficiency implications of reward function design in ACD.
 459

460 Prior work has sought to benchmark RL algorithm performance (Duan et al., 2016) assess algorithm
 461 reliability (Henderson et al., 2018), and measure policy reliability during and after training (Chan
 462 et al., 2020). Whilst these methods help to evaluate an agent trained using a specific reward function,
 463 comparing multiple reward functions remains challenging, and often task-specific, because episodic-
 464 reward-based evaluation crucially lacks an external frame of reference. DRL has been used for a
 465 variety of real-world cyber security tasks including alert prioritisation (Tong et al., 2020), language
 466 model “jailbreak” prompt optimisation (Chen et al., 2024), fuzzing compilers (Li et al., 2022), finding
 467 web application vulnerabilities (Lee et al., 2022; Al Wahaibi et al., 2023), finding cache timing
 468 attacks (Luo et al., 2023), and overcoming hardware trojan detection methods (Gohil et al., 2022).
 469 For a broader survey on RL-based ACD we refer readers to Vyas et al. (2023). The closest previous
 470 work (Bates et al., 2023) investigates 4 different reward shaping approaches (normalised, linearly
 471 scaled, non-linear scaling and curiosity-based exploration (Pathak et al., 2017)) in the standard CAGE
 472 environment. In contrast to this work, their results are inconclusive, policies are evaluated using only
 473 episodic rewards, and no consideration is given to DRL algorithm, agent order, policy risks, training
 474 reliability, or the effects of scaling network size or action spaces.
 475

7 CONCLUSION

476 In this work we introduce a novel ground truth scoring method and addresses a key shortcoming of
 477 cyber gyms: neglecting intra-step node compromises when evaluating agent performance. This work
 478 enables a more accurate, risk-aware, and comprehensive evaluation of ACD policies, independent
 479 of the training reward structure or agent-timings. Through extensive experiments in YT and CAGE,
 480 two well-established cyber gyms, we show that agents trained with simpler, sparse reward functions
 481 outperform those trained on conventional dense rewards and maintain higher reliability across
 482 increasing network sizes. Notably, our SPN reward function yields policies with significantly fewer
 483 compromised nodes in worst-case scenarios, especially when attacker timing is randomised (i.e.,
 484 the most realistic setting). Our findings underscore the great importance of reward functions and
 485 their relationship to risk and goal alignment in cyber environments. Lastly, we have highlighted
 486 the complex inter-relationships between reward functions, action spaces, network size, and attacker
 487 timings, relating them to the ground truth performance of ACD agents.
 488

486 8 ETHICS STATEMENT
487488 Our work fully adheres to the guidelines articulated in the ICLR Code of Ethics. In the introduction,
489 we motivate the work by discussing the need for effective autonomous cyber defence considering
490 society's dependence on cyber systems and the growing complexity of attacks, highlighting the corre-
491 sponding societal benefits. The main focus of this work is constructing more effective autonomous
492 cyber defence agents. Furthermore, the environments we adapt for our experimental method are
493 abstract representations and, even should they be adapted for offensive purposes, will not yield agents
494 capable of attacking real-world networks.495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Carlo Acerbi and Dirk Tasche. Expected shortfall: A natural coherent alternative to value at risk.
543 *Economic Notes*, 31(2):379–388, 2002. doi: <https://doi.org/10.1111/1468-0300.00091>.

544 Salim Al Wahabi, Myles Foley, and Sergio Maffei. SQIRL: Grey-box detection of SQL injection
545 vulnerabilities using reinforcement learning. In *Proceedings of the 32nd USENIX Conference on*
546 *Security Symposium*. USENIX Association, 2023.

547

548 Alex Andrew, Sam Spillard, Joshua Collyer, and Neil Dhir. Developing optimal causal cyber-
549 defence agents via cyber security simulation. In *Workshop on Machine Learning for Cybersecurity*
550 (*ML4Cyber*), 2022.

551 Elizabeth Bates, Vasilios Mavroudis, and Chris Hicks. Reward Shaping for Happier Autonomous
552 Cyber Security Agents. In *Proceedings of the 16th ACM Workshop on Artificial Intelligence*
553 *and Security*, AISec ’23, pp. 221–232. Association for Computing Machinery, 2023. ISBN
554 9798400702600. doi: 10.1145/3605764.3623916.

555

556 Stephanie C.Y. Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.
557 Measuring the reliability of reinforcement learning algorithms. In *International Conference on*
558 *Learning Representations*, 2020.

559

560 Xuan Chen, Yuzhou Nie, Wenbo Guo, and Xiangyu Zhang. When LLM meets DRL: Advancing
561 jailbreaking efficiency via DRL-guided search. In *The Thirty-eighth Annual Conference on Neural*
562 *Information Processing Systems (NeurIPS)*, 2024.

563

564 Marco Dorigo and Marco Colombetti. Robot shaping: developing autonomous agents through
565 learning. *Artificial Intelligence*, 71(2):321–370, 1994. ISSN 0004-3702. doi: [https://doi.org/10.1016/0004-3702\(94\)90047-7](https://doi.org/10.1016/0004-3702(94)90047-7).

566

567 Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
568 reinforcement learning for continuous control. In Maria Florina Balcan and Kilian Q. Weinberger
569 (eds.), *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of
570 *Proceedings of Machine Learning Research*, pp. 1329–1338, New York, New York, USA, 20–22
571 Jun 2016. PMLR. URL <https://proceedings.mlr.press/v48/duan16.html>.

572

573 Harry Emerson, Liz Bates, Chris Hicks, and Vasilios Mavroudis. Cyborg++: An enhanced gym for
574 the development of autonomous cyber agents. *arXiv preprint arXiv:2410.16324*, 2024.

575

576 Myles Foley, Mia Wang, Zoe M, Chris Hicks, and Vasilios Mavroudis. Inroads into Autonomous
577 Network Defence using Explained Reinforcement Learning. In *Conference on Applied Machine*
578 *Learning in Information Security (CAMLIS)*, 2022.

579

580 Vasudev Gohil, Hao Guo, Satwik Patnaik, and Jeyavijayan Rajendran. ATTRITION: Attacking Static
581 Hardware Trojan Detection Techniques Using Reinforcement Learning. In *Proceedings of the*
582 *2022 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, 2022. doi:
583 10.1145/3548606.3560690.

584

585 Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
586 Deep reinforcement learning that matters. In *Proceedings of the AAAI conference on artificial*
587 *intelligence*, volume 32, 2018.

588

589 Chris Hicks, Vasilios Mavroudis, Myles Foley, Thomas Davies, Kate Highnam, and Tim Watson. Ca-
590 naries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforce-
591 ment Learning. In *Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security*,
592 AISec ’23, pp. 91–101. Association for Computing Machinery, 2023. ISBN 9798400702600. doi:
593 10.1145/3605764.3623986.

594

595 Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,
596 and Changjie Fan. Learning to utilize shaping rewards: a new approach of reward shaping. In
597 *Proceedings of the 34th International Conference on Neural Information Processing Systems*,
598 NeurIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

594 Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir. On autonomous agents in
 595 a cyber defence environment. *arXiv:2309.07388*, 2023.

596

597 Soyoung Lee, Seongil Wi, and Sooel Son. Link: Black-Box Detection of Cross-Site Scripting
 598 Vulnerabilities Using Reinforcement Learning. In *Proceedings of the ACM Web Conference 2022*,
 599 2022. doi: 10.1145/3485447.3512234.

600

601 Xiaoting Li, Xiao Liu, Lingwei Chen, Rupesh Prajapati, and Dinghao Wu. ALPHAPROG: Reinforce-
 602 ment Generation of Valid Programs for Compiler Fuzzing. *Proceedings of the AAAI Conference*
 603 *on Artificial Intelligence*, 2022. doi: 10.1609/aaai.v36i11.21527.

604

605 Mulong Luo, Wenjie Xiong, Geunbae Lee, Yueying Li, Xiaomeng Yang, Amy Zhang, Yuandong Tian,
 606 Hsien-Hsin S. Lee, and G. Edward Suh. AutoCAT: Reinforcement Learning for Automated Explo-
 607 ration of Cache-Timing Attacks. In *2023 IEEE International Symposium on High-Performance*
 608 *Computer Architecture (HPCA)*, 2023. doi: 10.1109/HPCA56546.2023.10070947.

609

610 Microsoft. Microsoft CyberBattleSim. <https://github.com/microsoft/cyberbattlesim>, 2021. Accessed: 2025-01-31.

611

612 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 613 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 614 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

615

616 Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy Invariance Under Reward Transfor-
 617 mations: Theory and Application to Reward Shaping. In *Proceedings of the Sixteenth International*
 618 *Conference on Machine Learning*, ICML '99, pp. 278–287, San Francisco, CA, USA, 1999.
 619 Morgan Kaufmann Publishers Inc. ISBN 1558606122.

620

621 Sean Oesch, Amul Chaulagain, Brian Weber, Matthew Dixson, Amir Sadovnik, Benjamin Roberson,
 622 Cory Watson, and Phillippe Austria. Towards a High Fidelity Training Environment for Autonomous
 623 Cyber Defense Agents. In *Proceedings of the 17th Cyber Security Experimentation and Test*
 624 *Workshop*, CSET '24, pp. 91–99. Association for Computing Machinery, 2024. doi: 10.1145/3675741.3675752.

625

626 OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
 627 Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
 628 Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan
 629 Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
 630 Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep Reinforcement Learning, 2019.
 631 URL <https://arxiv.org/abs/1912.06680>.

632

633 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 634 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 635 PMLR, 2017.

636

637 Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
 638 Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
 639 sparse reward tasks from scratch. In *Proceedings of the 35th International Conference on Machine*
 640 *Learning*, Proceedings of Machine Learning Research, 2018.

641

642 David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. *Artificial*
 643 *Intelligence*, 299, 2021. ISSN 0004-3702. doi: <https://doi.org/10.1016/j.artint.2021.103535>.

644

645 Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, and Jun Zhu. Playing FPS
 646 Games With Environment-Aware Hierarchical Reinforcement Learning. In *Proceedings of the*
 647 *Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 3475–3482.
 648 International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/
 649 ijcai.2019/482.

650

651 Maxwell Standen, Martin Lucas, David Bowman, Toby J. Richer, Junae Kim, and Damian Mar-
 652 riott. CybORG: A Gym for the Development of Autonomous Cyber Agents. In *IJCAI-21 1st*
 653 *International Workshop on Adaptive Cyber Defense*, 2021.

648 Maxwell Standen, David Bowman, Olivia Naish, et al. Cyber operations research gym. <https://github.com/cage-challenge/CybORG>, 2022.

649

650

651 R.S. Sutton and A.G. Barto. *Reinforcement Learning, second edition: An Introduction*. Adaptive

652 Computation and Machine Learning series. MIT Press, 2018. ISBN 9780262039246.

653 Liang Tong, Aron Laszka, Chao Yan, Ning Zhang, and Yevgeniy Vorobeychik. Finding needles in a

654 moving haystack: Prioritizing alerts with adversarial reinforcement learning. *Proceedings of the*

655 *AAAI Conference on Artificial Intelligence*, 2020. doi: 10.1609/aaai.v34i01.5442.

656

657 Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel Ramos, Roxana Rădulescu, Diederik M.

658 Roijsers, Conor F. Hayes, Fredrik Heintz, Patrick Mannion, Pieter J. K. Libin, Richard Dazeley,

659 and Cameron Foale. Scalar reward is not enough: a response to Silver, Singh, Precup and Sutton

660 (2021). *Autonomous Agents and Multi-Agent Systems*, 36(2), October 2022. ISSN 1387-2532. doi:

661 10.1007/s10458-022-09575-5.

662 Sanyam Vyas, John Hannay, Andrew Bolton, and Professor Pete Burnap. Automated cyber defence:

663 A review. *arXiv preprint arXiv:2303.04926*, 2023.

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A COMPLEX DENSE NEGATIVE REWARD FUNCTION**
703

704 The complex dense negative (CDN) reward function is charitably (i.e., we favourably interpret the
705 spirit of these rewards rather than focusing on specific flaws) derived from the heavily shaped reward
706 functions used by several of the most popular cyber gyms including CAGE’s CybORG, PrimATE and
707 Yawning Titan (YT) (Standen et al., 2022; Andrew et al., 2022). A typical “real world” CDN-type
708 reward function, combining both negative penalties and positive rewards for various blue agent
709 actions and environment states, is taken from the YT GitHub repository and partially described below
710 in Table 7 below. The full YT reward function includes additional rewards with detailed nuances
711 and caveats not shown here for clarity of presentation. Although somewhat intuitive, the specific YT
712 reward values are arbitrary and no clear justification is provided for the magnitudes and inevitable
713 numerical equivalences assigned.

714 We constructed the CDN and CD reward functions to charitably represent, with decreasing complexity
715 and shaping, the reward functions found in leading cyber gyms. Some rewards were considerably
716 simplified, for example the penalties for compromised node states, and others were omitted entirely
717 because our experimental designs exclude the actions altogether. Our newly introduced decoy action
718 was assigned an arbitrary penalty based on the insight that restoring a node entirely would clearly be
719 more disruptive than temporarily disturbing one node service.

720
721 Table 7: Action- and state-level shaping terms for the *YT*, *CDN* and *DN* reward functions.
722

	Reward Function		
	YT	CDN	DN
Actions			
Reduce Vulnerability	-0.5	—	—
Restore Node	-1	-0.5	0
Make Node Safe	-0.5	—	—
Scan Network	0	0	0
Isolate Node	-10	—	—
Connect Node	0	—	—
Add Deceptive Node	-8	—	—
Place Decoy	—	-0.25	0
Do Nothing	+0.5	-0.1	0
States			
Network compromise / vulnerability	>30% nodes compromised: —1 per compromised node Vulnerability reduced: +4× reduction	-1 per compromised node	-1 per compromised node

739
740 **B HYPERPARAMETERS FOR TRAINING**
741

742 Here we present the hyperparameters used for training in both the YT and MiniCAGE environments.
743

744
745 Table 8: Hyperparameters for PPO models

Hyperparameter	Value
Learning Rate	3×10^{-4}
Number of Hidden Layers	2
Hidden Layer Size	64
GAE Lambda	0.95
Clip Range	0.2
Gamma	0.99
Value Function Coefficient	0.5
Number of Epochs	10
Batch Size	64

756
 757 Table 9: Hyperparameters for DQN models, using the default Stable-Baselines3 hyperparameters
 758 with the exception of the buffer size (changed from $1e^6$ to 200,000) and final epsilon (changed from
 759 0.05 to 0.005)

Hyperparameter	Value
Learning Rate	1×10^{-4}
Batch Size	32
Gamma	0.99
Train/Update Frequency	4
Buffer Size	200,000
Exploration Initial Epsilon	1
Exploration Final Epsilon	0.005

C BASIC ACTION SPACE RESULTS IN YAWNING TITAN

770
 771 Here we detail our YT results using the basic action space comprising (1) scan network and (2)
 772 restore node.

773
 774
 775 Table 10: PPO results (Basic Action Space) averaged across all network sizes and agent orders for
 776 sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and
 777 complex dense negative (CDN) reward functions.

Reward Function	Score _{GT}	Average Evaluation Reliability				95% CI	
		Lower RF	Upper RF	DT (e-3)	DR'	LL	UL
SP	4.58	4.16	4.88	0.07	0.19	3.83	5.32
SN	9.92	8.90	10.69	0.05	0.21	8.82	11.03
SPN	1.97	1.75	2.42	0.09	0.26	1.47	2.46
DN	5.84	5.42	6.16	2.98	0.29	4.73	6.04
CDN	6.03	5.61	6.37	2.90	0.39	5.21	6.86

786
 787 Table 11: PPO agent performance and risk evaluation scores across network sizes (Basic Action
 788 Space). Results are averaged over all agent orders for each of the 5 reward functions.

Reward Function	Evaluation across network sizes									
	2		5		10		20		50	
	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF
SP	1.05	1.11	1.10	1.17	2.05	2.22	3.88	4.01	14.81	15.32
SN	1.23	1.29	3.72	3.90	6.87	7.22	12.08	13.27	25.72	26.16
SPN	1.05	1.11	1.23	1.97	1.05	1.11	1.23	1.31	5.30	5.88
DN	1.16	1.22	1.26	1.32	3.39	3.52	8.26	8.51	15.13	16.10
CDN	1.31	1.36	8.03	8.28	4.23	4.35	7.58	7.83	14.70	15.84

798
 799 Table 12: PPO agent results for each agent action order combination (Basic Action Space), averaged
 800 over all network sizes, for each of the 5 reward functions. CI UL is the upper limit of the 95%
 801 confidence interval.

Reward Function	Red then Blue			Blue then Red			Random		
	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL
SP	0.90	0.96	0.90	5.11	4.99	6.64	7.73	8.35	8.43
SN	8.02	8.71	9.69	9.55	9.43	10.93	12.20	12.96	12.46
SPN	0.90	0.96	0.90	1.11	1.54	1.28	3.90	4.34	5.21
DN	3.22	3.30	3.93	3.10	3.10	4.09	11.19	12.00	11.76
CDN	3.80	3.87	4.24	4.73	4.86	4.36	12.97	13.87	11.98

810

811

Table 13: Detailed PPO results for agents trained in the 50 node network (Basic Action Space).

812

813

Reward Function	50 Node Network Evaluation								
	Red then Blue			Blue then Red			Random		
	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)
SP	0.90	0.90	25	12.68	0.90	2	30.86	25.02	0
SN	19.72	1.89	0	26.48	1.89	0	30.97	27.06	0
SPN	0.90	0.90	25	14.31	0.90	3	13.57	1.34	0
DN	7.68	0.90	2	8.30	1.89	0	29.40	24.41	0
CDN	6.36	0.90	4	8.77	1.89	0	28.96	27.07	0

822

823

D DQN RESULTS IN YAWNING TITAN

824

825

Here are results for the extended action space trained using the DQN algorithm.

826

827

Table 14: DQN results averaged over network sizes 2 to 50, and all agent orders, for all 5 reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and complex dense negative (CDN).

831

832

833

834

835

836

837

838

839

840

841

842

Table 15: DQN performance and risk scores as network size increases. Results are averaged over all agent orders for all 5 reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and complex dense negative (CDN).

843

844

845

Reward Function	Evaluation across network sizes									
	2		5		10		20		50	
	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF	Score GT	Upper RF
Extended Action Space										
SP	0.71	0.78	0.71	0.78	0.95	1.13	2.28	3.72	2.76	5.51
SN	0.98	1.06	1.99	2.35	2.77	3.36	8.81	10.65	15.37	18.39
SPN	0.72	0.78	0.71	0.78	0.78	0.89	0.73	0.96	2.68	4.07
DN	0.69	0.76	1.01	1.11	1.25	1.42	4.88	5.43	11.14	12.40
CDN	0.69	0.76	0.92	0.99	1.11	1.29	3.86	4.28	20.63	22.23

855

856

857

858

859

860

861

862

863

864
 865 Table 16: DQN results for all agent order combinations, averaged over all network sizes, for all 5
 866 reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense
 867 negative (DN) and complex dense negative (CDN). CI UL is the upper limit of the 95% confidence
 868 interval.

Reward Function	Red then Blue			Blue then Red			Random		
	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL	Score _{GT}	Upper RF	CI UL
Extended Action Space									
SP	0.90	0.96	0.90	2.12	4.52	3.02	1.42	1.68	1.88
SN	5.82	6.40	10.48	2.68	3.98	4.54	9.44	11.10	11.55
SPN	0.90	0.96	0.90	1.25	2.06	2.86	1.23	1.47	1.31
DN	1.31	1.37	1.67	0.77	0.96	2.03	9.30	10.35	10.65
CDN	1.27	1.33	1.63	6.81	7.11	9.06	8.24	9.29	9.17

876
 877 **E EPISODIC REWARDS WITH CORRESPONDING SCORE_{GT} FOR YAWNING**
 878 **TITAN EXPERIMENTS**
 879

880 Here we show the mean episodic rewards for each reward function, both action spaces, and all 3
 881 agent orders. These results highlight the importance of our ground truth scoring method as it provides
 882 a common basis for comparing between agents trained using different reward functions. In addition,
 883 the poor correlation between mean episodic rewards and Score_{GT} shows the need for better evaluation
 884 metrics in ACD.

885
 886 Table 17: PPO Score_{GT} and episodic mean rewards for all agent order combinations, averaged over all
 887 network sizes, for all 5 reward functions: sparse positive (SP), sparse negative (SN), sparse positive
 888 negative (SPN), dense negative (DN) and complex dense negative (CDN).

Reward Function	Red then Blue		Blue then Red		Random	
	Score _{GT}	Mean Episodic Reward	Score _{GT}	Mean Episodic Reward	Score _{GT}	Mean Episodic Reward
Basic Action Space						
SP	0.9	100.0	5.1	5.6	7.7	8.4
SN	8.0	-10.8	9.6	-3.0	12.2	-0.1
SPN	0.9	75.0	1.1	7.5	3.9	9.5
DN	3.2	-646.9	3.1	-729.4	11.2	-902.9
CDN	3.8	-662.4	4.7	-825.2	17.0	-1001.6
Extended Action Space						
SP	0.9	100.0	0.3	93.5	6.9	25.1
SN	9.3	0.0	9.0	-2.6	12.5	-0.5
SPN	0.9	80.0	0.6	69.0	4.5	20.6
DN	4.1	-492.9	3.0	-532.9	11.8	-1029.5
CDN	5.7	-657.8	4.0	-664.4	17.6	-1100.8

905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 F POLICY ANALYSIS OF YT AGENTS
919
920921 Table 18: The average blue action counts for each set of agents in an 100 step episode, averaged across
922 network sizes, for the extended action space. These are the result of 1000 episodes of evaluation for
923 each of the 25 agents in each set.
924

Blue actions	SP	SN	SPN	DN	CDN
Action Order: Red then Blue					
Scan Network	0	0.36	0	0	0
Restore Node	100	67.61	100	88.40	81.29
Place Decoy	0	32.03	0	11.60	18.71
Action Order: Blue then Red					
Scan Network	0	12.24	0	0.20	0.98
Restore Node	0.63	42.96	32.71	59.84	41.07
Place Decoy	99.37	38.07	67.29	39.96	57.96
Action Order: Random					
Scan Network	0.06	0.69	0.01	0.01	1.34
Restore Node	59.07	82.43	73.52	89.40	80.71
Place Decoy	40.87	16.88	26.47	10.59	17.94

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **G POLICY ANALYSIS OF CAGE AGENTS**
973974 Here we show the detailed behaviour of agents trained in the MiniCAGE environment using sparse
975 and dense rewards.
976977 Table 19: In MiniCAGE, mean successful Impact action counts, and mean privilege red access counts,
978 for each reward function. Evaluated over 1000, 100-step episodes.
979

Reward Function	Impact Op Server Count	Op Server Privilege access Count	Enterprise host Privilege access Count	User host Privilege access Count
SP	0.24	0.25	1.29	21.00
SN	4.53	10.18	2.28	1.06
SPN	2.25	3.57	2.76	22.21
CDN (Default CAGE Rewards)	0.02	7.89	22.22	4.50

980
981
982
983
984
985
986
987
988
989
990 Table 20: Mean blue action counts on each subnet and operational server for each reward function,
991 evaluated over 1000 episodes (100 time steps). This table only includes the most relevant actions,
992 with others like ‘analyse’ not included for conciseness.
993

Action	SP	SN	SPN	DN (default CAGE rewards)
Decoy – User host	2.15	5.26	1.64	1.40
Decoy – Ent host	4.94	4.91	5.43	1.81
Decoy – Op server	0.85	4.59	0.32	1.01
Decoy Total	7.94	14.76	7.39	4.22
Remove – User host	14.93	8.74	8.82	1.37
Remove – Ent host	1.47	3.59	1.87	2.21
Remove – Op server	0.09	1.14	0.18	0.38
Remove Total	16.49	13.47	10.87	3.96
Restore – User host	62.14	4.83	62.87	17.13
Restore – Ent host	3.22	4.91	5.34	56.10
Restore – Op server	0.17	14.46	6.45	12.32
Restore Total	65.53	24.19	74.66	85.55

1012 **H CODEBASE**
10131014 For the anonymised submission, a zipped folder containing the main codebase can be found in the
1015 submitted supplementary material.
10161017
1018
1019
1020
1021
1022
1023
1024
1025

1026 I PPO AGENT TRAINING CURVES IN YAWNING TITAN

1028 To accompany the detailed 50 node network data in Table 6, here we provide the training curves for
 1029 each reward function and agent order in the extended action space.

1052 Figure 2: Training curves for the 50 node network size, red then blue agent order in the extended
 1053 action space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative
 1054 (SPN), dense negative (DN) and complex dense negative (CDN).

1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Figure 3: Training curves for the 50 node network size, blue then red agent order in the extended action space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and complex dense negative (CDN).

Figure 4: Training curves for the 50 node network size, random agent order in the extended action space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and complex dense negative (CDN).

1134 **J CAGE AGENTS TRAINED USING DQN**
11351136 Here, in Table 21, we detail our results from evaluating the sparse and dense reward functions in
1137 MiniCAGE using DQN.
11381140 Table 21: Results for DQN agents trained in MiniCAGE using the sparse positive (SP), sparse
1141 negative (SN), sparse positive negative (SPN) and default CAGE reward function (D).
1142

Reward Function	Score _{GT}	Average Evaluation Reliability				95% CI	
		Lower RF	Upper RF	DT (e-3)	DR'	LL	UL
SP	1.48	0.96	2.97	0.97	0.45	1.42	1.55
SN	2.75	1.78	3.65	0.01	0.28	2.67	2.84
SPN	1.51	0.97	2.85	0.97	0.40	1.45	1.58
CDN (Default CAGE rewards)	1.57	1.02	2.32	1.30	0.43	1.52	1.63

1150 **K POSITIVE REWARD ABLATION STUDY**
11511153 Here we ablate the positive numerical sign from our SP reward to investigate the role of reward sign
1154 versus sparsity.
11551156 It is notable that rewards which perform poorly in our experiments (CDN, DN, SN) all feature
1157 negative penalties without any positive rewards. However, for an idealised RL algorithm the optimal
1158 policy is invariant when a constant is added to the reward function (Sutton & Barto (2018)). To
1159 empirically determine the role that numerically positive rewards play in the improved performance
1160 of SP and SPN agents (i.e., versus sparsity) we create the Ablated-SP reward which simply adds a
1161 constant reward (-1) to the SP reward. In other words, the blue agent receives a reward of 0 when the
1162 network has zero compromised nodes and -1 otherwise.
11631164 Using the in the YT environment, a network size of 10 nodes and all three agent orders, we train each
1165 agent for 1.5 million time steps and evaluate the Score_{GT}, best Score_{GT} and number of optimal runs.
11661167 Table 22: YT PPO agent results for each agent action order combination in the basic and extended
1168 action spaces for network of size 10, comparing agents trained using the Ablated-SP reward function
1169 with the alternatives.
1170

Reward Function	10 Node Network Evaluation								
	Red then Blue			Blue then Red			Random		
	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)	Score _{GT}	Best Score _{GT}	No. of Optimal Runs (/25)
Basic Action Space									
SP	0.90	0.90	25	3.91	0.90	10	1.35	1.34	*
Ablated-SP	0.90	0.90	25	2.61	0.90	20	1.35	1.34	*
SN	6.15	0.90	3	6.10	0.9	2	8.35	7.62	*
SPN	0.9	0.90	25	0.9	0.9	25	1.35	1.34	*
DN	1.57	0.90	12	1.76	0.9	15	6.85	1.34	*
CDN	2.38	0.90	5	1.53	0.9	12	8.79	8.54	*
Extended Action Space									
SP	0.90	0.90	25	0	0	25	0.99	0.88	*
Ablated-SP	0.90	0.90	25	0	0	25	1.22	1.18	*
SN	7.39	2.87	0	6.84	0	1	8.18	6.73	*
SPN	0.9	0.9	25	0.6	0	18	1.04	0.88	*
DN	1.82	0.9	7	1.48	0	4	6.33	1.34	*
CDN	2.71	0.9	5	2.39	0	3	6.98	1.35	*

* The optimal policy score is non-trivial so we do not count the number of optimal runs

1188 The results in Table 22 show the Ablated-SP reward function (which does not include any positive
 1189 rewards) achieves the same (or better) average Score_{GT} as the SP reward in the two fixed agent orders.
 1190 When the agent order is random, Ablated-SP outperforms the CDN, DN and SPN rewards, and
 1191 closely approaches the performance of SP and SPN – likely due to hyperparameter sensitivity during
 1192 training. This shows that including numerically positive rewards is not the main reason that SP and
 1193 SPN outperform SN, DN and CDN.

1194

1195 L DEFAULT CAGE-2 REWARD SOURCES OF BIAS

1196

1197 The CAGE 2 reward function is dense, highly-engineered and contains potential sources of bias that
 1198 may lead to misaligned or sub-optimal (e.g., because of a noisy or contradictory reward signals)
 1199 policies. In contrast to sparse rewards, it is also highly tailored to the specific CAGE-2 challenge
 1200 scenario and therefore unsuited to modified network configurations without additional work. The
 1201 specific sources of bias in the CAGE 2 reward function are as follows:

1202

- 1203 1. All compromised user hosts provide the same penalty despite having different vulnerability
 1204 profiles (and thus different long-term state values). The same is true of hosts in the enterprise
 1205 subnet.
- 1206 2. The penalty for enterprise hosts and operational server compromise is the same (-1) despite
 1207 a compromised operational server being much closer to an impacted operational server (-10)
 1208 from a lateral movement (causal distance from attack objective) perspective.
- 1209 3. The penalty for a compromised operational host is -0.1 per time step, the same as a user
 1210 host, despite requiring fewer steps to reach and impact the operational server. This is an
 1211 example where the default reward would not generalise well to an adversary that made use
 1212 of this route, yet a sparse reward would not require modification or domain expertise.
- 1213 4. The cost of performing the restore action is -1, drawing numerical equivalence with the
 1214 compromise of an enterprise or operational host. It is also equivalent to the compromise
 1215 of a user host for 10 steps. This means that the resulting policy is biased towards restoring
 1216 only enterprise or operational hosts (as seen in Table 20). This may yield conflicting
 1217 signals with the fact that compromising user hosts is causally necessary for impacting the
 1218 operational sever, thus failing to restore them leaves the adversary closer to operational
 1219 impact. Supporting this hypothesis, the SP and SPN rewards use the restore action more
 1220 sparingly overall and use it mainly on user hosts.

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 M MINICAGE EVALUATION USING THE DEFAULT CAGE-2 REWARD

1244 In Table 23 we show the mean and median scores per timestep using the default CAGE 2 reward
 1245 across the sets of policies trained using sparse reward functions. The results show that SPN performs
 1246 similarly to CDN in terms of the mean score (-1.01 vs -0.99), and that SP and SPN perform better in
 1247 terms of the median (-0.96/7 vs -1.09). We include GT score for comparison and the results are also
 1248 supported by the agent policy analysis in Appendix G.

1249 These results can be understood further by considering Table 3 which shows the upper RF of SP and
 1250 SPN rewards is higher than CDN i.e., the worst 5% of policies have lower scores. This is because
 1251 there is a higher probability that the operational server is impacted and incurs a large negative penalty.
 1252 Since operational server impact is causally dependent on user and then enterprise host compromise,
 1253 and our sparse policies do a much better job of confining adversary impact to the user hosts, we
 1254 think this may be an exploration issue that could be solved with further hyperparameter tuning.
 1255 Alternatively, it may be that the optimal way to defend the op server at all costs is by sacrificing
 1256 enterprise hosts - keeping the adversary ‘stuck’ near the target rather than minimising overall network
 1257 compromise. This seems untenable for real-world cyber defence.

1258
 1259 Table 23: The MiniCAGE agents evaluated over 1000 episodes (one episode is 100 steps) using the
 1260 Score_{GT} and the original CAGE reward function averaged (Mean and Median) over each timestep.
 1261

Reward Function	Score _{GT}	Mean score per timestep using CAGE 2 default reward	Median score per timestep using CAGE 2 default reward
SP	1.29	-1.37	-0.97
SN	2.77	-2.25	-2.04
SPN	1.35	-1.01	-0.96
CDN (CAGE 2 Default)	1.41	-0.99	-1.09