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ABSTRACT

Recent years have seen an explosion of interest in autonomous cyber defence
agents trained to defend computer networks using deep reinforcement learning.
These agents are typically trained in cyber gym environments using dense, highly
engineered reward functions which combine many penalties and incentives for
a range of (un)desirable states and costly actions. Dense rewards help alleviate
the challenge of exploring complex environments but risk biasing agents towards
suboptimal and potentially riskier solutions, a critical issue in complex cyber
environments. We thoroughly evaluate the impact of reward function structure on
learning and policy behavioural characteristics using a variety of sparse and dense
reward functions, two well-established cyber gyms, a range of network sizes, and
both policy gradient and value-based RL algorithms. Our evaluation is enabled by
a novel ground truth evaluation approach which allows directly comparing between
different reward functions, illuminating the nuanced inter-relationships between
rewards, action space and the risks of suboptimal policies in cyber environments.
Our results show that sparse rewards, provided they are goal aligned and can
be encountered frequently, uniquely offer both enhanced training reliability and
more effective cyber defence agents with lower-risk policies. Surprisingly, sparse
rewards can also yield policies that are better aligned with cyber defender goals
and make sparing use of costly defensive actions without explicit reward-based
numerical penalties.

1 INTRODUCTION

Cyber attacks are increasingly frequent and sophisticated, straining limited cyber defence resources
and threatening critical digital systems that people depend upon worldwide. There has been a rising
level of interest in using machine learning (ML) methods to improve cyber security; in particular deep
reinforcement learning (DRL) which has the ability to learn complex policies from interaction alone,
enabling the discovery of strategies unconstrained by flawed system or security models. DRL based
autonomous cyber defence (ACD) agents, which have gathered much attention in the literature, could
discover novel techniques and provide automation for tasks that currently occupy human analysts.

Cyber gyms provide efficient and controlled environments for ACD agents. This is particularly
important for network security tasks, enabling the large number of interactions required for training
without risking production networks or systems. Accordingly, many cyber gyms have been created
to enable training agents that defend networked systems (Vyas et al., 2023). Cyber gyms define
one or more Markov Decision Processes (MDPs) in terms of a state space comprising network and
host information, an action space of defensive activities, and a reward function aligned to defensive
objectives. ACD reward functions are typically highly engineered based on human judgment,
combining multiple penalties and incentives determined for a variety of defensive actions and network
states (Andrew et al., 2022; Standen et al., 2021). Dense rewards may be preferable because of
expedited learning, providing apparently effective solutions using fewer environment steps during
training, but they also risk constraining agents to sub-optimal solutions (Riedmiller et al., 2018). This
is especially concerning for ACD agents which might then contain avoidable weaknesses that are
difficult to identify in advance of an attack. Furthermore, dense rewards draw potentially arbitrary
numerical equivalences between network states and actions. As the scale and complexity of cyber
tasks grow this becomes increasingly challenging to manage and the risks of undesirable agent
behaviour are exacerbated.
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At the expense of generally requiring more training iterations, sparse rewards place fewer constraints
on the solution space and could enable preferable or more effective policies to be discovered. Existing
work has not investigated the possibility that dense rewards might limit the performance of ACD
agents trained using DRL. To investigate this possibility, and summarising the main contributions of
this work, we: (1) propose a ground truth scoring mechanism for network security cyber gyms which
allows a direct comparison between agents trained using different reward functions, (2) evaluate a
comprehensive range of sparse and dense reward functions using two popular cyber gyms which
are adapted to illustrate our ground truth mechanism, and (3) show that sparse reward functions can
enhance the effectiveness, reliability and risk-profiles of ACD agents across a variety of network
sizes and topologies, action spaces, MDP models and DRL algorithms.

2 BACKGROUND

Here we provide an introduction to ACD, motivate evaluating ACD agents more accurately, and
define the key metrics we later build upon to fully evaluate the impact of reward functions in ACD.

2.1 AUTONOMOUS CYBER DEFENCE

ACD agents aim to actively mitigate attacks on computer networks using ML techniques rather
than traditional rule-based approaches. By alleviating the bottlenecks of human response speed
and information processing, ACD agents could provide a much needed counterbalance to the ever-
increasing scale and sophistication of cyber threats. Reinforcement learning (RL), and particularly
DRL given the enormity of data generated by computer networks, is particularly promising as it
allows learning defensive strategies from interaction alone without the need for explicit models of
how networks, systems, and attackers behave. Such models must continually be updated as attackers
evolve, frequently undermining the tools and techniques that derive security proofs or assurances
from their correctness. By observing the network state and choosing defensive actions, DRL agents
can learn novel and adaptive strategies for defending computer networks that do not depend on
potentially incorrect or outdated assumptions.

Since their learning is guided by maximising long-term rewards, ACD agents critically depend
on the rewards provided throughout training. Furthermore, the exploration required for learning
from trial-and-error demands a cyber gym allowing extensive experimentation (i.e., risk-taking)
without jeopardising valuable production systems. Many cyber gyms have been created (Vyas
et al., 2023), provided publicly (Microsoft, 2021; Oesch et al., 2024; Andrew et al., 2022), and even
used for competitions seeking the best performing agents (Standen et al., 2021; Hicks et al., 2023;
Foley et al., 2022). Despite these promising developments, previous work on ACD is limited to
evaluating performance using only mean episodic rewards, and variance of the same, over a number
of fixed-policy rollouts. Unlike games (e.g., chess) which correspond relatively naturally to the MDP
framework, defending a network of computer hosts does not. Real-world attackers are not confined to
turn-based interactions, partial observability affects many aspects of the network, and there is never a
state where the defender can be definitively crowned the winner.

Most cyber gyms, and prominent ACD competitions, have hand-crafted dense reward functions
that are used to train and evaluate agents. Such rewards may misrepresent the true performance of
agents and it is impractical for them to accurately represent human knowledge (Hu et al., 2020),
biasing models towards possibly lower-performance and higher-risk strategies. There is a need,
which we illustrate and address for the first time to the best of our knowledge, for evaluation
methods that accurately represent the ground truth of complex cyber environments. Our ground truth
scoring mechanism permits a direct and reproducible comparison between different reward strategies,
enabling experiments that empirically quantify the performance and risk characteristics of reward
functions in ACD environments.

2.2 RELIABILITY AND RISK IN RL

The reliability and risks of RL agents is a critical issue, especially for cyber defence applications
where inconsistent performance can be costly or dangerous. Training reliability metrics measure
how consistently an RL algorithm performs across multiple training runs, and risk metrics quantify
expectations of worst-case performance.
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TRAINING RELIABILITY

To evaluate the impact of reward function on training reliability in ACD agents, we build upon
the quantitative RL training reliability metrics proposed by Chan et al. (2020) based on dispersion
variability i.e., the width of the mean episodic rewards distribution.

Dispersion variability across time (DT) measures the stability of RL training across time. Smooth
monotonic policy improvements offer the lowest DT scores, indicating high reliability during training
and lowered computational costs. DT is measured by averaging the inter-quartile range (IQR) within
a sliding window along each detrended training curve. Detrending ensures positive trends in policy
improvement do not influence the metric and is calculated using differencing (i.e., y′t = yt − yt−1).
Where I denotes the total number of runs, the average DT across multiple runs is calculated:

D̄T =

∑I
i=0 DTi

I

Dispersion variability across runs (DR) measures the reproducibility of RL training across
multiple runs. Low DR indicates high consistency between training runs, meaning fewer total training
runs are required to discover the best performing agents. DR is measured by averaging IQR across
multiple training runs at each evaluation step, ensuring the metric captures differences resulting from
random initialisation or environment stochasticity. Let R̄i denote the mean episodic reward over
some window of training run i, and {R̄1, R̄2, . . . , R̄I} the set of all such R̄i across I total runs, then:

DR = IQR
(
{R̄i}Ii=1

)
RISK AFTER TRAINING

In ACD we are particularly concerned about the worst-case scenarios for a given agent. We calculate
this by considering the worst-case expected loss across multiple rollouts of each trained policy.

Conditional Value at Risk (CVaR) quantifies the risk associated with worst-case scenarios, defined
by some quantile α, i.e., expected performance in the worst α fraction of cases (Acerbi & Tasche,
2002). By focussing on extreme values in the tails of the distribution, CVaR complements IQR
methods in which they are cut off to focus on dispersion between central quartiles.

Risk across Fixed-Policy Rollouts (RF) is calculated by applying CVaR to the distribution of
multiple fixed-policy evaluation rollouts. Where X = {R̄1, R̄2, . . . , R̄I} denotes the set of mean
episodic returns from the trained policy, and VaRα the α quantile of X , then:

RFα(X) = CVaRα(X) = E[X | X ≤ VaRα(X)]

3 METHODOLOGY

Here we outline the methodology and experimental setup used to evaluate how different reward
functions impact agent performance and training reliability in ACD.

3.1 YAWNING TITAN CYBER GYM

Yawning Titan (YT) (Andrew et al., 2022) is a well-established cyber gym providing an abstract,
graph based network simulation environment for training defensive (blue) agents to defend a network
by minimising the number of compromised nodes. To establish foundational insights, and to minimise
variance and implementation errors in the first instance, we configured YT to simulate a linear network
structure with a fixed entry node for the attacking (red) agent which follows a fixed lateral-movement
strategy aiming to compromise as many nodes as possible.

The YT observation space comprises a vector embedding the network adjacency matrix and both
the vulnerability and compromise status of each node. We set the vulnerability of each node to
1, conservatively modelling the most powerful red agent whose attacks never fail. We create two
action spaces: (1) basic – with two actions: "scan network" and "restore node", and (2) extended –
which also adds "place decoy". The place decoy action is a proactive defence replicating the use of a
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Figure 1: One step of the YT network environment illustrating an intra-step node compromise that is
concealed by standard cyber gym evaluations.

deceptive "canary", a technique sometimes used to detect and delay attackers in real world networks.
The red action space has two actions: "do nothing" and "basic attack", where the fixed red policy is to
at random perform a basic attack 90% of the time and do nothing otherwise (10%).

3.2 CYBER AUTONOMY GYM FOR EXPERIMENTATION (CAGE)

Cyber Autonomy Gym for Experimentation (CAGE) 2 (Kiely et al., 2023) is one of the most popular
single-agent ACD environments designed to enable training defensive RL agents in simulated network
attack scenarios (Standen et al., 2022; Vyas et al., 2023). Adding considerable complexity in contrast
to YT, CAGE 2 defines an enterprise network with 3 subnets and 13 hosts in total: the user subnet
with 5 hosts, the enterprise subnet with 3 hosts and an isolated defender host, and the operational
subnet with 4 hosts. The network is separated by firewalls such that red agents must compromise
multiple hosts to move from user subnet hosts, via the enterprise subnet, to the operational target. The
observation space is a vector of 52 bits, comprising 4 bits detailing state and adversary information
for each host. The action space includes 6 high-level actions (sleep, monitor, analyse, remove, restore,
decoy) which are expanded to detail type and target for a total of 145 different actions.

In our experiments we use the refined CAGE 2 implementation, miniCAGE (Emerson et al., 2024),
which eliminates bugs and increases training speeds but otherwise has exactly the same environment
dynamics, red agent behaviour, observation and action spaces, and network topology. Of the two red
agents included in CAGE 2, we use the “b-line” attacker, which uses partial prior knowledge of the
network to exploit the shortest path from entry node to impacting the operational target.

3.3 GROUND TRUTH

To the best of our knowledge, previous work on ACD is limited to evaluating performance using
the mean episodic reward and its variance over a large number of rollouts. This assumes the MDP
model captures the “ground truth", and that the episodic reward is aligned with preferred ACD goals.
However, cyber gyms are highly complicated environments which simulate both red and blue agent
actions. According to the MDP framework actions are taken during discrete time steps, requiring
a determined order in which red and blue actions occur. Current cyber gyms overlook this crucial
detail and choose either a fixed order or prioritise actions according to some arbitrary function.

Illustrated in Figure 1, one issue with the MDP framework’s requirement for discrete time steps is that
the observation provided at the end of each step can omit critical network events occurring intra-step
which are resolved before the reward is determined. Concretely–red agents may compromise nodes
during the step, just before the blue agent removes the compromise, and this will not be reflected in the
reward or observation returned to the agent. This makes it impossible for agents to reliably distinguish
between states in which nodes have been compromised and those in which no compromise occurred.
Consequently, prior ACD evaluation metrics fail to distinguish between agents with potentially very
different ground truth behaviour.

Ground Truth Score (ScoreGT) To overcome the limitations of discrete step-wise evaluation in
cyber gyms we introduce the ground truth score, ScoreGT, calculated as the maximum (max) number
of compromised nodes over both the intra- and end-step. In general, where m(intra)

t and m
(end)
t are the

intra- and end-step number of compromised nodes, respectively:

ScoreGT(t) = max
(
mintra

t ,mend
t

)
(1)
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For Figure 1, ScoreGT(·) = max(3, 2) = 3 i.e., capturing the ground truth that 3 nodes were
compromised during the time step. The ground truth score provides a more accurate measure of agent
performance that is independent of agent order and does not depend on the reward function used
during training––enabling the impact of reward on agent performance to be evaluated robustly.

3.4 EVALUATING RELIABILITY ACROSS DIFFERENT REWARDS

To evaluate the impact of reward function on training reliability using a single risk metric, we
introduce a normalised version of Chan et al. (2020)’s DR measure (defined in Section 2.2). To
capture variability in converged performance rather than early fluctuations we restrict our application
to the final 20% of steps. For each training run i we calculate the mean episodic reward Ri across the
final 20% of training steps. Then, we apply mean normalisation to each run’s mean episodic reward:

R′
i = (Ri − µ)/σ

Across I total training runs, our normalised DR metric is calculated as the IQR over the mean
normalised mean episodic rewards:

DR′ = IQR(R′
i | ∀i ∈ I)

3.5 EXPERIMENTS

Our experiments evaluate the performance, risk, and reliability of the different reward functions
defined in Table 1. These reward structures are representative of both the complex, dense reward
functions currently used by most cyber gyms including YT and CAGE, and an encompassing
range of sparse rewards aligned with the goal of defending the network by minimising the number
of compromised nodes. The sparse reward functions place fewer constraints on the optimisation
objective, e.g., by avoiding numerical comparison between nodes and defensive actions, thus might
enable agents to learn more effective policies. Note that we use the terms “positive” and “negative”
principally to refer to the goal of mitigating adversarial node compromise in the network. The most
positive outcome is that the network is at full-health and zero nodes are compromised. Similarly, the
most negative scenario entails the complete compromise of all network nodes. See also Appendix K.

In both YT and CAGE, our evaluation applies the ground truth score and reliability metrics defined
in Section 3.3 and 3.4. Furthermore, upper and lower RF refer to the bounds of the average per-step
ground truth score at risk across rollouts (see Section 2.2) determined by the α = 0.05 quartile.
All experiments are trained for 25 independent runs and the final policies are evaluated for 1000
episodes, resulting in a ScoreGT, upper and lower RF, D̄T, DR′ and 95% confidence intervals (CI) for
each network size, reward function, and agent order. Agent order is fixed for each corresponding
training run and evaluation. We did not search for optimal hyperparameters in this work as the
Stable-Baselines3 defaults (see Appendix B) proved sufficient in both PPO and DQN, however tuned
hyperparameters may further enhance learning in any given experiment. Experiments were run
using Intel i9 and Apple M1 and M3 Pro CPUs, alongside NVidia RTX 4090 GPUs, requiring 720
processor days in total for the results in this paper. Including additional preliminary experiments and
experimental re-runs the total rises to 1100 processor days.

Table 1: The sparse and dense reward functions evaluated.

Reward Type YT Reward per time step CAGE Reward per time step

Sparse Positive (SP) +1 if no nodes compromised only. +1 if no nodes compromised and red agent
is in user subnet.

Sparse Negative (SN) -1 if all nodes compromised only. -1 if operational server is impacted.

Sparse Positive-Negative (SPN) +1 if none and -1 if all nodes com-
promised, respectively.

+1 if no nodes compromised and red agent
is in user subnet, and -1 if operational
server is impacted.

Dense Negative (DN) -1 per compromised node. N/A.

Complex Dense Negative (CDN) Action penalties and -1 per com-
promised node, see Appendix A. Standard CAGE 2 reward, see Appendix A.
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YAWNING TITAN EXPERIMENTS

Informed by insights provided by our ground truth mechanism, we trained agents using three different
orderings of red and blue actions: red then blue (standard in YT and CAGE), blue then red, and
random. The random order performs an alternating sequence of red then blue, and blue then red,
with the initial order randomised in each episode. The random order includes the worst-case for
the defender where the red agent acts twice consecutively before blue can act. These experiments
evaluate the relationship between reward structure and robustness to inter-step agent order. Prior
work utilising CAGE has shown that environment complexity and the inability to interpret agent
behaviour scales rapidly as network size grows (Foley et al., 2022). Complex network simulations
obfuscate the relationship between reward function and final policy outcomes. Thus, we begin in YT
with the least complex sub-problem: 2 nodes and 2 actions (basic) and iteratively scale the network
size up to 50 nodes before then including the proactive decoy action (extended). These experiments
evaluate the impact of reward structure as both the network size and action space are scaled up.

In all experiments the episode length is fixed at 100 steps and each agent is trained using PPO, one of
the most widely used algorithms for training ACD agents (Vyas et al., 2023). To demonstrate that our
findings are not specific to PPO we also perform additional experiments using DQN (Mnih et al.,
2015) (see Appendix D). To ensure convergence during training, we scale the number of training
steps so that for network sizes of 2, 5, 10, 20, and 50 nodes, agents are trained for 0.5, 1, 1.5, 2, and
2.5 million steps, respectively.

CAGE EXPERIMENTS

To explore the generalisability of our findings to non-linear network structures and expanded state-
action spaces we also trained agents in the MiniCAGE environment using the set of rewards detailed
in Table 1. The episode length was fixed at 100 steps and we trained agents using both PPO and DQN
for 2.5 million timesteps (see Appendix J for DQN results).
4 RESULTS

Here we present key results showing how reward structure impacts performance, risk and reliability.

SP AND SPN REWARDS PERFORM BEST ON AVERAGE

Providing an overarching view of the results in YT, shown in Table 2, we consolidate the ground
truth scores, risk, and training reliability of each reward function averaged across all network sizes
and agent orders. The SPN reward function achieves the best scores: fewer nodes are compromised

Table 2: PPO results in YT, for the extended action space, averaged across all network sizes and
agent orders for sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense
negative (DN) and complex dense negative (CDN) reward functions.

Reward Function ScoreGT

Average Evaluation Reliability 95% CI

Lower RF Upper RF D̄T (e-3) DR′ LL UL
SP 2.69 2.46 2.87 0.11 0.12 2.02 3.36
SN 10.29 9.00 10.90 0.09 0.17 9.10 11.47
SPN 2.00 1.82 2.16 0.08 0.19 1.38 2.63
DN 6.29 5.84 6.60 2.33 0.12 5.14 7.44
CDN 6.21 5.71 6.52 2.45 0.31 5.10 7.32

Table 3: Results for PPO agents trained in MiniCAGE using 4 reward functions: sparse positive (SP),
sparse negative (SN), sparse positive negative (SPN) and the default CAGE reward function (CDN).

Reward Function ScoreGT

Average Evaluation Reliability 95% CI

Lower RF Upper RF D̄T (e-3) DR′ LL UL
SP 1.29 0.97 3.11 0.34 0.46 1.24 1.34
SN 2.77 1.85 3.64 0.05 0.19 2.66 2.87
SPN 1.35 0.97 2.93 0.36 0.47 1.23 1.48
CDN (default CAGE rewards) 1.41 1.06 2.02 0.55 0.31 1.31 1.51
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on average than agents trained using any other reward function. SP rewards provide the next-best
performing agents, followed by DN, CDN and finally SN rewards. All of the sparse reward functions,
including SN, show significantly lower D̄T than the dense rewards, confirming greater training
reliability across time (albeit to a low average performance for SN). Reliability across runs is two
orders of magnitude higher for dense rewards in both action spaces indicating greatly reduced
reproducibility. Across every YT configuration, as shown in Tables 4, 5 and 6, the best performing
PPO agents result from either either SP or SPN reward functions. This is also true for DQN agents
as shown in Appendix D. Similarly in the CAGE environment, see Table 3 and Appendices J), the
SP reward function achieves the best ScoreGT. Both SP and SPN rewards outperform the standard
CAGE reward function in terms of ScoreGT, and the upper 95% confidence interval for SP is lower
than the average ScoreGT of the standard CAGE reward function.

PERFORMANCE AND RISK SCALING WITH NETWORK SIZE

Evaluating performance as the network size increases shows how each reward function scales to
larger, and therefore more realistic, state-action spaces. In YT we evaluate trained agents in networks
with 2, 5, 10, 20 and 50 nodes, averaging scores over all runs and agent orders for each network size.
Table 5 shows the average ground truth performance, and worst 5% percent of performances i.e., risk,
for all agent orders. As network size increases, the performance and risk differences between reward
functions widens. In the smallest 2 and 5 node networks, both SPN and SP reward functions yield the
best agents with closely matched average performance and worst-case risks–especially in the basic
action space (see Appendix C). In the largest two network sizes the advantages of SPN rewards are
magnified, providing significantly better policies with correspondingly reduced risks. For 10 node
networks there is an exception to the overall trend where SP rewards outperform SPN in the extended
action space. As discussed further in Section 5, a closer analysis of the data reveals this is likely
because, in the extended action space, both SP and SPN rewards enable learning optimal strategies
for defending networks when the agent order is blue then red. The results show that SP and SPN
rewards not only perform best overall but also scale favourably as state-action spaces increase.

Table 4: YT PPO agent performance and risk evaluation scores across all network sizes for the
extended action space. Results are averaged over all agent orders for each reward function.

Evaluation across network sizes
2 5 10 20 50

Reward Function
Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

SP 0.60 0.64 0.62 0.66 0.63 0.67 1.87 1.96 9.75 10.44
SN 1.19 1.26 3.59 3.82 7.47 7.92 12.43 13.28 26.76 28.20
SPN 0.92 0.98 0.97 1.01 0.85 0.89 0.69 0.73 6.58 7.17
DN 0.98 1.03 1.28 1.41 3.21 3.42 8.19 8.45 17.78 18.70
CDN 0.85 0.90 8.73 9.23 4.03 4.18 8.46 8.73 16.06 17.02

Table 5: YT PPO agent results for each agent action order combination in the extended action space,
averaged over all network sizes, for each reward function.

Reward Function

Red then Blue Blue then Red Random
ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL

SP 0.90 0.96 0.90 0.27 0.28 0.72 6.91 7.38 8.47
SN 9.31 9.95 10.92 9.01 9.51 10.72 12.54 13.23 12.77
SPN 0.90 0.96 0.90 0.61 0.63 1.23 4.50 4.89 5.75
DN 4.13 4.31 5.74 2.98 3.08 4.17 11.75 12.42 12.40
CDN 5.65 5.80 5.29 3.99 4.11 4.14 13.24 14.13 12.52

THE IMPACT OF AGENT ORDER

Evaluating the impact of different agent orders on reward function performance reveals how the
real-world constraints of uncertain attacker timing and dynamics could impact the performance and
worst-case risks of ACD agents. Table 4 shows the average agent performance across all runs and
network sizes in each of the three agent orders: red then blue, blue then red, and random. Continuing
the trend, SP and SPN have considerably higher performance scores and lower risks than the dense
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rewards. When the agent order is randomised, the scores for all reward functions are greatly reduced,
highlighting the sensitivity of DRL-based ACD agents to adversary timing. Notably, SPN significantly
outperforms the other reward functions when the agent order is random–the most challenging and
realistic setting in which the agent order cannot be assumed before an episode begins. Furthermore,
when the agent order is blue then red and agents use the extended action space (i.e., blue can place
decoys and moves before red), the average performance for SP agents reaches 0 meaning an ideally
secure network with no compromised nodes during any episode. Collectively these results showcase
the strong inter-relationships between reward function, action space, and performance risks when
agent timing cannot be anticipated. See Appendix E for the average agent ScoreGT alongside mean
episodic rewards for each reward function in YT.

Table 6: Agent order results for YT agents trained in the 50 node network, extended action space.

Reward Function

Red then Blue Blue then Red Random

ScoreGT
Best

ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)

SP 0.90 0.90 25 1.36 0.00 23 26.98 0.94 *

SN 22.84 3.93 0 24.33 1.99 0 33.10 27.00 *

SPN 0.90 0.90 25 0.81 0.00 24 18.04 0.94 *

DN 12.53 1.89 0 8.42 0.90 0 32.39 27.67 *

CDN 10.05 1.89 0 6.71 1.89 0 31.44 27.34 *

* The optimal policy score is non-trivial so we do not count the number of optimal runs

5 DISCUSSION

Empirical results for network sizes ranging from 2 to 50 nodes, irrespective of attacker timing or
whether proactive actions are available, confirm that SP and SPN rewards provide the best performing
blue agents with minimised worst-case risks. Where the optimal scores (i.e., 0.9 for red then blue
and 0 for blue then red agent orderings) were computed analytically, a fine-grained evaluation of
these metrics for the largest network we evaluate (shown in Table 6) further corroborates this result.
Additional training curves for the 50 node network can be seen in Appendix I. Here, both SPN and
SN reward functions uniquely enable agents to learn optimal strategies which limit the attacker to
very few, and even 0 in favourable conditions, compromised nodes.

In CAGE, SP and SPN agents also performed best, achieving the lowest ScoresGT. This shows our
results generalise to more representative networks with multiple subnets and complex non-linear
behaviours including hosts with different vulnerabilities. To understand why sparsely rewarded
policies perform better we analyse the behaviour in Appendix G. While SP agents result in slightly
elevated operational server impacts in comparison to the standard CAGE rewards, 0.24 vs. 0.02
average per episode; there are significantly fewer successful operational and enterprise privilege
escalations, 0.25 and 1.29 vs. 7.89 and 22.22 average per episode, respectively. In addition to much
lower overall privileged host access counts (22.75 vs. 34.63 average per episode), SP agents confine
21 of these (92.31%) to user subnet hosts. This policy is much better aligned to network security
objectives as user hosts have the fewest network privileges, and the least overall impact on operations.

Also in Appendix G, we confirm that sparsely rewarded agents use the costly restore action more
sparingly, and with greater focus on the user hosts, than agents trained using the standard CAGE
rewards. Given the lack of numerical penalty for these actions in SP and SPN, this result highlights
that sparse rewards can avoid riskier, less aligned policies which may otherwise result from incorrectly
translating human domain insights into numerical rewards. Our results demonstrate that dense reward
functions can suboptimally constrain the performance of ACD agents, introducing avoidable risks
and reducing training reliability across runs. Furthermore, our ground truth scoring mechanism and
its application in this work illustrates the importance of more considerate evaluation in current cyber
gym environments. Many cyber gyms fail to capture important inter-step agent behaviours (e.g.,
including compromised nodes), obscuring crucial performance and risk differences between policies.

Dense reward functions, which are standard practice in cyber gyms, risk artificially constraining the
performance of ACD agents and weakening the resulting security of networks they defend. More
broadly, our results show that ACD agents require a reward function to provide sufficient reward
signal (i.e., "can be encountered frequently during training") and goal-alignment. Since dense rewards
introduce bias, sparse rewards are indicated for goal-alignment. However, sparse rewards can also
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present exploration problems as their frequency during training is highly task dependent. The sparse
positive rewards utilised here are both sparse in action-state space, and can be encountered frequently
provided some uncompromised network state(s) can be identified. It remains for future work to
understand the scaling limitations of this approach in real world networks, but the SN reward illustrates
an additional challenge faced by sparse ACD reward structures. Specifically, as the defensive policy
improves throughout training, the network becomes less frequently (entirely) compromised and
correspondingly provides less reward signal from which to learn further improvements. These
findings likely have applications in many other cyber defence tasks beyond network defence, for
example in web application vulnerability discovery (Lee et al., 2022; Al Wahaibi et al., 2023). Whilst
our work is intended to advance the cyber defence domain, a potential negative impact is the dual use
from adversaries who could seek to use it for malicious purposes. As cyber gyms increase in realism,
moving ACD agents closer to operational environments, it is essential to establish and empirically
validate the design of effective, efficient and risk-reducing reward functions.

6 RELATED WORK

Reward functions, and how best to formulate them, has been widely discussed in relation to the
emergence of intelligent behaviour within the RL framework (Silver et al., 2021; Vamplew et al.,
2022). Many real-world RL applications including robotics (Dorigo & Colombetti, 1994) and video
games (OpenAI et al., 2019; Song et al., 2019) utilise reward shaping to address sample inefficiency,
aiming to guide learning towards useful policies by incorporating domain knowledge to reduce the
learning problem difficulty. Reward shaping also arises when gradient-based methods are used to
augment extrinsic rewards, such as the adaptive utilisation of a reward shaping function (Hu et al.,
2020), or to provide “intrinsic motivation” towards uncertainty-reducing actions (Pathak et al., 2017).
Nevertheless, a requirement for policy invariance is that reward shaping functions must apply the
difference of an arbitrary potential function between successive states (Ng et al., 1999). Any other
reward transformation may bias resulting trained policies away from the optimal solution (Riedmiller
et al., 2018). This work establishes for the first time, with implications for widely-used cyber gyms,
the performance, risk and training efficiency implications of reward function design in ACD.

Prior work has sought to benchmark RL algorithm performance (Duan et al., 2016) assess algorithm
reliability (Henderson et al., 2018), and measure policy reliability during and after training (Chan
et al., 2020). Whilst these methods help to evaluate an agent trained using a specific reward function,
comparing multiple reward functions remains challenging, and often task-specific, because episodic-
reward-based evaluation crucially lacks an external frame of reference. DRL has been used for a
variety of real-world cyber security tasks including alert prioritisation (Tong et al., 2020), language
model "jailbreak" prompt optimisation (Chen et al., 2024), fuzzing compilers (Li et al., 2022), finding
web application vulnerabilities (Lee et al., 2022; Al Wahaibi et al., 2023), finding cache timing
attacks (Luo et al., 2023), and overcoming hardware trojan detection methods (Gohil et al., 2022).
For a broader survey on RL-based ACD we refer readers to Vyas et al. (2023). The closest previous
work (Bates et al., 2023) investigates 4 different reward shaping approaches (normalised, linearly
scaled, non-linear scaling and curiosity-based exploration (Pathak et al., 2017)) in the standard CAGE
environment. In contrast to this work, their results are inconclusive, policies are evaluated using only
episodic rewards, and no consideration is given to DRL algorithm, agent order, policy risks, training
reliability, or the effects of scaling network size or action spaces.

7 CONCLUSION

In this work we introduce a novel ground truth scoring method and addresses a key shortcoming of
cyber gyms: neglecting intra-step node compromises when evaluating agent performance. This work
enables a more accurate, risk-aware, and comprehensive evaluation of ACD policies, independent
of the training reward structure or agent-timings. Through extensive experiments in YT and CAGE,
two well-established cyber gyms, we show that agents trained with simpler, sparse reward functions
outperform those trained on conventional dense rewards and maintain higher reliability across
increasing network sizes. Notably, our SPN reward function yields policies with significantly fewer
compromised nodes in worst-case scenarios, especially when attacker timing is randomised (i.e.,
the most realistic setting). Our findings underscore the great importance of reward functions and
their relationship to risk and goal alignment in cyber environments. Lastly, we have highlighted
the complex inter-relationships between reward functions, action spaces, network size, and attacker
timings, relating them to the ground truth performance of ACD agents.

9
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8 ETHICS STATEMENT

Our work fully adheres to the guidelines articulated in the ICLR Code of Ethics. In the introduction,
we motivate the work by discussing the need for effective autonomous cyber defence considering
society’s dependence on cyber systems and the growing complexity of attacks, highlighting the corre-
sponding societal benefits. The main focus of this work is constructing more effective autonomous
cyber defence agents. Furthermore, the environments we adapt for our experimental method are
abstract representations and, even should they be adapted for offensive purposes, will not yield agents
capable of attacking real-world networks.
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Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep Reinforcement Learning, 2019.
URL https://arxiv.org/abs/1912.06680.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Proceedings of the 35th International Conference on Machine
Learning, Proceedings of Machine Learning Research, 2018.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial
Intelligence, 299, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103535.

Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, and Jun Zhu. Playing FPS
Games With Environment-Aware Hierarchical Reinforcement Learning. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 3475–3482.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/
ijcai.2019/482.

Maxwell Standen, Martin Lucas, David Bowman, Toby J. Richer, Junae Kim, and Damian Mar-
riott. CybORG: A Gym for the Development of Autonomous Cyber Agents. In IJCAI-21 1st
International Workshop on Adaptive Cyber Defense, 2021.

12

https://github.com/microsoft/cyberbattlesim
https://github.com/microsoft/cyberbattlesim
https://arxiv.org/abs/1912.06680


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maxwell Standen, David Bowman, Olivia Naish, et al. Cyber operations research gym. https:
//github.com/cage-challenge/CybORG, 2022.

R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduction. Adaptive
Computation and Machine Learning series. MIT Press, 2018. ISBN 9780262039246.

Liang Tong, Aron Laszka, Chao Yan, Ning Zhang, and Yevgeniy Vorobeychik. Finding needles in a
moving haystack: Prioritizing alerts with adversarial reinforcement learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 2020. doi: 10.1609/aaai.v34i01.5442.

Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel Ramos, Roxana Rădulescu, Diederik M.
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A COMPLEX DENSE NEGATIVE REWARD FUNCTION

The complex dense negative (CDN) reward function is charitably (i.e., we favourably interpret the
spirit of these rewards rather than focusing on specific flaws) derived from the heavily shaped reward
functions used by several of the most popular cyber gyms including CAGE’s CybORG, PrimATE and
Yawning Titan (YT) (Standen et al., 2022; Andrew et al., 2022). A typical "real world" CDN-type
reward function, combining both negative penalties and positive rewards for various blue agent
actions and environment states, is taken from the YT GitHub repository and partially described below
in Table 7 below. The full YT reward function includes additional rewards with detailed nuances
and caveats not shown here for clarity of presentation. Although somewhat intuitive, the specific YT
reward values are arbitrary and no clear justification is provided for the magnitudes and inevitable
numerical equivalences assigned.

We constructed the CDN and CD reward functions to charitably represent, with decreasing complexity
and shaping, the reward functions found in leading cyber gyms. Some rewards were considerably
simplified, for example the penalties for compromised node states, and others were omitted entirely
because our experimental designs exclude the actions altogether. Our newly introduced decoy action
was assigned an arbitrary penalty based on the insight that restoring a node entirely would clearly be
more disruptive than temporarily disturbing one node service.

Table 7: Action- and state-level shaping terms for the YT, CDN and DN reward functions.

Reward Function
YT CDN DN

Actions
Reduce Vulnerability −0.5 — —
Restore Node −1 −0.5 0
Make Node Safe −0.5 — —
Scan Network 0 0 0
Isolate Node −10 — —
Connect Node 0 — —
Add Deceptive Node −8 — —
Place Decoy — −0.25 0
Do Nothing +0.5 −0.1 0

States
Network compromise
/ vulnerability

>30% nodes compromised:
−1 per compromised node

Vulnerability reduced:
+4× reduction

−1 per
compromised node

−1 per
compromised node

B HYPERPARAMETERS FOR TRAINING

Here we present the hyperparameters used for training in both the YT and MiniCAGE environments.

Table 8: Hyperparameters for PPO models
Hyperparameter Value

Learning Rate 3× 10−4

Number of Hidden Layers 2
Hidden Layer Size 64
GAE Lambda 0.95
Clip Range 0.2
Gamma 0.99
Value Function Coefficient 0.5
Number of Epochs 10
Batch Size 64
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Table 9: Hyperparameters for DQN models, using the default Stable-Baselines3 hyperparameters
with the exception of the buffer size (changed from 1e6 to 200, 000) and final epsilon (changed from
0.05 to 0.005)

Hyperparameter Value

Learning Rate 1× 10−4

Batch Size 32
Gamma 0.99
Train/Update Frequency 4
Buffer Size 200,000
Exploration Initial Epsilon 1
Exploration Final Epsilon 0.005

C BASIC ACTION SPACE RESULTS IN YAWNING TITAN

Here we detail our YT results using the basic action space comprising (1) scan network and (2)
restore node.

Table 10: PPO results (Basic Action Space) averaged across all network sizes and agent orders for
sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative (DN) and
complex dense negative (CDN) reward functions.

Reward Function ScoreGT

Average Evaluation Reliability 95% CI

Lower RF Upper RF D̄T (e-3) DR′ LL UL
SP 4.58 4.16 4.88 0.07 0.19 3.83 5.32
SN 9.92 8.90 10.69 0.05 0.21 8.82 11.03
SPN 1.97 1.75 2.42 0.09 0.26 1.47 2.46
DN 5.84 5.42 6.16 2.98 0.29 4.73 6.04
CDN 6.03 5.61 6.37 2.90 0.39 5.21 6.86

Table 11: PPO agent performance and risk evaluation scores across network sizes (Basic Action
Space). Results are averaged over all agent orders for each of the 5 reward functions.

Evaluation across network sizes
2 5 10 20 50

Reward Function
Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

SP 1.05 1.11 1.10 1.17 2.05 2.22 3.88 4.01 14.81 15.32
SN 1.23 1.29 3.72 3.90 6.87 7.22 12.08 13.27 25.72 26.16
SPN 1.05 1.11 1.23 1.97 1.05 1.11 1.23 1.31 5.30 5.88
DN 1.16 1.22 1.26 1.32 3.39 3.52 8.26 8.51 15.13 16.10
CDN 1.31 1.36 8.03 8.28 4.23 4.35 7.58 7.83 14.70 15.84

Table 12: PPO agent results for each agent action order combination (Basic Action Space), averaged
over all network sizes, for each of the 5 reward functions. CI UL is the upper limit of the 95%
confidence interval.

Reward Function
Red then Blue Blue then Red Random

ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL

SP 0.90 0.96 0.90 5.11 4.99 6.64 7.73 8.35 8.43
SN 8.02 8.71 9.69 9.55 9.43 10.93 12.20 12.96 12.46
SPN 0.90 0.96 0.90 1.11 1.54 1.28 3.90 4.34 5.21
DN 3.22 3.30 3.93 3.10 3.10 4.09 11.19 12.00 11.76
CDN 3.80 3.87 4.24 4.73 4.86 4.36 12.97 13.87 11.98
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Table 13: Detailed PPO results for agents trained in the 50 node network (Basic Action Space).

Reward Function

50 Node Network Evaluation
Red then Blue Blue then Red Random

ScoreGT
Best

ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)

SP 0.90 0.90 25 12.68 0.90 2 30.86 25.02 0
SN 19.72 1.89 0 26.48 1.89 0 30.97 27.06 0
SPN 0.90 0.90 25 14.31 0.90 3 13.57 1.34 0
DN 7.68 0.90 2 8.30 1.89 0 29.40 24.41 0
CDN 6.36 0.90 4 8.77 1.89 0 28.96 27.07 0

D DQN RESULTS IN YAWNING TITAN

Here are results for the extended action space trained using the DQN algorithm.

Table 14: DQN results averaged over network sizes 2 to 50, and all agent orders, for all 5 reward
functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense negative
(DN) and complex dense negative (CDN).

Reward Function ScoreGT

Average Evaluation Reliability 95% CI

Lower RF Upper RF D̄T (e-3) DR′ LL UL
Extended Action Space

SP 1.48 0.88 2.38 0.70 0.44 1.03 1.93
SN 5.98 4.34 7.16 0.17 0.38 3.11 8.86
SPN 1.12 0.78 1.50 0.75 0.44 0.56 1.69
DN 3.80 3.16 4.22 5.83 0.46 2.81 4.78
CDN 5.44 4.83 5.91 4.17 0.43 4.27 6.62

Table 15: DQN performance and risk scores as network size increases. Results are averaged over all
agent orders for all 5 reward functions: sparse positive (SP), sparse negative (SN), sparse positive
negative (SPN), dense negative (DN) and complex dense negative (CDN).

Evaluation across network sizes
2 5 10 20 50

Reward Function
Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Score
GT

Upper
RF

Extended Action Space
SP 0.71 0.78 0.71 0.78 0.95 1.13 2.28 3.72 2.76 5.51
SN 0.98 1.06 1.99 2.35 2.77 3.36 8.81 10.65 15.37 18.39
SPN 0.72 0.78 0.71 0.78 0.78 0.89 0.73 0.96 2.68 4.07
DN 0.69 0.76 1.01 1.11 1.25 1.42 4.88 5.43 11.14 12.40
CDN 0.69 0.76 0.92 0.99 1.11 1.29 3.86 4.28 20.63 22.23
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Table 16: DQN results for all agent order combinations, averaged over all network sizes, for all 5
reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN), dense
negative (DN) and complex dense negative (CDN). CI UL is the upper limit of the 95% confidence
interval.

Reward Function
Red then Blue Blue then Red Random

ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL ScoreGT Upper RF CI UL

Extended Action Space
SP 0.90 0.96 0.90 2.12 4.52 3.02 1.42 1.68 1.88
SN 5.82 6.40 10.48 2.68 3.98 4.54 9.44 11.10 11.55
SPN 0.90 0.96 0.90 1.25 2.06 2.86 1.23 1.47 1.31
DN 1.31 1.37 1.67 0.77 0.96 2.03 9.30 10.35 10.65
CDN 1.27 1.33 1.63 6.81 7.11 9.06 8.24 9.29 9.17

E EPISODIC REWARDS WITH CORRESPONDING SCOREGT FOR YAWNING
TITAN EXPERIMENTS

Here we show the mean episodic rewards for each reward function, both action spaces, and all 3
agent orders. These results highlight the importance of our ground truth scoring method as it provides
a common basis for comparing between agents trained using different reward functions. In addition,
the poor correlation between mean episodic rewards and ScoreGT shows the need for better evaluation
metrics in ACD.

Table 17: PPO ScoreGT and episodic mean rewards for all agent order combinations, averaged over all
network sizes, for all 5 reward functions: sparse positive (SP), sparse negative (SN), sparse positive
negative (SPN), dense negative (DN) and complex dense negative (CDN).

Reward Function

Red then Blue Blue then Red Random

ScoreGT
Mean Episodic

Reward ScoreGT
Mean Episodic

Reward ScoreGT
Mean Episodic

Reward

Basic Action Space
SP 0.9 100.0 5.1 5.6 7.7 8.4
SN 8.0 -10.8 9.6 -3.0 12.2 -0.1
SPN 0.9 75.0 1.1 7.5 3.9 9.5
DN 3.2 -646.9 3.1 -729.4 11.2 -902.9
CDN 3.8 -662.4 4.7 -825.2 17.0 -1001.6

Extended Action Space
SP 0.9 100.0 0.3 93.5 6.9 25.1
SN 9.3 0.0 9.0 -2.6 12.5 -0.5
SPN 0.9 80.0 0.6 69.0 4.5 20.6
DN 4.1 -492.9 3.0 -532.9 11.8 -1029.5
CDN 5.7 -657.8 4.0 -664.4 17.6 -1100.8
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F POLICY ANALYSIS OF YT AGENTS

Table 18: The average blue action counts for each set of agents in an 100 step episode, averaged across
network sizes, for the extended action space. These are the result of 1000 episodes of evaluation for
each of the 25 agents in each set.

Blue actions SP SN SPN DN CDN

Action Order: Red then Blue

Scan Network 0 0.36 0 0 0
Restore Node 100 67.61 100 88.40 81.29
Place Decoy 0 32.03 0 11.60 18.71

Action Order: Blue then Red

Scan Network 0 12.24 0 0.20 0.98
Restore Node 0.63 42.96 32.71 59.84 41.07
Place Decoy 99.37 38.07 67.29 39.96 57.96

Action Order: Random

Scan Network 0.06 0.69 0.01 0.01 1.34
Restore Node 59.07 82.43 73.52 89.40 80.71
Place Decoy 40.87 16.88 26.47 10.59 17.94
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G POLICY ANALYSIS OF CAGE AGENTS

Here we show the detailed behaviour of agents trained in the MiniCAGE environment using sparse
and dense rewards.

Table 19: In MiniCAGE, mean successful Impact action counts, and mean privilege red access counts,
for each reward function. Evaluated over 1000, 100-step episodes.

Reward Function Impact Op
Server Count

Op Server
Privilege access

Count

Enterprise host
Privilege access

Count

User host
Privilege access

Count

SP 0.24 0.25 1.29 21.00
SN 4.53 10.18 2.28 1.06
SPN 2.25 3.57 2.76 22.21
CDN (Default CAGE Rewards) 0.02 7.89 22.22 4.50

Table 20: Mean blue action counts on each subnet and operational server for each reward function,
evaluated over 1000 episodes (100 time steps). This table only includes the most relevant actions,
with others like ‘analyse’ not included for conciseness.

Action SP SN SPN DN (default
CAGE rewards)

Decoy – User host 2.15 5.26 1.64 1.40
Decoy – Ent host 4.94 4.91 5.43 1.81
Decoy – Op server 0.85 4.59 0.32 1.01
Decoy Total 7.94 14.76 7.39 4.22

Remove – User host 14.93 8.74 8.82 1.37
Remove – Ent host 1.47 3.59 1.87 2.21
Remove – Op server 0.09 1.14 0.18 0.38
Remove Total 16.49 13.47 10.87 3.96

Restore – User host 62.14 4.83 62.87 17.13
Restore – Ent host 3.22 4.91 5.34 56.10
Restore – Op server 0.17 14.46 6.45 12.32
Restore Total 65.53 24.19 74.66 85.55

H CODEBASE

For the anonymised submission, a zipped folder containing the main codebase can be found in the
submitted supplementary material.
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I PPO AGENT TRAINING CURVES IN YAWNING TITAN

To accompany the detailed 50 node network data in Table 6, here we provide the training curves for
each reward function and agent order in the extended action space.

Figure 2: Training curves for the 50 node network size, red then blue agent order in the extended
action space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative
(SPN), dense negative (DN) and complex dense negative (CDN).
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Figure 3: Training curves for the 50 node network size, blue then red agent order in the extended
action space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative
(SPN), dense negative (DN) and complex dense negative (CDN).

Figure 4: Training curves for the 50 node network size, random agent order in the extended action
space for reward functions: sparse positive (SP), sparse negative (SN), sparse positive negative (SPN),
dense negative (DN) and complex dense negative (CDN).
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J CAGE AGENTS TRAINED USING DQN

Here, in Table 21, we detail our results from evaluating the sparse and dense reward functions in
MiniCAGE using DQN.

Table 21: Results for DQN agents trained in MiniCAGE using the sparse positive (SP), sparse
negative (SN), sparse positive negative (SPN) and default CAGE reward function (D).

Reward Function ScoreGT

Average Evaluation Reliability 95% CI

Lower RF Upper RF D̄T (e-3) DR′ LL UL
SP 1.48 0.96 2.97 0.97 0.45 1.42 1.55
SN 2.75 1.78 3.65 0.01 0.28 2.67 2.84
SPN 1.51 0.97 2.85 0.97 0.40 1.45 1.58
CDN (Default CAGE rewards) 1.57 1.02 2.32 1.30 0.43 1.52 1.63

K POSITIVE REWARD ABLATION STUDY

Here we ablate the positive numerical sign from our SP reward to investigate the role of reward sign
versus sparsity.

It is notable that rewards which perform poorly in our experiments (CDN, DN, SN) all feature
negative penalties without any positive rewards. However, for an idealised RL algorithm the optimal
policy is invariant when a constant is added to the reward function ( Sutton & Barto (2018)). To
empirically determine the role that numerically positive rewards play in the improved performance
of SP and SPN agents (i.e., versus sparsity) we create the Ablated-SP reward which simply adds a
constant reward (-1) to the SP reward. In other words, the blue agent receives a reward of 0 when the
network has zero compromised nodes and -1 otherwise.

Using the in the YT environment, a network size of 10 nodes and all three agent orders, we train each
agent for 1.5 million time steps and evaluate the ScoreGT, best ScoreGT and number of optimal runs.

Table 22: YT PPO agent results for each agent action order combination in the basic and extended
action spaces for network of size 10, comparing agents trained using the Ablated-SP reward function
with the alternatives.

Reward Function

10 Node Network Evaluation
Red then Blue Blue then Red Random

ScoreGT
Best

ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)
ScoreGT

Best
ScoreGT

No. of
Optimal

Runs (/25)

Basic Action Space

SP 0.90 0.90 25 3.91 0.90 10 1.35 1.34 *

Ablated-SP 0.90 0.90 25 2.61 0.90 20 1.35 1.34 *

SN 6.15 0.90 3 6.10 0.9 2 8.35 7.62 *

SPN 0.9 0.90 25 0.9 0.9 25 1.35 1.34 *

DN 1.57 0.90 12 1.76 0.9 15 6.85 1.34 *

CDN 2.38 0.90 5 1.53 0.9 12 8.79 8.54 *

Extended Action Space

SP 0.90 0.90 25 0 0 25 0.99 0.88 *

Ablated-SP 0.90 0.90 25 0 0 25 1.22 1.18 *

SN 7.39 2.87 0 6.84 0 1 8.18 6.73 *

SPN 0.9 0.9 25 0.6 0 18 1.04 0.88 *

DN 1.82 0.9 7 1.48 0 4 6.33 1.34 *

CDN 2.71 0.9 5 2.39 0 3 6.98 1.35 *

* The optimal policy score is non-trivial so we do not count the number of optimal runs
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The results in Table 22 show the Ablated-SP reward function (which does not include any positive
rewards) achieves the same (or better) average ScoreGT as the SP reward in the two fixed agent orders.
When the agent order is random, Ablated-SP outperforms the CDN, DN and SPN rewards, and
closely approaches the performance of SP and SPN – likely due to hyperparameter sensitivity during
training. This shows that including numerically positive rewards is not the main reason that SP and
SPN outperform SN, DN and CDN.

L DEFAULT CAGE-2 REWARD SOURCES OF BIAS

The CAGE 2 reward function is dense, highly-engineered and contains potential sources of bias that
may lead to misaligned or sub-optimal (e.g., because of a noisy or contradictory reward signals)
policies. In contrast to sparse rewards, it is also highly tailored to the specific CAGE-2 challenge
scenario and therefore unsuited to modified network configurations without additional work. The
specific sources of bias in the CAGE 2 reward function are as follows:

1. All compromised user hosts provide the same penalty despite having different vulnerability
profiles (and thus different long-term state values). The same is true of hosts in the enterprise
subnet.

2. The penalty for enterprise hosts and operational server compromise is the same (-1) despite
a compromised operational server being much closer to an impacted operational server (-10)
from a lateral movement (causal distance from attack objective) perspective.

3. The penalty for a compromised operational host is -0.1 per time step, the same as a user
host, despite requiring fewer steps to reach and impact the operational server. This is an
example where the default reward would not generalise well to an adversary that made use
of this route, yet a sparse reward would not require modification or domain expertise.

4. The cost of performing the restore action is -1, drawing numerical equivalence with the
compromise of an enterprise or operational host. It is also equivalent to the compromise
of a user host for 10 steps. This means that the resulting policy is biased towards restoring
only enterprise or operational hosts (as seen in Table 20). This may yield conflicting
signals with the fact that compromising user hosts is causally necessary for impacting the
operational sever, thus failing to restore them leaves the adversary closer to operational
impact. Supporting this hypothesis, the SP and SPN rewards use the restore action more
sparingly overall and use it mainly on user hosts.
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M MINICAGE EVALUATION USING THE DEFAULT CAGE-2 REWARD

In Table 23 we show the mean and median scores per timestep using the default CAGE 2 reward
across the sets of policies trained using sparse reward functions. The results show that SPN performs
similarly to CDN in terms of the mean score (-1.01 vs -0.99), and that SP and SPN perform better in
terms of the median (-0.96/7 vs -1.09). We include GT score for comparison and the results are also
supported by the agent policy analysis in Appendix G.

These results can be understood further by considering Table 3 which shows the upper RF of SP and
SPN rewards is higher than CDN i.e., the worst 5% of policies have lower scores. This is because
there is a higher probability that the operational server is impacted and incurs a large negative penalty.
Since operational server impact is causally dependent on user and then enterprise host compromise,
and our sparse policies do a much better job of confining adversary impact to the user hosts, we
think this may be an exploration issue that could be solved with further hyperparameter tuning.
Alternatively, it may be that the optimal way to defend the op server at all costs is by sacrificing
enterprise hosts - keeping the adversary ‘stuck’ near the target rather than minimising overall network
compromise. This seems untenable for real-world cyber defence.

Table 23: The MiniCAGE agents evaluated over 1000 episodes (one episode is 100 steps) using the
ScoreGT and the original CAGE reward function averaged (Mean and Median) over each timestep.

Reward Function ScoreGT
Mean score per timestep

using CAGE 2 default reward
Median score per timestep

using CAGE 2 default reward
SP 1.29 -1.37 -0.97
SN 2.77 -2.25 -2.04
SPN 1.35 -1.01 -0.96
CDN (CAGE 2 Default) 1.41 -0.99 -1.09
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